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ABSTRACT

Linear dynamical systems are the foundational statistical model
uponwhich control theory is built. Both the celebrated Kalman �lter
and the linear quadratic regulator require knowledge of the system
dynamics to provide analytic guarantees. Naturally, learning the
dynamics of a linear dynamical system from linear measurements
has been intensively studied since Rudolph Kalman’s pioneering
work in the 1960’s. Towards these ends, we provide the �rst polyno-
mial time algorithm for learning a linear dynamical system from a
polynomial length trajectory up to polynomial error in the system
parameters under essentially minimal assumptions; observability,
controllability, and marginal stability. Our algorithm is built on
a method of moments estimator to directly estimate Markov pa-
rameters from which the dynamics can be extracted. Furthermore
we provide statistical lower bounds when our observability and
controllability assumptions are violated.
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1 INTRODUCTION

Linear dynamical systems are the canonical model for time series
data. At each time step C there is an unknown hidden state GC ∈ R=
and a known exogenous input DC ∈ R? . The transition dynamics
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and observations ~C ∈ R< are generated according to the following
rules:

GC+1 = �GC + �DC +FC ,
~C = �GC + �DC + IC ,

Here �, �, � and � are matrices of dimension = × =, = × ? , < ×
= and < × ? respectively. Moreover FC and IC are independent
random variables and are called the process and observation noise
respectively. It is standard to assume that they, alongwith the inputs
and the initial state G0, are all Gaussian, though we will work in a
more general setting.

Linear dynamical systems have wide-ranging applications in
control theory [26], computer vision [18], speech recognition [48],
econometrics [2], healthcare [45] and neuroscience [61]. They are
the de facto model of choice due to their mathematical simplicity
and because, when the parameters are known, making predictions
about subsequent observations and making inferences about the
unknown state are both algorithmically tractable. In fact these
algorithms are simple, practical and statistically optimal.

But what happens when the parameters are unknown? The prob-
lem of estimating �, �, � and � from input-output sequences is
called system identi�cation and has been intensively studied since
Rudolph Kalman’s pioneering work in the 1960’s [35]. There is a
well-developed theory that furnishes asymptotic guarantees [1, 46].
And more recently, many researchers have sought �nite-sample
guarantees both in the fully observed setting where � = � [13, 20,
58, 64] and in the partially observed setting [27, 51, 59, 63, 68]. Our
focus here will be on obtaining running time and sample complex-
ity bounds that are polynomial in the appropriate parameters and
work under the most general conditions.

1.1 Previous Work

In the fully observed setting, the maximum likelihood estimator can
be computed by solving ordinary least squares. It is known to be
statistically optimal and there are strong �nite sample guarantees
on its performance [13, 20, 58, 64]. The partially observed setting is
signi�cantly more challenging because the problem of computing
the maximum likelihood estimator becomes nonconvex. The EM
algorithm [24] is often used in practice but it can get stuck in bad
local minima. Our main focus will be on algorithms for learning par-
tially observed linear dynamical systems with provable guarantees.
There is a vast literature on this and related prediction problems
(see Section 2). But all existing algorithms need to make one or
more of the following types of restrictive assumptions:
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(1) Assumptions about the characteristic polynomial @ of

� or the phases of its roots. Hardt, Ma and Recht [27]
assumed that the image of the complex unit disk under @ is
contained in the cone of complex numbers whose real part
is larger than the absolute value of its imaginary part. For
example, this is satis�ed if the ℓ1-norm of the coe�cients
of @ is at most

√
2/2. Hazan et al. [28] studied the problem

of predicting subsequent observations in a non-stochastic
setting. Their bounds depend on the ℓ1-norm of the coe�-
cients of a polynomial ? that vanishes on the phases of the
eigenvalues of �. In particular, when there are few distinct
roots or they are pairwise separated, the ℓ1-norm of the co-
e�cients of ? can be much smaller than for @. This notion
was further re�ned by Simchowitz et al. [63]. However it is
not clear why one would expect these norm bounds to be
small. In many settings, unless there is extreme cancellation,
the coe�cients of @ would in fact be exponentially large.

(2) Strict stability and mixing. Another popular assumption
is called strict stability, which stipulates that the spectral
radius d (�) < 1. Often the transition matrix � only satis-
�es d (�) ⩽ 1, which is called marginal stability. Consider a
classic application in control theory, of tracking an object
from radar measurements. The state of the object at some
time step is its position, velocity and acceleration. The tran-
sition matrix is derived from Newton’s laws and is upper
triangular with ones along the diagonal, and so all of its
eigenvalues are one. There are many other such examples,
particularly in econometrics and coming from discretizations
of ODEs. Algorithms that assume strict stability generally
have bounds that depend on 1/(1 − d (�)) [27, 62]. Essen-
tially, strict stability requires that the distribution of the ~C ’s
eventually converges and that there are no long-range corre-
lations. So after about 1/(1 − d (�)) steps we essentially get
fresh independent samples. Yet in many applications long-
range correlations are an essential feature of the problem.
Moreover getting around strict stability has many qualitative
parallels with learning in graphical models without correla-
tion decay [6], and learning in Gaussian graphical models
without the restricted eigenvalue condition [38].

(3) Restrictions on the dimension, etc. Some algorithms only
work in the single-input single-output setting, i.e. when< =

? = 1 [27]. Others have bounds that depend exponentially
on the size of the largest Jordan block of �, or even treat the
number of parameters of the linear dynamical system as a
constant [63].

By now, there is a standard blueprint which works as follows:
The �rst step is to estimate the Markov parameters, given by[

� �� ��� · · · ��B�
]

The second step is to apply the Ho-Kalman algorithm [30], which
uses the Markov parameters to compute estimates �̂, �̂, �̂ and
�̂ that are close to the true parameters in the appropriate metric.
Oymak and Ozay [51] gave the �rst e�ective stability bounds for the
Ho-Kalman algorithm. Thus the main issue is: How do you estimate
the Markov parameters? Essentially all previous works use some
form of linear regression. The analysis is based on expressing the
observation ~C as a linear function of the previous inputs and some

noise terms. The Markov parameters can then be extracted from
the regressor. The noise terms are a function of observation and
process noise and also the quantity�BGC−B , which captures how the
state at some previous time step a�ects the current state. When �
is strictly stable, this term decays exponentially. But when� is only
marginally stable, controlling this error presents many challenges.

Our main question is:

Are there e�cient algorithms for learning

high-dimensional linear dynamical systems whose

running time and sample complexity are polynomial in

the appropriate parameters, and whose assumptions

are essentially optimal?

1.2 Our Assumptions

It is important to draw a sharp distinction between the assumptions
featured in the previous subsection and the more standard assump-
tions from control theory. In 1960, Rudolph Kalman [36] introduced
the concepts of observability and controllability. Since then, it has
been understood that they ought to in some sense govern what
sorts of linear dynamical systems can be learned. In this subsection,
we will review these assumptions and their natural quantitative
counterparts.

Observability and Controllability. Consider the observability ma-

trix: for an integer B , let

$B =
[
�⊤ (��)⊤ . . .

(
��B−1

)⊤]⊤
.

A linear dynamical system is observable if for some B , the matrix$B
has full column rank. Intuitively, this condition ensures that there
is no portion of the state space that we cannot observe eventually.

Now consider the controllability matrix: for an integer B , let

&B =
[
� �� . . . �B−1�

]
A linear dynamical system is controllable if the controllability matrix
has full row rank. Intuitively this condition ensures that there is no
portion of the state space that cannot be reached by the appropriate
inputs. If either observability or controllability are violated, it is
information-theoretically impossible to learn.

While the full rank conditions are enough to build an asymp-
totic theory, we will need natural quantitative counterparts to get
�nite sample guarantees. In particular we assume that $B and &B
have bounded condition number for some B . These assumptions are
usually made in addition to the ones from the previous subsection,
as they are needed in the stability bounds for the Ho-Kalman al-
gorithm [51]. Furthermore we show that (see Theorem 1.4) they
are information-theoretically necessary in order to learn a linear
dynamical system from a polynomial length trajectory.

Finally, as is standard, we also assume that the system is non-
explosive, i.e. the eigenvalues of � are bounded by 1 in magnitude.
Note that assuming the eigenvalues are bounded is much weaker
than assuming the singular values are bounded (e.g. consider the
types of upper triangular matrices that arise in control theory,
including =-dimensional integrators [57]).

Relaxed Control and Noise. In the literature, the standard assump-
tion is that the initial state, the process and observation noise are all
drawn from a Gaussian. But Gaussianity is not meant to literally be

336



A New Approach to Learning Linear Dynamical Systems STOC ’23, June 20–23, 2023, Orlando, FL, USA

true and it is often assumed for convenience. We show that we can
dramatically relax this assumption to allow heavy-tailed distribu-
tions instead. In particular, for the control input,DC , we only require
the underlying distribution to have well-behaved fourth-moments:

De�nition 1.1 ((4,2)-Hypercontactivity). A distribution D over
R
3 is (4, 2)-hypercontractive if for all E ,

E
G∼D

[
⟨G, E⟩4

]
⩽ $ (1) E

G∼D

[
⟨G, E⟩2

]2
.

We note that several families of distributions are hypercontrac-
tive, including Gaussians, uniform distributions over the hypercube,
sphere and other convex bodies, the Laplace, gamma, chi-squared,
Wishart, Dirichlet and beta distributions, and in general, all log-
concave distributions. Further, the set of hypercontractive distribu-
tions is closed under a�ne transformations, products and mixtures.

Finally, we only require that the distributions of the process
noise,FC , and observation noise, IC , have bounded covariance. We
state these assumptions formally in Section 4.

1.3 Our Results

Our approach is based on the method-of-moments rather than least-
squares regression. Our starting point is the following folklore
observation: for any integers C > 9 ,

E
DC∼DD

[
~C+9D⊤C

]
=

{
� if 9 = 0

�� 9−1� otherwise
(1)

However getting accurate estimates of the Markov parameters
is a challenging task. For a �xed 9 , since the expectation of the
estimator ~C+9D⊤C does not depend on C , a natural approach to es-
timate E

[
~C+9D⊤C

]
is to average over several control-observation

pairs: ��� 9−1� =
1
)

∑
C ∈[) ] ~C+9D

⊤
C and hope that this estimator

converges to its expectation. Unfortunately, this is just not true!
The �rst issue is that samples of the form ~C+9D⊤C are not inde-

pendent for di�erent values of C . The second issue is that, in the
marginally stable setting, the variance of this statistic grows with
C , even when the control and the noise are Gaussian (see the ap-
pendix of the full version for an example). Thus, directly using the
empirical estimate can be highly inaccurate no matter how long our

trajectory is. One of the key steps in our algorithm is to learn a trans-
formation of the observations to a new time series {~̂1, ~̂2, . . . , ~̂) }
such that E

[
~̂C+9D⊤C

]
= �� 9−1� and the variance of our estimator

is bounded. As a result, we obtain the following theorem:

Theorem 1.2 (Efficiently Learning a Linear Dynamical Sys-

tem, informal Theorem 6.4). Given n > 0, a �xed polynomial

length trajectory from a linear dynamical system satisfying mild non-

degeneracy assumptions (see Subsection 1.2), there exists an algorithm

that outputs estimates �̂, �̂, �̂, �̂ such that with probability at least

9/10, there exists a similarity transform* satisfying� −* −1�̂*  ⩽ n, � −* −1�̂ ⩽ n, � − �̂*  ⩽ n, � − �̂ ⩽ n.
Further, the algorithm runs in time that is a �xed polynomial in all

the parameters.

Remark 1.3. Note that it is only possible to recover the system
parameters up to some global transformation* since all such trans-
formations lead to equivalent dynamics, see e.g. [51].

The main appeal of our algorithm is that it works in essentially
the most general setting possible. In particular we show the follow-
ing lower bound:

Theorem 1.4 (Sample Complexity Lower Bound for Ill-Con-

ditioned Systems). [Informal, see Theorem 9.4] If for an LDS, the

observability matrix $B has smallest singular value less than X for

all orders B , then any algorithm that uses less than ∼ 1/
√
X length

trajectories incurs constant error in estimating �, �,�, � with con-

stant probability. The same statement holds with the observability

matrix $B replaced by the controllability matrix &B . In particular, if

X is exponentially small, then an exponential number of samples are

required to learn the parameters.

It turns out that super-resolution [7, 17], namely the task of re-
covering a sparse signal from noisy low-frequency measurements,
corresponds to a special case of learning linear dynamical systems.
It is known that super-resolution exhibits a sharp phase transi-
tion, where the problem goes from having e�cient algorithms
with polynomial running time and sample complexity, to being
information-theoretically impossible, unless the noise is exponen-
tially small [49]. Thus there are some linear dynamical systems
where it is impossible to learn the true parameters with bounded
length trajectories. We re�ne this connection to show instance-
wise lower bounds for learning any linear dynamical system whose
observability or controllability matrices are close to singular. Thus
the assumptions our algorithm needs are qualitatively tight, and
our results close the question of what linear dynamical systems can
be e�ciently learned.

2 RELATED WORK

Linear Time Invariant Systems: Identi�cation, Prediction, Estima-

tion. There is a long history of identifying linear dynamical systems
from measurements, see [23] for extensive references. A focus of
these works is on the "pre-�ltering" approach to handling long
range correlations in learning dynamical systems, see [15] [70] [66]
[63]. Recently, there is a �urry of work on prediction and estimation
for LDS’s through the framework of no regret learning both in the
fully observable setting [65] [58] [19] and the partially observed
setting [62] [27]. For a variety of assumptions on the dynamics ma-
trix, such as diagonalizability, there is work on learning marginally
stable LDS’s [28] [29]. Many works take a regression approach to
estimating the markov parameters of the LDS for strictly stable
systems see [44] [60] [21] [16]. In these settings it is possible to
take advantage of the decay of the coe�cients of the associated
regressors. Marginal stability can be handled with multiple trajec-
tories see [71] [67]. Closed loop system identi�cation has also been
studied; see [43] [42].

Somewhat related to our work is the problem of prediction with-
out system identi�cation in marginally stable LDS’s [68] [25] but
with an assumption on the exponential decay of the kalman �lter
coe�cients. In [56], the exponential stability of the Kalman �lter
assumption is removed via a procedure that builds a succinct bank
of �lters for the prediction task and with an additional assumption
on the dynamics having real eigenvalues. For a survey of the area
see [69].
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Relaxing distributional assumptions. In recent years, there has
been a tremendous amount of work on designing algorithms that do
not rely on strong distributional assumptions, such as Gaussianity,
and only require much milder conditions. In particular, hypercon-
tractivity of linear functions and low-degree polynomials have been
identi�ed as key analytic conditions that admit e�cient algorithms
for numerous problems in high-dimensional algorithmic statistics.
In particular, souped up variants of hypercontractivity are used for
heavy-tailed mean and covariance estimation [11, 31, 47], robust
moment estimation [41], robust regression [5, 10, 34, 39, 52, 53, 72],
robustly clustering mixture models [4, 14, 32, 40] and list-decodable
learning [3, 12, 33, 37, 54, 55]. Algorithms with relaxed distribu-
tional assumptions were also recently given for online regression
[9] and Kalman �ltering [8].

3 TECHNICAL OVERVIEW

In this section, we describe our key algorithmic ideas and the cor-
responding technical challenges involved.

3.1 A Thought Experiment

Consider the setting where we already know the parameters,�, �,�
and � , of the underlying linear dynamical system. While there
is nothing left to learn in this setting, we can still ask whether
there exists a transformation of the observations {~C }C ∈[0,) ] to a
new time series {~̂C }C ∈[0,) ] , such that the variance of the random
variable ~̂C+9DC is bounded.

It is indeed possible to do so by considering a simple linear
transformation of the observations: let ~̂C = ~C−

∑=
9=1 2 9~C− 9 , where

the 2 9 ’s are the coe�cients of the characteristic polynomial of�. To
see why this works, we recall that by the Cayley-Hamilton theorem
(see Fact 5.4), the coe�cients of the characteristic polynomial satisfy
the following algebraic identity:

�= −
∑
9∈[=]

2 9�
=− 9

= 0 (2)

Therefore, assuming (for the purposes of exposition) thatFC ’s
and IC ’s are bounded, and � = 0, we have

~̂C = ~C −
=∑
9=1

2 9~C− 9

=

=∑
8=1

©«
��8−1� −

8−1∑
9=1

2 9��
8− 9−1�ª®¬

DC−8

︸                                            ︷︷                                            ︸
(0)

+
C∑

8==+1

©
«
��8−=−1 ©«

�= −
=∑
9=1

2 9�
=− 9 ª®¬

�
ª®¬
DC−8

︸                                                   ︷︷                                                   ︸
(1 )

(3)

We note that term (a) above only has = terms and does not grow as
a function of C , and term (b) is in fact zero, since we can repeatedly
apply the identity from Equation (2). A simple computation then
implies that the estimator ~̂C+9D⊤C satis�es E

[
~̂C+9D⊤C

]
= �� 9−1�

and has bounded variance. We replicate this thought experiment, by
learning the coe�cients that stabilize the variance of our estimator

from the observations directly. We dedicate the rest of the technical
overview to describe how we accomplish this task.

3.2 Learning the Stabilizing Transform

For ease of exposition, we assume that� is a 1×= matrix and there-
fore the resulting observations, ~C , are scalars. A natural approach
is to then consider the following least-squares regression problem:

min
21,22,...2=

∑
C ∈[) ]

©«
~C −

∑
9∈[=]

2 9~C− 9
ª®¬
2

We know that the coe�cients of the characteristic polynomial
are a feasible solution to this regression problem, and the resulting
linear transformation of the observations results in an estimator
with bounded variance. Such an approach also appears in [63]
but they incur unspeci�ed, potentially exponential dependencies
on the system parameters due to the complexities of analyzing
this regression problem directly. In particular, we do not have �ne-
grained control over the solution returned by solving the regression
problem, and apriori, the regression solution need not be close to
the coe�cients of the characteristic polynomial of �.

Convex Program. Instead, we take a more direct approach to
stabilizing the variance and consider a di�erent convex program,
speci�cally designed to do so. In particular, we �nd a vector U =

(U1, U2, . . . UB ) such that the following constraint system is feasible:

CU =



∀9 ∈ [B] |U 9 |2 ⩽ %0

∀8 ∈ [) ]
���~8+: − ∑

9∈[B ]
U 9 · ~8− 9

���2 ⩽ %1


, (4)

where B is the integer satisfying the observability and controlability
assumptions from De�nition 4.4, and %0 and %1 are su�ciently
large polynomials in the system parameters (see Algorithm 6.6 for
details).

Intuitively, the �rst constraint posits that each coe�cient, U 9
is bounded in magnitude. This is necessary since the process and
observation noise scale proportional to the coe�cients in the lin-
ear transformation, and we cannot a�ord to pay exponentially in
these quantities. The second constraint posits that the resulting
observations themselves are bounded, and tries to enforce a uni-
versal bound on the variance of each ~̂C appearing in the estimator
1
)

∑
C ∈[) ] ~̂C+:D

⊤
C .

Feasibility. Observe, in contrast to the characteristic polynomial,
we are only taking a linear combination of the previous B (poten-
tially≪ =) observations. While this di�erence does not manifest
itself when� is 1×=, it becomes crucial when� is< ×= for< > 1

for obtaining guarantees that depend only on the observability and
controllability matrix. Also, note that we are expressing~C+: , rather
than ~C , as a linear combination of ~C−1, . . . ~~−B . This di�erence is
also crucial in the construction and analysis of our estimator.

In order to establish feasibility of CU , we invoke the observability
assumption: since $B has bounded condition number, there exists
a vector U∗ =

(
U∗1 , . . . , U

∗
B

)
such that each U is bounded and the

following identity holds:

��:+B − U1��B−1 − U2��B−2 − . . . − UB� = 0.
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We then follow an argument similar to the one in Equation (3) to
show that the magnitude of ~̂C ’s is bounded (see Lemma 7.2 for
details). We also note that the above program is convex, and admits
an e�cient separation oracle, and therefore, we can �nd a feasible
U in polynomial time. Interestingly, the feasibility analysis only
requires that the covariance of the control input, process noise
and observation noise be bounded, and does not require strong
assumptions such as sub-Gaussian tails.

The Anti-concentration Potential. Next, we show that any feasible
solution to the constraint system actually yields a stabilized esti-
mator. To accomplish this goal, we design a potential function that
captures the variance of our estimator, and argue that if the poten-
tial is large, with high probability, some constraint in CU must be
violated. In particular, for any vector U , and integer ; , we consider
the potential

GU,; =
;∑
8=0

∥�U (�)�8�∥2�

where

�U (�) = ��:+B − U1��B−1 − U2��B−2 − . . . − UB� .

We observe that the terms appearing in this potential are the trace

of E
[ (
�U�

8�DC−8
)⊤ (

�U�
8�DC−8

) ]
, which captures how large in-

termediate terms are, as a function of U . In particular, if U = U∗, the
trace would be 0. We make this intuition precise in Lemma 7.4.

Next, we show that we can split up the terms appearing in ~̂C+:
into three parts as follows:

~̂C+: = -C ++C +,C ,

where-C is polynomially bounded in the system parameters,+C is a
random variable such that the covariance matrix of +C , denoted by
Σ+C satis�es Tr(Σ+C ) = GU,; , and,C is a random variable that we
do not have control over, and may potentially be unbounded. This
presents obstacle since,C can wipe out the information contained
in+C , and GU,; may be large without violating any constraint in CU .

Here, we observe that such an event can be avoided precisely
when the random variable+C is anti-concentrated, i.e. the probability
that +C lands in a ball of small radius is small. Perhaps counter-
intuitively, we show that if the 4-th moment of +C concentrates,
then it already possesses the anti-concentration properties we re-
quire. We make this precise in Lemma 5.9, where we establish a
Paley-Zigmund style inequality, showing that if a random vari-
able is (4, 2)-hypercontractive (see De�nition 5.7), then the prob-
ability it lands in any interval that is a constant fraction of its
variance is bounded by a constant. Finally, we show that+C is (4, 2)-
hypercontractive if the control inputs are (4, 2)-hypercontractive,
and therefore, signi�cantly relax the Gaussianity assumption.

To summarize, we show that if the potential is large, the mag-
nitude of +C is large, and since +C is anti-concentrated,,C cannot
wash away this information. Therefore, |~̂C+: | must be large, for
some C , which is a contradiction to the feasibility of CU .

Dependent Random Variables and Decoupling. We then establish
that if the potential GU is small, for a �xed setting of U , the resulting

estimator has bounded variance:

E



1

!

∑
C ∈[!]

~̂C+9D⊤C −�� 9−1�


2
⩽
%1

!

(
∥U ∥2 +�U,!

)
, (5)

for some �xed polynomial %1 in the system parameters. We treat !
as a su�ciently large polynomial in the system parameters and 1/Y
(where Y is the desired accuracy).

This argument is fairly involved and heavily uses the indepen-
dence of the DC ,FC and IC ’s. We refer the reader to Lemma 7.8 for a
complete proof. While the above inequality holds for a �xed set-
ting of U , we note that the U ’s output by solving the constraint CU
themselves depend on the randomness in the control input and the
noise non-trivially.

To overcome this issue, we decouple the U ’s from DC ’s and estab-
lish a symbolic matrix inequality, where the matrices only depend
on theDC ’s. Here, we treat the vector EU = (1, U1, . . . , UB ) as a formal
variable, and write the potential as a quadratic form in the vector
EU :

GU,! = E⊤U�!EU ,

where �! is a PSD matrix. We note that such a representation
always exists and is unique since GU,! is a sum-of-squares in U .
Similarly, we observe that the variance we want to bound admits a
similar decomposition: let"9 be the PSD matrix such that

E



1

!

∑
C ∈[!]

~̂C+9D⊤C −�� 9−1�


2

= E⊤U"9EU .

Observe, the matrices �! and "9 are independent of the for-
mal variables U , and in Corollary 7.10 we establish the following
inequality:

E
D,F,I

[
"9

]
⪯ %1

!
(� +�!) (6)

Since the above inequality holds for all quadratic forms simultane-
ously, one natural way to proceed would be to consider an n-net
over the U ’s and union bound over each vector in the net satisfying
the quadratic form in Equation (6). To execute this, we need a net
that is �ne enough to account for how much error we accumulate
in a term of the from ~̂C+9D⊤C . Note, the largest terms we need to

account for are roughly of the form U 9�
! , which naively requires

a 1/∥�∥!-net. Unfortunately, this net is too �ne and we cannot
a�ord to union bound over all the vectors in this net because in
some sense we only have ! samples.

Bounded Eigenvalues to Smaller Nets. To address the issue above,
we show that for any = × = matrix � with complex entries, if the
eigenvalues of � are bounded by 1 in magnitude, the operator
norm of �! in fact grows as != , instead of exponentially in ! (see
Lemma 5.6 for a precise statement). Here, we crucially note that
we only assume the eigenvalues, instead of the singular values
(which would make this statement trivial but would rule out several
important families of linear dynamical systems), are bounded. With
this insight, we can then union bound over all vectors U in a 1/!=-
net, and establish equation (5) for the U output by solving the
constraint system CU . To conclude, we have shown that the variance
of our estimator is bounded, and therefore, we can estimate each
block of the Markov Parameter matrix.
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3.3 Lower Bound for Ill-Conditioned LDS’s

In light of our results on learning LDS’s, a natural question is
whether the assumptions on observability and controllability are
necessary. We exhibit information-theoretic lower bounds on the
sample complexity of learning a linear dynamical systems with
Gaussian noise and Gaussian inputs, when the observability or
controllability matrices are exponentially ill conditioned. For this
section, we discuss the case when the observability matrix is ill con-
ditioned. The case when the controllabiltiy matrix is ill conditioned
follows essentially the same argument.

De�nition 3.1. We say that an LDSL(�, �,�, �) is (X, E)-unobservable
if E is a unit vector such that for all integers B ⩾ 0,

∥��BE ∥ ⩽ X .
Now the key to proving an information-theoretic lower bound

is the observation that when the input and noise distributions are
Gaussian, the system measurements and control inputs

(D0, ..., D) , ~0, ..., ~) )
are a Gaussian process. Therefore, the joint distribution is uniquely
determined by its covariance matrix. On the other hand, we can
explicitly compute the covariance matrix in terms of the system
parameters �, �,�, � . While there are several terms in the expres-
sion, the main point is that essentially all of the terms look like
�� 9�. Now, when the system is (X, E)-unobservable, we can replace
� with � + ED⊤ for an arbitrary vector D ∈ R? while only changing
expressions of the form �� 9� by a little bit.

Overall, we can show that the pair of LDS’s L = L(�, �,�, �)
and L′ = L(�, � + ED⊤,�, �) are statistically close up to time) ≪
1/X . This means that no algorithm using≪ 1/X length trajectories
can distinguish the two systems and since their parameters are
not close to equivalent up to similarity (for generic choices of
parameters), the algorithm must incur large error.

4 FORMAL SETUP

In this section, we formally state the linear dynamical systemmodel,
and our assumptions.

Model 4.1 (Linear Dynamical System). Let � ∈ C=×= , � ∈
C
=×? , � ∈ C<×= , and � ∈ C<×? be complex valued matrices. Let

D0, DD , DF , DI be distributions with mean zero. Then, a Linear

Dynamical System, L (�, �,�, �), is de�ned as follows:
GC+1 = �GC + �DC +FC ,
~C = �GC + �DC + IC ,

where G0 ∼ D0, and for all C ∈ N, DC ∼ DD ,FC ∼ DF and IC ∼ DI .
We see only the sequence of observations ~1, ~2, . . . , ~) up to

some time ) and our goal is to learn the parameters of the system
�, �,�, � . We need some assumptions about the parameters and
also the input and noise distributions which we discuss below (as
otherwise the system may be degenerate and it may be information-
theoretically impossible to learn, see Section 9).

4.1 Assumptions on the System Parameters

We begin by ensuring that the linear dynamical system at hand is
not degenerate. This notion can be made precise by considering
the observability matrix:

De�nition 4.2 (Observability Matrix). For an integer B , de�ne the
matrix $B ∈ RB<×= as

$B =



�

��
...

��B−1


.

A LDS is observable if for some B , the matrix $B has full column-
rank. Similarly, we need to ensure that the control input is not
degenerate, and only acts in a subspace that is not spanned by �.
This is made precise by considering the controllability matrix:

De�nition 4.3 (Controllability Matrix). For an integer B , de�ne
the matrix &B ∈ RB?×= as

&B =
[
� �� . . . �B−1�

]
A LDS is controllable is the controllability matrix has full row-

rank. We note that we assume a quantitative strengthening of these
two assumptions to $B and &B having bounded condition number
(and this is necessary, recall Theorem 1.4).

De�nition 4.4 (Well-Behaved Linear Dynamical System). We say
a linear dynamical system L(�, �,�, �) is well-behaved if the fol-
lowing assumptions hold:

(1) Non-trivial Controller. The matrix � satis�es ∥�∥ ⩾ 1.
(2) Non-trivial Measurement. The matrix� satis�es ∥� ∥ ⩾ 1.
(3) Non-exposive System. All eigenvalues of � have magni-

tude at most 1.
(4) Bounded Condition Number. $B has full column-rank,

&B has full row-rank and for some integer B , and parameter
^ ⩾ 1,

fmax ($2B )/fmin ($B ) ⩽ ^,
fmax (&2B )/fmin (&B ) ⩽ ^.

Remark 4.5. Crucially, the above assumption is on the eigenvalues
and not the singular values of �, which would be a far stronger
assumption, as discussed in the introduction.

Remark 4.6. While the bounded condition number assumption is
standard in the literature [22, 50], in Section 9, we show that a poly-
nomial bound on the condition number is necessary in the sample
complexity, even information-theoretically. As a consequence, it is
impossible to learn an exponentially ill-conditioned system with
polynomially bounded observations. Finally, note that up to poly-
nomial factors, it su�ces to have a bound on fmax ($C )/fmin ($B )
as long as C/B > 1 + 2 for some positive constant 2 (see Claim 5.16).
For simplicity, we wrote the above condition for C = 2B .

4.2 Assumptions on the Distribution of the

Control and Noise

We consider the following assumptions over the control input,
system and process noise distributions:

De�nition 4.7 (Distributional Assumptions). For all C ∈ [) ], we
assume that DC ∼ DD , FC ∼ DF and IC ∼ DI are each sampled
independently from the corresponding distributions. Additionally,
G0 ∼ D0. Then,

• Mean Zero:DD ,DF ,DI andD0 are all mean 0 distribution.
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• Isotropic and Hypercontractive Control: The covariance
of DD , ΣDD

= � , and DD is (4, 2,  )-hypercontractive for a
�xed constant  ⩾ 3 (see De�nition 5.7).
• Bounded Variance Noise: For fF , fI ⩾ 1, the covariances
of DF and DI satisfy ΣDF

⪯ fF� and ΣDI
⪯ fI� .

• Starting Point: The distribution D0 has covariance ΣD0
⪯

f0�

Remark 4.8. We don’t actually need that theD8 ,F8 , I8 are all drawn
from the same distribution across di�erent time-steps.We only need
that they are independent. In other words, all of our results still hold
if we allow for there to be di�erent distributions DD,C ,DF,C ,DI,C
at each time-step that all satisfy the above assumptions.

5 PRELIMINARIES

We begin with some notation and basic facts from linear algebra
and probability. For a matrix � ∈ C=×= , we use ∥�∥ = ∥�∥op =

max∥D ∥=1∥�D∥2 and ∥�∥� =

√∑
8, 9∈[=] |�8, 9 |2. We use the notation

�⊤ to denote the transpose when � only has real entries. Further,
for � ∈ C=×< such that = ⩾ <, let SVD(�) = * Σ+⊤ denote the
singular value decomposition of �, where * ∈ C=×< and +⊤ ∈
C
<×< are unitary matrices (see De�nition 5.1, and Σ is a diagonal

matrix, with the singular values denoted by f1 ⩾ f2 ⩾ . . . f< ⩾ 0.

5.1 Linear Algebra Background

De�nition 5.1 (Unitary Matrices). Given a symmetric matrix* ∈
C
=×= we say* is a unitary matrix if*⊤* = **⊤ = � .

Fact 5.2 (Operator Norm of Unitary Matrices). If& ∈ C=×=
is a unitary matrix, ∥& ∥op = 1.

Fact 5.3 (Sub-Multiplicativity of Operator Norms). Given

matrices � ∈ C=×3 , � ∈ C3×< , ∥��∥op ⩽ ∥�∥op · ∥�∥op.

Fact 5.4 (Cayley-Hamilton Theorem). Given a square matrix

� ∈ C=×= , the characteristic polynomial of � is de�ned as ?� (_) =
det (_� −�) = _= + 2=−1_=−1 + . . . 21_ + 20, where the coe�cients,

28 , are scalar. Then, consider the matrix valued polynomial ?� (�) =
�= + 2=−1�=−1 + . . . 21� + 20� . The Cayley-Hamilton theorem states

?� (�) = 0.

Fact 5.5. For any matrix � ∈ C=×= , there is a unitary matrix &

such that &−1�& is upper triangular.

Proof. � must have some eigenvector, say E . Also normalize E
so that it is a unit vector. Let &0 be a matrix whose �rst column
is E and whose columns form an orthonormal basis of C= . Then
�′ = &−10 �&0 has all entries in the �rst column equal to 0 except
possibly the �rst entry. Now it su�ces to compute a unitary matrix
in C(=−1)×(=−1) that transforms the (= − 1) × (= − 1) submatrix of
�′ (excluding the �rst row and column) into an upper triangular
matrix but this can be done by induction. □

We also establish the following key lemma to upper bound the
operator norm of matrix polynomials, when the underlying matrix
has bounded eigenvalues.

Lemma 5.6 (Operator Norm of a matrix with bounded Eigen-

values ). Let � ∈ C=×= be a matrix and assume that all eigenvalues

of � have magnitude at most 1. Then for any integer !,

∥�! ∥ ⩽ = · (2(1 + ∥�∥)!)= .

Proof. By Fact 5.5 and Fact 5.2, without loss of generality we can
assume that � is upper triangular. Then, all of its diagonal entries
are eigenvalues so all of its diagonal entries have magnitude at most
1. Now we bound the magnitude of all entries of �! . Consider the
entry indexed by 8, 9 . Clearly 8 ⩽ 9 or the corresponding entry is 0.
Next, by de�nition of (�!)8, 9 ,

| (�!)8 9 | =
∑
81,...,8!

8⩽81⩽...⩽8!−1⩽ 9

�881 · · ·�8!−1 9

⩽

∑
81,...,8!

8⩽81⩽...⩽8!−1⩽ 9

|�881 | · · · |�8!−1 9 |

⩽

(
! − 1 + =

=

)
(1 + ∥�∥)=

⩽ (2(1 + ∥�∥)!)= .

(7)

where the second inequality counts the number of paths and uses
that each path can contain at most = entries strictly above the
diagonal. □

5.2 Probability Background

Next, we recall the de�nition of ℓ4→2-hypercontractivity for distri-
butions.

De�nition 5.7 (Hypercontractivity). We say a distribution D on
R
= is (4, 2,  )-hypercontractive if for any vector E ∈ R= , we have
EG∼D [⟨E, G⟩4] ⩽  · EG∼D [⟨E, G⟩2]2.

We note that hypercontractivity is a very mild assumption on
the concentration behavior of 4-th moments of a distribution, and
several well-studied families of distributions, including all sub-
Gaussian, sub-Exponential and log-concave distributions satisfy
this assumption.

Lemma 5.8 (Linear Transform of aHypercontractiveDistri-

bution). Let {D8 }8∈[C ] be C iid samples from a distributionD that is

(4, 2,  )-hypercontractive (see De�nition 5.7). Then, for any matrices

"1, . . . , "C ∈ R<×? , the random variable
∑
8∈[C ] "8D8 + · · · +"CDC

is (4, 2,  )-hypercontractive.

Proof. See full version. □

Next, we obtain a weak anti-concentration bound via a Paley Zyg-
mund like inequality:

Lemma 5.9 (Weak Anti-Concentration via Hypercontrac-

tivity). Let I be a real-valued random variable such that E[I] =
0,E[I2] ⩾ 1,E[I4] ⩽  for some constant  ⩾ 3. Then for any real

number V ,

Pr[|I − V | ⩽ 0.1] ⩽ 1 − 1

10 
.

Proof. Clearly we must have  ⩾ 1. Assume for the sake of
contradiction that the desired inequality is false. Without loss of
generality we have V ⩾ 0. First consider the case where V ⩾ 0.3.

341



STOC ’23, June 20–23, 2023, Orlando, FL, USA Ainesh Bakshi, Allen Liu, Ankur Moitra, and Morris Yau

Let ? be the probability that I ⩽ 0.2. We must have ? ⩽ 1/(10 ).
Furthermore, since E[I] = 0, we must have

0 = E[I] = ?E[I
��I ⩽ 0.2] + (1 − ?)E[I

��I > 0.2]
⩾ ?E[I

��I ⩽ 0.2] + 0.2(1 − ?)

which rearranges as

E[I
��I ⩽ 0.2] ⩽ −0.2(1 − ?)

?
.

Thus, by Jensen’s inequality (since I4 is convex), this implies that

E[I4] ⩾ ?E[I4
��I ⩽ 0.2] ⩾ ?

(
0.2(1 − ?)

?

)4
>  

which is a contradiction. Now it remains to consider the case where
V ⩽ 0.3. Then let @ be the probability that |I − V | ⩽ 0.1. We have

E[I2] = @E
[
I2

�� |I − V | ⩽ 0.1
]
+ (1 − @)E

[
I2

�� |I − V | > 0.1
]

⩽ @(V + 0.1)2 + (1 − @)E
[
I2

�� |I − V | > 0.1
]
.

Thus, since E[I2] ⩾ 1, we must have

E
[
I2

�� |I − V | > 0.1
]
⩾

0.8

1 − @ .

Thus, by convexity, we must have

E[I4] ⩾ (1 − @) ·
(
0.8

1 − @

)2
=

0.64

1 − @

and combining with the fact that E[I4] ⩽  , we deduce that @ ⩽
1 − 1

10 and we are done. □

5.3 Linear Dynamical Systems Background

Next, we establish some basic de�nitions and identities that we
utilize throughout. We begin with the de�nition of the Markov
parameters of a LDS.

De�nition 5.10 (Markov Parameters). Given a linear dynamical
system, L (�, �,�, �), and an integer) ⩾ 1, the Markov Parameter
matrix � ∈ R<×)? is de�ned as the following block matrix:

� =

[
� �� ��� . . . ��)−2�

]
.

It will be important to consider linear combinations of the obser-
vations ~C . In particular, for di�erent integers : , we will consider
linear combinations of the form ~̂C+: = ~C+: −

∑B
9=1 U 9~C− 9 where

U1, . . . , UB ∈ R<×< are< ×< matrices. To ease notation, it will be
useful to consider the following matrix polynomial.

De�nition 5.11 (Matrix Polynomial). For U = (U1, . . . , UB ) where
U1, . . . , UB ∈ R<×< are matrices, de�ne the matrix polynomial
�U,: : R=×= → R<×=

�U,: (- ) = �-B+: − U1�-B−1 − · · · − UB� .

Also for 8 = 0, 1, . . . , : + B , let

�
(8 )
U,:
(- ) =

{
�- 8 0 ⩽ 8 ⩽ :

�- 8 −∑8−:
9=1 U 9�-

8−:− 9 : + 1 ⩽ 8 ⩽ : + B

We now have the following identities.

Fact 5.12 (Algebraic Identities for LDS’s). Let L (�, �,�, �)
be a Linear Dynamical System (see De�nition 4.1). Then, for any

C ∈ N,

~C =

C∑
8=1

(
��8−1�DC−8 +��8−1FC−8

)
+��CG0 + �DC + IC ,

Further, given : ∈ N and U1, U2, . . . , UB ∈ R<×< , let ~̂C+: = ~C+: −∑B
9=1 U 9~C− 9 . Then,

~̂C+: =
©«
IC+: −

B∑
9=1

U 9IC− 9
ª®¬
+ ©«
�DC+: −

B∑
9=1

U 9�DC− 9
ª®¬

+
(
�U,: (�)�C−B

)
G0 +

:+B∑
8=1

�
(8−1)
U,:

(�) (�DC+:−8 +FC+:−8 )

+
C+:∑

8=:+B+1
�U,: (�)�8−(:+B+1) (�DC+:−8 +FC+:−8 ) .

Proof. The proof is direct computation (see full version). □

Next, we observe that the cross-covariance between the control
input and the observation is an unbiased estimator of the Markov
parameters.

Fact 5.13 (Cross-Covariance of Control and Observation).

For any C, : ∈ N, and any 0 ⩽ 9 ⩽ : , we have

E

[
~̂C+9D⊤C

]
=

{
� if j = 0

�� 9−1� otherwise
(8)

Proof. We use the formula in Fact 5.12 and the independence
of the D8 ,F8 , I8 . When 9 = 0, we immediately have

E[~̂CD⊤C ] = E[�DCD⊤C ] = � .
When 9 > 0, we have

E[~̂C+9D⊤C ] = E[�
( 9−1)
U,:

(�)�DCD⊤C ] = �
( 9−1)
U,:

(�)� .

Next, since 9 ⩽ : , by de�nition we have � ( 9−1)
U,:

(�) = �� 9−1 and
we are done. □

In light of the above, we make the following de�nition.

De�nition 5.14. For an integer 9 ⩾ 0, we de�ne the matrix - 9 as

- 9 =

{
� if j = 0

�� 9−1� otherwise
.

Of course, we have - 9 = E[~̂C+9D⊤C ] by the previous fact.
We also require the following straight-forward consequences of

the bounded condition number assumption on the observability
and controlability matrices from Section 4:

Claim 5.15. Given an integer B , let$B , &B be the observability and
controlabilitymatrices from de�nition 4.2 and 4.3. Then,fmin ($B ) ⩽√
B ∥� ∥ and fmin (&B ) ⩽

√
B ∥�∥.

Proof. Let E be an eigenvector of � and say �E = _E . Note that
|_ | ⩽ 1. Thus,

∥$BE ∥ ⩽
√
∥�E ∥2 (1 + _2 + _4 + · · · + _2B−2) ⩽

√
B ∥� ∥∥E ∥ .

A similar argument works for &B . □
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Claim 5.16. Given integers C > B , let fmax ($C )/fmin ($B ) ⩽ ^.
Then for any integer : > 0,

∥�: ∥� ⩽ (
√
=^):/(C−B ) .

The same holds with $ replaced with & .

Proof. Note that ∥$B�C−B ∥� ⩾ fmin ($B )∥�C−B ∥� . On the other
hand,

∥$B�C−B ∥� ⩽ ∥$C ∥� ⩽
√
=∥$C ∥ ⩽

√
=^fmin ($B ) .

Thus, ∥�C−B ∥� ⩽
√
=^ and this immediately implies the desired

inequality. □

6 ALGORITHM

Our algorithm follows the outline described in Section 3. We �rst
learn a stabilizing transformation that transforms ~C → ~̂C (see
Algorithm 6.6). Note that in the general case, when � is< × = (as
opposed to 1×= as described in Section 3), the coe�cients U1, . . . , UB
are< ×< matrices. Once we have these matrices, we empirically
estimate the Markov parameters (recall Fact 5.13). Finally, once we
obtain estimates for the Markov parameters, we extract the system
parameters via the Ho-Kalman algorithm.

Before we describe our algorithm formally, we introduce a few
de�nitions and notational simpli�cations. Throughout this section,
we will use Y to denote the desired accuracy and X to be a parameter
for the failure probability. We will also make the simpli�cation that
G0 = 0. This is allowed because we can absorb the distribution of
G0 into the distribution forF0 i.e. DF ← �D0 + DF which is still
polynomially bounded in the system parameters. As mentioned in
Remark 4.8, we do not need theF8 to have identical distributions,
just that they are independent and bounded variance.

Algorithm 6.1 (Learning a Linear Dynamical System).

Input: ) observations {~1, ~2, . . . , ~) } and the correspond-
ing control inputs {D1, D2, . . . , D) } generated from a
Linear Dynamical System L (�, �,�, �) satisfying the
assumptions in Section 4.

Input: B ∈ N such that the observability and controlla-
bility matrices satisfy the condition number bounds
in De�nition 4.4, accuracy parameter 0 < n < 1, and
failure probability parameter 0 < X < 1.

Operation:

(1) Stabilizing the System: Run Algorithm 6.6 to ob-
tain coe�cient matrices U1, . . . , UB .

(2) Estimating the Markov Parameters: Set : = 10B .
For all 9 = 0, 1, . . . , :

(a) For all C ∈ [) ] with C > : + B , compute ~̂C =

~C −
∑B
8=1 U8~C−:−8 .

(b) Compute -̂ 9 =
1

)−:−B
∑)
C=:+B+1 ~̂CD

⊤
C− 9 .

(3) Robust Ho-Kalman: Run Ho-Kalman on

�̂ = [-̂0, -̂1, . . . , -̂2B ]
to obtain estimates �̂, �̂, �̂, �̂

Output: �̂, �̂, �̂, �̂ satisfying guarantees of Theorem 6.4

In the de�nition below, we condense all of the system parameters
into a set S so that we don’t need to list out the full set of param-
eters in future computations. Recall De�nition 4.7 where  is the
hypercontractivity parameter for the input distribution (and will
be de�ned as such throughout this section) and fF , fI are upper
bounds on the variances of the noise distributions.

De�nition 6.2. Let S denote the set of parameters

{∥�∥, ∥�∥, ∥� ∥, ∥� ∥,<, =, ?, B, ^,  , 1/X, fF , fI } .
We will write poly(S) for a quantity that depends polynomially on
these parameters.

Note that we will be more explicit about dependencies on the
accuracy Y so it is not included in the de�nition of S.

Now we de�ne a constraint system for a convex program that
is at the core of our algorithm. Let Y be the desired accuracy, and
: = 10B . Throughout this section, we will treat : as �xed. Choose
su�ciently large polynomials %0, %1, %2 in terms of the parameters
in S such that %0 ≪ %1 ≪ %2 and let ! = %2 log

2 (1/Y)/Y2.
De�nition 6.3. We de�ne the constraint system CU for matrices of
coe�cients U1, . . . , UB ∈ R<×< as follows. We de�ne ~̂C+: = ~C+: −
U1~C−1 − · · · − UB~C−B . We also enforce the following constraints

(1) ∥U8 ∥� ⩽ %0 for all 8 = 1, 2, . . . , B

(2) For all 8 ∈ [100B=<2 log!], we have
∥~̂8!+: ∥ ⩽ %1 log(1/Y)

Our main theorem is that Algorithm 6.1 runs with polynomial
time and sample complexity and outputs estimates �̂, �̂, �̂, �̂ that
are Y-close to the true system parameters up to a global similarity
transformation (which is always necessary).

Theorem 6.4 (Learning a Linear Dynamical System). Given

0 < n, X < 1, an integer B , and trajectory length

) = Ω

(
poly(S) ·

log3 ( 1n )
n4

)
,

and the corresponding observations and inputs {~8 , D8 }8∈[) ] , from a

linear dynamical system L (�, �,�, �), satisfying the assumptions

in Section 4, Algorithm 6.1 outputs estimates �̂, �̂, �̂, �̂ such that

with probability at least 1 − X , there exists a similarity tranform *

satisfying

max
(� −* −1�̂*  , � − �̂*  , � −* −1�̂ , � − �̂) ⩽ n,

Further, Algorithm 6.1 runs in poly(S, 1n ) time.

The overall structure of our approach is to �rst estimate the
Markov parameters (see De�nition 5.10). We then recover the esti-
mates of the system parameters by setting up a Generalized eigen-
value problem and using the Ho-KalmanAlgorithm (see for example
Theorem 5.3 in [51]).

The key techincal theorem we obtain for learning each block
matrix in the Markov Parameter matrix is as follows:

Theorem 6.5 (Learning the Markov Parameters). Given 0 <

n, X < 1, an integer B , and trajectory length

) = Ω

(
poly(S) ·

log3 ( 1n )
n2

)
,
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with the corresponding observations and inputs {~8 , D8 }8∈[) ] , from a

linear dynamical system L (�, �,�, �), satisfying the assumptions in

Section 4, Algorithm 6.6 outputs U1, U2, . . . , UB in time poly(S, 1/n)
such that with probability at least 1 − X , for all 0 ⩽ 9 ⩽ :


1

) − : − B

)∑
C=:+B+1

©«
~C −

∑
8∈[B ]

U8~C−:−8
ª®¬
D⊤C− 9 − - 9


2

�

⩽ n2

where recall - 9 is de�ned in De�nition 5.14.

Once we have proven Theorem 6.5, we can combine it with a
result from [51] for estimating the system parameters from the
Markov Parameters using Ho-Kalman. See Section 8 for details. The
main technical work of this paper is in proving Theorem 6.5, which
we focus on in Section 7.

Algorithm 6.6 (Stabilizing the System).

Input: ) observations {~1, ~2, . . . , ~) } from a single tra-
jectory and the corresponding inputs {D1, D2, . . . , D) }
generated from a Linear Dynamical SystemL (�, �,�, �)
satisfying the assumptions in Section 4

Input: B ∈ N such that the observability and controlla-
bility matrices satisfy the condition number bounds
in De�nition 4.4, accuracy parameter 0 < n < 1, and
failure probability parameter 0 < X < 1.

Operation:

(1) Let %0, %1, %2 be su�ciently large polynomials in the
parameters<,=, ?, B, :, ^ and such that %0 ≪ %1 ≪
%2. Let ! = %2 log

2 (1/n)/n2. Let ( = {1, 2, . . .}.
(2) Solve the following system in the matrix variables

U1, U2, . . . UB ∈ R<×< :

CU =




∀9 ∈ [B]U 9 2� ⩽ %0
∀8 ∈ [100B=<2 log(!)]~8!+: −

∑
9∈[B ]

U 9 · ~8!− 9


2

2

⩽ %1 log(1/n)




Output: Matrices U1, U2, . . . UB obtained above.

7 ANALYSIS OF ALGORITHM 6.6

In this section, we analyze Algorithm 6.6 and prove Theorem 6.5.
Since we treat : as �xed throughout this section, we will write
�U (�) for �U,: (�) (recall De�nition 5.11). First, we need the follow-
ing basic observation.

Claim 7.1 (Uniform bounds on the control and noise). Let %0, %1, %2
be su�ciently large polynomials in the parameters in S such that
%0 ≪ %1 ≪ %2. Let ! = %2 log

2 (1/n)/n2. With probability 1 − 0.1X ,
the following events all hold:

(1) For all 8 ∈ [100B=<2 log!] and integers −10(: + B) ⩽ 2 ⩽
10(: + B), we have

∥D8!+2 ∥, ∥F8!+2 ∥, ∥I8!+2 ∥ ⩽ %0 log(1/Y) .

(2) For all C ⩽ %22 log
3 (1/Y)/Y2, we have

∥DC ∥, ∥FC ∥, ∥IC ∥ ⩽ !%0 .

Proof. Note that from the covariance bounds on DC ,FC , IC (and
using Markov’s inequality), we have that for a �xed index C and
any parameter U ,

Pr[∥DC ∥ ⩾ U] ⩽
=

U2

Pr[∥FC ∥ ⩾ U] ⩽
=f2F

U2

Pr[∥IC ∥ ⩾ U] ⩽
=f2I

U2
.

Now to prove the �rst statement, note that we only need to union
bound over

$ (100(: + B)B=<2 log!) = poly(S) log(1/Y)
variables so as long as we choose %0 su�ciently large we get that
the statement holds with at least 1− 0.05X probability. The proof of
the second statement is similar except we union bound over more
variables. □

We begin by establishing the feasibility of the constraint system,
CU , as de�ned in Algorithm 6.6:

Lemma 7.2 (Feasibility of the Constraint System). Assume

we are given 0 < n, X < 1, and ) = Ω

(
poly(S) · log

3 ( 1
n
)

n2

)
obser-

vations {~8 , D8 }8∈[) ] from a single trajectory of a linear dynamical

system L (�, �,�, �), satisfying the assumptions in Section 4. Then,

as long as the events in Claim 7.1 hold, the constraint system CU is

feasible.

Proof. See full version. □

Next, we argue that any U that is feasible for CU must actually
be useful for stabilizing the system. To do this, we introduce the
following potential.

De�nition 7.3 (Anti-Concentration Potential). For an integer ;
and coe�cients U = (U1, . . . , UB ), de�ne the function

�U,; =

;∑
8=0

∥�U (�)�8�∥2� .

�U,! is a potential measuring the variance of ~̂. We will show
that with high probability over the randomness of the DC ,FC , IC ,
any U that is feasible for CU must have �U,; be small.

First, we express �U,; as the variance of a random variable that
naturally arises when computing ~̂C (using the formula in Fact 5.12).

Lemma 7.4 (Potential captures Variance). Given ; < C ∈ N,
consider the random variable

WC,; =

;∑
8=0

�U (�)�8�DC−8 .
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Then we have

Tr

[
E[WC,;W⊤C,; ]

]
= �U,; .

Proof. Since the D8 are independent E[D8D 9 ] = 0 for 8 ≠ 9 and

E

[
D8D
⊤
8

]
= � for all 8 , we have

E[WC,;W⊤C,; ] = E

(
;∑
8=0

�U (�)�8�DC−8

) (
;∑
8=0

�U (�)�8�DC−8

)⊤
= E

[
;∑
8=0

(
�U (�)�8�DC−8

) (
�U (�)�8�DC−8

)⊤]

=

;∑
8=0

((�U (�)�8�) ((�U (�)�8�)⊤ .

Now taking the trace of both sides, and using the linearity of trace,

Tr

[
E

[
WC,;W

⊤
C,;

] ]
=

;∑
8=0

Tr
[
((�U (�)�8�) ((�U (�)�8�)⊤

]

=

;∑
8=0

∥�U (�)�8�∥2� = �U,;

as desired. □

Next, we show that if the potential �U,! is large, with high
probability, there must be a violated constraint in CU .

Lemma 7.5. Let U = (U1, . . . , UB ) be a �xed sequence with ∥U8 ∥� ⩽
%0 and �U,! > <(100%1 log(1/Y))2. Now, consider a trajectory of

length) , and the corresponding observations and inputs, {~8 , D8 }8∈[) ] ,
from the LDS L(�, �,�, �) after �xing this sequence and let Z be the

event that Lemma 7.1 holds. Conditioned on Z , with 1 − (1/!)10B=<2

probability, there exists some integer 1 ⩽ 8 ⩽ 102B=<2 log! such

that

∥~̂8!+: ∥ ⩾ 2%1 log(1/Y) .

Proof. See full version. □

Next, we relate the potential function�U,! to the variance of our
actual estimators for the Markov parameters. First, we will need to
de�ne a similar-looking potential and relate it to �U,! .

De�nition 7.6. For an integer ; and matrix-valued coe�cients
U = (U1, . . . , UB ), de�ne the function

�U,; =

;∑
8=0

∥�U (�)�8 ∥2� .

Intuitively, this potential simply does not include the matrix �
and thus is polynomially related to�U,; , since the condition number
of the controllability matrix is bounded. We make this precise as
follows:

Lemma 7.7 (Potential without �). For a �xed sequences of

matrices U = (U1, U2, . . . , UB ), we have
�U,; ⩽ ^

2B�U,;+B .

Proof. See full version. □

Next, for any �xed sequence of U ’s we show that the variance of
our estimator can be bounded in terms of the norm of the U8 ’s and
the two potentials we de�ned above. In particular,

Lemma 7.8 (Potential to Variance Bound). For any �xed

U1, . . . , UB ∈ R<×< and any 0 ⩽ 9 ⩽ : , we have

E


 1!

B+!∑
C=B+1

~̂C+:D
⊤
C+:− 9 − - 9


2

�


⩽
%1

!

(
1 + ∥U1∥2� + · · · + ∥UB ∥

2
� +�U,! + �U,!

)
.

where recall - 9 is de�ned as in De�nition 5.14 and the expectation is

over the draws of DC ,FC , IC .

Proof. See full version. □

Unfortunately, we cannot use Lemma 7.8 directly because the
choice of U = (U1, . . . , UB ) that we compute using the program CU
already depends on the realizations of the DC ,FC , IC meaning that
there is no more fresh randomness. In order to use the randomness
over DC ,FC and IC to bound the variance of our estimator, we need
decouple the U ’s out of the variance expression.

To circumvent this, we will derive a symbolic inequality from
Lemma 7.8 that holds simultaneously for all choices of U and thus
can be applied even if U depends on the realizations of DC ,FC , IC .

Note that �U,; and �U,; are both quadratic expressions in the U8 .
It will be useful to extract out the matrix of coe�cients, which we
do in the following de�nition.

De�nition 7.9 (Coe�cient Matrix of a quadratic polynomial). De-
�ne EU = (1, U1, . . . , UB ) where we view the U8 as formal variables
and �atten each of the matrices U8 into a vector and concatenate
them so that EU has length B<2 + 1. Let�! (respectively �!) be the
unique symmetric (B<2 + 1) × (B<2 + 1) matrix such that

E)U�!EU = �U,! .

Note that matrices de�ned above are unique because we force
them to be symmetric so the coe�cients of the monomials in the
U8 uniquely determine the entries of the matrices. Also, the entries
of �; , �; are purely functions of the system parameters �, �,�, � .
Nowwe can prove a symbolic version of Lemma 7.8. Intuitively, this
symbolic version is a way to decouple the vector valued random
variables DC ,FC and IC from the matrix random variables U , and
then use properties of the input distribution on the expressions that
are independent of U .

Corollary 7.10 (Symbolic Matrix Ineqality). Consider the

vector of formal variables EU = (1, U1, . . . , UB ). For an integer 9 with

0 ⩽ 9 ⩽ : , de�ne"9 to be the unique symmetric matrix such that 1!
B+!∑
C=B+1

~̂C+:D
⊤
C+:− 9 − - 9


2

�

= E⊤U"9EU ,

where recall - 9 is de�ned in De�nition 5.14. Then we have

E["9 ] ⪯
%1

!
(� +�! + �!),

where the expectation is over the randomness of the realizations of

the D8 ,F8 , I8 .
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Proof. We simply use the fact that Lemma 7.8 holds over all
choices of U = (U1, . . . , UB ). See full version for details. □

Now we can complete the analysis of our algorithm for learning
the Markov parameters.

Proof of Theorem 6.5. With probability at least 1 − 0.1X , the
event in Claim 7.1 holds and we condition on it. Now we solve
the program in De�nition 6.3. By Lemma 7.2, it is feasible. Let
Ũ = (Ũ1, . . . , ŨB ) be a feasible solution.

Now construct aW-net, denoted byT , over thematrices (U1, . . . , UB )
in Frobenius normwithW = 1/!4= . Then, observe for any (U1, . . . , UB )
with ∥U8 ∥ ⩽ %0, there exists (U ′1, . . . , U

′
B ) ∈ T such that√

∥U1 − U ′1∥
2
�
+ · · · + ∥UB − U ′B ∥2� ⩽

1

!4=
.

It is clear that such a net exists with |T | ⩽ !4=B<2
. Now, we can

union bound over all the events such that with probability at least
1 − 0.2X , simultaneously, for all U , for all 8 ∈ [100B=<2 log(!)], it
follows from Lemma 7.5 that ∥~̂8!+: ∥2 ⩽ 2%1 log(1/n).

Next, we show that the solution Û we obtain must satisfy

�Û,! ⩽ <(200%1 log(1/Y))2 . (9)

To see this, assume for the sake of contradiction that the above
doesn’t hold. Now round our solution Û to the nearestU ′ = (U ′1, . . . , U

′
B )

in the net. By Lemma 5.6, as long as %2 (and recall! = %2 log
2 (1/Y)/Y2)

is chosen su�ciently large, we have

�U ′,! ⩾ <(100%1 log(1/Y))2

However, Lemma 7.5 implies that there is some integer 1 ⩽ 8 ⩽
102B=<2 log! such that

∥~8!+: − U ′1~8!−1 − · · · − U
′
B~8!−B ∥ ⩾ 2%1 log(1/Y) .

However, using the assumptions in Lemma 7.1, the formula for ~C
in Fact 5.12 and the bounds in Lemma 5.6, and the properties of the
net, the above implies that

∥~8!+: − Û1~8!−1 − · · · − ÛB~8!−B ∥ ⩾ %1 log(1/Y)

which contradicts the fact that (Û1, . . . , ÛB ) is a feasible solution.
Thus, we actually must have (9). Now by Lemma 7.7, we have
�U,!−B ⩽ ^2B<(200%1 log(1/Y))2. Now let !′ = ! − B and set

-̂ 9 =
1

!′

B+!′∑
C=B+1

~̂C+:D
⊤
C+:− 9

for all 0 ⩽ 9 ⩽ : . Let "9 be de�ned as in Corollary 7.10 (with !
replaced by !′). Let

"̃9 =
%1

!′
(� +�!′ + �!′ ) .

Note that "̃9 is clearly PSD. Also "9 is always PSD regardless
of the realizations of the D8 ,F8 , I8 , so by Markov’s inequality and
Corollary 7.10, we have that with 1 − 0.1X/: probability

Tr
(
"̃9
−1/2

"9 "̃9
−1/2)

⩽
10:

X
E

[
Tr

(
"̃9
−1/2

"9 "̃9
−1/2)]

⩽
10:

X
(B<2 + 1) .

This means that with 1 − 0.1X/: probability,

"̃9
−1/2

"9 "̃9
−1/2 ⪯ 10: (B<2 + 1)

X

which then implies

"9 ⪯
10: (B<2 + 1)

X
"̃9 .

Assuming that this happens, we have that

∥-̂ 9 − - 9 ∥2� = E⊤U"9EU

⩽
10: (B<2 + 1)

X

%1

!′
(1 + ∥U1∥2� + · · · + ∥UB ∥

2
� +�U,!′ + �U,!′ )

⩽ Y2

(10)

where the last inequality uses that ! = %2 (log(1/Y))2/Y2 and %2 is
chosen su�ciently large. Finally, union bounding the above over
all choices of 9 = 0, 1, . . . : completes the proof for the guarantees
of the estimator.

Finally, note that our algorithm runs in polynomial time in all
the parameters because the convex program CU admits an e�cient
separation oracle. To see this, note that there are only polynomially
many constraints in CU and each one is either a linear constraint or
an ellipsoid constraint both of which admit an e�cient separation
oracle.

□

8 FROM MARKOV PARAMETERS TO SYSTEM

PARAMETERS

Note that Theorem 6.5 guarantees that we can get good estimates
for the markov parameters. To complete the proof of our full learn-
ing result, Theorem 6.4, we apply the Ho-Kalman algorithm black
box to extract the system matrices {�, �,�, �} where {�, �,�} are
recovered up to a similarity transformation. Recall that linear dy-
namical systems are speci�ed only up to similarity transformation
(see [51] for a discussion on this point).

The following lemma from [51] establishes error guarantees for
the Ho-Kalman algorithm given operator norm bounds on estimat-
ing � .

Lemma 8.1 ([51]). For observability and controllability matrices

that are rank =, the Ho-Kalman algorithm applied to �̂ produces

estimates �̂, �̂, and �̂ such that there exists similarity transform ) ∈
R
=×= such that

max{∥� − �̂) ∥� , ∥� −) −1�̂∥� } ⩽ 5

√
=∥� − �̂ ∥

and

∥� −) −1�̂) ∥� ⩽

√
=∥� − �̂ ∥∥� ∥

f
3/2
<8= (�−)

and � − �̂
�
⩽
√
=
� − �̂

where in the above

� = [�,��,���, ...,��2B−1�] .

A straightforward application of this lemma allows us to com-
plete the proof of Theorem 6.4.
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Proof of Theorem 6.4. By Theorem 6.5, in Algorithm 6.1, the
input �̂ to the Ho-Kalman algorithm satis�es

∥� − �̂ ∥� ⩽
√
2B + 1Y

with probability at least 1 − X . Now we apply Lemma 8.1. The
two things we need to do are upper bound ∥� ∥ and lower bound
f<8= (�−).We have an upper bound on ∥� ∥ ⩽ f<0G (OB )f<0G (QB ) ⩽
^2B ∥�∥∥� ∥ where we use Claim 5.15. We also have f<8= (�−) ⩾
f<8= (OB )f<8= (QB ) ⩾ ∥�∥∥� ∥ ⩾ 1. Therefore we conclude that
there is a similarity transform ) such that

max{∥� −) −1�̂) ∥� , ∥� − �̂) ∥� , ∥� −) −1�̂ ∥� }
⩽ poly(=, ^, B, ∥�∥, ∥� ∥)

√
n .

Rede�ning Y appropriately immediately gives the desired result. □

9 SAMPLE COMPLEXITY LOWER BOUND FOR

ILL-CONDITIONAL LDS

In this section, we prove a lower bound, that when the observability
or controllability matrix of an LDS is close to singular, then it is
information-theoretically impossible to learn. We consider the case
where the distributions DD = D0 = # (0, � ) and DF = # (0, ΣF)
where ΣF will be set later. For simplicity, we also set G0 = 0 and
also � = 0.

De�nition 9.1. We say that an LDSL(�, �,�, �) is (X, E)-unobservable
if E is a unit vector such that for all integers B ⩾ 0,

∥��BE ∥ ⩽ X .
Note that the above condition depends only on�,� so we will some-
times talk about a pair of matrices �,� being (X, E)-unobservable.
De�nition 9.2. We say that an LDSL(�, �,�, �) is (X, E)-uncontrollable
if E is a unit vector such that for all integers B ⩾ 0,

∥(�B�)⊤E ∥ ⩽ X .
Note that the above condition depends only on�, � so we will some-
times talk about a pair of matrices �, � being (X, E)-unobservable.

For our formal lower bound, we need a minor assumption that�
is generic, in particular, we need that it is not too close to a multiple
of the identity plus a rank-1 perturbation. Essentially all matrices
satisfy this assumption as long as = ⩾ 3.

De�nition 9.3. We say a matrix � ∈ R=×= and vector E are 2-
generic if ∥�∥ ⩾ 2 and there are unit vectors D,F such that

⟨D, E⟩ = 0

⟨D,F⟩ = 0

⟨D,�F⟩ ⩾ 2 ∥�∥ .
Theorem 9.4. Let �,� be matrices that are (X, E)-unobservable

for some 0 < X < 0.1 and unit vector E . Assume that (�, E) are 2-
generic for some constant 2 . Then any algorithm that is given an LDS

L(�, �,�, �) that uses at most

>

(
1√

X (< + ?)

)

samples has probability at least 0.4 of outputting �̂, �̂, �̂, �̂ such that

there is no invertible matrix* with

∥� −* −1�̂* ∥� , ∥� −* −1�̂∥� , ∥� − �̂* ∥� ⩽ 0.122 .

Similarly, the same holds if �, � are matrices that are (X, E) uncon-
trollable.

Proof. See full version. □
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