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ABSTRACT
Federated meta-learning has emerged as a promising AI framework
for today’s mobile computing scenes involving distributed clients.
It enables collaborative model training using the data located at
distributed mobile clients and accommodates clients that need fast
model customization with limited new data. However, federated
meta-learning solutions are susceptible to inference-based privacy
attacks since the global model encoded with clients’ training data is
open to all clients and the central server. Meanwhile, differential pri-
vacy (DP) has beenwidely used as a countermeasure against privacy
inference attacks in federated learning. The adoption of DP in fed-
erated meta-learning is complicated by the model accuracy-privacy
trade-off and the model hierarchy attributed to the meta-learning
component. In this paper, we introduce DP-FedMeta, a new differ-
entially private federated meta-learning architecture that addresses
such data privacy challenges. DP-FedMeta features an adaptive
gradient clipping method and a one-pass meta-training process
to improve the model utility-privacy trade-off. At the core of DP-
FedMeta are two DP mechanisms, namely DP-AGR and DP-AGRLR,
to provide two notions of privacy protection for the hierarchi-
cal models. Extensive experiments in an emulated federated meta-
learning scenario on well-known datasets (Omniglot, CIFAR-FS,
and Mini-ImageNet) demonstrate that DP-FedMeta accomplishes
better privacy protection while maintaining comparable model
accuracy compared to the state-of-the-art solution that directly
applies DP-based meta-learning to the federated setting.
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1 INTRODUCTION
Deep learning (DL) has enjoyed great success in many sectors of so-
ciety, mainly due to the big leap in computing hardware capability
and availability of massive amount of data. However, the increased
concentration of data needed by DL has raised wide-spread con-
cerns over data privacy, leading to data privacy regulations such as
General Data Protection Regulation (GDPR1) in European Union
and California Consumer Privacy Act (CCPA2) in the US. In many
cases, it is often impossible to move the data to a central location
due to legal restrictions, such as those imposed by Health Insur-
ance Portability and Accountability Act (HIPAA3). Therefore, more
and more data are now stored distributively at edge nodes or end
devices close to their sources rather than at a central location.

Federated learning (FL) [12, 15, 17] has emerged as a new para-
digm to enable collaborative training over distributed private data.
In FL, participants jointly train a global model without sharing
their private data. FL outputs a common model for all the users and
does not customize the model to each user. This is an important
missing feature for practical deployment in distribution learning
scenarios, especially given the heterogeneity of the underlying data
distribution and learning task for various users. In light of this gap,
federated meta-learning [5, 8, 16, 31] has emerged as one powerful
AI framework for enabling fast model adaptation amid collaborative
training, with prime use cases in IoT and mobile computing scenar-
ios. The meta-learning component [9, 20] enables a cloud server
to extract common knowledge from distributed data owners with
1https://gdpr.eu/
2https://oag.ca.gov/privacy/ccpa
3https://www.hhs.gov/hipaa/index.html
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different training data and local tasks. The common knowledge, in
the form of global meta model, can be quickly customized to a new
client (called “model consumer”) with a few new data samples.

Despite its prospect of making the best of two worlds, the feder-
ated meta-learning framework is still prone to inference-based pri-
vacy attacks on individual clients’ data, including the membership
inference attack [19, 32] and model inversion [28]. An adversary
can recover the private training data [27, 28] or sensitive partial in-
formation [19] by leveraging a specific inference model. Meanwhile,
prior wisdom alludes that Differential privacy (DP) [7] can be used
to provide rigorous privacy guarantee to FL algorithms by adding
noise to gradients update in a controlled manner [10, 18, 29]. Pri-
vacy protection faces complications in the federated meta-learning
framework compared to a traditional ML. On the one hand, the
adoption of DP into FL may lead to a significant decrease in model
utility. Taking the popular FedAvg [17] algorithm as an example,
naively adopting DP into FedAvg may cause 2-10 times training loss
than the original model [30]. On the other hand, the privacy notion
is further complicated due to the hierarchical nature of federated
meta-learning frameworks. There are two types of models across
system participants: base models at clients and the meta-model at
the central server. It is unclear which gradients contain what level
of privacy and are exposed to whom. [14] directly applies DP to
the federated meta-learning framework and thus results in a large
accuracy sacrifice. We aim to improve the model accuracy while
satisfying a minimum privacy protection requirement.

In this paper, we address the above privacy leakage problem by
substantiating a new differentially private federated meta-learning
architecture, namely DP-FedMeta. Catering to the hierarchical
learning framework of federated meta-learning, DP-FedMeta fea-
tures two DP mechanisms, namely DP-AGR (AGregation Rule) and
DP-AGRLR (AGregation Rule with Local Randomness), for achiev-
ing two practical privacy protection notions for clients’ training
data against the curious central server and curious local clients,
respectively. DP mechanisms in ML generally entail bounding each
user’s model update contribution by clipping its gradient to some
constant value. However, in meta-learning tasks, it can be hard to
obtain a priori knowledge of the clipping threshold across tasks
and learning settings. To achieve a better trade-off between privacy
and accuracy, building on the intuition that the current gradient
norm is predictive with the knowledge of data geometry in earlier
iterations, we propose an adaptive clipping mechanism to dynami-
cally achieve a minimized clipping threshold while preserving most
of the gradient information. We emphasize that naive adaption of
adaptive clipping for federated meta-learning, such as determin-
ing the clipping threshold based on the current batch of gradients,
would leak clients’ private information since such clipping thresh-
old is computed with the true gradients. To avoid further privacy
leakage in adjusting the clipping threshold, we utilize the histori-
cal differentially private aggregated gradients (i.e., product of dif-
ferentially private gradient aggregation of previous training set)
instead of the true online gradients. As a result, our adaptive clip-
ping mechanism retains the same level of privacy protection while
boosting the system’s overall accuracy. Putting the above designs to-
gether, DP-FedMeta attains a significantly lower privacy budget and
higher model accuracy simultaneously compared to the state-of-the-
art DP solution for federated meta-learning [14] which is a direct
application of DP-based meta-learning to the federated setting.

The major contributions of this paper are summarized as follows:

• We introduce a differentially private federated meta-learning
architecture, dubbed DP-FedMeta, to enable collaborative
model training by heterogeneous users with fast model adap-
tation and rigorous privacy guarantee. Catering to two prac-
tical trust levels on the central server, DP-FedMeta features
two variants of DP mechanisms, DP-AGR and DP-AGRLR,
respectively.
• For both DP-AGR and DP-AGRLR, we propose a novel adap-
tive gradient clippingmethod thatmaximally preservesmodel
accuracy while guaranteeing a fixed level of privacy. This
method feeds on past differentially private gradients (instead
of the sensitive original gradients) which essentially helps
achieve a significantly lower privacy budget (𝜖 = 1.5 or 2.5)
than the state-of-the-art DP federated meta-learning work
(𝜖 = 9.5) [14] while maintaining reasonable model accuracy.
• We analyze the impact of client/task sampling rate on ac-
cumulated privacy loss for the whole training process of
DP-FedMeta. We derive an upper bound of the final accumu-
lated privacy loss given sampling rate and noise level (Sec-
tion 3.5). An important insight is that privacy loss depends
on the sampling rate, rather than the number of training
tasks sampled.
• We thoroughly evaluate DP-FedMeta’s performance on three
well-known datasets, i.e., Omniglot, CIFAR-FS, and mini-
ImageNet. We evaluate the impact of various factors includ-
ing gradient clipping, noise multiplier, and user sample size
on model accuracy and privacy for both DP-AGR and DP-
AGRLR methods. Under a small (1.5, 10−6)-DP budget, DP-
AGR achieves as high as 96.8% accuracy and DP-AGRLR
achieves 89.7% accuracy (the accuracy of [14] is 75%) for
5-way 5-shot learning on Omniglot.

2 DP-FEDMETA OVERVIEW
2.1 System Architecture and Vision
The vision of DP-FedMeta is to enable distributed mobile clients to
perform federated meta-learning with rigorous privacy guarantee
on client’s data. Fig. 1 illustrates the basic workflow of the DP-
FedMeta architecture. There are three types of participants in our
system:

Mobile Clients contribute to the meta-training process with
their private data. A mobile client first initializes its neural network
\ with the current meta-model Θ. It then trains the base-model \
with its local data. Due to the energy constraint, a mobile client can
only perform one to several steps of gradient descent. It then com-
putes model gradients and submit them to the central server. In later
sections mobile client is also referred to as client for convenience.

Central Server’s primary role is processing and aggregating
the model gradients from mobile clients. At the system onset, it
randomly initializes themeta-modelΘ. In eachmeta-training round,
it first distributes Θ to a group of mobile clients, collects gradients
from them, applies gradient clipping with a clipping threshold. The
central server then sums over all clipped gradients added with
Gaussian noise. The noisy gradient is used to update the meta-
model. It outputs the final meta-model in the end of the meta-
training round.
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Figure 1: Proposed DP-FedMeta architecture with adaptive gradient clipping. Mobile clients compute gradients with local data
and submit them to the cloud server. The multi-dimensional gradient is clipped by an adaptively adjusted clipping threshold 𝐶.
Gaussian noise is added to the summation of all clipped gradient and the average is used to update the global meta-model Θ.

Model Consumers are some of the mobile clients who only
consume meta-model from the central server without reporting
local gradients to it.

We assume mobile clients have limited storage space and are
energy-constrained. Therefore, there are only a small amount of
data can be stored in a mobile device, and the mobile device does
not support a computationally-intensive process, e.g., training a
deep model from scratch independently. Clients participate in an FL
system to cooperatively train a model initialization parameter. Each
mobile client (including mobile consumers) has its own training
task. We assume that the training tasks for different clients are
not necessarily the same. One example of a task is to differentiate
dogs from cats, and another task is to differentiate apples from
pears. It can be a general case in practice since different clients
may have different application scenarios. The overall goal of our
system is not to train a model that works for only one task but to
train a well-generalized model for various tasks. The traditional FL
can not deal with this problem as traditional FL is for a scenario
where clients’ training tasks are the same. We propose to employ
meta-learning to learn a parameter initialization and customize it
to different tasks of clients. Meta-learning [4, 9, 26] learns common
knowledge across a large number of tasks which is an optimized
starting point for various new tasks as it can fast adapt to unseen
tasks. We build DP-FedMeta based on a meta-learning algorithm
(i.e., MAML[9]), and our design also applies to other meta-learning
algorithms. Please refer to Section 3.2 for more detailed discussion
on MAML.

2.2 Threat Model and Challenges
In FL, both the central server and clients can be curious about
clients’ privacy. We assume there are two levels of trust on the
central server: trusted and honest-but-curious. A trusted central
server strictly follows the aggregation procedure and is not inquis-
itive about clients’ training data. An honest-but-curious central

server also follows the aggregation procedure but may sniff up-
dates from clients to reveal the information of their training data.
In practice, some reputable organizations, such as publicly owned
and government-backed institutions, can be assumed trusted. For
other commercial entities, the central server is assumed honest-
but-curious. Furthermore, we also assume clients (including model
consumers) are honest-but-curious. Recent literature demonstrates
that an adversary [28] who has access to the model and output label
can reconstruct the training data. Further, an adversary [19, 32]
can differentiate whether one data record is in the training dataset
or not by accessing only the model. We apply DP to FL to protect
individual clients’ training data privacy.

We aim to maximize the model accuracy while satisfying a mini-
mum privacy protection requirement. However, adopting DP into
FL may lower model utility significantly, e.g., naively incorporating
DP into FedAvg may cause 2-10 times training loss than the origi-
nal model [30]. The hierarchy gradients of federated meta-learning
bring further challenges at applying DP to the learning process. We
will detail the challenges and our solutions at what follows.

2.3 Applying DP to Federated Learning Clients
The objective of DP is to enable the utilization of the information on
a population while hiding individual’s information. Mathematically,
DP is defined as follows:

Definition 2.1 (Differential Privacy). A mechanismM: 𝐷→𝑅 is
(𝜖, 𝛿)-differentially private if for any subset of outputs 𝑆 ⊆ 𝑅 and
for any two adjacent databases 𝑑, 𝑑′ ∈ 𝐷 ,M satisfies that:

Pr[M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝑑′) ∈ 𝑆] + 𝛿. (1)

𝑑 and 𝑑′ differ in at most a single entry, i.e., ∥𝑑 − 𝑑′∥1 ≤ 1.

Considering 𝛿 → 0 and 𝜖 → 0, Pr[M(𝑑 ) ∈𝑆 ]
Pr[M(𝑑 ′ ) ∈𝑆 ] ≤ 𝑒

𝜖 ≈ 1 indi-
cates that one cannot distinguish between 𝑑 and 𝑑′ by observing
M(𝑑) andM(𝑑′).

When applying DP to an ML model, we need to add noise to gra-
dients before updating the model in the training process. Gradient
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clipping and noise adding are two critical procedures that impact
the privacy-utility trade-off.

2.4 Why Adaptive Clipping?
The trade-off between privacy and utility is a significant challenge
to a federated learning system. It is not the actual noise size, but
the ratio of noise over the individual gradient impacts the privacy
protection level. We call the ratio as noise multiplier denoted by 𝑧.
A larger 𝑧 will better conserve privacy but may significantly harm
the model accuracy. A more negligible 𝑧 helps maintain good model
utility at each learning step while the privacy budget will be used
up quickly. In this way, the utility of the final model may also be low
since we may need to terminate the training process early because
of depleting privacy budget. We need first select an appropriate 𝑧.
The real noise level is also related to the gradient clipping threshold
besides 𝑧. We figure out there is still a space to squeeze the privacy
budget after 𝑧 is selected. We can perform the gradient clipping
more smartly. The reason why adaptive clipping is more favorable
than constant clipping is explained in the following.

DP is designed to hide the existence of every individual data
so that the noise should be 𝑧 times the most significant gradient.
Therefore, the largest gradient determines the final noise size. To
maintain model utility, we should avoid large noise size. To this end,
we clip the gradients using a pre-defined clipping threshold. A small
clipping threshold will result in a small noise size but losing the
original gradient’s information. We should minimize the clipping
threshold while preserving most of the gradient information. It is
not trivial to decide the clipping threshold since the gradient norm
varies across tasks and training process. In response, we propose
an adaptive clipping mechanism to achieve this goal (see Sec. 3.1).

2.5 Two Levels of Privacy Protection
A critical challenge arises from the hierarchical architecture of
the federated meta-learning framework, mainly attributed by the
meta-learning component. There are two ML models across the par-
ticipants: base models at clients and the meta-model at the central
server, which consume different types of gradient updates. Based
on threat model, we need to clearly define which gradients con-
tain what level of privacy and are exposed to whom. Accordingly,
we assume two trust levels on central server. For a trusted central
server, only the meta-model Θ will be released to adversary. For
an honest-but-curious central server, both Θ and base model \ will
be exposed to adversary. To incorporate DP mechanisms, we de-
fine two levels of privacy protection for the two adversary models
accordingly:

1) User-level DP: Releasing Θ will at no point compromise
information regarding any specific task client.

2) Two-fold DP: ReleasingΘwill at no point compromise either
any specific data records nor any task client. Meanwhile, up-
loading \𝑖 will at no point reveal the existence of any specific
data records used during training to the central server. Here
“two-fold” refers to both user-level and record-level DP.

Two-fold DP ismore strict than the user-level DP. For DP-FedMeta,
both the user-level DP and Two-fold DP can preserve the client-
level privacy from honest-but-curious clients or model consumers,

meaning that the model consumers who receive the intermedi-
ate/final meta-model can not differentiate whether another user
participates in the meta-training process or not. When faced with
an honest-but-curious central server, two-fold DP additionally in-
corporating DP at the record-level. Record-level DP means that no
one can reveal the information of an individual data record of a
client by seeing the update from the client. Compared to previous
DP works [10, 14, 18] which either protect record-level privacy or
user-level privacy, we are the first to preserve the two different
levels of privacy simultaneously to the best of our knowledge.

3 DETAILED SYSTEM DESIGNWITH
DIFFERENTIAL PRIVACY

This section presents ourmethods to achieve DP in DP-FedMeta.We
detail our schemes, i.e., DP-AGR (Differentially Private AGregation
Rule) and DP-AGRLR (Differentially Private AGregation Rule with
Local Randomness), for achieving user-level DP and two-fold DP
respectively. We first introduce adaptive clipping since it is a critical
component for both algorithms.

3.1 Adaptive Gradient Clipping Method
The goal of the adaptive gradient clipping method is to minimize
the clipping threshold while preserving most of the gradient infor-
mation. The method is based on the 𝐿2-norm. One observation in
our experiments is that gradient norms decrease significantly over
the course of the training process as shown in Fig. 2(b). Therefore,
an optimized clipping threshold for the early training stage will be
too large for the later training stage.

In our adaptive clipping method, we use a sliding window with
size𝑊 and step size Δ𝑊 to obtain a runtime clipping threshold𝐶 , il-
lustrated in Fig. 2(a). Δ𝑊 = 1 in our implementations. We introduce
the concept of time step 𝑡 , and 𝑡 increases by 1 once one training
iteration is completed. We assume there are 𝐿 clients sampled to
participate in FL in each iteration. Thus, 𝐿 clients’ gradients will
be sent to the central server at the end of each learning iteration.
Each entry 𝑔𝑡

𝑖
in the first row of boxes in Fig. 2(a) is the 𝐿2-norm of

gradient from the 𝑖-th client of the 𝐿 sampled clients at the time step
𝑡 . As shown in the second row of boxes in Fig. 2(a), we will obtain
a noisy aggregation 𝑔 of the current 𝐿 gradients. Notably, the noisy
aggregation step is the key procedure of DP-AGR, not a design
for the adaptive clipping method. The adaptive clipping method
takes advantage of differentially private version of gradients for
calculating a dynamic clipping threshold without incurring addi-
tional privacy loss. Specifically, the adaptive clipping threshold at
time step 𝑡 + 1 is computed with a sequence of differentially private
version of gradients before 𝑡 + 1 (i.e. , 𝑔𝑡−𝑊 +1, 𝑔𝑡−𝑊 +2, ..., 𝑔𝑡 ) by

𝐶𝑡+1 := 𝑓 ({𝑔𝑡−𝑊 +1, ..., 𝑔𝑡 }, 𝑘) (2)

where 𝑓 (𝑆, 𝑘) represents the 𝑘-th percentile of a sequence 𝑆 and
time step 𝑡 >𝑊 . We use constant clipping method for the first𝑊
time steps in the training process since the number of collected
differentially private gradients is less than the window size. An-
other observation in our experiments is that gradient norms in
DP-AGR exhibit sharp spikes due to the additive perturbation dur-
ing the training process. The adaptive clipping threshold 𝐶𝑡 (in
DP-AGR) fluctuates when we directly apply the aforementioned
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Figure 2: (a) Illustration of our adaptive clipping scheme. 𝑔𝑡 is the differentially private version gradient at time step 𝑡 . The
central server computes adaptive clipping threshold 𝐶𝑡 using DP gradients in a window of size𝑊 . (b) The 𝐿2-norm of gradients
during the training process.

window-slidingmechanism.We solve this issue by adding a smooth-
ing scheme, i.e., updating 𝐶𝑡 only when it gets no larger than the
previous 𝐶𝑡−1.

3.2 Instantiating Meta-learning with MAML
In practice, the data generated by different clients may follow differ-
ent distributions, e.g., one client has apple and orange images while
another client has cat and dog images. In our paper, we propose to
employ meta-learning [4, 9, 26] to learn a parameter initialization.
Meta-learning learns common knowledge across a large number of
tasks which is an optimized starting point for various new tasks as
it can fast adapt to unseen tasks.

We leverage a widely accepted meta-learning paradigm, model-
agnostic meta-learning (MAML) [9], to learn the common knowl-
edge of multiple clients. In MAML, there are multiple tasks. Each
task makes use of two datasets: support set for local model training
and query set for meta-model training. The meta-learner maintains
a global meta-model while a task-learner learns a base model for
its tasks. Meta-model and base-model are neural networks with
the same architecture but different weights, which can be repre-
sented by a mapping function 𝑓 : from input 𝑥 ∈ R𝑤∗ℎ∗𝑐 to output
𝑦 ∈ R𝑁 (𝑁 is the number of classes). We use shortcuts 𝑓Θ and 𝑓\ to
differentiate the two models.The training phase of MAML starts by
initializing the base model as the current meta-model Θ, proceeds
to train on the support set, and obtains a trained base model for
each task. The training process of a base model for task T𝑖 is:

\𝑖 ← Θ − [1∇\𝑖
∑︁

(𝒙,𝑦) ∈D𝑠
𝑡𝑟𝑎𝑖𝑛,𝑖

L(𝑓\𝑖 (𝒙), 𝑦), (3)

whereD𝑠
𝑡𝑟𝑎𝑖𝑛,𝑖

is the support set,[1 is the learning rate,L(𝑓\𝑖 (𝒙), 𝑦)
is the loss of \𝑖 , and ∇ is the differential operator for calculat-
ing the gradient. After learning 𝐿 base-models for selected tasks
T𝑠 = {T1, ...,T𝐿}), the meta-model Θ is updated using the summa-
tion of loss from multiple training tasks’ query set as follows:

Θ←Θ− [2
𝐿
∇Θ

∑︁
𝑖∈T𝑠

∑︁
(𝒙,𝑦) ∈D𝑞

𝑡𝑟𝑎𝑖𝑛,𝑖

L(𝑓\𝑖 (𝒙), 𝑦), (4)

where [2 is the learning rate for meta-model. MAML uses losses
from multiple tasks to update Θ, thus obtains across-task knowl-
edge. In implementation, MAML has two loops. Eq. (3) occurs in
inner loop while Eq. (4) in outer loop. We can achieve a trained

Algorithm 1: DP-AGR (Client Side)
Input: Current global model Θ, local data D
Output: gradient 𝑔

1 Function 𝑔 =Base-Model-Train(Θ, D𝑠 ,D𝑞):
2 Initialize base-model: \ ← Θ ;
3 Split local data D𝑠 ,D𝑞 ← D;
4 Update base-model: \ ← \ − [1∇\L(\,D𝑠 );
5 Gradient: 𝑔← ∇ΘL(\,D𝑞).

meta-model Θ which can be used to initialize an ML model for a
client with a new task. We can achieve high accuracy with only
a few pieces of data since the initialization contains the common
knowledge.

3.3 DP-AGR for User-level DP
Our algorithm is completed by both the clients and the central
server as a traditional FL algorithm. At the beginning, 𝐿 clients are
selected to participate the training process by the central server. To
take the advantage of meta-learning, the selected clients randomly
split their local data into two sets with equal size: a support set
D𝑠

𝑖
and a query set D𝑞

𝑖
. Each client trains its local model using its

support set following Eq (3). Then each client further calculates a
gradient of the trained model using the query set and sends the
gradient to the central server. Instead of aggregating the received
gradients as the traditional FL system, the central server first per-
forms gradient clipping and noise adding. The user-level gradient
of Client 𝑖 is:

𝑔𝑖 =
1
|D𝑞

𝑖
|
∇Θ

∑︁
(𝒙,𝑦) ∈D𝑞

𝑖

L(𝑓\𝑖 (𝒙), 𝑦) (5)

The gradient of the 𝑖-th client will be clipped as:

𝑔𝑖 = Clip(𝑔𝑖 ,𝐶) (6)

where Clip(a, 𝐶) denotes clip 𝑎 by 𝐶 . And the clipping threshold 𝐶
is calculated using Eq. (2) of Sec. 3.1. We use 𝐿 to denote the group
of clients in one learning iteration. The aggregated gradient is:

𝑔 =
∑︁𝐿

𝑖=0
𝑔𝑖 + N(0, 𝑧2𝐶2I), (7)
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Algorithm 2: Central Server Aggregation in DP-AGR and
DP-AGRLR
Input: Clients set T , noise multiplier 𝑧, user sample size 𝐿,

Learning round T, (𝜖, 𝛿)
Output: meta-model Θ

1 Initialize t=0;
2 while (𝜖, 𝛿)-DP not exhausted and 𝑡 <= 𝑇 do
3 Randomly Sample 𝐿 clients T𝑠 ← sample(T , 𝐿);
4 for 𝑖 ∈ T𝑠 do
5 𝑔𝑖 ← Base-Model-Train(Θ, D𝑠

𝑖
,D𝑞

𝑖
) *by clients;

6 𝐶 ← adaptive-clipping(𝑔𝑡−𝑊 , ..., 𝑔𝑡−1);
7 Clip gradient: 𝑔𝑖 ← 𝑔𝑖 ∗min(1, 𝐶

∥𝑔𝑖 ∥ ) ;

8 𝑔𝑡 ← 1
𝐿

(∑
𝑖 𝑔𝑖 + N(0, 𝑧2𝐶2I)

)
;

9 Update meta-model Θ← Θ − [2𝑔;
10 (𝜖, 𝛿) ← Compute-RDP(𝑧, 𝐿, 𝑡, ∗𝑎𝑟𝑔); t+=1;

where N(0, 𝑧2𝐶2I) is the additive Gaussian noise. The perturbed
summation 𝑔 is then used to update the meta-model:

Θ←Θ− [2𝑔 (8)

In summary, DP-AGR works as follows:
• Client Side: A local client splits its own dataset as support
set D𝑠 and query set D𝑞 . The local client initializes its local
model as the received global model Θ and trains the model
using D𝑠 . Finally, it computes local gradient 𝑔 with D𝑞 and
submits 𝑔 to the central server (See Algorithm1).
• Central Server Side: The central server performs gradi-
ent clipping for a group of randomly selected clients using
the current clipping threshold in each round. The clipping
threshold 𝐶 is updated automatically at each round using
our adaptive clipping method. The central server adds noise
to the summation of all clipped gradients

∑
𝑖 𝑔𝑖 +N(0, 𝑧2𝐶2I)

(See Algorithm2). We calculate the average 𝑔 of the sum-
mation to update the global model Θ (we assume the data
amount in every client is the same, otherwise we will com-
pute weighted average taking into account the data amount).
• The Final Output our algorithm is a differentially private
model Θ. Compared to conventional FL, our global model Θ
is not a ready-to-use model but an initialization parameter
that has fast adaptation capability. Model consumers can
customize Θ to their task with only a few local data points.

To conserve the privacy budget, we enforce that each client is
selected up to once. We refer to this enforcement as a one-pass
meta-training process. Model accuracy is preserved even with the
one-pass learning process thanks to the meta-learning framework
and a large number of clients (the typical number of local devices
participating in an FL system can be millions as shown in [11]).

3.4 DP-AGRLR for Two-fold DP
Compared to DP-AGR, DP-AGRLR additionally protects the data
privacy of clients from the honest-but-curious central server. To this
end, a client does not report its true gradients but noisy ones. Note
that the process at the central server-side of DP-AGRLR remains
the same as DP-AGR. The local client first bounds the impact of an

Algorithm 3: DP-AGRLR (Client Side)
Input: Current global model Θ, local data D, DP parameter

(𝜖0, 𝛿0), 𝐶0, 𝑧0
Output: gradient 𝑔

1 Function 𝑔 = Base-Model-Train(Θ, D𝑠 ,D𝑞 ):
2 Initialize base-model: \ ← Θ;
3 Split local data D𝑠 ,D𝑞 ← D;
4 𝑧0 ← compute_noise(𝜖0, 𝛿0, ∗𝑎𝑟𝑔𝑠)
5 for (𝑥𝑖 , 𝑦𝑖 ) ∈ D𝑠 do
6 record- level gradient: 𝑔𝑖 ← ∇\L(\, 𝑥𝑖 ) ;
7 clip gradient: 𝑔𝑖 ← 𝑔𝑖 ∗min(1, 𝐶0

∥𝑔𝑖 ∥ ) ;

8 𝑔← 1
|D𝑠 |

(∑
𝑖 𝑔𝑖 + N(0, (𝑧0𝐶0)2I)

)
;

9 update base-model: \ ← \ − [1𝑔;
10 for (𝑥𝑖 , 𝑦𝑖 ) ∈ D𝑞 do
11 record-level gradient: 𝑔𝑖 ← ∇\L(\, 𝑥𝑖 ) ;
12 clip gradient: 𝑔𝑖 ← 𝑔𝑖 ∗min(1, 𝐶0

∥𝑔𝑖 ∥ ) ;

13 𝑔← 1
|D𝑞 |

(∑
𝑖 𝑔𝑖 + N(0, (𝑧0𝐶0)2I)

)
.

individual record
∑
(𝒙 𝑗 ,𝑦 𝑗 ) ∈D𝑞

𝑖
by clipping the record-level gradient

with threshold 𝐶 .

𝑔 𝑗 = Clip(∇ΘL(𝑓\ (𝒙 𝑗 ), 𝑦 𝑗 )),𝐶) (9)

where 𝐶 is the clipping threshold. This clipping threshold is de-
termined by the local client using our proposed adaptive clipping
method. The local client then computes a Gaussian noise and adds
the noise to the true gradients.

𝑔 =

|𝐷𝑞

𝑖
|∑︁

𝑗=0
𝑔 𝑗 + N(0, 𝑧2𝐶2I), (10)

The noisy gradient 𝑔 is sent to the central server. DP-AGRLR can
hide the existence of an individual record against the curious cen-
tral server. Two-fold DP targets a much higher level of privacy
protection, thus inevitably sacrificing more model accuracy. The
algorithm is shown in Algorithm 3.

3.5 Privacy-Utility Trade-off
In DP-AGR we use one-pass training over clients (i.e., no client is
usedmore than once) to boost privacy. In learning round, we sample
the clients with 𝑞= 𝐿

𝑁𝑐𝑙𝑖𝑒𝑛𝑡
. The overall privacy loss of DP-AGR can

be represented as:

𝛼 (_) ≤ 𝑞_(_ + 1)
(1 − 𝑞)𝑧2 +𝑂 (𝑞

2_3/𝑧3) . (11)

where 𝑧 is the noise multiplier and _ is moments number. The pri-
vacy loss 𝛼 (_) is related to 𝑞 but not the learning rounds. Therefore,
we can boost accuracy by adding more clients and keep the same
level privacy protection if we keep 𝑞 as constant. A smaller privacy
loss indicates a better privacy protection. The privacy parameter
(𝜖, 𝛿) is directly related to the accumulated privacy loss by equation
𝛿 = min_ exp(𝛼 (_) − _𝜖). We can then use this equation to convert
the moments bound 𝛼 (_) to the (𝜖, 𝛿) guarantee.

The derivation of Eq. (11) is based on themoments accountant [1]
that offers the state-of-the-art estimation of privacy loss of Gaussian
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mechanisms. For traditional DL system, each record contributes
to the training process multiple times through multiple epochs.
Different from traditional DL, a client contributes to the training
system only once in meta-learning. We will highlight the impact of
such a difference on privacy performance in the following.

For moments accountant [1], the _-th moments of privacy loss
of one SGD step satisfies that,

𝛼M (_) ≤
𝑞2_(_ + 1)
(1 − 𝑞)𝑧2 +𝑂 (

𝑞3_3

𝑧3 ), (12)

where mechanismM : 𝑔=
∑
𝑖∈𝐿 𝑔𝑖 + N(0, 𝑧2𝐶2𝐼 ) represents gradi-

ents summation and perturbation, 𝐿 denotes a batch, and 𝑞 is the
sampling probability. 𝑂 (·) is the Bachmann–Landau notation that
describes how closely a finite series approximates a given func-
tion in the case of an asymptotic expansion. The inequality holds
if 𝑧 ≥ 1 and 𝑞 ≤ 1

16𝑧 . In statistics, ‘moment’ of a distribution is
the quantitative measures related to the shape of the distribution
(e.g., the first moment is the expected value and the second central
moment is the variance).

By applying composability theory of DP [1], the accumulated
privacy loss after 𝑇 updates are:

𝛼 (_) ≤
∑︁
𝑗

𝛼M 𝑗
(_) ≤𝑇

(
𝑞2_(_ + 1)
(1 − 𝑞)𝑧2 +𝑂 (

𝑞3_3

𝑧3 )
)
. (13)

For DL, sampling probability is 𝑞= 𝐿
𝑁𝑡𝑟𝑎𝑖𝑛

, the number of updates
is 𝑇 =𝑁𝑒𝑝𝑜𝑐ℎ ∗ 𝑁𝑡𝑟𝑎𝑖𝑛

𝐿
, where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of data points

in training dataset and 𝐿 is the batch size. Therefore, the above
equation can be rewritten as

𝛼 (_) ≤
𝑁𝑒𝑝𝑜𝑐ℎ ∗ 𝑞_(_ + 1)
(1 − 𝑞)𝑧2 +𝑂 (𝑁𝑒𝑝𝑜𝑐ℎ ∗

𝑞2_3

𝑧3 ). (14)

Different from traditional DL, for DP-AGR, 𝑞 = 𝐿
𝑁𝑐𝑙𝑖𝑒𝑛𝑡

and 𝑇 =

𝑁𝑐𝑙𝑖𝑒𝑛𝑡

𝐿
= 1
𝑞 is the total number of learning rounds where 𝐿 denotes

the number of clients for one learning round and 𝑁𝑐𝑙𝑖𝑒𝑛𝑡 the total
number of clients. Considering that we use one-pass training over
clients in DP-AGR, the inequality in Eq. (13) can be rewritten as
Eq. (11).

Eq. (14) and Eq. (11) have different implications. According to
Eq. (14), if we increase 𝑁𝑒𝑝𝑜𝑐ℎ , 𝛼M (_) also increases meaning pri-
vacy protection is worse. Therefore, more training iterations for DL
increase the privacy loss. On the contrary, according to Eq. (11), the
privacy loss will not change with adding more clients if we keep 𝑞
as constant.

4 PRIVACY ANALYSIS
We would like to show that adaptive clipping in DP-AGR and
DP-AGRLR does not result in additional privacy loss. Recall that
DP-AGR works in the scenario that the central server is trusted
while clients are honest-but-curious. DP-AGRLR is designed for
a stronger adversary model in which both clients and the cen-
tral server are honest-but-curious. For convenience, we denote
the above-mentioned adversary models as Adversary Model 1 and
Adversary Model 2, respectively.

For Adversary Model 1, privacy protection is applied by the
central server for the individual clients. The central server applies
DP at the cloud to train a meta-model. To improve performance

while preserving the data privacy of individual clients, our proposed
adaptive clipping method (see Sec. 3.1) operates on the deferentially
private version of gradients, and thus is a post processing step
from the privacy perspective. More concisely, the adaptive clipping
threshold 𝐶𝑡 at time step 𝑡 is computed from the differentially
private version of gradients 𝑔𝑡−𝑊 , ...𝑔𝑡−1 as:

𝐶𝑡 = P({𝑔𝑡−𝑊 , 𝑔𝑡−𝑊 +1, ..., 𝑔𝑡−1}, 𝑘), (15)

where 𝑔𝑡 denotes the differentially private version of gradient at
time step 𝑡 ,𝑊 represents the size of the sliding window, and P(𝑆, 𝑘)
represents the 𝑘-th percentile of a sequence 𝑆 . All the gradients
𝑔𝑡−𝑊 , 𝑔𝑡−𝑊 +1, ..., 𝑔𝑡−1 are differentially private. According to the
post-processing rule [7], further computation on differentially pri-
vate data will not incur additional privacy loss. Therefore, the calcu-
lation of adaptive clipping threshold 𝐶𝑡 does not lead to additional
information leakage.

Similarly, adaptive clipping does not compromise data privacy
in Adversary Model 2. In summary, the adaptive clipping method
in DP-AGR and DP-AGRLR does not harm the target DP level. The
privacy loss of DP-AGR and DP-AGRLR comes solely from the
accumulated privacy loss of updating the meta-model.

5 IMPLEMENTATION AND EXPERIMENTAL
SETTINGS

We implemented DP-FedMeta in PyTorch. We ran all our experi-
ments on a server equipped with a 3.3 GHz Intel Core i9-9820X CPU,
three GeForce RTX 2080 Ti GPUs, and Ubuntu 18.04.3 LTS. In DP-
FedMeta, we trained a VGG-Net [23] using Adam optimizer with a
learning rate 0.01 for outer-loop. For inner-loop training, we used
the SGD optimizer with a learning rate 0.1. The optimizer setting
is adopted from the benchmark meta-learning algorithm [3]. Our
code is available at https://github.com/ning-wang1/DPFedMeta.

For the experiment, we simulated federated meta-learning using
data from three popular datasets, including Omniglot [13], CIFAR-
FS [4], and Mini-ImageNet [25]. Table 1 provides the detail of the
datasets including the number of classes, number of samples per
class, image size, the splitting ratio among the meta-training set,
validation set, and meta-testing set. 𝑁𝑐 represents the number of
classes and 𝑁𝑠 denotes the number of samples per class in the
corresponding dataset.

Table 1: Datasets used for evaluation of DP-FedMeta.

Dataset 𝑁𝑐 × 𝑁𝑠 Image size Train:Val:Test

Omniglot 1623×20 28 ×28 × 1 71: 3:26
CIFAR-FS 100×600 32×32 × 3 64:16:20

Mini-ImageNet 100×600 84×84 × 3 64:16:20

We simulated 400,000 mobile clients and 600 model consumers,
assuming each client is with one learning task. The number of
selected mobile clients for each learning round was set to 1,600. We
followed the well-received practice in [25] to distribute the whole
dataset to mobile clients. Firstly, we separated the total classes into
two non-overlapping sets: one set for mobile clients and the other
for model consumers. Second, each mobile client/model consumer
was assigned with a set of 30 labelled examples from 5 classes
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in the corresponding set. Different mobile clients were allowed
to have overlapping data. 𝑁 -way 𝐾-shot means we test a model
initialization with𝐾 ∗𝑁 data points evenly extracted from𝑁 classes.
Model consumer will first initialize its model with the trained meta-
model from the central server. Then it continues training the model
with 𝐾 ∗ 𝑁 data points and then evaluate model accuracy. The
average testing accuracy over all model consumers will be the final
reported accuracy.

We estimate the privacy loss in the form of (𝜖, 𝛿) at each learn-
ing round using the RDP moments accountant (https://github.com/
tensorflow/privacy), and terminate the training process if the pri-
vacy budget is used up. Unless otherwise mentioned, the default
settings are: the DP scenario is user-level, the few-shot learning case
is 5-way 1-shot on Omniglot, clip percentile 𝑘 =90, noise multiplier
𝑧=1, and user sample size 𝐿=1600, clip window𝑊 =10,Δ𝑊 =1. We
run each experiment 3 times and obtain the average meta-testing
accuracy.

6 EVALUATIONS
we implement two algorithms, DP-AGR and DP-AGRLR, to accom-
modate different trust levels of the central server. Both DP-AGR and
DP-AGRLR output a model initialization parameter Θ at the end of
meta-training. In this section, we mainly answer three questions as
follows:

• Q1: ‘How is the performance of our adaptive clipping method
compared to constant clipping and other adaptive clipping
baselines?’
• Q2: ‘How to achieve a good trade-off between accuracy and
privacy? Specifically, how to improve model accuracy under a
fixed 𝜖? ’
• Q3: ‘Will differentially private meta-learning maintain rea-
sonable accuracy? Specifically, will it achieve higher accuracy
than other differentially private initialization methods (e.g.,
DP transfer learning) or random initialization?’

6.1 Adaptive Clipping
In this part, wewill keep all other factors the same and only evaluate
the performance of different clipping methods. We compare DP-
AGR to the constant clipping method wildly used in [1, 2, 10, 29]
which is to use the median norm of unclipped gradients as the
clipping threshold. DP-AGR uses an adaptive clipping method with
one configurable parameter 𝑘 . As shown in Fig. 3, the adaptive
clipping method outperforms the constant clipping method. We
also present an experimental comparison between our adaptive
clipping method and one other adaptive clipping method (i.e., the
AQC method [2]). Fig. 3 shows that our adaptive clipping method
outperforms the AQC method by accuracy, indicating that DP-AGR
achieves a better trade-off between accuracy and privacy.

Our adaptive clipping method has one configurable parameter 𝑘 .
As shown in Fig. 4(a), the adaptive clipping method changes when
𝑘 varies. DP-AGR achieves the highest testing accuracy 93.9% at
𝑘 = 90. With a proper value of 𝑘 ≥ 20 (not too small), we can expect
a better model accuracy with adaptive clipping than with constant
clipping. Our adaptive clipping method achieves a better trade-off
between accuracy and privacy.
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Figure 3: Testing Accuracy. Our Adaptive Clipping Method
vs. AQC [2] and constant clipping with 5-way 1-shot learning
on Ominiglot dataset.

6.2 Trade-off between Accuracy and Privacy
To achieve a better trade-off between accuracy and privacy of DP-
AGR, we tune other parameters, e.g., noise level and user sampling
size. Specifically, we fix the privacy budget to see how to improve
the model accuracy.
Noise Multiplier Fig. 4(b) shows that DP-AGR achieves 93.9%
accuracy at 𝑧=1, and the accuracy drops with the increase of 𝑧 and
tends to be stable at around 73%. We should start from a small 𝑧 and
increase 𝑧 only when you use up privacy budget before training
converges.
User Sample Size We fixed the privacy budget to evaluate the
accuracy with various user sample size 𝐿 ranging from 100 to 5,600.
As shown in Fig. 4(c), DP-AGR achieves the best accuracy when
1600≤𝐿≤ 4000. Testing accuracy drops fast when 𝐿 is larger than
4,000. We looked into the experiment and found that the training
process was early terminated because of depleting DP budget when
𝐿 > 4000.
Combination of noise multiplier and user sample size We
find that the optimal 𝐿 strongly depends on the noise multiplier
𝑧. We demonstrate the above finding by Fig. 4(d), in which we
show the testing accuracy of different combinations of 𝐿 and 𝑧. For
𝑧 = 1, accuracy reaches the peak at 𝐿 = 1, 600 and drops quickly
as 𝐿 ≥ 4, 800 because of draining the privacy budget. For 𝑧 = 2,
accuracy peaks at 𝐿=3, 200 and stays stable with larger 𝐿. For 𝑧=3,
accuracy peaks at 𝐿=4, 800 and stays stable with larger 𝐿. Based
on such observations, we conclude that the best 𝐿 is proportional
to 𝑧 and should be tuned accordingly if 𝑧 changes.
Guidelines for 𝑘, 𝑧, and 𝐿 From the above results, we share our
general guidelines to work with DP. First, we recommend to start
from a small noise multiplier 𝑧 (e.g., 1) and increase 𝑧 only when you
can not guarantee convergence before using up the privacy budget.
Second, we recommend starting with a relatively large 𝐿 especially
when 𝑧 is large. A good start is 𝐿 =

𝑁𝑡𝑎𝑠𝑘

16∗𝑧 as 𝐿< 𝑁𝑡𝑎𝑠𝑘

16∗𝑧 by moments
accountant. We can decrease 𝐿 only when you can not guarantee
convergence before using up the privacy budget. Compared with
the non-private training, we need apply a larger learning rate since
the training rounds are limited because of privacy concerns. Finally,
as privacy parameter 𝜖 is only determined by 𝑧 and 𝐿, we can
adjust other parameters, such as 𝑘 , to boost the model accuracy.
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Figure 4: The impact of parameters on model accuracy when the privacy budget is fixed. (a) Vary 𝑘 (i.e., the percentile number
of our Adaptive Clipping Method) (b) Vary 𝑧. (c) Vary 𝐿. (d) The impact of different combinations of noise 𝑧 and user sample size
𝐿 on model accuracy.
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Figure 5: Model accuracy with different initialization on
CIFAR-FS dataset. The x-axis 𝐾 denotes the number of shots
in the Initialization testing phase.

We explore various 𝑘 values in multiple datasets and find that the
accuracy peaks at different 𝑘 values in different datasets. However,
the adaptive clipping method outperforms the fixed clipping when
𝑘 ≥ 50 across all three datasets, implying that the median is a good
initial choice.

6.3 Comparison with Other Model Initialization
Methods

Meta-learning is a model initialization method that outputs an ini-
tialized meta model for clients. This partly resembles transfer learn-
ing in that one model is used for initializing the training process for
another model. In this experiment, we evaluate the model utility
(i.e., accuracy) of DP-AGR and DP-AGRLR compared with other
model initialization methods, including Random, MAML, transfer
learning [6], and DP-transfer learning. The first three meth-
ods are with no privacy protection. DP-transfer learning is the
transfer learning method incorporated DP.

We use CIFAR-FS dataset (contains 100 classes) as an example to
show the comparisons. We first divide the dataset into two separate
sets: Initialization training set (i.e.,D𝑡𝑟𝑎𝑖𝑛) consists of 80 classes and
Initialization testing set ( D𝑡𝑒𝑠𝑡 ) consists of 20 classes. We perform
both meta-training and DP meta-training to respectively obtain
a meta-model Θ𝑚𝑎𝑚𝑙 , Θ𝑑𝑝−𝑎𝑔𝑟 and Θ𝑑𝑝−𝑎𝑔𝑟𝑙𝑟 . We also conduct a
transfer learning process and a DP transfer learning process [6]
on the same set to achieve a trained model Θ𝑡𝑟𝑎𝑛𝑠 and Θ𝑡𝑟𝑎𝑛𝑠−𝑑𝑝
respectively. In the Initialization testing phase, the test set D𝑡𝑒𝑠𝑡

is organized as tasks and each task contains a support set and a
query set. We generate 600 tasks from D𝑡𝑒𝑠𝑡 . For each task, we use
the trained initialization parameter to initialize its neuron network,
train 30 epochs on its support set and obtain testing accuracy on
its corresponding query set. The average testing accuracy on all
600 tasks is used as the ultimate evaluation metric.

Fig. 5 show the results of different initialization methods on
CIFAR-FS. We can see that MAML achieves the best testing accuracy
among all initialization methods as expected. The proposed DP-AGR
outperforms all other initialization methods including transfer
learning and DP-transfer learning by achieving higher accu-
racy. The Random initialization is without doubt the worst
among the five methods. We also see that when 𝐾 is large enough,
the accuracy of transfer learning approaches that of DP-AGR.

Besides the transfer learning method, we also compare DP-AGR
and DP-AGRLR with state-of-the-art differentially private meta-
learning solution, GBML [14]). In Table 2, GBML is the state-of-the-
art differentially private meta-learning algorithm proposed in [14],
Random initial denotes that the learning begins with random ini-
tialization, and Non-private denotes the MAML algorithm without
privacy consideration. We can see that DP-AGR outperforms GBML
by achieving higher accuracy in all six learning tasks. DP-AGRLR
achieves higher accuracy than GBML on both Omniglot dataset and
CIFAR-FS dataset while showing lower accuracy on Mini-ImageNet
dataset.

In Table 2, both DP-AGR and DP-AGRLR are with 𝜖 = 1.5 in task
level DP. The record-level DP parameter of DP-AGRLR is 𝜖 = 2.5.
The baseline GBML is with 𝜖 = 9.5. A smaller 𝜖 is better for privacy
protection. We can see that both DP-AGR and DP-AGRLR achieves
higher accuracy than GBML on both the Omniglot dataset and the
CIFAR-FS dataset. Further, DP-AGR is better in model accuracy than
DP-AGRLR while DP-AGRLR provides much more strict privacy
protection. Noted that GBML has a different DP notion from DP-
AGR and DP-AGRLR, and its DP notion is more strict than DP-AGR
but less strict than DP-AGRLR. The practical privacy leakage relies
on both the value of DP parameters and the DP notion itself. For
example, DP-AGRLR provides better privacy protection since it
has a more strict DP notion and a smaller 𝜖 than GBML. On the
other hand, it is not clear whether DP-AGR provides better privacy
protection than GBML since its DP notion is less strict but has a
smaller 𝜖 than GBML. We will consider evaluating the resilience
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Table 2: Meta-testing accuracy (%) with DP-AGR, DP-AGRLR and other baselines.

Dataset 𝑁 -way 𝐾-shot Random initial Non-private Private Algorithm
DP-AGR DP-AGRLR GBML [14]

Omniglot 5-way 1-shot 49.2 99.4 93.9 72.4 44.6
5-way 5-shot 61.0 99.8 96.8 89.7 75.0

CIFAR-FS 5-way 1-shot 33.8 61.0 47.1 39.0 32.2
5-way 5-shot 45.4 78.6 58.2 49.2 48.6

Mini-ImageNet 5-way 1-shot 23.3 51.7 37.3 27.7 26.1
5-way 5-shot 24.2 65.3 48.8 33.2 38.0

of different DP algorithms against inference attacks to test their
practical privacy protection in future work.

6.4 Computation Time
We present the per-task computation overhead of DP-AGR and
DP-AGRLR in Table 3. Noted that each task contains 𝑁 ∗ 𝐾 data
records for 𝑁 -way 𝐾-shot learning. We measure the training time
of 5-way 1-shot learning on three different datasets. We can see
that the per-task computation time of DP-AGR is only slightly
longer than that of MAML. On our server, the training time of a
typical DP-AGR algorithm on the Omniglot dataset with 400,000
tasks is around 6 hours. DP-AGR achieves comparable computa-
tional performance with the original non-private MAML algorithm.
Compared to DP-AGR, DP-AGRLR is more time-consuming due
to the need for computing per-record gradients at the local device.
Although the DP-AGRLR is more time-consuming, it is scalable
since the time-intensive per-record gradient computation is done
at the distributed local devices of clients rather than the central
server and the number of records within an individual device is
small. Therefore, we believe DP-AGR and DP-AGRLR are affordable
for a wide range of learning applications.

Table 3: Per-task computation time

Dataset MAML DP-AGR DP-AGRLR

Omniglot 39.9ms 54.7ms 0.52s
CIFAR-F 68.7ms 81.3ms 1.06s

Mini-ImageNet 112.3ms 102.7ms 1.17s

7 RELATEDWORK
After Song et al. [24] formulated the first differentially private
stochastic gradient descent (DP-SGD) algorithm, Abadi et al. [1]
proposed a powerful tool (moments accountant) for tight privacy
analysis and control in DP-SGD. Pathak et al. [21] were the first to
study the DP framework in a multiparty setting. This work provided
a privacy-preserving protocol to compose a differentially private
aggregate classifier using classifiers trained locally by separate
mutually untrusted parties. Shokri et al. [22] investigated DP-SGD
for distributed dataset and proposed a practical system that enables
multiple parties to learn an accurate and private neural network
model jointly. More recently, federated learning (FL) emerged as an
promising framework since its introduction by Google researchers

[12, 17] with its initial goal to learn from data stored in users’
smartphones or tablets. Though the data is stored locally and never
exchanged among clients, it has been shown that clients’ data is
still susceptible to inference attacks [19, 28]. [10, 18] explored the
client-level privacy in FL and focused on balancing the trade-off
between privacy and utility, assuming the central server is trusted.
In order to save more privacy budget, Andrew et al. [2] proposed
adaptive quantile clipping (AQC) to make an estimate of a target
quantile of the distribution of unclipped gradient norms.

Building on the recent advances in meta-learning [9, 20, 26]
and FL, a significant body of work has been devoted to federated
meta-learning [5, 8, 16, 31]. Despite the compelling applications
of federated meta-learning in many domains, its privacy problem
remains less understood. Li et al. [14] are the first to study the
privacy problem in meta-learning. It directly applies a DP-enabled
meta-learning algorithm to the federated setting, which is the cur-
rent state of the art and also the most relevant work to ours. In our
paper, we explored two notions of DP, including user-level DP and
two-fold DP, which are different from the notions of DP studied in
[14]. Compared to [14], we achieve relatively high model accuracy
with a much lower DP budget.

8 CONCLUSION
We develop DP-FedMeta, a differentially private federated meta-
learning architecture that protects clients from inference-based data
privacy attacks. To deal with different requirements on privacy lev-
els pertaining to the trust on the central server, we customize two
DP mechanisms for DP-FedMeta, DP-AGR and DP-AGRLR. DP-
AGR protects the participating information of an individual client
against curious clients and model consumers. DP-AGRLR provides
two-fold privacy protection from curious clients (including model
consumers) and an honest-but-curious central server. We design an
adaptive gradient clipping method and a one-pass training process
to conserve the privacy budget. Our adaptive gradient clipping
shows superior performance over both constant gradient clipping
and another adaptive one. Extensive evaluation onmultiple datasets
demonstrates that our DP-AGR outperforms the state-of-the-art dif-
ferentially private federated meta-learning solution by achieving a
much lower privacy budget without sacrificing additional accuracy.
Further, we provide useful insights and heuristic guidelines on how
to set various parameters, such as gradient clipping threshold, noise
multiplier, and lot size, which are applicable when incorporating
DP in different types of deep learning problems.
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