
InstantXR: Instant XR Environment on the Web Using Hybrid
Rendering of Cloud-based NeRF with 3D Assets

Moonsik Park∗
ESTsoft Corporation

Seoul, Korea
moonsik.park@estsoft.com

Byounghyun Yoo†
Korea Institute of Science and Technology

Seoul, Korea
University of Science and Technology

Seoul, Korea
yoo@byoo.net

Jee Young Moon
Korea Institute of Science and Technology

Seoul, Korea
jeeyoung.moon@wrl.onl

Ji Hyun Seo
Korea Institute of Science and Technology

Seoul, Korea
Korea University
Seoul, Korea

jihyun.seo@wrl.onl

(a) Cloud Render Farm

Cloud Renderer 1

Real-world Model

Virtual 3D Model

Photos from real scene

Model Training 

Estimated scene and depth

Rendered scene and depth

Extended Reality Scene

(b) Cloud Encoding Server

Render Scheduler

Frame 
Queue

Preprocessing
- RGB to YUV format
- Subtitling debug information

(b1) Encoder
- libx264

(c) Client

Camera Controller
Current Camera Position and 
Orientation

WebXR Device API

Three.js

HMD

WebSocket

WebCodecs Decode API

Canvas API

Encoded packet

Decoded Frame

Background Texture

Display Sensor

Frame Request
Camera position, Resolution, Index

Cloud Renderer 2

Cloud Renderer n

Cloud Renderer 3

Harmonized scene

Fram
e R

equest passed to each renderers

WebSocket

NeRF Model (a1) NeRF Renderer

Existing 
3D 

Model

(a2) 3D Renderer (a3) Depth Harmonizer

3D RendererNeRF Renderer Depth Harmonizer

3D RendererNeRF Renderer Depth Harmonizer

3D RendererNeRF Renderer Depth Harmonizer

(b2) HashMap
- Sort & access frames by index
- Drop late frames

R
endered fram

es

Untethered XR HMD

Figure 1: Overview of the proposed instant XR environment.

∗Work done primarily as an intern at the Korea Institute of Science and Technology.
†Corresponding author: Byounghyun Yoo (yoo@byoo.net).

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9914-2/22/11.
https://doi.org/10.1145/3564533.3564565

ABSTRACT
For an XR environment to be used on a real-life task, it is crucial
all the contents are created and delivered when we want, where
we want, and most importantly, on time. To deliver an XR envi-
ronment faster and correctly, the time spent on modeling should
be considerably reduced or eliminated. In this paper, we propose a
hybrid method that fuses the conventional method of rendering 3D
assets with the Neural Radiance Fields (NeRF) technology, which
uses photographs to create and display an instantly generated XR
environment in real-time, without a modeling process. While NeRF

https://orcid.org/0000-0002-2641-7715
https://orcid.org/0000-0001-9299-349X
https://orcid.org/0000-0003-0493-9560
https://orcid.org/0000-0001-9091-4639
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3564533.3564565
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564533.3564565&domain=pdf&date_stamp=2022-11-02


Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Moonsik Park, Byounghyun Yoo, Jee Young Moon, and Ji Hyun Seo

can generate a relatively realistic space without human supervision,
it has disadvantages owing to its high computational complexity.
We propose a cloud-based distributed acceleration architecture to
reduce computational latency. Furthermore, we implemented an XR
streaming structure that can process the input from an XR device in
real-time. Consequently, our proposed hybrid method for real-time
XR generation using NeRF and 3D graphics is available for light-
weight mobile XR clients, such as untethered HMDs. The proposed
technology makes it possible to quickly virtualize one location and
deliver it to another remote location, thus making virtual sightsee-
ing and remote collaboration more accessible to the public. The
implementation of our proposed architecture along with the demo
video is available at https://moonsikpark.github.io/instantxr/.

CCS CONCEPTS
• Human-centered computing → Collaborative and social com-
puting systems and tools; Mixed / augmented reality; Virtual
reality; Web-based interaction.

KEYWORDS
Extended reality, XR, Neural rendering, Neural radiance fields,
NeRF, Deep learning, Cloud computing, Virtual reality, Web-based
XR

ACM Reference Format:
Moonsik Park, Byounghyun Yoo, Jee Young Moon, and Ji Hyun Seo. 2022.
InstantXR: Instant XR Environment on the Web Using Hybrid Rendering of
Cloud-based NeRF with 3D Assets. In The 27th International Conference on
3D Web Technology (Web3D ’22), November 2–4, 2022, Evry-Courcouronnes,
France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3564533.
3564565

1 INTRODUCTION
The success of VR, AR, and MR technologies has broken the bound-
aries between each area, resulting in increased demand for extended
reality (XR) technologies. In recent years, the COVID-19 pandemic
isolation, together with the excitement of realization of the Meta-
verse, has increased the public’s desire to experience various lo-
cations remotely from a remote area. The demand for immersive
XR technologies for remote collaboration is especially increasing.
XR technology for remote collaboration between a worksite and
remote location requires the provision of the virtual environment of
the worksite to the remote user. Although preliminary modeling is
imperative for creating a mirror world for an actual worksite, mod-
eling is notorious for its time-consuming process. In other words,
a method for reducing time consumption is essential to instantly
provide an XR environment in a mirrored space.

Therefore, in creating a mirror world, this study replaces the
conventional preliminary modeling method with Neural Radiance
Fields (NeRF), which can generate images from an arbitrary per-
spective by applying a deep learning model that processes several
photos of the actual work site. The results generated by the NeRF
were extremely photorealistic [Mildenhall et al. 2020]. Despite its
exceptional quality in visualizing a static environment, NeRF is not
appropriate for creating a dynamic 3D object that is necessary for
an XR environment. Our method overcomes this shortcoming by
incorporating a conventional 3D graphics rendering pipeline for

rendering dynamic 3D assets. Simply, this paper presents a hybrid
method that generates the static part of the XR environment using
NeRF while generating the dynamic part using the conventional 3D
graphics rendering pipeline. We removed the previously required
preliminary modeling process for the XR environment composi-
tion using the architecture shown in Figure 1. To the best of our
knowledge, this is the first attempt to apply NeRF to untethered
XR HMD. The contributions of this study are as follows:

(1) Eliminating preliminary modeling process for the XR en-
vironment using Neural Radiance Fields implementation
[Müller et al. 2022]

(2) Implementing real-time cloud-based NeRF scene generation
(3) Overcoming the limitation of NeRF through harmonization

with conventional 3D graphics rendering through the depth
test of the 3D scene

(4) Real-time cloud-based XR streaming to untethered HMD

2 RELATEDWORK
The implementation of the XR environment requires the following
representative elements: content, platform, network, and device.
Continuous content supply requires simplification and automation
of the modeling process. Particularly, in an application domain that
virtually mirrors the environment in reality to the XR environment,
such as remote tourism and collaboration [Lee and Yoo 2021], the
transformation time for digitalizing the real space into a virtual
model is of utmost importance. Although conventional XR content
production pipelines scan the real-world environment or recon-
struct a 3D model using photogrammetry, they are difficult to use
in instant collaboration because of the long preparation time.

To reduce the time required for the 3D reconstruction of the XR
environment, an approach that skips the reconstruction process and
uses point cloud rendering after real-time scanning of the site with
LiDAR has been investigated [Lee et al. 2021]. However, the image
quality of the point cloud is lower than that of the conventional
mesh-based reconstructed 3D model with texture because of the
space between the point clouds, which lowers the user’s situational
awareness.

With the popularity of machine learning, attempts have been
made to map 3D spatial locations and the implicit representation of
an object’s shape to the weight of a fully connected multilayer per-
ceptron model [Curless and Levoy 1996]. However, these attempts
worked only with objects with simple geometries, and the results
were of poor quality compared with methods that did not leverage
machine learning [Mildenhall et al. 2020].

NeRF [Mildenhall et al. 2020] used not only a 3D spatial location
but also the viewing direction of a scene. The location and direc-
tion data are mapped to the volume density and view-dependent
emitted radiance. The process can be differentiated because it is
a fully connected function. The loss of the renderer can be propa-
gated back to the input and applied to train the network. NeRF has
become a novel view synthesis method comparable to handcrafted
algorithms with adjustments and optimization. Being based on ma-
chine learning, NeRF has shown potential, which rapidly gained
the interest of vision researchers.

While NeRF’s view synthesis quality is far superior to that of
other methods, the time and computing resources required to train

https://moonsikpark.github.io/instantxr/
https://doi.org/10.1145/3564533.3564565
https://doi.org/10.1145/3564533.3564565


InstantXR: Instant XR Environment on the Web Using Hybrid Rendering of Cloud-based NeRF with 3D Assets Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

the model and render a scene are issues that block its application to
the real-world use cases. There has been significant development
in both the application and implementation of NeRF [Tewari et al.
2022]. Research began aiming to speed up and lower computing
power requirements. FastNeRF [Garbin et al. 2021] can compute a
scene thousands of times faster than the original NeRF by caching
a deep radiance map at each position in space, and efficiently query
the map using ray directions to estimate pixel values in the rendered
image. NVLabs [Müller et al. 2022] was able to speed up NeRF using
a multiresolution hash table of trainable feature vectors, whose
values are optimized through stochastic gradient descent.

Some research focused on using NeRF in domains other than
novel-view synthesis. BlockNeRF [Tancik et al. 2022] applies NeRF
to a real-world environment as large as the city blocks. HyperNeRF
[Park et al. 2021] attempts to render a novel view of a moving object
by adding another dimension representing time to a model. Nerf
in the Dark [Mildenhall et al. 2022] uses NeRF to denoise images
captured in low-light environments.

The major difference between structure-from-motion (SfM) and
NeRF is that NeRF can generate volumetric representations while
SfM generates a triangulated mesh of the scene. While there is
research done to map a large location with SfM, [Schönberger et al.
2016] in the current state the triangulated mesh of SfM cannot
match the volumetric output of NeRF in terms of photographic
realism. The problem with NeRF is that although we can get the
scene as an RGB image and depth, it cannot reconstruct objects
in the scene. There is potential, though, that if we run SfM with
NeRF’s output, we could possibly get both the photorealistic output
and the 3D reconstruction of the scene [Condorelli et al. 2021].

We define cloud-based real-time rendering as doing compute-
intensive workloads on a remote server and sending the result
artifacts to the client as a video stream. The difficulty in designing
these systems lies in the management of latency. In cloud-based
real-time rendering, the latency can occur at four points. User input
should be sent to the server when rendering a scene. The server
should render a scene based on input. The scene needs to be trans-
ported back to the client. The client has to decode the video stream
and render it to the user’s screen. It is nearly impossible to im-
plement cloud-based real-time rendering because it is difficult to
manage the latency to the level compared to local rendering. How-
ever, recent advances in Internet speed and quality have boosted
commercial efforts to create a remote gaming service. Sony Cor-
poration released PS Now in 2014, followed by GeForce Now by
NVIDIA, and Stadia by Google [Xu and Claypool 2021].

3 PROBLEM STATEMENT
The original NeRF implementation was built using Tensorflow in
Python, which slowed down the implementation. It took 1-2 days
to learn a scene and approximately 30 s to render a novel view of
800 × 800 resolution [Mildenhall et al. 2020], which is not ideal for
real-time rendering.

NVlabs successfully sped up NeRF using multiresolution hash en-
coding, which achieved several orders of magnitude faster training
and rendering speed [Müller et al. 2022]. We chose this implementa-
tion (henceforth referred to as instant-ngp) for our method because
of its fast speed based on its implementation in C++. By using this

implementation, it took less than a second to train the network and
less than 30 milliseconds (ms) to render a novel view, which is a
significant improvement compared to the original NeRF implemen-
tation, which takes two days to train the network and 30 s to render
a novel view with the same dataset.

While instant-ngp is faster than most NeRF implementations, it
is not sufficient to be used for our purpose, which renders NeRF in
a real-time immersive XR environment. Research shows that users
find the motion-to-photon (MTP) latency disturbance when the
latency is over 23 ms, while in a situation where the viewpoint is
violently moving at 80 ◦/s [Yang et al. 2019]. To provide a smoother
experience to the user navigating the mirror world generated by
NeRF, we should have the capability to render at least 44 frames per
second per eye (a total of 88 frames per second for stereographic
display; 11 ms per frame) without considering the sensor, transport,
and any other latency.

DIBR is a method to render a different view for a scene with RGB
image and depth [Schmeing 2011]. It is commonly used to render a
‘target view’ image for the other eye when only one input ‘reference
view’ image is available. Our approach, in contrast to DIBR, is a
two-pass rendering method where the renderer renders two distinct
images for both eyes using their own position of view. Using DIBR
would be faster because it only requires one source image as a
reference view to be rendered from the network and rendering
the target view for another eye with DIBR is faster than rendering
another scene from NeRF. However, its fundamental limitation of
not knowing the areas not visible in the reference view creates a
loss in the target view. There have been methods to overcome this
limitation [Azzari et al. 2010], but its implementation is outside the
scope of our architecture. Because recent devices that target 3D use
two pass rendering for each eye and we expect NeRF rendering to
get significantly faster, we did not use DIBR.

To replace the 3D modeling task of a mirror world as an XR
environment with a novel view rendered by NeRF, conventional
3D assets should be harmonized with the scene. Because NeRF can
estimate the volume density alongwith the view-dependent emitted
radiance, we used this density estimation to place conventional 3D
assets inside a view rendered by NeRF.

An overview of the designed system is in Figure 1. We imple-
mented a cloud renderer (a) that can provide a view upon request
from the cloud encoding server (b). Client (c) is a web application
that fully complies with web standards.

The client uses the WebXR device API [Jones et al. 2022] to con-
tinuously send the user’s viewpoint to the cloud-encoding server.
Given the user’s viewpoint and the chosen resolution, the cloud
encoding server sends a frame request to the cloud renderer. The
renderer creates an extended reality scene using not only the scene
but also the depth data, which are from both the volumetric ren-
dering artifacts rendered by NeRF and artifact from a rendered
3D model. The cloud encoding server receives rendered extended
reality scenes and places them in a frame queue. The server then
preprocesses the frames by subtitling the debug information and
converting their pixel format to be suitable for the encoder. Because
the order of the frames should be strictly honored, despite its in-
efficiency, we used a hash map in sorting and selecting frames by
index in a constant time. The frames were then fed to the encoder
to generate an encoded video-packed stream. The cloud encoding



Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Moonsik Park, Byounghyun Yoo, Jee Young Moon, and Ji Hyun Seo

Figure 2: Output of instant-ngp after 10 min (100,000 itera-
tions) of training the neural network.

Figure 3: One of the photographs used to train the network.

server can also use multiple cloud renderers to achieve a better
frame rate and more continuous scenes.

Sending live processed frames in an untethered HMD is not a
trivial task. We need to use a streaming protocol that can send pack-
ets as quickly as possible without introducing any additional delay.
After much consideration, we implemented a novel video stream-
ing method that sends raw packets to the client using WebSockets
[WHATWG 2022]. This method is explained in detail in Section 4.
The client then receives and decodes the video stream sent by the
server. The video was rendered on a canvas and converted into a
background texture. The texture is used by Three.js to display the
video on each HMD display.

4 IMPLEMENTATION
4.1 Neural radiance fields
To create a mirror world with NeRF, we chose a laboratory that
resembled an average household, called the Living Lab, located

(a)

(b)
(c)

(d)

Figure 4: Depth estimation using NeRF.

inside the Korea Institute of Science and Technology. This is be-
cause the Living Lab has a simple but realistic geometry and has
previously been modeled in 3D, allowing us to compare NeRF and
3D reconstructed view in possible future work.

For the training dataset, we prepared 60 photos with a resolution
of 4240 × 2832 taken from Sony 𝛼7S II at the Living Lab. Figure
3 shows an example of a photograph taken in the laboratory. We
used COLMAP [Schönberger and Frahm 2016; Schönberger et al.
2016], an open-source structure-from-motion program to determine
the viewing position and orientation of each photograph. Using
this dataset, we trained the instant-ngp for 10 min. We terminated
the training and used the trained model after 10 min and 100,000
iterations, after confirming that the loss rate did not improve. With
the trained model, we could render Figure 2, a 1280 × 720 image in
80 ms on a computer with an NVIDIA A100 discrete GPU.

NeRF estimates not only the scene but also the volume density
of the view. Figure 4 shows a visualization of the volume density
estimated using the NeRF. NeRF estimates the volume density for
objects with a matte surface with irregular patterns and various
features, such as regions (a) and (b). However, NeRF struggles to
estimate the volume density of the floor, such as region (c), or the
screen, such as region (d), which has fewer features and diffuse
reflections.

4.2 Cloud-based NeRF
We set a goal in which the user should feel like they are inside a
mirror world generated by NeRF. The entire technology should be
web-based and web standards compliant such that the user does
not need to install any program or add-ons. To achieve this, we
should receive the viewing position and orientation from the client,
render the view on a cloud rendering system, and send the rendered
view back to the user’s device. It is not sufficient to render only
one view for a given viewpoint, because of the wide adaptation of
stereoscopic displays in XR devices. Thus, it is important to render
and stream two scenes that reflect parallax between the eyes.

For a smoother experience for the user inside the mirror world
generated by the NeRF, it is better to generate as many frames as



InstantXR: Instant XR Environment on the Web Using Hybrid Rendering of Cloud-based NeRF with 3D Assets Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

possible. Although the rendering speed of the NeRF implementa-
tion we chose was relatively fast compared to other NeRF imple-
mentations, it was not sufficient to create the level of smoothness
necessary for our purpose.

The limitation of computing power from a single unit will con-
tinue to exist despite the rapid increase in the computing power
of discrete graphics processing units. If it is possible to distribute
the rendering process across multiple machines, we can create a
solution that is more powerful and cost-effective than using a sin-
gle powerful unit. Alongside the readily available, time-sharable,
and scalable resources provided by cloud computing vendors, the
importance of distributed-rendering is increasing.

To accelerate the frame generation process, we built a cloud-
based distributed NeRF rendering system. The system consisted of
two components. A renderer that runs on multiple machines and
an encoder that requests scenes based on user motion, then gather
the scenes rendered by multiple renderers and encodes the scenes
into a video stream.

To work properly, two factors should be considered for a cloud-
rendering system based on neural rendering. First, the encoding
speed between renderers should be as uniform as possible. The
order of each frame is important for the video to be played in
real-time. For instance, when the user is moving left, the frames
should also move left until the user stops or changes direction.
However, if the encoding speeds among the renderers are different,
the encoder might have to wait for the frames to arrive or drop
them entirely. If we wait for a frame, the frame generated by a fast
encoder can become useless. If we ignore the order, there will be
cases in which the user is moving to the left, but the video stream is
unexpectedly transported to the right. Second, each frame should
not be associated with others. If the frames are associated with
one another, it is not possible to parallelize the rendering process
because renderers need to share the past frames to draw the current
frame.

Multiple web standards were used for the system. To sample the
user’s current viewing position and orientation, we used theWebXR
device API. The API provides the viewing position and orientation
of the user as Euler angles. Because the NeRF implementation
receives the camera input as an affine transformation matrix, we
convert the 3D position and viewing direction from the API to
an affine transformation matrix, and then send the matrix to the
rendering server using WebSockets. We had to sample the user’s
position and orientation frequently to provide a smooth transition
of the resulting video stream. Using theWebSockets API, we did not
experience any problem sending data every 10 ms. It was important
for the protocol to maintain the order of the viewing position and
orientation data. It is better to receive motion data slowly than
to receive them out of order because the resulting motion of the
video stream will be affected by the order. WebSockets guarantee
the order of the data because they use the TCP protocol.

4.2.1 Renderer. Although the renderer was forked from instant-
ngp, the implementation was modified in several ways. It was mod-
ified to run as a daemon on the server, serving the frame request
upon arrival. This makes it possible to separate the renderers from
an encoder because we can always assume that the renderers will

be ready to serve a frame request. This also prevents the encoder
from being affected by the failure of the renderer.

Also, the renderer has a limitation in that it can output only the
scene or depth in a single rendering cycle, although it uses depth
information internally to render the scene. We modified the source
of the renderer to render both the scene and depth information
simultaneously, as we planned to harmonize the scene with existing
3D assets. We also added a thread that renders a legacy 3D asset
using OpenGL.

The renderer then receives a frame request from the encoder
containing the index, width, height, and viewpoint of the frame
to be generated. The renderer renders a frame, harmonizes the
frame with legacy 3D assets, and responds to a request with the
rendered frame. Because there are no relations between frames, a
single renderer can serve the frame requests from multiple clients.

4.2.2 Encoder.

Requirements. The requirements for the encoder and streaming
protocol in this system are unique. We were not able to use existing
solutions because we had different requirements compared with
popular video rendering and streaming methods. First, the frames
collected from the renderers were not associated with each other.
Second, the specific timestamp of each frame was not important
because we only have to provide the latest rendered frames. Third,
there was no need for audio/video synchronization. Finally, for our
purpose, the video stream needs to be playable without any add-ons
to a web standards-compliant browser.

Design choices. We selected the H.264 codec implemented by
libx264 because it is widely supported and most devices have hard-
ware acceleration support. Because HMDs have a stereoscopic dis-
play, we should provide a separate frame for each eye by considering
the parallax between the eyes. There are two methods for rendering
a scene while considering the parallax between the eyes: spatial im-
age warping and two-pass rendering. We chose the latter method of
rendering the same scene twice with the parallax in consideration.

Structure. The encoder serves as a client for the renderer daemon.
One encoder can be connected to multiple renderer daemons to
parallelize and speed up the rendering process. Once the encoder
connects to all renderer daemons provided by a command line
argument, the program begins and starts a loop that receives the
viewpoint from the client HMD using WebSockets. To facilitate an
immersive experience of a user, the viewpoints should arrive on
time and in the correct order. With WebSockets, we managed to
send the viewpoints once every 10 ms, which is less than the time
consumed for rendering each scene. Because frame rendering is
parallelized, it is crucial to frequently update the coordinates.

Once the viewpoint update loop is running, the encoder sends
the renderer a frame request containing the index, resolution, and
viewpoint when a request is generated. The request is generated
shortly after each encoder serves the frame request.

The computing power requirements for each frame are different
for the NeRF renderer. If the space we render has fewer features, or
if the training dataset does not contain much information about the
space, the renderer takes more time to render. In other words, the
rendering time for each frame is different. For instance, when the



Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Moonsik Park, Byounghyun Yoo, Jee Young Moon, and Ji Hyun Seo

Depth value of real-world model 
>

Depth value of virtual 3D model

Store pixel of real-world model to 
extended reality scene

For every pixel in a frame

Store pixel of virtual 3D model to 
extended reality scene

true

false

Scene frames

Depth of scene

Harmonized XR scene

Figure 5: Harmonization process of NeRF output and 3D
assets.

encoder requests four frames based on the user’s current moving
viewpoint, the first frame can be rendered after the second, third,
and fourth frames. If we honor the frame’s index, the video stream
will show the first, second, and third frames almost simultaneously,
and then move to the fourth frame. If we do not honor the index, the
user’s movement is not correctly represented by the video stream.
Therefore, we designed the system to strictly honor the frame index
while dropping the frames if it takes too long to render.

The rendered frames arriving at the encoder were placed in a
queue. A thread preprocessed the frames. The frame was in RGB
format; however, to encode it efficiently, we transformed it into the
YUV format. We also added subtitles to the frames for debugging.
When preprocessing was completed, the frames were sorted by
index and fed into the H.264 encoder. The encoder receives the
framed and generated an encoded packet.

Theoretically, this structure is not limited by the number of cloud
renderers. Based on this structure, we managed to run eight cloud
renderers concurrently to generate a single stream with an eight
times increase in frame rate.

4.3 Harmonization with legacy 3D assets
NeRF uses volume rendering technology and outputs a scene as an
RGB image, making it difficult to place 3D assets naturally. However,
NeRF outputs the apparent color and volume density of the scene.
The density information can be used to estimate the depth of a
certain view. Using this information, we can perform depth testing
between the depth buffer of legacy 3D assets and the estimated
depth from NeRF.

We compared the depth information from the NeRF renderer
with the depth buffer of an object rendered through the conven-
tional 3D renderer, using the method described in Figure 5. The
results are shown in Figure 6.

Although NeRF can estimate depth from images, it is not as
accurate as the depth from the 3D renderers because it is the result
of volume rendering. As shown in Figure 7, there are areas where
the NeRF cannot correctly estimate depth. For example, Figure 7
(a) shows a region where NeRF depth estimation is accurate, and

Figure 6: Harmonization using the NeRF volume density
output.

(b)(a)

Figure 7: Estimation of depth on surfaces with diffused re-
flections.

Figure 7 (b) shows a region where NeRF has trouble estimating
depth.



InstantXR: Instant XR Environment on the Web Using Hybrid Rendering of Cloud-based NeRF with 3D Assets Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

(a) a remote user (b) left eye view (c) right eye view

(i) left scene

(ii) front scene

(iii) right scene

Figure 8: Remote user wearing an untethered HMD viewing
a streamed XR scene generated by NeRF.

4.4 Instant XR streaming
For packets generated from the encoder, a streaming protocol is nec-
essary to deliver them to the client as quickly as possible. However,
we faced difficulties in choosing an appropriate streaming protocol
to transport the stream to the client. Streaming protocols typically
focus on latency, reliability, or scalability. Examples of protocols
that choose reliability and scalability include HLS [Pantos and May
2017] and MPEG-DASH [MPEG 2019]. However, these protocols
were not appropriate for our case, for our goal was to only send the
stream to a single client, which, in turn, emphasizes diminishing
latency. Although protocols prioritizing latency are favored, pro-
tocols such as RTSP [Rao et al. 1998] and SRT [Sharabayko et al.
2021] were not considered because they were not compliant with
web standards.

Streaming protocols often generate delays for a multitude of
reasons. HLS or MPEG-DASH delays the stream by tens of seconds
to create a chunk that can be instantly downloaded by the client.
This enables the protocol to scale the stream and conserve com-
puting power by not sending the stream to clients too often. RTSP
and WebRTC [Jennings et al. 2022] introduce delays in matching
video and audio synchronization. These delays, which are useful in
most streaming cases, are a critical disadvantage in real-time XR
streaming.

We devised a novel method to rapidly stream video packets to a
client without introducing any delay. Although this method is not
the best to implement instant streaming, it is by far the easiest way
to achieve promising quality. WebCodecs API [Cunningham et al.
2022] is a web standard proposed by Google, Mozilla and Microsoft.
This standard aims to provide low-level media processing APIs
to JavaScript web applications. Chrome browser added support
for WebCodecs standard in 2021 [Cunningham and Sanders 2022].
Firefox browser plans to support the API in the near future [Chang
2022]. We embraced this API due to its roadmap as a standard and
the ability to render videos without any artificially introduced delay.

We created a system that sends raw encoded packets to a client
using the WebSockets and decodes them using WebCodecs API.

This method aligns with our purpose and the cloud-based render-
ing. However, there are severe limitations to this method for cases
other than ours. This method completely disregards the timestamp
information for each packet. For every packet, once it arrives and
is decoded, it is instantly displayed to the user. Audios were not
available with this method because it does not support the syn-
chronization of the timestamp from the audio and video streams.
Additionally, scaling the stream to multiple users is computationally
intensive because the frames should be sent to every user simulta-
neously and in real-time.

For our implementation to access an XR device and be web
standard compliant, we used the WebXR device API. API enables
web applications to render a 3D scene to the chosen device at an
appropriate frame rate. The API has been implemented in many
web 3D graphics frameworks, including Three.js [Cabello 2022],
Babylon.js [Microsoft 2022], and A-Frame [Marcos et al. 2022]. We
chose Three.js because it is highly flexible and does not abstract
the low-level controls required for our purposes. Using Three.js,
we played a video on each eye of the HMD.

We tested our system using eight cloud renderers, each equipped
with an NVIDIA A100 discrete GPU. After numerous tests and con-
siderations between rendering speed and quality, we decided to use
1300 × 1300 as the optimal resolution for each eye. Each cloud ren-
derer was able to output 10 frames per second with resolution. The
system was able to generate eighty 1300 × 1300 frames per second
in total, with 40 frames per second for each eye. Notwithstanding
other factors of latency remaining, we were able to deliver a new
frame every 25 ms, creating an immersive experience inside the
mirror world generated by the NeRF successfully. Figure 8 shows
a remote user wearing an untethered HMD. Two scenes were ren-
dered for each eye regarding the parallax between eyes. The scene
moved along smoothly from the viewpoint of the user.

5 CONCLUSION
Our proposed method can provide a mirror world as an immersive
XR environment without modeling process by capturing several
pictures of the actual environment. No problem will arise when
using 3D assets, as they are combined with the conventional XR
production pipeline.

Unfortunately, the high computational power requirements of
the current NeRF structure and implementation makes it difficult to
design a scalable solution for our proposed system. To generate an
immersive environment for one user, we need at least two NVIDIA
A100 discrete GPUs. To serve more concurrent users, we need to lin-
early increase the processing power. We do not believe our current
structure could scale to serving more than ten users. However, com-
putational demand of NeRF has been rapidly decreasing [Tewari
et al. 2022]. The growing research and development in the neural
rendering field makes it possible to envision the not-too-distant
future where even the GPUs in mobile devices will be able to gen-
erate an immersive environment with NeRF with a fraction of the
total computational power. By then, we will be able to aggressively
tune our structure to be more scalable. We expect the experience



Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Moonsik Park, Byounghyun Yoo, Jee Young Moon, and Ji Hyun Seo

and errors faced in developing our current proposed system and
structure will provide a milestone for the future.

In future work, we will find a suitable method for instant XR
services by evaluating the usability and realism based on a compar-
ison among various real-time XR environment generation methods.
For example, we will compare the XR environment of an identical
space generated by the following three methods:

(1) Mesh model: a method to reconstruct a 3D environment
using photogrammetry at a rapid speed.

(2) Point cloud: a method for quickly creating and rendering a
point cloud using a 3D scanner such as LiDAR.

(3) NeRF: a method to skip modeling using NeRF.

Herein, the expected artifacts from each method are listed below:

(1) Mesh model: no model exists when the user approaches the
unmodeled space.

(2) Point cloud: a cavity exists in an unscanned space or a point
cloud of a coarsely scanned region.

(3) NeRF: The NeRF model is inaccurate for the part where the
input image is insufficient.

We will compare the required time and quality of the output of
each method instantly providing an XR environment from an exist-
ing space through comparative experiments and user evaluations.
We will continue our research on improving user experience by
finding how to overcome the lack of data in advance.

Moreover, there is a need for further work in improving the user
experience. To prevent users from feeling motion sickness, we need
to lower the Motion-to-Photon(MTP) latency in the current system.
There has been numerous research [van Waveren 2016; Xiong and
Peri 2021] to reduce MTP latency in rendering 3D mesh models
and recent developments in mobile devices have made it possible
to aggressively adopt them [Aksoy and Beeler 2015; Antonov 2015].
However, reducing MTP latency in volume rendering methods has
not been studied often. We plan to explore ways to reduce MTP
latency, in particular where volume rendering is used based on
remote user input.

ACKNOWLEDGMENTS
This work was supported by the Industrial Technology Innovation
Program (20012462) funded by the Ministry of Trade, Industry
& Energy (MOTIE, Korea), the National Research Foundation of
Korea (NRF) grant (NRF-2021R1A2C2093065) funded by the Korea
government (MSIT) and the KIST under the Institutional Program
(Grant No. 2E31561).

REFERENCES
Volga Aksoy and Dean Beeler. 2015. INTRODUCING ASW 2.0: BETTER ACCURACY,

LOWER LATENCY. Retrieved September 29, 2022 from https://www.oculus.com/
blog/introducing-asw-2-point-0-better-accuracy-lower-latency/

Michael Antonov. 2015. Asynchronous Timewarp Examined. Retrieved September 29,
2022 from https://developer.oculus.com/blog/asynchronous-timewarp-examined/

Lucio Azzari, Federica Battisti, and Atanas Gotchev. 2010. Comparative Analysis of
Occlusion-Filling Techniques in Depth Image-Based Rendering for 3D Videos. In
Proceedings of the 3rd Workshop on Mobile Video Delivery (Firenze, Italy) (MoViD
’10). Association for Computing Machinery, New York, NY, USA, 57–62. https:
//doi.org/10.1145/1878022.1878037

Ricardo Cabello. 2022. Three.js. Retrieved July 30, 2022 from https://github.com/
mrdoob/three.js/

Chun-Min Chang. 2022. Firefox Bugzilla: [meta] Tracking bug for WebCodecs API
implementation. Retrieved September 29, 2022 from https://bugzilla.mozilla.org/
show_bug.cgi?id=WebCodecs

F Condorelli, F Rinaudo, F Salvadore, and S Tagliaventi. 2021. A Comparison Between
3d Reconstruction Using Nerf Neural Networks and Mvs Algorithms on Cultural
Heritage Images. The International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences 43 (2021), 565–570. https://doi.org/10.5194/isprs-
archives-XLIII-B2-2021-565-2021

Chris Cunningham, Paul Adenot, and Bernard Aboba. 2022. WebCodecs. Retrieved
July 31, 2022 from https://www.w3.org/TR/webcodecs/

Chris Cunningham and Dan Sanders. 2022. Chrome Platform Status Feature: Web-
Codecs. Retrieved September 29, 2022 from https://chromestatus.com/feature/
5669293909868544

Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex Mod-
els from Range Images. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’96). Association for Computing
Machinery, New York, NY, USA, 303–312. https://doi.org/10.1145/237170.237269

Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). 14346–14355.

Cullen Jennings, Henrik Boström, and Jan-Ivar Bruaroey. 2022. WebRTC 1.0: Real-
Time Communication Between Browsers. Retrieved July 30, 2022 from https:
//www.w3.org/TR/webrtc/

Brandon Jones, Manish Goregaokar, and Rik Cabanier. 2022. WebXR Device API.
Retrieved July 30, 2022 from https://www.w3.org/TR/webxr/

Yongjae Lee and Byounghyun Yoo. 2021. XR collaboration beyond virtual reality: work
in the real world. Journal of Computational Design and Engineering 8, 2 (2021),
756–772. https://doi.org/10.1093/jcde/qwab012

Yongjae Lee, Byounghyun Yoo, and Soo-Hong Lee. 2021. Sharing Ambient Objects
Using Real-Time Point Cloud Streaming in Web-Based XR Remote Collaboration.
In The 26th International Conference on 3D Web Technology (Pisa, Italy) (Web3D
’21). Association for Computing Machinery, New York, NY, USA, Article 4, 9 pages.
https://doi.org/10.1145/3485444.3487642

Diego Marcos, Don McCurdy, and Kevin Ngo. 2022. A-Frame. Retrieved July 30, 2022
from https://github.com/aframevr/aframe

Microsoft. 2022. Babylon.js. Retrieved July 30, 2022 from https://github.com/BabylonJS/
Babylon.js/

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan,
and Jonathan T. Barron. 2022. NeRF in the Dark: High Dynamic Range
View Synthesis From Noisy Raw Images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 16190–16199.
https://openaccess.thecvf.com/content/CVPR2022/papers/Mildenhall_NeRF_in_
the_Dark_High_Dynamic_Range_View_Synthesis_From_CVPR_2022_paper.pdf

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields
for view synthesis. In Computer Vision – ECCV 2020. Springer International Pub-
lishing, Cham, 405–421. https://doi.org/10.1007/978-3-030-58452-8_24

MPEG. 2019. Information technology — Dynamic adaptive streaming over HTTP (DASH)
— Part 1: Media presentation description and segment formats. Standard ISO/IEC
23009-1:2019. International Organization for Standardization, Geneva, CH. https:
//www.iso.org/standard/79329.html

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics 41, 4 (jul 2022), 1–15. https://doi.org/10.1145/3528223.3530127

Roger Pantos and William May. 2017. HTTP Live Streaming. RFC 8216. https:
//doi.org/10.17487/RFC8216

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021. HyperNeRF: A
Higher-Dimensional Representation for Topologically Varying Neural Radiance
Fields. ACM Trans. Graph. 40, 6, Article 238 (dec 2021). https://doi.org/10.48550/
arXiv.2106.13228

Anup Rao, Rob Lanphier, andHenning Schulzrinne. 1998. Real Time Streaming Protocol
(RTSP). RFC 2326. https://doi.org/10.17487/RFC2326

Michael Schmeing. 2011. Depth Image Based Rendering. 279–310. https://doi.org/10.
1007/978-3-642-22407-2_12

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 4104–4113. https://doi.org/10.1109/CVPR.2016.445

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
2016. Pixelwise View Selection for Unstructured Multi-View Stereo. In European
Conference on Computer Vision (ECCV). https://doi.org/10.1007/978-3-319-46487-
9_31

Maria Sharabayko, Maxim Sharabayko, Jean Dube, Joonwoong Kim, and Jeongseok
Kim. 2021. The SRT Protocol. Internet-Draft draft-sharabayko-srt-01. Internet
Engineering Task Force. https://datatracker.ietf.org/doc/draft-sharabayko-srt/01/
Work in Progress.

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Milden-
hall, Pratul P. Srinivasan, Jonathan T. Barron, and Henrik Kretzschmar. 2022.

https://www.oculus.com/blog/introducing-asw-2-point-0-better-accuracy-lower-latency/
https://www.oculus.com/blog/introducing-asw-2-point-0-better-accuracy-lower-latency/
https://developer.oculus.com/blog/asynchronous-timewarp-examined/
https://doi.org/10.1145/1878022.1878037
https://doi.org/10.1145/1878022.1878037
https://github.com/mrdoob/three.js/
https://github.com/mrdoob/three.js/
https://bugzilla.mozilla.org/show_bug.cgi?id=WebCodecs
https://bugzilla.mozilla.org/show_bug.cgi?id=WebCodecs
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-565-2021
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-565-2021
https://www.w3.org/TR/webcodecs/
https://chromestatus.com/feature/5669293909868544
https://chromestatus.com/feature/5669293909868544
https://doi.org/10.1145/237170.237269
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webxr/
https://doi.org/10.1093/jcde/qwab012
https://doi.org/10.1145/3485444.3487642
https://github.com/aframevr/aframe
https://github.com/BabylonJS/Babylon.js/
https://github.com/BabylonJS/Babylon.js/
https://openaccess.thecvf.com/content/CVPR2022/papers/Mildenhall_NeRF_in_the_Dark_High_Dynamic_Range_View_Synthesis_From_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Mildenhall_NeRF_in_the_Dark_High_Dynamic_Range_View_Synthesis_From_CVPR_2022_paper.pdf
https://doi.org/10.1007/978-3-030-58452-8_24
https://www.iso.org/standard/79329.html
https://www.iso.org/standard/79329.html
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.17487/RFC8216
https://doi.org/10.17487/RFC8216
https://doi.org/10.48550/arXiv.2106.13228
https://doi.org/10.48550/arXiv.2106.13228
https://doi.org/10.17487/RFC2326
https://doi.org/10.1007/978-3-642-22407-2_12
https://doi.org/10.1007/978-3-642-22407-2_12
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10.1007/978-3-319-46487-9_31
https://datatracker.ietf.org/doc/draft-sharabayko-srt/01/


InstantXR: Instant XR Environment on the Web Using Hybrid Rendering of Cloud-based NeRF with 3D Assets Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Block-NeRF: Scalable Large Scene Neural View Synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 8248–
8258. https://openaccess.thecvf.com/content/CVPR2022/papers/Tancik_Block-
NeRF_Scalable_Large_Scene_Neural_View_Synthesis_CVPR_2022_paper.pdf

A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk, W. Yifan, C. Lassner, V.
Sitzmann, R. Martin-Brualla, S. Lombardi, T. Simon, C. Theobalt, M. Nießner, J. T.
Barron, G. Wetzstein, M. Zollhöfer, and V. Golyanik. 2022. Advances in Neural
Rendering. Computer Graphics Forum 41, 2 (2022), 703–735. https://doi.org/10.
1111/cgf.14507 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14507

J. M. P. van Waveren. 2016. The Asynchronous Time Warp for Virtual Reality on
Consumer Hardware. In Proceedings of the 22nd ACM Conference on Virtual Reality
Software and Technology (Munich, Germany) (VRST ’16). Association for Computing
Machinery, New York, NY, USA, 37–46. https://doi.org/10.1145/2993369.2993375

WHATWG. 2022. WebSockets. Retrieved July 30, 2022 from https://websockets.spec.
whatwg.org/

Yingen Xiong and Christopher Peri. 2021. Space-Warp with Depth Propagation in XR
Applications. In 2021 IEEE International Symposium on Multimedia (ISM). 50–57.
https://doi.org/10.1109/ISM52913.2021.00017

Xiaokun Xu and Mark Claypool. 2021. A First Look at the Network Turbulence
for Google Stadia Cloud-based Game Streaming. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). 1–5.
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484481

Minxia Yang, Jiaqi Zhang, and Lu Yu. 2019. Perceptual Tolerance to Motion-To-Photon
Latency with Head Movement in Virtual Reality. In 2019 Picture Coding Symposium
(PCS). 1–5. https://doi.org/10.1109/PCS48520.2019.8954518

https://openaccess.thecvf.com/content/CVPR2022/papers/Tancik_Block-NeRF_Scalable_Large_Scene_Neural_View_Synthesis_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Tancik_Block-NeRF_Scalable_Large_Scene_Neural_View_Synthesis_CVPR_2022_paper.pdf
https://doi.org/10.1111/cgf.14507
https://doi.org/10.1111/cgf.14507
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14507
https://doi.org/10.1145/2993369.2993375
https://websockets.spec.whatwg.org/
https://websockets.spec.whatwg.org/
https://doi.org/10.1109/ISM52913.2021.00017
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484481
https://doi.org/10.1109/PCS48520.2019.8954518

	Abstract
	1 Introduction
	2 Related Work
	3 Problem statement
	4 Implementation
	4.1 Neural radiance fields
	4.2 Cloud-based NeRF
	4.3 Harmonization with legacy 3D assets
	4.4 Instant XR streaming

	5 Conclusion
	Acknowledgments
	References

