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Abstract

For any ε > 0, we give a simple, deterministic (4 + ε)-approximation algorithm for the Nash
social welfare (NSW) problem under submodular valuations. The previous best approximation
factor was 380 via a randomized algorithm. We also consider the asymmetric variant of the
problem, where the objective is to maximize the weighted geometric mean of agents’ valuations,
and give an (ω + 2+ ε)e-approximation if the ratio between the largest weight and the average
weight is at most ω.

We also show that the 1/2-EFX envy-freeness property can be attained simultaneously with
a constant-factor approximation. More precisely, we can find an allocation in polynomial time
which is both 1/2-EFX and a (8 + ε)-approximation to the symmetric NSW problem under
submodular valuations. The previous best approximation factor under 1/2-EFX was linear in
the number of agents.
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1 Introduction

We consider the problem of allocating a set G of m indivisible items among a set A of n agents,
where each agent i ∈ A has a valuation function vi : 2

G → R≥0 and weight (entitlement) wi > 0
such that

∑

i∈Awi = 1. The Nash social welfare (NSW) problem asks for an allocation S = (Si)i∈A
that maximizes the weighted geometric mean of the agents’ valuations,

NSW(S) =
∏

i∈A

(vi(Si))
wi .

We refer to the special case when all agents have equal weight (i.e., wi = 1/n) as the symmetric
NSW problem, and call the general case the asymmetric NSW problem. Throughout, we let wmax :=
maxi∈Awi. For α > 1, an α-approximate solution to the NSW problem is an allocation S with
NSW(S) ≥ OPT/α, where OPT denotes the optimum value of the NSW-maximization problem.

Allocating resources among agents in a fair and efficient manner is a fundamental problem in
computer science, economics, and social choice theory; we refer the reader to the monographs [5,
10,11,41,45,46,48] on the background. A common measure of efficiency is utilitarian social welfare,
i.e., the sum of the utilities

∑

i∈A vi(Si) for an allocation (Si)i∈A. In contrast, fairness is often
measured by max-min fairness, i.e., mini∈A vi(Si); maximizing this objective is also known as the
Santa Claus problem [4].

Symmetric NSW provides a balanced tradeoff between the often conflicting requirements of
fairness and efficiency. It has been introduced independently in a variety of contexts. It is a discrete
analogue of the Nash bargaining game [33,42]; it corresponds to the notion of competitive equilibrium
with equal incomes in economics [47]; and arises as a proportional fairness notion in networking [34].
The more general asymmetric objective has also been well-studied since the seventies [31, 32]. It
has found many applications in different areas, such as bargaining theory [15, 35], water resource
allocation [22, 30], and climate agreements [49].

A distinctive feature of the NSW problem is invariance under scaling of the valuation functions
vi by independent factors λi, i.e., each agent can express their preference in a “different currency”
without changing the optimization problem (see [41] for additional characteristics).

1/2-EFX allocations Envy-freeness up to any item (EFX) is considered the most compelling
fairness notion in the discrete setting with equal entitlements [14], where an allocation S = (Si)i∈A
is said to be EFX if

vi(Si) ≥ vi(Sk − j), ∀i, k ∈ A ,∀j ∈ Sk .

That is, no agent envies another agent’s bundle after the removal of any single item from the envied
agent’s bundle. It is not known whether EFX allocations always exists or not, and it is regarded as
the “fair division’s biggest open question” [44]. This motivated the study of its relaxation α-EFX
for an α ∈ (0, 1), where an allocation S is said to be α-EFX if

vi(Si) ≥ α · vi(Sk − j), ∀i, k ∈ A ,∀j ∈ Sk .

The best-known α, for which the existence is known, is 1/2 for submodular valuations, albeit with
the efficiency guarantee of O(n)-approximation to the symmetric NSW problem [18,43].

For NSW, without loss of generality we can assume that the allocations S = (Si)i∈A partition
the set of items, i.e., ∪i∈ASi = G. We call such an allocation a complete allocation; an allocation S
with ∪i∈ASi ( G will be called a partial allocation.

In the context of envy-free allocations, it might be beneficial not to allocate some items: the
allocation with Si = ∅ for each agent is in fact envy-free. The two challenges are to find a complete
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allocation that satisfies certain envy-freeness property, and to guarantee efficiency, such as high
NSW value at the same time.

Submodular and subadditive valuation functions A set function v : 2G → R is monotone
if v(S) ≤ v(T ) whenever S ⊆ T . A monotone set function with v(∅) = 0 is also called a valuation
function or simply valuation. The function v : 2G → R is submodular if

v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ) ∀S, T ⊆ G ,

and subadditive if
v(S) + v(T ) ≥ v(S ∪ T ) ∀S, T ⊆ G .

We assume the valuation functions are given by value oracles that return v(S) for any S ⊆ G in
O(1) time.

Our contributions Our main theorem on NSW is the following.

Theorem 1.1. For any ε > 0, there is a deterministic polynomial-time (nwmax + 2 + ε)e-approxi-
mation algorithm for the asymmetric Nash social welfare problem with submodular valuations. For
symmetric instances, the algorithm returns a (4 + ε)-approximation. The number of arithmetic
operations and value oracle calls is polynomial in n, m, and 1/ε.

Algorithm 1 in Section 2.1 presents the algorithm asserted in the theorem. Note that nwmax is
the ratio between the maximum weight wmax and the average weight (1/n). In the symmetric case,
when all weights are wi = 1/n, this bound gives (3 + ε)e < 8.2. In this case, we can improve the
analysis to obtain a (4 + ε)-approximation algorithm.

In Appendix A, we present a slightly stronger version of Theorem 1.1 for the asymmetric case.
In particular, the bound improves to (nwmax + 1 + ε)e for wmax ≥ 3.5/n.

As our second main result, we show that a 1/2-EFX allocation with high NSW value exists and
can also be efficiently found. We give a general reduction for subadditive valuations. In the context
of 1/2-EFX allocations, NSW(S) will always refer to the NSW value of allocation S in the symmetric
case (wi = 1/n for all i ∈ A).

Theorem 1.2. There is a deterministic strongly polynomial-time algorithm that given a symmetric
NSW instance with subadditive valuations and given a (complete or partial) allocation S of the items,
it returns a complete allocation T that is 1/2-EFX and NSW(T ) ≥ NSW(S)/2.

The above algorithm is strongly polynomial in the value oracle model: number of basic arithmetic
operations and oracle calls is polynomially bounded in n and m. Together with Theorem 1.1, we
obtain the following corollary.

Corollary 1.3. For any ε > 0, there is a deterministic polynomial algorithm that returns a 1/2-EFX
complete allocation that is (8+ ε)-approximation to the symmetric NSW problem under submodular
valuations. The number of arithmetic operations and value oracle calls is polynomial in n, m, and
1/ε.
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1.1 Related work

Prior work on approximating NSW Let us first consider additive valuations, i.e., when vi(S) =
∑

j∈S vij for nonnegative values vij . Maximizing symmetric NSW is NP-hard already in the case of
two agents with identical additive valuations, by a reduction from the Subset-Sum problem. It is
NP-hard to approximate within a factor better than 1.069 for additive valuations [26], and better
than 1.5819 for submodular valuations [29].

On the positive side, a number of remarkably different constant-factor approximations are known
for additive valuations. The first such algorithm with the factor of 2 ·e1/e ≈ 2.889 was given by Cole
and Gkatzelis [21] using a continuous relaxation based on a particular market equilibrium concept.
Later, [20] improved the analysis of this algorithm to achieve the factor of 2. Anari, Oveis Gharan,
Saberi, and Singh [2] used a convex relaxation that relies on properties of real stable polynomials.
The current best factor is e1/e + ε ≃ 1.45 by Barman, Krishnamurthy, and Vaish [8]; the algorithm
uses a different market equilibrium based approach.

For the general class of subadditive valuations [6,18,29], O(n)-approximations are known. This
is the best one can hope for in the value oracle model [6], for the same reasons that this is impossible
for the utilitarian social welfare problem [23]. Sublinear approximation O(n53/54) is possible for XOS
valuations if we are given access to both demand and XOS oracles [7]. Recall that all submodular
valuations are XOS, and all XOS valuations are subadditive.

Constant-factor approximations were also obtained beyond additive valuation functions: capped-
additive [27], separable piecewise-linear concave (SPLC) [3], and their common generalization,
capped-SPLC [16] valuations; the approximation factor for capped-SPLC valuations matches the
e1/e+ε factor for additive valuations. All these valuations are special classes of submodular. Subse-
quently, Li and Vondrák [37] designed an algorithm that estimates the optimal value within a factor

of e3

(e−1)2
≃ 6.8 for a broad class of submodular valuations, such as coverage and summations of

matroid rank functions, by extending the techniques of [2] using real stable polynomials. However,
this algorithm only estimates the optimum value but does not find a corresponding allocation in
polynomial time.

In [28], Garg, Husić, and Végh developed a constant-factor approximation for a broader subclass
of submodular valuations called Rado-valuations. These include weighted matroid rank functions
and many others that can be obtained using operations such as induction by network and con-
tractions. An important example outside this class is the coverage valuation. They attained an
approximation ratio 772 for the symmetric case and 772(wmax/wmin)

3 for the asymmetric case.
Most recently, Li and Vondrák [38] obtained a randomized 380-approximation for symmetric NSW
under submodular valuations by extending the the approach of [28].

We significantly improve and simplify the approach used in [28] and [38]; we give a comparison
to these works in Section 2.2.

Prior work on EFX and related notions The existence of EFX allocations has not been
settled despite significant efforts [14,17,43,44]. This problem is open for more than two agents with
general monotone valuations (including submodular), and for more than three agents with additive
valuations. This necessitated the study of its relaxations α-EFX for α ∈ (0, 1) and partial EFX
allocations. For the notion of α-EFX, the best-known α is 0.618 for additive [1] and 0.5 for general
monotone valuations (including submodular) [43].

For the notion of partial EFX allocations, the existence is known for general monotone valuations
if we do not allocate at most n − 2 items [9, 19, 40], albeit without any efficiency guarantees. For
additive valuations, although n−2 is still the best bound known, there exist partial EFX allocations
with 2-approximation to the NSW problem [13].
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A well-studied weaker notion is envy-freeness up to one item (EF1), where no agent envies
another agent after the removal of some item from the envied agent’s bundle. EF1 allocations are
known to exist for general monotone valuations and can also be computed in polynomial-time [39].
However, an EF1 allocation alone is not desirable because it might be highly inefficient in terms
of any welfare objective. For additive valuations, the allocations maximizing NSW are EF1 [14].
Although the NSW problem is APX-hard [36], there exists a pseduopolynomial time algorithm
to find an allocation that is EF1 and 1.45-approximation to the NSW problem under additive
valuations [8]. For capped-SPLC valuations, [16] shows the existence of an allocation that is 1/2-
EF1 and 1.45-approximation to the NSW problem. The existence of an EF1 allocation with high
NSW is open for submodular valuations.

Subsequent to our work, [24] improves Theorem 1.2 to show the existence of an allocation T
that is 1/2-EFX and NSW(T ) ≥ 2/3NSW(S) for a given allocation S.

1.2 Notation

We will also use monotone set functions with v(∅) > 0; we refer to these as endowed valuation
functions. We use log(x) for the natural logarithm throughout. For set S ⊆ G and j ∈ G, we use
S + j to denote S ∪ {j} and S − j for S \ {j} and we write v(j) for v({j}). For a vector p ∈ RG

and S ⊆ G, we denote p(S) =
∑

i∈S pi.
By a matching from A to G we mean a mapping τ : A→ G∪{⊥} where τ(i) 6= τ(j) if τ(i) 6= ⊥;

⊥ is a special symbol representing unmatched agents.

2 Overview of the algorithms

2.1 Approximation algorithm for Nash social welfare

Algorithm 1 is our new proposed algorithm for the Nash social welfare problem. We start with an
overview of the algorithm. The analysis is given in Section 3.

Algorithm 1: Approximating the submodular NSW problem

Input: Valuations (vi)i∈A over G, weights w ∈ RA
>0 such that

∑

i∈Awi = 1, and ε > 0.
Output: Allocation S = (Si)i∈A.

1 Find a matching τ : A→ G maximizing
∏

i∈A vi(τ(i))
wi and set H := τ([n]), J := G \H

2 R = (Ri)i∈A :=LocalSearch(J, (vi)i∈A)
3 Find a matching σ : A→ H maximizing

∏n
i=1 vi(Ri + σ(i))wi

4 return S = (Ri + σ(i))i∈A

Phase 1: Initial matching We find an optimal assignment of one item to each agent, i.e., a
matching τ : A → G maximizing

∏

i∈A vi(τ(i))
wi . This can be done using a max-weight matching

algorithm with weights wi log vi(j) in the bipartite graph between A and G with edge set {(i, j) :
vi(j) > 0}. If no matching of size n exists, then we can conclude that there is no allocation with
positive NSW value, and return an arbitrary allocation. For the rest of the paper, we assume there
is a matching covering A, and let H := τ([n]) be the set of matched items.

Phase 2: Local search In the second phase, we let J := G \ H denote the set of items not
assigned in the first phase. We let Ā := {i ∈ A : vi(J) > 0} denote the set of agents that have a
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positive value on the items in J . For every i ∈ Ā, we select

ℓ(i) ∈ argmax
j∈J

vi(j)

as a favorite item of agent i in J . By submodularity, vi(ℓ(i)) > 0. For each i ∈ Ā, we define the
endowed valuation function v̄i : 2

J → R>0 as

v̄i(S) := vi(ℓ(i)) + vi(S) ∀S ⊆ J .

Thus, v̄i(∅) = vi(ℓ(i)), and v̄i(j) ≤ 2v̄i(∅) for any j ∈ J . Further, we set the accuracy parameter

ε̄ := −1 + m
√
1 + ε .

(Instead of this exact value, we can set a lower value within a constant factor range.)
Our local search starts with allocating all items to a single agent in Ā. As long as moving one

item to a different agent increases the potential function

∏

i∈Ā

(v̄i(Ri))
wi

by at least a factor (1 + ε̄), we perform such an exchange. Phase 2 terminates when no more such
exchanges are possible, and returns the current allocation. For all agents i ∈ A \ Ā, we let Ri = ∅.

Algorithm 2: LocalSearch(J, (vi)i∈A)

1 Ā← {i ∈ A : vi(J) > 0}
2 ℓ(i)← argmax{vi(ℓ) : ℓ ∈ J} for i ∈ Ā
3 Define v̄i(S) := vi(ℓ(i)) + vi(S)
4 Rk ← J for some k ∈ Ā and Ri ← ∅ for i ∈ A− k

5 while ∃i, k ∈ Ā and j ∈ Ri such that
(

v̄i(Ri−j)
v̄i(Ri)

)wi ·
(

v̄k(Rk+j)
v̄k(Rk)

)wk

> 1 + ε̄ do

6 Ri ← Ri − j and Rk ← Rk + j

7 return R := (Ri)i∈A

Phase 3: Rematching In the final phase, we match the items in H to the agents optimally,
considering allocation R = (Ri)i∈A of J . This can be done by again solving a maximum-weight
matching problem, now with weights wij = wi log vi(Ri + j).

2.2 Our techniques and comparison with previous approaches

We now compare our algorithm to those in [28] and in [38]. At a high level, all three algorithms
proceed in three phases, with Phases 1 and 3 being the same as outlined above. However, they
largely differ in how the allocation R of J = G \H is obtained in Phase 2.

Garg, Husić, and Végh [28] use a rational convex relaxation, based on the concave extension of
Rado valuations. After solving the relaxation exactly, they use combinatorial arguments to sparsify
the support of the solution and construct an integral allocation.

Li and Vondrák [38] allow arbitrary submodular valuations. For submodular functions, the con-
cave extension is NP-hard to evaluate. Instead, they work with the multilinear extension. This can
be evaluated with random sampling, but it is not convex. To solve the relaxation (approximately),
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they use an iterated continuous greedy algorithm. The allocation R is obtained by independent
randomized rounding of this fractional solution. Whereas the algorithm is simple, the analysis is
somewhat involved. The main tool to analyze the rounding is the Efron–Stein concentration inequal-
ity; but this only works well if every item in the support of the fractional solution has bounded value.
This is not true in general, and the argument instead analyzes a two-stage randomized rounding
that gives a lower bound on the performance of the actual algorithm. First, a set of ‘large’ fractional
items is preserved, and a careful combinatorial argument is needed to complete the allocation.

Our approach for the second part is radically different and much simpler. We do not use any
continuous relaxation, but R is obtained by a simple local search with respect to the modified
valuation functions. Because of using these modified valuations, we can first guarantee a high NSW
value of the infeasible allocation (Ri+ ℓ(i))i∈A of J in the analysis. Our analysis of the local search
is inspired by the conditional equilibrium notion introduced by Fu, Kleinberg, and Lavi [25]. They
show that any conditional equilibrium 2-approximates the utilitarian social welfare and give an
auction algorithm for finding such an equilibrium under submodular valuations.

We note that local search applied directly to the NSW problem cannot yield a constant factor
approximation algorithm even if we allow changing an arbitrary fixed number k of items. This can
be seen already when m = n, i.e., every allocation with positive NSW value is a matching. Also,
some other natural variants of local search do not work, or the analysis is not clear; for example, our
analysis does not seem to work for local search applied to the (seemingly more natural) choice of
v̄i(S) = vi(S+τ(i)). The idea of defining ℓ(i) and using the modified valuation functions is inspired
by rounding of the fractional solution from previous approaches; the role of the ℓ(i) items is similar
to the large items in [38], but we obtain much better guarantees using a more direct deterministic
approach.

The last part of the analysis concerns the rematching in Phase 3. Here, we convert the infeasible
allocation (Ri + ℓ(i))i∈A to a feasible allocation by an alternating path argument, combining the
initial matching τ and an (unknown) optimal matching g. While the rematching phase was already
present (and essentially identical) in [28] and [38], it is implemented and analyzed differently here.
We show the existence of a matching ρ that together with R gives good approximation of the
optimum. The papers [28] and [38] find such ρ by first showing that there is matching π that has
high NSW together with R and the items ℓ(i). Then, they show in a convoluted way that we can
remove the items ℓ(i) and find a matching ρ (as a combination of π and the initial matching τ)
while only losing only a constant in objective when compared to the solution consisting of π,R and
the ℓ(i)’s.

We prove the existence of a good matching ρ by carefully analyzing the alternating cycles in the
union of the optimal allocation of H and the initial matching τ of Phase 1. Our proof is much simpler
than the previous analysis of [28] and [38], and facilitates the improved approximation factor. (The
exact numbers are difficult to compare as the loss depends on the properties of solutions obtained
in Phase 2, and since in the current paper the analysis of Phase 2 and Phase 3 is done in a more
synchronous way.) We note that the particular matching ρ mentioned here is not needed; the
algorithm finds the most profitable matching with respect to the R. This provides a solution at
least as good as the one in the analysis.

2.3 1/2-EFX guarantee

The algorithm asserted in Theorem 1.2 is Algorithm 3 in Section 4.1. Our first key tool is a
subroutine that finds a partial allocation that is 1/2-EFX and preserves a large fraction of the NSW
value.

6



Lemma 2.1. There exists a deterministic strongly polynomial algorithm MakeFairOrEfficient(T ),
that, for any partial allocation T , returns another partial allocation R that satisfies one of the fol-
lowing properties

(i) NSW(R) ≥ NSW(T ) and ∪i∈ARi ( ∪i∈ATi, or

(ii) NSW(R) ≥ 1
2 NSW(T ) and R is 1/2-EFX.

This is shown by modifying the approach of Caragiannis, Gravin, and Huang [13]. For additive
valuations, their algorithm takes an input allocation T and returns a partial allocationR that is EFX
and NSW(R) ≥ 1

2 NSW(T ). We simplify and extend this approach from additive to subadditive
valuations, but prove only the weaker 1/2-EFX property.

The key subroutine for them provides a similar alternative as in Lemma 2.1. In outcome (ii), they
have the stronger EFX guarantee, while in outcome (i), they show that the NSW value increases by
a certain factor. In outcome (i), it is not clear how an increase in the NSW value could be shown for
subadditive valuations. However, arguing about the support decrease leads to a simpler argument.

In [13], only a partial EFX allocation is found. Theorem 1.2 shows the existence of a complete
allocation, albeit with the weaker 1/2-EFX property. To derive Theorem 1.2, we start by repeatedly
calling MakeFairOrEfficient until outcome (ii) is reached. Note that the outcome (i) can only
happen at most m times because the number of items in R reduces by at least one after each call.

The allocation at this point may be partial. We show that the remaining items can be allocated
using the classical envy-free cycle procedure by Lipton, Markakis, Mossel, and Saberi [39]. Even
though this procedure is known for the weaker EF1 property [12], we show that—after a suitable
preprocessing step—it can produce an 1/2-EFX allocation while not decreasing the NSW value of
the allocation.

3 Analysis of the NSW algorithm

In this section, we prove Theorem 1.1. In Section 3.1, we formulate simple properties of approxi-
mate local optimal solution found in Phase 2. This is followed by a technical bound comparing the
approximate local optimal solution to the optimal solution. In this step, we present two different
analyses: in Section 3.2 for the asymmetric case, and in Section 3.3 for the symmetric case. Sec-
tion 3.4 gives a lower bound on the weight of the final matching found in Phase 3 of the algorithm;
this argument is the same for the asymmetric and symmetric cases. This completes the proof of
Theorem 1.1.

3.1 Local optima

Throughout this section, we work with the item set J , set of agents Ā, favourite items ℓ(i), endowed
valuations v̄i(S) = vi(ℓ(i)) + vi(S), and ε̄ = −1 + m

√
1 + ε.

Definition 3.1 (ε̄-local optimum). A complete allocation R = (Ri)i∈A is an ε̄-local optimum with
respect to valuations v̄i, if for all pairs of different agents i, k ∈ Ā and all j ∈ Ri it holds

(

v̄i(Ri − j)

v̄i(Ri)

)wi

·
(

v̄k(Rk + j)

v̄k(Rk)

)wk

≤ (1 + ε̄) .

A 0-local optimum will be simply called local optimum.
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Lemma 3.2. Consider an NSW instance with submodular valuations, and let ε > 0. Then,
LocalSearch(J, v1, . . . , vn) returns an ε̄-local maximum with respect to the endowed valuations v̄i
in O

(

m
ε logm

)

exchange steps.

Proof. It is immediate that the algorithm terminates with an ε̄-local maximum. Recalling that
v̄i(j) ≤ 2v̄i(∅) for any j ∈ J , submodularity implies vi(J) < (|J |+1)v̄i(∅) ≤ mv̄i(∅) for every i ∈ Ā.
Hence,

∏

i∈Ā

v̄i(J)
wi ≤ m

∏

i∈Ā

v̄i(∅)wi ,

and therefore the product
∏

i∈Ā v̄i(Ri)
wi may grow by at most a factor m throughout all exchange

steps. Every swap increases this product by at least a factor (1 + ε̄). Thus, the total number of
swaps is bounded by log(1+ε̄)m = m log1+εm = O

(

m
ε logm

)

.

We need the following two properties of submodular valuations.

Proposition 3.3. Let v̄ : 2J → R>0 be a submodular endowed valuation. Let S ⊆ T ⊆ J and j ∈ J .
Then,

v̄(T + j)

v̄(T )
≤ v̄(S + j)

v̄(S)
.

Proof. By the monotonicity, and submodularity of v we have

v̄(T + j)

v̄(T )
=

v̄(T ) + v̄(T + j) − v̄(T )

v̄(T )
≤ v̄(S) + v̄(T + j)− v̄(T )

v̄(S)

≤ v̄(S) + v̄(S + j) − v̄(S)

v̄(S)
=

v̄(S + j)

v̄(S)
.

Proposition 3.4. Let v̄ : 2J → R>0 be a submodular endowed valuation. For any j ∈ R,

v̄(R − j) ≥
∑

k∈R

(v̄(R)− v̄(R− k)).

Proof. Let us denote R− j := {r1, . . . , rs}. By submodularity, we have

v̄(R− j) = v̄(∅) +
s

∑

k=1

(v̄({r1, . . . , rk})− v̄({r1, . . . , rk−1}))

≥ v̄(∅) +
s

∑

k=1

(v̄(R)− v̄(R− rk)) ≥
∑

k∈R

(v̄(R)− v̄(R− rk))

where in the last step, we used the fact that v̄(∅) = v(ℓ(i)) ≥ v(j) ≥ v̄(R)− v̄(R − j) .

We analyze our local search in slightly different ways in the symmetric case (where w1 = . . . =
wn = 1/n) and the general asymmetric case. We consider the asymmetric case first.

3.2 Local equilibrium analysis for asymmetric NSW

Let ε̄ ≥ 0, and let R = (Ri)i∈A be an ε̄-local optimum with respect to the endowed valuations v̄i.
Let j ∈ J and let i ∈ Ā be the agent such that j ∈ Ri. We define the price of j as

pj := wi log
v̄i(Ri)

v̄i(Ri − j)
.
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Lemma 3.5. For an ε̄-local optimum R = (Ri)i∈Ā and prices pj defined as above, for every item
j ∈ Ri and every agent k ∈ Ā, we have

v̄k(Rk + j)

v̄k(Rk)
≤ (1 + ε̄)1/wkepj/wk .

Moreover, if the valuation v̄k is submodular, then for all T ⊆ J , we have

v̄k(Rk ∪ T )

v̄k(Rk)
≤ (1 + ε̄)|T |/wk · e

∑
j∈T pj/wk .

Proof. By definition, epj/wi = v̄i(Ri)
v̄i(Ri−j) . If k = i the first statement is trivial. Otherwise, for k 6= i,

the first statement follows from the ε̄-optimality of R; if false, we would swap item j to agent k.
For the second statement, assume w.l.o.g. T = {t1, t2, . . . , t|T |} ⊆ J . Since v̄k is submodular, by

Proposition 3.3 we have

v̄k(Rk ∪ T )

v̄k(Rk)
=

|T |
∏

a=1

v̄k(Rk ∪ {t1, . . . , ta})
v̄k(Rk ∪ {t1, . . . , ta−1})

≤
|T |
∏

a=1

v̄k(Rk + ta)

v̄k(Rk)

≤ (1 + ε̄)|T |/wk e
∑

j∈T pj/wk .

The following lemma shows that the spending of agent i, p(Ri), is at most their weight wi.

Lemma 3.6 (Bounded spending). For an ε̄-local optimum R = (Ri)i∈Ā and prices pj defined as
above, p(Ri) ≤ wi for every agent i ∈ Ā, and consequently, p(J) ≤ 1.

Proof. From the definition of pj, we have

p(Ri) = wi

∑

j∈Ri

log
v̄i(Ri)

v̄i(Ri − j)
≤ wi

∑

j∈Ri

v̄i(Ri)− v̄i(Ri − j)

v̄i(Ri − j)
≤ wi

due to the elementary inequality log x ≤ x−1, and by Proposition 3.4 we know that
∑

j∈Ri
(v̄i(Ri)−

v̄i(Ri − j)) ≤ v̄i(Ri − j′) for j′ ∈ argminj∈Ri
v̄i(Ri − j).

Adding up the prices over all the sets Ri, whose union is J , we obtain p(J) =
∑

i∈Ā p(Ri) ≤
∑

i∈Āwi ≤ 1.

We recall the First Welfare Theorem: any Walrasian equilibrium allocation maximizes the util-
itarian social welfare. For conditional equilibrium, [25, Proposition 1] give an approximate version
of the first welfare theorem: the utilitarian social welfare in any conditional equilibrium is at least
half of the maximal welfare. Analogously, if we interpret local optimum as equilibrium, then the
following proposition states that such an equilibrium gives an e-approximation of the optimal Nash
social welfare with respect to the endowed valuations. Recall that, by definition of Ā, v̄i(S) = 0 for
any i ∈ A \ Ā and any S ⊆ J .

Proposition 3.7. Let R = (Ri)i∈A be a local optimum and S = (Si)i∈A be an optimal NSW
allocation with respect to the endowed submodular valuations v̄i. Then

∏

i∈Ā

v̄i(Ri)
wi ≥ 1

e
·
∏

i∈Ā

v̄i(Si)
wi .

Proof. By Lemma 3.6,
∑

i∈Ā p(Si) ≤ p(J) ≤ 1. Then, by Lemma 3.5,

∏

i∈Ā

v̄i(Si)
wi ≤

∏

i∈Ā

v̄i(Ri∪Si)
wi ≤

∏

i∈Ā

v̄i(Ri)
wi ·ep(Si) = e

∑
i∈Ā p(Si) ·

∏

i∈Ā

v̄i(Ri)
wi ≤ e·

∏

i∈Ā

v̄i(Ri)
wi .

9



Proposition 3.7 is included solely for the intuition. We cannot really use it as such, because
it doesn’t deal with the allocation of items in H. For this, we need the final rematching phase
(Section 3.4). We will need a bound in the following form. The parameters hi will represent the
number of items that agent i takes from the set H in the optimum solution.

Lemma 3.8. Let ε̄ ≥ 0, and let R = (Ri)i∈Ā be an ε̄-local optimum with respect to the endowed
valuations v̄i that are submodular. Let (S1, S2, . . . , Sn) denote any partition of the set J , and let
hi ≥ 0 such that

∑

i∈A hi ≤ n. Then,

∏

i∈A\Ā

hwi

i

∏

i∈Ā

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)wi

≤ (1 + ε)(2 + nwmax)e .

We remark that a slightly improved bound can be proved with more care; see Appendix A.

Proof. By Lemma 3.5, for each i ∈ Ā we can bound

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
≤ vi(Ri ∪ Si)

1
2 [vi(ℓ(i)) + vi(Ri)]

≤ 2v̄i(Ri ∪ Si)

v̄i(Ri)
≤ 2(1 + ε̄)|Si|/wiep(Si)/wi .

Thus,

∏

i∈A\Ā

hwi

i

∏

i∈Ā

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)wi

≤
∏

i∈A\Ā

hwi

i

∏

i∈Ā

(

2(1 + ε̄)|Si|/wiep(Si)/wi + hi

)wi

≤
∏

i∈A\Ā

hwi

i

∏

i∈Ā

(

(2 + hi)(1 + ε̄)|Si|/wi · ep(Si)/wi

)wi

≤ (1 + ε̄)mep(J)
∏

i∈A

(2 + hi)
wi .

By the choice of ε̄, (1 + ε̄)m = 1 + ε. From Lemma 3.6, we get p(J) ≤ 1. The proof of the lemma
is complete by showing that the last product is at most (2 + nwmax). This follows by the AM-GM
inequality:

∏

i∈A

(2 + hi)
wi ≤

∑

i∈A

wi(2 + hi) ≤ 2 + wmax

∑

i∈A

hi ≤ 2 + nwmax .

3.3 Local equilibrium analysis for symmetric NSW

Let ε̄ ≥ 0, and let R = (Ri)i∈A be an ε̄-local optimum with respect to the endowed valuations v̄i,
in the symmetric case. Define ǫ̂ := (1 + ε̄)n − 1; we have 1 + ǫ̂ = (1 + ε̄)n ≤ (1 + ε̄)m = 1 + ǫ since
n ≤ m. In particular, 0 ≤ ε̄ ≤ ε̂ ≤ ε ≤ 1.

Let j ∈ J and let i ∈ Ā be the agent such that j ∈ Ri. We define the price of j as

pj :=
v̄i(Ri)

v̄i(Ri − j)
− 1 =

v̄i(Ri)− v̄i(Ri − j)

v̄i(Ri − j)
.

The following lemma gives the basic properties of these prices that we will need in the following.

Lemma 3.9. Given an ε̄-local optimum R = (Ri)i∈A, and the prices pj defined as above, we have

• For every item j ∈ J ,
pj ≤ 1.

10



• For every item j ∈ J \Ri,
v̄k(Rk + j)

v̄k(Rk)
≤ (1 + ε̂)(1 + pj).

• For every T ⊆ J ,
v̄i(Rk ∪ T )

v̄k(Rk)
≤ 1 +

∑

j∈T

(2ε̂+ pj) .

Proof. By construction of v̄i, v̄i(Ri)−v̄i(Ri−j) ≤ v̄i(∅) ≤ v̄i(Ri−j). Hence, pj =
v̄i(Ri)−v̄i(Ri−j)

v̄i(Ri−j) ≤ 1.

From the ε̄-optimality of R, we get v̄k(Rk+j)
v̄k(Rk)

≤ (1 + ε̄)n v̄i(Ri)
v̄i(Ri−j) = (1 + ε̂)(1 + pj), because

otherwise we could swap item j to agent k.
For the third statement, by submodularity, we have

v̄k(Rk ∪ T )

v̄k(Rk)
≤

v̄k(Rk) +
∑

j∈T (v̄k(Rk + j)− v̄k(Rk))

v̄k(Rk)

≤ 1 +
∑

j∈T

((1 + ε̂)(1 + pj)− 1) ≤ 1 +
∑

j∈T

(2ε̂ + pj)

using the first and second statement.

The following lemma shows that the spending of each agent i, p(Ri) =
∑

j∈Ri
pj , is at most 1.

Lemma 3.10 (Bounded spending). Let R = (Ri)i∈Ā be an ε̄-local optimum with respect to the
endowed valuations v̄i. Then, p(Ri) ≤ 1 for every agent i ∈ Ā, and consequently, p(J) ≤ |Ā|.

Proof. From the definition of the prices pj, and by Proposition 3.4, we have

p(Ri) =
∑

j∈Ri

v̄i(Ri)− v̄i(Ri − j)

v̄i(Ri − j)
≤

∑

j∈Ri
(v̄i(Ri)− v̄i(Ri − j))

mink∈Ri
v̄i(Ri − k)

≤ 1 .

Since (R1, . . . , Rn) is a partition of J (every item is allocated throughout our local search), we have

p(J) =
∑

j∈J

pj =
∑

i∈Ā

∑

j∈Ri

pj ≤ |Ā| .

The next lemma bounds the value of any set relative to our local optimum in terms of prices.

Proposition 3.11. Let R = (Ri)i∈A be an ε̄-local optimum and S ⊆ J any set of items. Then,

vi(S)

max{vi(Ri), vi(ℓ(i)}
≤ 1 + 2

∑

j∈S

(2ε̂ + pj).

Proof. By Lemma 3.9,

vi(ℓ(i)) + vi(S)

vi(ℓ(i)) + vi(Ri)
=

v̄i(S)

v̄i(Ri)
≤ v̄i(Ri ∪ S)

v̄i(Ri)
≤ 1 +

∑

j∈S

(2ε̂ + pj).

Let λ = vi(Ri)
vi(ℓ(i))

. We can rewrite the inequality above as follows:

1 + vi(S)
vi(ℓi)

1 + λ
≤ 1 +

∑

j∈S

(2ε̂+ pj).

11



From here,
vi(S)

vi(ℓi)
≤ (1 + λ)(1 +

∑

j∈S

(2ε̂ + pj))− 1 = λ+ (1 + λ)
∑

j∈S

(2ε̂ + pj).

We use this inequality if 0 ≤ λ ≤ 1. If λ > 1, we divide by λ to obtain:

vi(S)

vi(Ri)
≤ 1 + (1/λ+ 1)

∑

j∈S

(2ε̂ + pj).

Either way, the worst case is λ = 1, which gives

vi(S)

max{vi(ℓ(i)), vi(Ri)}
≤ 1 + 2

∑

j∈S

(2ε̂ + pj) .

Again, the bounds in this section do not deal with the allocation of the items in H. This will be
handled by the final rematching phase (Section 3.4), where we will need a bound in the following
form.

Lemma 3.12. Let ε̄ ≥ 0, and let R = (Ri)i∈A be an ε̄-local optimum with respect to the endowed
valuations v̄i. Let (S1, S2, . . . , Sn) denote any allocation of the set J , and let hi ≥ 0 be such that
∑

i∈A hi ≤ n. Then,

∏

i∈A\Ā

hi
∏

i∈Ā

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)

≤ (1 + ε)n 4n .

Proof. By Proposition 3.11,

∏

i∈Ā

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)

≤
∏

i∈Ā



1 + 2
∑

j∈Si

(2ε̂+ pj) + hi



 .

So by the AM-GM inequality we have

∏

i∈A\Ā

hi
∏

i∈Ā

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)

≤
∏

i∈A\Ā

hi
∏

i∈Ā



1 + 2
∑

j∈Si

(2ε̂ + pj) + hi





≤ 1

nn





∑

i∈A\Ā

hi +
∑

i∈Ā

(

1 + 2
∑

j∈Si

(2ε̂+ pj) + hi
)





n

=

(
∑

i∈A hi

n
+

∑

i∈Ā 1

n
+

∑

j∈J 4ε̂

n
+

∑

j∈J 2pj

n

)n

.

We upper-bound each of these two summands. First, using
∑

i∈A hi ≤ n. Second, using |Ā| ≤ n.
Third, using |J | ≤ m. Fourth, using

∑

i∈Ā p(Si) ≤
∑

j∈J pj ≤ |Ā| ≤ n from Lemma 3.10. We
obtain,

(
∑

i∈A hi

n
+

∑

i∈Ā 1

n
+

∑

j∈J 4ε̂

n
+

∑

j∈J 2pj

n

)n

≤
(

1 + 1 +
4mε̂

n
+ 2

)n

= 4n
(

1 +
mε̂

n

)n

.

Since m ≥ |H| = n, by Bernoulli’s inequality 4n
(

1 + mε̂
n

)n ≤ 4n (1 + ε̂)
mn
n = (1 + ε)n4n.
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3.4 Rematching

Throughout, let OPT denote the optimum NSW value of the instance. For sets R = (Ri)i∈A, and
a matching π : A→ H ∪ {⊥}, we let

NSW(R, π) :=
∏

i∈A

vi(Ri + π(i))wi .

In Phase 3, we select a matching ρ : A → H that maximizes NSW(R, ρ), where R = (Ri)i∈A
denotes the ε̄-local optimum with respect to the endowed valuations v̄i from Phase 2. The following
lemma completes the proof of Theorem 1.1.1

Lemma 3.13. Let ε̄ ≥ 0, and let R = (Ri)i∈A be an ε̄-local optimum with respect to the endowed
valuations v̄i that are submodular. Then, there exists a matching ρ : A → H such that, for the
symmetric problem, it holds

NSW(R, ρ) ≥ OPT

4(1 + ε)
,

and, for the asymmetric problem, it holds

NSW(R, ρ) ≥ OPT

(2 + nwmax)e(1 + ε)
.

Proof. Consider an optimal solution (S1 ∪H1, . . . , Sn ∪Hn) to the NSW problem where Si is the
set of items allocated to i from J = G \H, and Hi is the set of items allocated to i from H. For
i ∈ A \ Ā, we must have Hi 6= ∅, and we can assume Si = ∅. Let hi := |Hi|. We define a matching
g : A → H ∪ {⊥} as follows. If hi > 0, let g(i) ∈ argmaxj∈Hi

vi(Si + j) be one of the items in Hi

providing the largest marginal gain to agent i. Otherwise, let g(i) := ⊥. Submodularity implies

vi(Si ∪Hi) ≤ vi(Si) + hivi(g(i)) ∀i ∈ A . (1)

Let us partition the set of agents A as

Aπ := {i ∈ A : vi(g(i)) ≥ max {vi(Ri), vi(ℓ(i))}} ,
AR := {i ∈ A \ Aπ : vi(Ri) ≥ max {vi(g(i)), vi(ℓ(i))}} ,
Aℓ := {i ∈ A \ (Aπ ∪AR) : vi(ℓ(i)) ≥ max {vi(Ri), vi(g(i))}} .

As an intermediate step in the construction of the claimed matching ρ, we first define an allocation
T = (Ti)i∈A and matching π : A→ H ∪ {⊥} as follows.

• For i ∈ Aπ, let Ti := ∅ and π(i) := g(i).

• For i ∈ AR, let Ti := Ri and π(i) := ⊥.

• For i ∈ Aℓ, let Ti := {ℓ(i)} and π(i) := ⊥.

Note that A \ Ā ⊆ Aπ. Note that this allocation is not feasible: ℓ(i) = ℓ(i′) is possible for different
agents, and the same item may even be contained in Ri for some i ∈ AR. We complete the proof in
two steps. First, we lower bound NSW(T , π)/OPT. Then, we show that π and the initial matching
τ from Phase 1 can be recombined into a matching ρ such that NSW(R, ρ) ≥ NSW(T , π).

1One needs to select a smaller parameter ε to obtain the bounds in Theorem 1.1.
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Claim. For the symmetric problem

NSW(T , π) ≥ OPT

4(1 + ε)
.

For the asymmetric problem

NSW(T , π) ≥ OPT

(2 + nwmax) e(1 + ε)
.

Proof. Our goal is to upper bound

OPT

NSW(T , π) =
∏

i∈Aπ

(

vi(Si ∪Hi)

vi(π(i))

)wi
∏

i∈AR

(

vi(Si ∪Hi)

vi(Ri)

)wi
∏

i∈Aℓ

(

vi(Si ∪Hi)

vi(ℓ(i))

)wi

.

In order to do so, we first upper bound the loss of each agent depending in which set they belong.
If i ∈ A \ Ā then i ∈ Aπ, by (1) and submodularity, we have

vi(Si ∪Hi)

vi(π(i))
≤ hivi(g(i))

vi(π(i))
= hi .

If i ∈ Aπ ∩ Ā, by (1), as well as using the definition of Aπ and submodularity, we can bound

vi(Si ∪Hi)

vi(π(i))
≤ vi(Si) + hivi(g(i))

vi(π(i))
=

vi(Si)

vi(π(i))
+ hi ≤

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi .

Similarly, if i ∈ AR, we get

vi(Si ∪Hi)

vi(Ri)
≤ vi(Si) + hivi(g(i))

vi(Ri)
≤ vi(Si)

vi(Ri)
+ hi =

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi .

Finally, if i ∈ Aℓ, the bound is

vi(Si ∪Hi)

vi(ℓ(i))
≤ vi(Si) + hivi(g(i))

vi(ℓ(i))
≤ vi(Si)

vi(ℓ(i))
+ hi =

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi .

Consequently,
OPT

NSW(T , π) ≤
∏

i∈A\Ā

hwi

i

∏

i∈A

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)wi

.

The proof of the claim is complete by Lemmas 3.12 and 3.8.

It remains to construct a matching ρ : A → H ∪ {⊥} such that NSW(R, ρ) ≥ NSW(T , π).
First, note that if Aℓ = ∅, then ρ = π is a suitable choice. In case Aℓ 6= ∅, we construct alternating
paths from the initial matching τ from Phase I and ρ to eliminate the ℓ(i) items from T . A critical
property for the argument is as follows.

Claim 3.14. For every i ∈ Ā, vi(τ(i)) ≥ vi(ℓ(i)).

Proof. Consider the matching τ : A → G defined as τ(i) := ℓ(i), and τ(h) := τ(h) for h 6= i. τ is
a matching since ℓ(i) 6∈ H. By the choice of τ ,

∏

h∈A vh(τ(h))
wh ≤ ∏

h∈A vh(τ(h))
wh , implying the

claim.
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j1 j2 j3

ℓ(i3)

j1 j2 j3

ℓ(i3)

Aπi1 ∈ Aπ i2 ∈ Aπ

j1 j2 j3

a)

b)

c)

AR

i3 ∈ Aℓ

i1 ∈ Âπ i2 ∈ Âπ

i3 ∈ Aℓ

i1 ∈ Âπ i2 ∈ Âπ i3 ∈ Aℓ AR

Aπ Aπ

Aπ Aπ Aπ

Aπ Aπ Aπ

Figure 1: White circles represent the agents, black squares the item set H, and grey squares the
favorite items. Solid lines represent matching τ , while dashed-dotted lines represent a subset of
matching π. Figure a) shows matching τ , matching π for the agents in Aπ, and the ℓ(i) items for
the agents in Aℓ. Figure b) shows graph D (and the ℓ(i)’s). Figure c) shows matching ρ.

In order to construct the matching ρ, we define an auxiliary directed graph D = (Aℓ∪Aπ∪H,E),
where the arc set is defined as

E = {(τ(i), i) : i ∈ Aℓ ∪Aπ} ∪ {(i, π(i)) : i ∈ Aπ} .

See Figure 1 for an example. Note that π(i) 6= ⊥ if i ∈ Aπ. Thus, each node in Aπ has exactly
one outgoing and exactly one incoming arc, each node in Aℓ has exactly one incoming arc and no
outgoing arcs, and each item node in H has at most one incoming and at most one outgoing arc.

Let Âπ ⊆ Aπ be the set of nodes that can reach Aℓ in the digraph D. By construction, each
i ∈ Aπ is either contained in a cycle inside Aπ ∪H, or on a directed path ending in Aℓ ∪H; these
paths start in H and may terminate in either H or Aℓ. We choose Âπ as the set of nodes where the
path terminates in Aℓ.

We define the matching ρ : A→ H ∪ {⊥} as

ρ(i) :=











⊥ , if i ∈ AR ,

τ(i) , if i ∈ Aℓ ∪ Âπ ,

π(i) , if i ∈ Aπ \ Âπ .

Claim. ρ is a matching.
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Proof. For a contradiction, assume j = π(i′) = τ(i) for i′ ∈ Aπ \ Âπ and i ∈ Aℓ ∪ Âπ. Then,
(i′, j), (j, i) forms 2-hop directed path from i′ to i in D. Since i ∈ Âπ, there is a directed path P
from i to a node in Aℓ. Concatenating these two paths gives a directed path from i′ to a node in
Aℓ. Thus, i′ ∈ Âπ, a contradiction.

It remains to show

∏

i∈Aℓ∪Âπ

vi(τ(i))
wi ≥

∏

i∈Aℓ

vi(ℓ(i))
wi

∏

i∈Aπ

vi(π(i))
wi . (2)

The set of nodes in Aℓ ∪ Âπ are covered by maximal directed paths in D terminating in Aℓ.
First, consider a length one path P = (j, i) that comprises an item node j ∈ H and an agent node
i ∈ Aπ such that j = τ(i), and j has no incoming arcs in D. Then, vi(τ(i)) ≥ vi(ℓ(i)) by Claim 3.14.

Consider now a longer path P = (j1, i1, j2, i2, . . . , jk, ik) for k > 1, where jt ∈ H are item nodes,
it ∈ Âπ for t < k and ik ∈ Aℓ. Thus, τ(it) = jt for t ∈ [k] and π(it) = jt+1 for t ∈ [k− 1]. We claim
that

k
∏

t=1

vit(τ(it))
wit ≥ vik(ℓ(ik))

wik

k−1
∏

t=1

vit(π(it))
wit .

The proof follows the same lines as the proof of Claim 3.14. Indeed, if this equality does not hold,
then there would exist a better matching τ : A→ G defined as τ(ik) := ℓ(ik), and τ(it) := jt+1 =
π(it) for t = 1, 2, . . . , k − 1, and τ(h) := τ(h) for h 6= i.

The inequality (2) follows by multiplying these inequalities over all maximal directed paths in
D that terminate in Aℓ. This completes the proof.

4 Finding fair and efficient allocations

4.1 Completing the partial allocation

In this section, we derive Theorem 1.2 from Lemma 2.1. The proof of Lemma 2.1, describing the
subroutine MakeFairOrEfficient is given in Section 4.2. The algorithm described in Theorem 1.2
is Algorithm 3. It uses two subroutines: MakeFairOrEfficient, and the envy-free cycle procedure
EnvyFreeCycle from [39], described below.

The input of Algorithm 3 is an allocation S that is α-approximation to the symmetric NSW
problem. It then repeatedly calls MakeFairOrEfficient(T ) (Algorithm 4) until the final allocation
is 1/2-EFX and 2α-approximation to the symmetric NSW problem. Recall that the output of
this subroutine is either a partial allocation T ′ that satisfies either NSW(T ′) ≥ NSW(T ) and
∪iT ′

i ( ∪iTi, or NSW(T ′) ≥ 1/2NSW(T ) and T ′ is 1/2-EFX. Since ∪iT ′
i ( ∪iTi in each call in the

first case, the number of calls to Algorithm 4 is at most m.
At this point, we have an 1/2-EFX partial allocation T with NSW(T ) ≥ 1

2 NSW(S). The rest
of Algorithm 3 allocates the remaining items U = G \ ∪i∈ATi so that NSW(T ) does not decrease,
and the 1/2-EFX property is maintained.

First, we modify the allocation in the second repeat loop to ensure that each agent’s value for
their bundle is at least their value for each remaining item in U . This is done by swapping an
agent’s bundle Ti with a singleton item j ∈ U whenever i values j more than the entire bundle Ti.

Finally, we run the envy-cycle procedure EnvyFreeCycle(T , U) from [39] to allocate the remain-
ing items in U , starting with the allocation T . The envy-cycle procedure maintains the directed
(envy) graph D = (A,E), where (i, j) ∈ E if i envies j’s bundle, i.e., vi(Yi) < vi(Yj). If there is a
cycle in G, then we can circulate bundles along the cycle to improve each agent’s utility. Otherwise,
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Algorithm 3: Guaranteeing 1/2-EFX for the symmetric NSW problem

Input: Allocation S that is α-approximation to the NSW problem (A,G, (vi)i∈A).
Output: Allocation T that is 1/2-EFX and 2α-approximation to the symmetric NSW

problem.
1 T ← S
2 repeat

3 T ← MakeFairOrEfficient(T ) // Algorithm 4

4 until T is not 1/2-EFX
5 U ← G \ ∪iTi // set of unallocated items

6 repeat

7 Let j ∈ U be such that vi(Ti) < vi(j) for some agent i
8 Ti ← {j}
9 U ← (U ∪ Ti)− j

10 until vi(Ti) ≥ vi(j),∀i ∈ A,∀j ∈ U
11 T ← EnvyFreeCycle(T , U)

12 return T

there must be a source agent in G, whom no agent envies. We then assign an arbitrary item from
U to a source agent. We update the envy graph, and iterate until U is fully assigned.

We now verify the correctness and efficiency of this algorithm.

Lemma 4.1. The second repeat loop of Algorithm 3 is repeated at most nm times. It maintains the
1/2-EFX and NSW(T ) is non-decreasing.

Proof. The bound on the number of swaps follows since every agent i ∈ A may swap their bundle
at most m times. After the first swap, they maintain a singleton bundle, and they can swap their
bundle for the same item j only once, since their valuation vi(Ti) strictly increases in each swap.

It is immediate that NSW(T ) is non-decreasing. It is left to show that the 1/2-EFX property
is maintained. Let i ∈ A be the agent who swapped their bundle Ti for T ′

i = {j} in the current
iteration. Then, the value of i’s own bundle increased while the allocation of everyone else remained
the same. Hence, agent i cannot violate the 1/2-EFX property. For the other agents k 6= i, vk(Tk) ≥
1/2 · vk(T ′

i − g) for all g ∈ T ′
i trivially holds, since T ′

i is a singleton.

The property (3) below is satisfied after the second repeat loop. Hence, the next lemma com-
pletes the analysis of Algorithm 3.

Lemma 4.2. The subroutine EnvyFreeCycle(T , U) terminates in O(n3m) time, and NSW(T ) is
non-decreasing. Assume that T = (Ti)i∈A is 1/2-EFX, and

vi(Ti) ≥ vi(j) ∀i ∈ A,∀j ∈ U . (3)

Then, EnvyFreeCycle(T , U) also maintains the 1/2-EFX property.

Proof. The running time analysis is the same as in [39]. Finding and removing a cycle in the envy-
graph can be done in O(n2) time. Further, whenever swapping around a cycle, at least one edge is
removed from the envy graph. New edges can only be added when we allocate new items from U ,
with at most n edges every time. Since |U | ≤ m, the total number of new edges added throughout
is nm. This yields the overall O(n3m) bound.
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Again, it is immediate that NSW(T ) is non-decreasing in every step. We need to show that
the 1/2-EFX property is maintained both when swapping around cycles and when adding new items
from U . When swapping around a cycle, this follows since the set of bundles remains the same, and
no agent’s value decreases.

Consider the case when a source agent say i, gets a new item j: their new bundle becomes
T ′
i = Ti+ j. Note that i is the only agent whose value increases; all other bundles remain the same.

We need to show that for any k 6= i,

vk(Tk) ≥ 1
2vk(T

′
i − g) ∀g ∈ T ′

i .

We show that
vk(T

′
i − g) = vk(Ti + j − g) ≤ vk(Ti) + vk(j) ≤ 2vk(Tk) .

Here, the first inequality follows by subadditivity and monotonicity. The second inequality uses (3),
and that vk(Tk) ≥ vk(Ti), since i was a source node in the envy graph.

4.2 Finding a fair or an efficient allocation

In this Section, we prove Lemma 2.1. The subroutine MakeFairOrEfficient(T ) is shown in Al-
gorithm 4, and generalizes an algorithm by Caragiannis, Gravin, and Huang [13] from additive to
subadditive valuations. We begin with defining the notions of 1/2-EFX feasible bundles and graph.

Definition 4.3 (1/2-EFX feasible bundles and graph). Given a partial allocation T = (Ti)i∈A, we
say that Tk is a 1/2-EFX feasible bundle for agent i, if

vi(Tk) ≥ 1
2 max
ℓ∈A,j∈Tℓ

vi(Tℓ − j) .

The 1/2-EFX feasibility graph of T is a bipartite graph K = (A ∪ T , E) where the edge set E is
defined as:

E = {(i, Ti) | Ti is 1/2-EFX feasible for i} ∪
{

(i, Tk) | vi(Tk) > 2vi(Ti) and vi(Tk) ≥ max
ℓ∈A,j∈Tℓ

vi(Tℓ − j)

}

.
(4)

The following claim can be easily verified using the definition.

Claim 4.4. The degree of every node i ∈ A is at least 1 in the graph K = (A ∪ T , E).

In this section, a matching will refer to a matching between agents and bundles (and not between
agents and items as in previous sections). Thus, a matching is a mapping ρ : A → T ∪ {⊥} such
that ρ(i) = ρ(k) implies ρ(i) = ρ(k) = ⊥. A perfect matching has ρ(i) 6= ⊥ for every i ∈ A.
Matchings may use pairs (i, Tk) that are not in E; we say that ρ is a matching in the bipartite
graph K = (A ∪ T , E) if (i, ρ(i)) ∈ E whenever ρ(i) 6= {⊥}. For two matchings ρ and τ , an
alternating path between ρ and τ is a path P = (i1, Si1 , i2, . . . , Sik−1

, iℓ, Siℓ) such that ρ(it) = Sit ,
t = 1, . . . , ℓ, τ(it+1) = Sit , t = 1, . . . , ℓ − 1. The following lemma is immediate from the definition
of the 1/2-EFX feasibility graph.

Lemma 4.5. If the 1/2-EFX feasibility graph K = (A ∪ T , E) of an allocation T contains a perfect
matching ρ, then (i, ρ(i))i∈A is a 1/2-EFX allocation.

We now give an overview of Algorithm 4. For an input partial allocation T = (Ti)i∈A, it returns
a partial allocation R that satisfies one of the alternatives in Lemma 2.1: either (i) NSW(R) ≥
NSW(T ) and ∪iRi ( ∪iTi, or (ii) NSW(R) ≥ 1

2 NSW(T ) and R is 1/2-EFX.
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Algorithm 4: MakeFairOrEfficient(T )
Input: Partial allocation T .
Output: Partial allocation R such that either NSW(R) ≥ NSW(T ) and ∪iRi ( ∪iTi, or

NSW(R) ≥ 1
2 NSW(T ) and R is 1/2-EFX.

1 S ← T
2 repeat

3 K = (A ∪ S, E)← 1/2-EFX feasibility graph of S // Definition 4.3

4 L ← {Si, i ∈ A | Si ( Ti} // set of trimmed down bundles

5 Define matching τ with τ(i) = Si for all i ∈ A // candidate matching

6 ρ← matching in K where // Lemma 4.6

(a) all bundles in L are matched,

(b) |{i : ρ(i) = Si}| is maximized subject to (a), and

(c) ρ is maximum subject to (a) and (b)

if ∃i1 ∈ A not matched in ρ then

(Sh, gh)← argmaxk∈A,g∈Sk
vi1(Sk − g)

if vh(Sh − gh) ≥ 1
2 · vh(Th) then

Sh ← Sh − gh

else

P = (i1, Si1 , i2, . . . , Siℓ−1
, iℓ, Siℓ) ← alternating path between τ and ρ starting at

i1 and ending at either Siℓ = Sh or an unmatched Siℓ 6= Sh // Lemma 4.7

7 Construct R:
8 Ri1 ← Sh − gh
9 for f ← 2 to ℓ do Rif ← Sif−1

10 for i ∈ A \ ({i1, . . . , iℓ} ∪ {h}) do Ri ← Ti

11 if P ends at an unmatched bundle Siℓ 6= Sh then

12 Rh ← Th \ (Sh − gh)

13 return R

14 until ρ is a perfect matching in K
15 return R = (ρ(i))i∈A

The algorithm gradually ‘trims down’ the bundles T . That is, we maintain a partial allocation
S = (Si)i∈A with Si ⊆ Ti throughout. Every main loop of the algorithm either terminates by
constructing an allocation R satisfying (ii), or removes an item from one of the Sh sets. The other
possible termination option is when the 1/2-EFX feasibility graph of S contains a perfect matching
ρ. In this case, we return R = (ρ(i))i∈A. This is a 1/2-EFX allocation by Lemma 4.5; Lemma 4.8
shows it also satisfies NSW(R) ≥ 1

2 NSW(T ) and is thus a suitable output of type (ii).
At the beginning of each main loop, we define two matchings. The first is the perfect matching

τ that simply defines τ(i) = Si for all i ∈ A. The second is a matching ρ in K. This is required
to satisfy three properties: First, it matches all trimmed down bundles, i.e., all bundles Si with
Si ( Ti. Second, |{i : ρ(i) = Si}| is maximized subject to the first requirement. Third, subject
to these requirements, ρ is chosen as a maximal matching. (The existence of such a matching is
guaranteed by Lemma 4.6 below).

If ρ is not perfect, then we consider an unmatched agent i1, and find the bundle that maximizes
i1’s utility after removal of one item. Let (Sh, gh) ∈ argmaxk∈A,g∈Sk

vi1(Sk − g). If agent h’s value
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of Sh − gh is at least 1
2 times their value for the original bundle Th, then we remove gh from Sh

and the main loop finishes. Otherwise, we construct an alternating path between ρ and τ , denoted
as P = (i1, Si1 , i2, Si2 , . . . , Siℓ−1

, iℓ, Siℓ), starting with i1 and ending with either Siℓ = Sh or an
unmatched bundle Siℓ 6= Sh. Lemma 4.7 shows that such a P exists. Using P , we construct an
allocation R in line 7. Lemma 4.8 shows that this is a suitable output of type (i).

4.2.1 Analysis

The number of iterations of the repeat loop is at most m, because the algorithm remove one item
from some bundle in each iteration, in which it does not terminate. Since we can find the maximum
matching in line 6 and alternating path in line 6 in strongly polynomial-time, Algorithm 4 runs in
strongly polynomial-time.

The next lemma guarantees that the matching ρ is well-defined. The proof follows similarly as
in [13].

Lemma 4.6. In each iteration of the repeat loop in Algorithm 4, a matching exists in K where all
bundles of L are matched.

Proof. Let E(t) denote the edge set of the 1/2-EFX feasibility graph and L(t) the set of trimmed
down bundles, and ρ(t) the maximum matching in the t-th iteration.

We show by induction that there exists a matching ρ(t) such that all bundles in L(t) are matched.
At the beginning of the first iteration, L(1) is empty, so the claim is clearly true. Suppose the claim
is true until the beginning of (t+1)-st iteration. Let S denote the trimmed down bundles in the t-th
iteration, and let i1 be the unmatched agent, and (Sh, gh) the bundle and item selected in line 6.

By the requirement that |{i : ρ(i) = Si}| is maximized subject to all trimmed down bundles
being matched, we have (i1, Si1) 6∈ E(t). By the choice of h, we have (i, Sh) ∈ E(t) in the t-th
iteration.

Note that L(t+1) = L(t) ∪ {h}. Consider the 1/2-EFX feasibility graph in the (t+1)-st iteration.
Since all bundles different from S′

h := Sh − gh remained unchanged, for every edge (i, Sk) ∈ E(t)

with k 6= h it follows that (i, Sk) ∈ E(t+1). According to Definition 4.3, (i1, S
′
h) ∈ E(t+1). Let us

define ρ′ as

ρ′(i) :=











S′
h if i = i1 ,

ρ(t)(i) if i 6= i1 and ρ(t)(i) 6= Sh ,

⊥ otherwise .

By the above, this gives a matching in E(t+1), and it matches all bundles in L(t+1) = L(t)∪{h}.

Lemma 4.7. The alternating path P , as described in line 6 of Algorithm 4, exists.

Proof. Since i1 is an unmatched agent and the requirement that |{i : ρ(i) = Si}| is maximized
subject to all trimmed down bundles being matched in the maximum matching ρ in line 6, we must
have (i1, Si1) 6∈ E. If ρ(i2) = Si1 for an agent i2 ∈ A, then we continue with Si2 , otherwise we stop.
Continuing this way, we eventually reach either Siℓ = Sh or an unmatched bundle Siℓ 6= Sh.

Lemma 4.8. If Algorithm 4 returns an allocation R in line 15, then NSW(R) ≥ 1
2 NSW(T ) and

R is 1/2-EFX. If it returns R in line 13, then NSW(R) ≥ NSW(T ) and ∪iRi ( ∪iTi.

Proof. Let us start with the case when a perfect matching R = (ρ(i))i∈A is returned in line 15. The
1/2-EFX property follows by Lemma 4.5. Let us show NSW(R) ≥ 1

2 NSW(T ).
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Throughout the algorithm, vi(Si) ≥ 1
2vi(Ti) is maintained according to the condition on bundle

trimming. By Claim 4.4, either Ri = Si, or vi(Ri) > 2vi(Si). Therefore, we have

∀i : vi(Ri) ≥ vi(Si) ≥
1

2
vi(Ti) . (5)

Consequently,

NSW(R) =
∏

i∈A

(vi(Ri))
1/n ≥ 1

2
·
∏

i∈A

(vi(Ti))
1/n ≥ 1

2 NSW(T ) .

Consider now the case when the algorithm terminated with R in line 13. We need to show
NSW(R) ≥ NSW(T ) and ∪iRi ( ∪iTi. Two cases here depend on whether Siℓ = Sh or Siℓ(6= Sh)
is an unmatched bundle. For the first case, we have

vif (Rif ) = vif (Sif−1
) > 2vif (Sif ) ≥ vif (Tif ), ∀f ∈ {2, . . . , ℓ} ,

vi1(Ri1) = vi1(Sh − gh) > 2vi1(Si1) ≥ vi1(Ti1)

This implies

NSW(R) =
∏

i∈A

(

vi(Ri)
)1/n

>
∏

i∈A

(

vi(Ti)
)1/n

= NSW(T ) .

Since we do not assign gh to any agent in R, we must have ∪iRi ( ∪iTi.
For the second case, since Siℓ is an unmatched bundle in ρ by the choice of the path P , we have

Siℓ /∈ L by the requirements on ρ. That is, Siℓ = Tiℓ . By Claim 4.4, we have

viℓ(Riℓ) = viℓ(Siℓ−1
) > 2viℓ(Siℓ) = 2viℓ(Tiℓ) ,

vif (Rif ) = vif (Sif−1
) > 2vif (Sif ) ≥ vif (Tif ), ∀f ∈ {2, . . . , ℓ− 1} ,

vi1(Ri1) = vi1(Sh − gh) > 2vi1(Si1) ≥ vi1(Ti1)

vh(Rh) = vh(Xh \ (Sh − gh)) >
1
2vh(Th) .

(6)

The last inequality follows from subadditivity using vh(Th) ≤ vh(Sh − gh) + vh(Th \ (Sh − gh)).
Using (6), we get

NSW(R) =
∏

i∈A

(

vi(Ri)
)1/n

>
∏

i∈A

(

vi(Ti)
)1/n

= NSW(T ) .

Finally, since we do not assign items in Til to any agent in R, we must have ∪iRi ( ∪iTi. Note
that if Til = ∅, then NSW(T ) = 0 and Ri = ∅,∀i is a suitable output of type (ii).

5 Conclusion

We have shown a (4+ε)-approximation algorithm for the symmetric NSW problem with submodular
valuations, which is the largest natural class of valuations that allows a constant-factor approxi-
mation (using value queries) even for utilitarian social welfare. Moreover, our algorithm gives an
e(2 + nwmax + ε)-approximation algorithm for the asymmetric NSW problem under submodular
valuations. However, there are still several directions and open problems to explore. An obvious
one is to improve the approximation ratio for the symmetric case. The current hardness of approx-
imation stands at e

e−1 ≃ 1.58 for submodular valuations, which is the same as the optimal factor
for maximizing utilitarian social welfare. It would be interesting to prove a separation between the
two optimization objectives for submodular valuations.
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Another open problem is the asymmetric NSW problem. The goal is to get a constant-factor
approximation independent of the weights wi. For the asymmetric problem, getting a universal
constant factor is open even in the basic case of additive valuations. The simplest case not covered
by our algorithm is when one agent has weight 1/2 and all other agents have weight 1/2n.

There are several open questions on the existence of EFX and its relaxations for submodular
valuations. We mention two: First, does there exist a (complete) α-EFX allocations for α > 1/2?
Here, we do not make any efficiency requirements. Second, does there exist an EF1 allocation with
high NSW value? Note that [14] shows that for additive valuations, the optimal NSW allocation is
EF1.
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A Appendix

We now give a slight strengthening of Theorem 1.1 for the asymmetric case. For ν ≥ 0, let us define

φ(ν) := sup
x∈(0,1]

21−x
(

1 +
ν

x

)x
.

This quantity will be used in our approximation guarantee.

Theorem A.1. For any ε > 0, there is a deterministic polynomial-time (φ(nwmax) + ε)e-approxi-
mation algorithm for the asymmetric Nash social welfare problem with submodular valuations. The
number of arithmetic operations and oracle calls is polynomial in n, m, and 1/ε.

We can upper bound the function φ(ν) as follows. In particular, the bound becomes (nwmax +
1 + ε)e for wmax ≥ 3.5/n.

Lemma A.2. For ν ≥ 0, φ(ν) ≤ ν + 2. For ν ≥ 3.5, φ(ν) = ν + 1.

Proof. The first part follows by the AM-GM inequality: for each x ∈ (0, 1], 21−x(1+ ν
x)

x ≤ (1−x)2+
x(1+ ν

x) = ν+2−x. For the second part, let us take the derivative of lnφ(x) = (1−x) ln 2+x ln(1+ ν
x ):

(lnφ)′(x) = −(ln 2) + ln(1 +
ν

x
) +

x

1 + ν/x
(− ν

x2
)

= −(ln 2) + ln(1 +
ν

x
)− ν

x+ ν
.

This derivative is decreasing in x, and evaluated at 1 gives −(ln 2) + ln(1+ ν)− ν
1+ν . This function

is increasing in ν and positive for ν ≥ 3.5 (in fact for ν ≥ 3.32). Therefore, (lnφ)′(x) is positive for
ν ≥ 3.5 and x ∈ (0, 1], which means that φ(x) attains its maximum over (0, 1] at x = 1.

The proof of Theorem A.1 follows the same way as the proof of Theorem 1.1, with the only
difference that Lemma 3.8 is replaced by the following stronger version.

22



Lemma A.3. Let ε̄ ≥ 0, and let R = (Ri)i∈Ā be an ε̄-local optimum with respect to the endowed
valuations v̄i that are submodular. Let (S1, S2, . . . , Sn) denote any partition of the set J , and let
hi ≥ 0 such that

∑

i∈A hi ≤ n. Then,

∏

i∈A\Ā

hwi

i

∏

i∈Ā

(

vi(Si)

max{vi(ℓ(i)), vi(Ri)}
+ hi

)wi

≤ (1 + ε)φ(nwmax)e .

Before proving Lemma A.3, let us give a bound on the value of any set relative to our local
optimum.

Proposition A.4. Let R = (Ri)i∈A be a ε̄-local optimum and S ⊆ J any set of items. Then

vi(S)

max{vi(Ri), vi(ℓ(i)}
≤ −1 + 2(1 + ε̄)|S|/wie

∑
j∈S pj/wi .

Proof. By Lemma 3.5,

vi(ℓ(i)) + vi(S)

vi(ℓ(i)) + vi(Ri)
=

v̄i(S)

v̄i(Ri)
≤ v̄i(Ri ∪ S)

v̄i(Ri)
≤ (1 + ε̄)|S|/wie

∑
j∈S pj/wi .

Let λ = vi(Ri)
vi(ℓ(i))

. We can rewrite the inequality above as follows:

1 + vi(S)
vi(ℓi)

1 + λ
≤ (1 + ε̄)|S|/wie

∑
j∈S pj/wi .

From here,
vi(S)

vi(ℓi)
≤ (1 + λ)(1 + ε̄)|S|/wie

∑
j∈S pj/wi − 1.

We use this inequality if 0 ≤ λ ≤ 1. If λ > 1, we divide by λ to obtain:

vi(S)

vi(Ri)
≤ (1/λ + 1)(1 + ε̄)|S|/wie

∑
j∈S pj/wi − 1/λ.

Either way, the worst case is λ = 1, which gives

vi(S)

max{vi(ℓ(i)), vi(Ri)}
≤ 2(1 + ε̄)|S|/wie

∑
j∈S pj/wi − 1.

Proof of Lemma A.3. By Proposition A.4,

vi(Si)

max{vi(Ri), vi(ℓ(i)}
≤ 2(1 + ε̄)|Si|/wie

∑
j∈Si

pj/wi − 1.

Our goal is to bound the left-hand side of Lemma A.3, which is a product of vi(Si)
max{vi(Ri),vi(ℓ(i)}

+ hi

for some hi ≥ 0,
∑

hi ≤ n. Let us divide the agents in Ā into two groups, A1 = {i ∈ Ā : hi ≤ 1}
and A2 = {i ∈ Ā : hi ≥ 2}.

First, let us bound

∏

i∈A1

(

vi(Si)

max{vi(Ri), vi(ℓ(i)}
+ hi

)wi

≤
∏

i∈A1

(

2(1 + ε̄)|Si|/wie
∑

j∈Si
pj/wi − 1 + hi

)wi

≤
∏

i∈A1

(

2(1 + ε̄)|Si|/wie
∑

j∈Si
pj/wi

)wi

≤ 2w(A1)(1 + ε̄)
∑

i∈A1
|Si|e

∑
i∈A1

p(Si)
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using Proposition A.4 and the fact that hi ≤ 1 for i ∈ A1.
Next, we consider the agents i ∈ A2, i.e. those where hi ≥ 2:

∏

i∈A2

(

vi(Si)

max{vi(Ri), vi(ℓ(i)}
+ hi

)wi

≤
∏

i∈A2

(

2(1 + ε̄)|Si|/wie
∑

j∈Si
pj/wi − 1 + hi

)wi

≤
∏

i∈A2

(

(1 + ε̄)|Si|/wi e
∑

j∈Si
pj/wi(2− 1 + hi)

)wi

≤ (1 + ε̄)
∑

i∈A2
|Si|e

∑
i∈A2

p(Si)
∏

i∈A2

(1 + hi)
wi .

Finally, the left-hand side of Lemma A.3 contains

∏

i∈A\Ā

hwi

i ≤
∏

i∈A\Ā

(1 + hi)
wi .

We estimate the product of factors involving (1 + hi) using the AM-GM inequality: Let A′ =
(A \ Ā)∪A2, and ω =

∑

i∈A′ wi. We can assume that ω > 0; for ω = 0 we obtain a bound which is
equal to the limit as ω → 0. Hence:

∏

i∈A′

(1 + hi)
wi/ω ≤ 1

ω

∑

i∈A′

wi(1 + hi) ≤ 1 +
wmax

ω

∑

i∈A′

hi ≤ 1 +
nwmax

ω
.

So, we obtain
∏

i∈A′(1 + hi)
wi ≤

(

1 + nwmax

ω

)ω
.

To summarize, we upper-bound the left-hand side of Lemma A.3 by

∏

i∈A\Ā

(1 + hi)
wi

∏

i∈A1∪A2

(

vi(Si)

max{vi(Ri), vi(ℓ(i)}
+ hi

)wi

≤
∏

i∈A′

(1 + hi)
wi · 2w(A1)(1 + ε̄)

∑
i∈A1∪A2

|Si|e
∑

i∈A1∪A2
p(Si)

≤
(

1 +
nwmax

ω

)ω
· 21−ω(1 + ε̄)me

≤(1 + ε)φ(nwmax)e

where we used the facts that w(A1) = 1−w(A′) = 1− ω, the sets Si are disjoint sets of items, and
all the prices sum up to at most 1. The final inequality follows by maximizing over ω ∈ (0, 1].
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