
Stopping Silent Sneaks: Defending against Malicious Mixes with
Topological Engineering

Xinshu Ma
University of Edinburgh

x.ma@ed.ac.uk

Florentin Rochet
University of Namur

florentin.rochet@unamur.be

Tariq Elahi
University of Edinburgh

t.elahi@ed.ac.uk

ABSTRACT
Mixnets provide strong meta-data privacy and recent academic
research and industrial projects have made strides in making them
more secure, performance, and scalable. In this paper, we focus
our work on stratified Mixnets—a popular design with real-world
adoption—and identify that there still exist heretofore inadequately
explored practical aspects such as: relay sampling and topology
placement, network churn, and risks due to real-world usage pat-
terns. We show that, due to the lack of incorporating these aspects,
Mixnets of this type are far more susceptible to user deanonymiza-
tion than expected. In order to reason and resolve these issues,
we model Mixnets as a three-stage “Sample-Placement-Forward”
pipeline, and using the results of our evaluation propose a novel
Mixnet design, Bow-Tie. Bow-Tie mitigates user deanonymization
through a novel adaption of Tor’s guard design with an engineered
guard layer and client guard-logic for stratified mixnets. We show
that Bow-Tie has significantly higher user anonymity in the dy-
namic setting, where the Mixnet is used over a period of time, and
is no worse in the static setting, where the user only sends a sin-
gle message. We show the necessity of both the guard layer and
client guard-logic in tandem as well as their individual effect when
incorporated into other reference designs. We develop and imple-
ment two tools, 1) a mixnet topology generator (Mixnet-Topology-
Generator (MTG)) and 2) a path simulator and security evaluator
(routesim) that takes into account temporal dynamics and user be-
havior, to assist our analysis and empirical data collection. These
tools are designed to help Mixnet designers assess the security and
performance impact of their design decisions. Ultimately, Bow-Tie
is a significant step towards addressing the gap between the design
of Mixnets and practical deployment and wider adoption because
it directly addresses real-world user and Mixnet operator concerns.

CCS CONCEPTS
• Security andprivacy→Network security;Pseudonymity, anonymity
and untraceability.

KEYWORDS
Anonymous communication network, mixnets, network construc-
tion

ACM Reference Format:
Xinshu Ma, Florentin Rochet, and Tariq Elahi. . Stopping Silent Sneaks:
Defending against Malicious Mixes with Topological Engineering. In Pro-
ceedings of (Preprint ’22). ACM, New York, NY, USA, 14 pages.

Preprint ’22, , 2022, ,
.

1 INTRODUCTION
Since the “Five Eyes” mass surveillance disclosures by Snowden
high-lighted real-world adversaries’ pervasive and global nature, we
observe a greater community focus on strong meta-data privacy to
protect and improve communication protocols on the Internet [26].
Tor, with ≈ 8 million daily users [43], provides limited protection
against a global adversary and traffic analysis attacks [35, 47, 55].
Thus, there is a resurgent interest in mix networks (Mixnets) [8]—
once considered impractical to deploy—with many recent proposals
from academia [7, 36, 38, 39, 51, 68, 70] and industry [18] that have
strong security guarantees and improved performance at scale.

The security of many known designs, such as Vuvuzela [70],
Karaoke [39], Loopix [51], and Nym [17] rely on the anytrust as-
sumption where at least one server in the user’s path must be hon-
est. In other words, security comes from distributing trust across
many relay operators. Practical real-world designs distribute trust
and provision network resources by drawing from third-parties,
such as volunteers or for-profit participants, on which the network
applies light (e.g., Tor’s path selection IP restrictions) or no con-
straints. These third-parties can be malicious and it is critical that
the mixnet design resist their influence. In Mixnet literature, the
security analysis typically considers active attacks like traffic anal-
ysis [1], (n-1) [59], and Denial-of-Service (DoS) [5]. In addition,
users can also be deanonymised by passive adversaries whenever a
message traverses a path composed entirely of adversarial relays.

However, the literature typically takes for granted real-world
issues such as network configuration and routing, network churn,
and risk due to real-world usage patterns. In this paper, we consider
the impact of these practical concerns and investigate designs that
strengthen the anytrust assumption while minimizing performance
degradation. We present the first thorough analysis of continuous-
time stratified Mixnet designs, and the implications on the security
of typical users against realistic resource-bounded strategic ad-
versaries in the network. Our temporal analysis, where we model
an adversary cumulatively deanonymizing users over time, shows
that in the state-of-the-art reference designs close to 100% users
are expected to use a fully malicious route in about one week of
email activity over the Mixnet. Overall, the adversary is able to
deanonymize a significant portion of network traffic running a
realistic amount of bandwidth and quantity of nodes. This implies
that the anytrust assumption is not easy to maintain in real Mixnet
deployments.
Contributions.

(1) We propose Bow-Tie, a novel practical and efficient Mixnet
design that mititgates the over-time client exposure to adversarial
mixes and strengthen the anytrust assumption. We realize it by

ar
X

iv
:2

20
6.

00
59

2v
4 

 [
cs

.C
R

] 
 4

 A
ug

 2
02

2



Preprint ’22, , 2022, , Ma, and et al.

adapting and re-engineering the concept of guards from Tor [64]
to stratified Mixnets.

(2) We present an empirical security analysis of the stratified
Mixnet against reasonably realistic adversaries from the metrics of i)
fully-compromised traffic fraction and ii) time-to-first compromise.
We show how these results relate to a newly deployed Mix network
and how it could be significantly improved.

(3) We develop the routesim simulator, a tool that can calculate a
user’s expected deanonymization probability over time, given a con-
figured network topology and communication patterns. routesim
may be used to shed light on the security impact of various design
choices, in Bow-tie and other designs as well.

2 BACKGROUND AND MOTIVATION
Mixnets are a fundamental type of anonymous communication
system, composed of a set of Mixnodes that provide sender and
sender-recipient anonymity by reordering messages in addition to
transforming them cryptographically, enabling message untrace-
ability.

Unfortunately, early Mixnets have practical disadvantages such
as high latency, poor scalability, and high-performance overhead
that hinder their real-world deployments. Recent academic re-
search [7, 36, 39, 51, 51, 68, 70] has made progress in designing
Mixnets for anonymous communications with developed scala-
bility and sustainable communication/computation overhead, or
provable security. These developments have found their way into
the industry, with the foundation of a startup company—Nym [18],
whose goal is to create a sustainable anonymous communication
network based on the Loopix continuous-time mix design [51]
through monetary incentive schemes.
Network topology. Mixnets can be arranged in many topologies.
Mesh, cascade, and stratified are some of the most common. In this
paper, we focus on the stratified topology [12] due to the evidence
that it is both as, or more, secure and performant as the other
two [19, 22]. In a stratified topology, the network is constructed
from several ‘layers’. Each Mixnode is placed in a single layer,
and each layer can only communicate with the previous and next
ones. Generally, layers are equally sized for performance reasons,
although this is not a strict requirement. At the last layer, the
messages are delivered to their intended destination (or wherever
the user’s inbox is hosted).
Path selection/routing. Messages are forwarded through a Mixnet
by going through a Mixnode in each layer. This multi-hop path
through the network provides the sender and sender-recipient
anonymity property. It is therefore critical that the route through
the network is not biased or otherwise manipulated by an adversary.
Most Mixnet designs route messages by ‘bandwidth weight’. That
is, the probability of selecting a Mixnode in layer 𝑖 + 1 is propor-
tional to the proportion of its bandwidth to the sum of all Mixnodes
bandwidths in that layer. An alternative is to route packets by choos-
ing uniformly at random. We experiment with both approaches
in this work and show that uniform selection is inadequate for
performance and can be marginally better or worse from a security
perspective, depending on the adversary resource endowment.

Continuous-timemixing. Various mixing strategies have been
proposed in the literature. Timed, threshold, pool, and continuous-
time are the main types. We focus on continuous-time mixing
in this paper since it has emerged as a good trade-off between
security and performance. In continuous-time mixing, each message
is independently delayed at each mix on its path. This delay is
selected by the sender of the message. To offer some level of security
against timing attacks, the delay is drawn from an exponential
distribution because of its memoryless property (i.e., observing a
message going out does not give information about when other
messages are scheduled to go). Indeed, Loopix, and by extension
Nym, use this mixing strategy, providing real-world relevance.
Anytrust assumption. Many of these systems, Loopix included,
rely on the anytrust assumption: as long as there is one honest
Mixnode in a path, then the user’s message cannot be fully compro-
mised. However, we show that this assumption breaks quickly, and
for every users, as soon as one considers temporal aspects in the
Mixnet usage. Our work considers this problem when designing
Mixnet topologies, and as a consequence, significantly strengthen
how realistic this assumption is for the users.

3 THREAT MODEL
In general, we consider the adversary who can observe all internal
states of controlled mixes and can locally drop, inject or delay
traffic. A global active attacker may be able to compromised more
paths using (n-1) attacks [59], or Denial-of-Service (DoS) attacks [5],
this behaviour is also more detectable and risks ejection from the
network. It is therefore realistic to consider a more subtle and
discrete adversary who traces the messages that travel through
paths composed entirely of their malicious Mixnodes.
Adversary Resources. At an abstract level, we assume the ad-
versary has a certain fixed amount of network resources at their
disposal. This could be in the form of bandwidth, relays, financial
assets, or some other scarce resource like reputation. Note that it is
possible to swap one criterion with the other, since their function
is the same; limiting the adversary to control only a fraction of the
paths through the network. When deciding on its resource allo-
cation, we allow the adversary to take advantage of the network
configuration or path selection algorithms to influence a network
distribution that maximizes their presence on user paths. This pas-
sive attack is impossible to detect.
Adversary Goals. The adversary’s aim is to maximise end-to-
end path compromise rates by causing the mixnet configuration
step to optimally place the malicious mixes into the mixnet layers
in a way that maximizes their ability to passively deanonymise
users.

4 BOW-TIE DESIGN
We propose a new design, Bow-Tie, a three-step pipeline (Figure 1)
to configure and use the stratified Mixnet. In Bow-Tie, we discretize
time into periodic epochs, where the network can be reconfigured
and clients updated with the latest topology. Furthermore, to reflect
real-world resource availability, Mixnode bandwidths are heteroge-
neous and the Mixnet is tunable in order to adjust the network size
to suit the volume of incoming traffic. We assume an honest-but-
curious Configuration Server (CS) that periodically (re)configures



Stopping Silent Sneaks: Defending against Malicious Mixes with Topological Engineering Preprint ’22, , 2022, ,

Fully compromised path

Sampling

Placement

1

2

Active Pool

Candidate Pool

Path selection3

Figure 1: Three-steps basic pipeline when configuring Bow-
Tie.

the network, ensuring node sampling and placement is correct. It
is common for anonymous communication systems to depend on a
trusted party for efficiency reasons, such as Directory Authorities
(DA) in Tor. Note that a malicious CS might collude with the adver-
sary and enable malicious Mixnodes to be sampled and placed in
the network. However, we believe that it is a reasonable assumption
in practice because even with the collusion, the CS’s deviations
from honest behavior will eventually be detected by all participants
over time, since the probability distribution of node selection will
deviate from expectation. We aim to remove the honest-but-curious
CS assumption as future work.

4.1 Bow-Tie Characteristics
Bow-Tie builds Mixnet topologies around the following important
criteria.
Mitigating Client Enumeration. In general, users will fall vic-
tim to full path compromise the more (or longer) they use the
system. Eventually, all users will have at least one of their messages
traverse a fully compromised path (see Section 6). This problem
is also referred to as client enumeration, where the adversary ob-
serves at least one message from every single user of the system.
One successful strategy is to limit the exposure of clients to all
nodes in the network by restricting the paths clients select. Tor
realizes this strategy with its Guard Design, which has undergone
several refinements since its initial proposal [42, 53, 56, 72]—that
(1) Ensures quality of service, and (2) Limits the size of the set of
guards the client is exposed to. Bow-tie introduces a novel guard de-
sign that uses restricted topologies and client-side logic specifically
targeting mixnet integration. The design is supported by empirical
results (in Section 6).

Unlike Tor, where guards must be placed in the first layer, in
Mixnets we have more freedom to choose in which layer to place
guards. For a client building routes of length 𝐿 within a Mixnet,
there is a subtle Performance-Security trade-off in choosing either
the first node as the guard (more performance) versus choosing
one of the middle positions (more secure in specific settings). Bow-
Tie adopts guards in the middle position, and the security metrics
we explore in Section 6 are independent of the position choice.
Appendix A covers a discussion shedding light on the subtleties.
Accommodating Network Churn. Another fundamental issue
in real-world mixnet deployments is Network churn, which is a

typical and natural phenomenon in volunteer-resourced networks.
One of its effects is to increase the clients’ exposure to potentially
malicious guards [24]. Similar to Tor, the client is required to prefer
using an older guard—until they go offline—before touching a new
guard. Thus, the more unstable the guards are, the more guards a
client will touch, which implies a higher risk of choosing a malicious
guard. Therefore, putting the most stable Mixnodes into the guard
layer ensures that the guard list of each client grows at a slower
pace.
Good Performance & Low Cost Bow-Tie also considers the
performance of generated network topologies. In the stratified
Mixnet, the transmission bottleneck comes from a layer with the
minimum bandwidth. To mitigate this, we model the placement of
Mixnodes into a Bin-packing problem, which improves the network
performance by constrainting that the total bandwidth of each layer
is approximately equal. The results show that Bow-Tie strikes a
good balance between anonymity and performance (in Section 6.2.4)
and runs in an efficient manner.

4.2 Bow-Tie Detail Description
Steps to create and maintain a Bow-Tie Mixnet are depicted in
Figure 2 and detailed next.

4.2.1 Mixnet Initialization. The bandwidth of the candidate pool,
𝑃𝑏𝑤 , is the sum of all the available relays’ bandwidths. A predeter-
mined sampling fraction, ℎ, of 𝑃𝑏𝑤 is the total bandwidth of the
active pool from which the generated Mixnet is populated. Each
layer accounts for 1

𝑙
× ℎ of 𝑃𝑏𝑤 in a l-layer Mixnet. We consider

the case 𝑙 = 3.
(1) Initialize the Guard Layer. The CS initializes the guard layer in

the first epoch, 𝑖 = 0, by sampling a total of 1
3ℎ × 𝑃𝑏𝑤 weighted by

bandwidth from the candidate pool. The rational is to ensure that
the guard layer has 1/3 of the overall active network bandwidth
with the remaining to be distributed evenly across the remaining 2,
i.e. 𝑙 − 1, layers.

(2) Initialize the Guard Set. The guard set 𝐺 consists of three
subsets: Active Guard (AG), Backup Guard (BG), and Down Guard
(DG). All nodes in the initialized guard layer are elements of 𝐴𝐺 .
The CS then samples an additional tolerance fraction 𝜏1 from the
candidate pool by bandwidth as 𝐵𝐺 . 𝐷𝐺 is empty at this stage.
The rational behind these sets is to minimize client exposure by
remembering which nodes were used as guards, even if they go
offline for a period. That is, clients can revert to a previously used
but offline guard whenever it appears online again.

(3) Initialize non-Guard Layers. Next, the CS uniformly samples
a total of 2

3ℎ × 𝑃𝑏𝑤 Mixnodes from the candidate pool and places
them using a bin-packing approach with the constraint that each
layer has a similar amount of bandwidth. We convert the placement
problem to one-dimensional bin packing problem (1BPP) [57], where
the objective is to pack all items into a minimum number of bins
while the total size of any bin is not larger than the given capacity 𝑐 .
Thus the capacity is set to be slightly larger (𝜖 in Algorithm 2) than
the 1

3ℎ × 𝑃𝑏𝑤 bandwidth for each layer as it is difficult to aggregate
several indivisible entities to a precise cumulated bandwidth value.

1The value of 𝜏 is defined as 𝜏 = 𝑐× churn rate. In this paper, we set 𝑐 = 1.



Preprint ’22, , 2022, , Ma, and et al.

Candidate Pool Active Pool
A

(1) CS initializes guard 
layer by sampling mixes 
weighted by bandwidth. 

(2) CS uniformly samples 
mixes to an active pool for 
the two non-guard layers.

(3) CS configures the two 
non-guard layers by bin-
packing placement.

(4) Users update their 
guard lists and try to 
reuse the oldest online 
guard.

(5) Users select mixes in 
the first and last layers by 
bandwidth and send 
messages.

B B

AActive PoolCandidate  Pool

Guard list

Guard list

Figure 2: High-level overview of Bow-Tie for Mixnet initialization and message routing. Green rectangles indicate that mali-
cious mixes are indistinguishable.

Guard Set G AG BG DG

Guard layer

Candidate Pool

Figure 3: Guard Set composition and interactions.

4.2.2 Mixnet Maintenance. Clients need to learn about new Mixn-
odes, and offline Mixnodes need to be be removed from the active
pool. Moreover, to give a chance to nodes remaining in the candi-
date pool to actually contribute, at the end of each epoch, a new
placement step is executed for non-guards layers. Finally, specific
maintenance for the guard layer is required at each epoch.

(1) Guard Set Maintenance. For subsequent epochs 𝑖 > 0, the
CS checks online/offline status of all nodes in 𝐺 and updates their
stability information. Offline nodes within 𝐴𝐺 and 𝐵𝐺 are moved
to 𝐷𝐺 the rest remain where they were.

In addition, CS checks if the bandwidth of 𝐴𝐺 ∪ 𝐵𝐺 is within
the minimum threshold 𝑇𝑙𝑜𝑤 and maximum threshold 𝑇ℎ𝑖𝑔ℎ . In the
case it is greater than𝑇ℎ𝑖𝑔ℎ , nodes in 𝐵𝐺 that have never have been
selected into the guard layer are dropped according to the ascending
order of bandwidth×stability2. This continues until the bandwidth
is ≤ 𝑇ℎ𝑖𝑔ℎ or all eligible nodes in 𝐵𝐺 have been evicted. In the
case of bandwidth being lower than 𝑇𝑙𝑜𝑤 , the CS introduces fresh
nodes from the remaining candidate pool by bandwidth×stability
to 𝐵𝐺 . Note that the CS tracks the online/offline status of each
node and obtains their stability values; this scheme is detailed later.
By introducing new guard nodes or dropping unstable and slow
ones, the CS maintains the whole guard set with high stability
and sufficient capacity (Figure 3). Please refer to Algorithm 1 in
Appendix E.

(2) Guard Layer Maintenance. Once the 𝐺 set is updated, the
new 𝐴𝐺 set is generated by inheriting online guards from the old
𝐴𝐺 and guards back online from the previous epoch’s 𝐷𝐺 set. To

2The stability values of nodes are evaluated by WMTBF and normalized to 0− 1 scale.

minimize the number of guards users are exposed to, the CS records
the number of epochs of active operation as 𝑡𝐴𝐺 , for all Mixnodes
in𝐺 , and selects the most stable ones based on their WMTBF value.
If 𝐴𝐺 still does not meet the minimum bandwidth threshold, the
CS samples some nodes from 𝐵𝐺 by bandwidth×stability to 𝐴𝐺 . In
the end, all nodes in 𝐴𝐺 are placed into the guard layer.

(3) Non-guard layers Maintenance. The non-guard layers are re-
freshed through the same procedure as initialization. Please refer
to Section 4.2.1.

(4) Stability Tracking. To track the stability of each Mixnode, we
use the metrics Weighted Mean Time Between Failure (WMTBF) as
also used by Tor [65]. Briefly, online/offline states are represented
by 1/−1 respectively in a discretized time interval. The weights of
these values are adjusted in proportion to their age from the current
epoch. The rational is to discount epochs’ values in proportion to
their age such that very old epoch values would not significantly
influence the WMTBF result.

4.2.3 Mixnet Routing. Once the network has been constructed, the
Mixnet is ready for use.

(1) Client-side guard logic. When a user first uses the Mixnet
they sample a defined number of Mixnodes, proportional to their
bandwidth, belonging to the guard layer and adds these to their
guard list. The user’s guard list will grow over time. To limit its
growth and reduce the user’s exposure to malicious Mixnodes in the
guard layer, the user’s client only adds a new guard if all existing
guards in the list are offline. Whenever a new path is required,
the client tries to reuse guards from oldest to most recent ((4) in
Figure 2).

(2) Path selection. With an online guard chosen, the user selects
Mixnodes in the first and last layer weighted by bandwidth and
sends the message through this fresh route ((5) in Figure 2). Bow-Tie
uses Bandwidth-weighted path selection since it has better perfor-
mance and security than the alternative, random path selection,
which does not help in protecting clients and incurs a significant
performance cost (for details refer to Appendix C).

4.3 Bandwidth Discussion
In our design, we use bandwidth as the sampling criterion since it is
well established in the literature and in real-world deployments [65].
However, other attributes can also be used [30, 31, 34]. As for how



Stopping Silent Sneaks: Defending against Malicious Mixes with Topological Engineering Preprint ’22, , 2022, ,

the bandwidths of the nodes are determined, the simplest way
would be for the nodes to advertise their bandwidth, however in
such case, adversarial nodes could advertise false information. There
exist previously proposed bandwidth measurement systems [2, 32,
33, 62, 67] have improved the security, accuracy, and efficiency of
estimating capacity in Tor network. A similar approach may be
adopted here, however the exact solution to this problem is out of
the scope for this present paper.

5 METHODOLOGY
We now describe the security metrics, reference algorithms, and
adversary model used in our evaluation. Since we consider a realis-
tically constrained and strategic adversary, we identify the optimal
adversarial resource allocation strategy that will be employed in
our evaluations.

5.1 Security Metrics
We wish to evaluate how well a mixnet design is able to resist
compromised mixes (as defined in Section 3). We use the following
metrics:

• Time to first compromise: The expected time it takes until a
user has their first message traverse a fully compromised
path. This is a dynamic metric since it is affected by usage
patterns and is useful to reason about user behavior.
• Compromised fraction of paths: The expected fraction of total

paths in the network topology that are fully compromised
(i.e. composed entirely of the adversarial relays). This is a
static metric since it is not affected by usage patterns.
• Guessing entropy: We also consider an active external adver-

sary for the scenario where she targets a specific message
sent from a particular user. We wonder how many Mixnodes
on average she needs to strategically compromise until she
can fully observe the complete route of this message, and
this metric is called guessing entropy [45, 54]. In particular,
this metric can be interpreted as a worst-case adversarial
resource endowment to guarantee deanonymizing a given
single-message target.

These measures are not only helpful for the mixnet designer
or operator but also meaningful for users wishing to know “How
secure am I if I use the system?”

5.2 Reference Algorithms
We will empirically evaluate our Mixnet construction algorithm
on a statistically significant number of generated topologies, and
compare Bow-Tie to three reference construction methods: BwRand,
RandRand, RandBP, described below.

• BwRand: the CS samples Mixnodes from the active pool with
the probability proportional to their bandwidth and places
these Mixnodes into random layers with uniform probability.
This is a good proxy for the Nym Mixnet design. Indeed, Nym
expects to sample nodes based on their stake value, which is
expected to correlate with bandwidth in their reward system
(i.e., staking to nodes proportional to their true bandwidth
maximizes the profit).

• RandRand: CS samples the active pool uniformly at random
and places the Mixnodes into a layer uniformly at random.
• RandBP : CS samples the active pool uniformly at random

and assigns Mixnodes into each layer with the Bin-packing
placement algorithm.

5.3 Adversary Modeling
In our simulation, we consider one adversary who wants to deanonymize
messages by optimizing the use of Mixnodes and bandwidth re-
sources. We model the adversary bounded by two elements: the
number of Mixnodes available to the adversary 𝑚, and the band-
width available for each node 𝑏𝑚

𝑖
, 𝑖 ∈ [1,𝑚]. An adversary is as-

sumed to control a certain fraction 𝛼 of the total bandwidth re-
sources, with a resource budget 𝐵𝑚 such that any combination of𝑚
and 𝑏𝑚

𝑖
that meets the constraint 𝐵𝑚 ≥

∑𝑚
𝑖=1 𝑏

𝑚
𝑖

can be applied. In
our simulation, a candidate mix pool consists of 1000 benign nodes
and 𝑚 malicious nodes. The total bandwidth of candidate pool is
𝑃𝑏𝑤 ≈ 11400MBps including 2280 MBps malicious bandwidth
(𝛼 = 20%) such that honest Mixnodes are the majority.

5.4 Adversary Resource Allocation
The adversary must determine how best to allocate his bandwidth to
maximize the compromised fraction of paths. Since the same Mixn-
ode cannot be chosen twice, he must run at least 3 Mixnodes for a
3-layer Mixnet. The crucial insight here is that the adversary has
knowledge of what algorithm is being run to establish topologies
and can distribute its total budget as a particular number of nodes
and bandwidth that would maximize its chances. That is, having a
similar presence in each layer would maximize deanonymization,
and the adversary needs to determine its resource endowment to
achieve it.

To answer this adversarial question and thoroughly model the ad-
versary, we ran numerous experiments using the mixnets topology
generator (Section 6.1.1) to empirically investigate how topolog-
ical construction algorithms shape the network. We statistically
derive, over 200K runs with ℎ = 0.75, the probability of Mixnodes’
placement into different layers. Each Mixnode will either go to one
layer of the Mixnet or remain in the candidate pool.

The results are displayed in Figure 4, from which we can infer
appropriate allocation strategies for the adversary. We can see
(Figure 4a) that BwRand’s clear preference for bandwidth is in
favour of big Mixnodes (especially with bandwidth no less than
70MBps), which will be assigned into three layers evenly. Figure 4c
show that there is a 25% chance that each Mixnode will be placed
into one of four positions with RandRand or RandBP. Bow-Tie
(Figure 4d) shows a different position distribution, where Mixnodes
with bandwidth in between 20 − 30 MBps has the same chance of
being placed into any layers. Thus allocating malicious bandwidth
resources evenly across a number of nodes makes sense for the
adversary.

When generating Mixnet topologies according to different con-
struction designs, we consider an adversary who has individual
resource allocation strategy respectively. An adversary will gen-
erate the following malicious Mixnodes: nodes with 71.25 MBps
against BwRand, nodes with 11.75 MBps against RandRand and
RandBP, and nodes with 20.72 MBps against Bow-Tie. Note that



Preprint ’22, , 2022, , Ma, and et al.

Layer0 Layer1 Layer2 Pool

M
ix

 B
an

dw
id

th
 (M

Bp
s) 0-1

1-3
3-5

5-10
10-15
15-20
20-30
30-40
40-50
50-70
70-90

>90

Expected Probability (%)
0 20 40 60 80 100

(a) BwRand

Layer0 Layer1 Layer2 Pool

M
ix

 B
an

dw
id

th
 (M

Bp
s) 0-1

1-3
3-5

5-10
10-15
15-20
20-30
30-40
40-50
50-70
70-90

>90

Expected Probability (%)
0 20 40 60 80 100

(b) RandRand

Layer0 Layer1 Layer2 Pool

M
ix

 B
an

dw
id

th
 (M

Bp
s) 0-1

1-3
3-5

5-10
10-15
15-20
20-30
30-40
40-50
50-70
70-90

>90

Expected Probability (%)
0 20 40 60 80 100

(c) RandBP

Layer0 Layer1 Layer2 Pool

M
ix

 B
an

dw
id

th
 (M

Bp
s) 0-1

1-3
3-5

5-10
10-15
15-20
20-30
30-40
40-50
50-70
70-90

>90

Expected Probability (%)
0 20 40 60 80 100

(d) Bow-Tie

Figure 4: Expected probability to fall in Layer 𝑖 depending on the Mix capacity, with sampling threshold ℎ = 0.75. Pool is the
expected probability to stay within the candidate pool and not participate.

we also test the compromised fraction of paths with varied capacity
(ranging from 1 MBps to 150 MBps3) of equal-size malicious nodes
and the results supports our choices of best allocation strategy
(please refer to the Appendix D).

6 EMPIRICAL ANALYSIS OF BOW-TIE
We now evaluate the security of the Mixnets with respect to the
metrics and adversaries in Section 5. To do so, we develop two tools:
mixnets topology generator (MTG) to produce the reference
and Bow-Tie topologies and routesim to evaluate the topologies
on their expected security metrics of typical dynamic email-like
usage. We conclude by investigating the necessity of Bow-Tie’s
guard layer and client-side guard-logic.

6.1 Tools
6.1.1 MTG. We implemented a scalable Mixnet topology generator
incorporating the four mixnet construction algorithms in Python.
We use Gurobi optimizer [29] to solve the linear bin-packing opti-
mization problem [57]. The bandwidths of Mixnodes are generated
by fitting to the bandwidth distribution of Tor relays from its histor-
ical data [52]. We use an R package [16] to fit the bandwidth data
captured from Tor consensus documents and server descriptors
from January 2021 to March 2021. Among three common right-
skewed distributions [11] we choose the gamma distribution as the
best-fitted via maximum likelihood estimation (MLE) method.

6.1.2 Routesim. To enable our evaluation of time to first com-
promise metric based on realistic Mixnets usage, we implement
routesim to support the dynamic, multi-message user scenario,
aiming at estimating user’s resilience against client enumeration.
routesim applies a Monte Carlo method to sample a user’s usage
distribution and simulate the user’s expected anonymity impact. For
each sample simulation, it takes the message timings and sizes fol-
lowing a communication pattern provided by the user, the Mixnet’s
topology generated by MTG for each epoch, and two families of mix-
ing protocol interactions (recipient-anonymous and non recipient-
anonymous, described in Section 7.1) as the input, and outputs the
trace of all messages that are produced and transmitted through the
network. routesim is written in Rust, scales with the number logi-
cal processors, has a low-memory footprint and is designed to be
3Allocating too much bandwidth to one node is not realistic due to the CPU cost of
the public-key encryption within each Mixnet packet, so we set the upper bound of
malicious mix to 150 MBps.

easily extensible for new client models and probabilistic events to
capture. It can simulate statistically relevant durations (e.g. months)
of a given client behavior in a few minutes on a regular laptop, i.e.
it is usable on low budgets.

6.2 Analysis
6.2.1 Time to First Compromise. We assume a simple client that
sends one message through the Mixnet every 5 to 15 minutes at
random within this interval and we model 10, 000 such clients. We
use routesim to conduct simulations and obtain the distribution
of time to first comprimsed message. The network churn rate be-
tween each epoch is 3% for each simulation. The epoch value is set
to 1 hour; i.e., at each epoch, the network topology is refreshed
according to the topology sampling and placement algorithms intro-
duced in Section 4. The choice of one hour copies Tor’s consensus
document renewal.

0 1 2 3 4 5 6 7 8
Days to first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

bwrand
randrand
randbp
bow-tie

(a) Time to first compromised
message.

0 200 400 600 800 1000
Number of messages until first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

bwrand
randrand
randbp
bow-tie

(b) Number of messages until
first compromised message.

Figure 5: Empirical distribution of how much time/how
manymessages before a user’smessage traverses over a fully
compromised path since first usage. We model a user send-
ing one message every 5 to 15 minutes at random.

Results. Figure 5 shows the CDF for the event that a user’s
message first traverses over a fully compromised path. For the
reference designs, the client is expected to use a fully compromised
route extremely fast since each message has the potential to go over
any of the potential routes and the users will expose themselves to
many Mixnodes, including adversarial ones. We can see (Figure 5a)
that with all three reference designs there is more than 80% chance
of deanonymization of at least one message within 2 days by an
adversarial Mixnode and the median time to full compromise is
less than 0.7 days. By looking at the distribution of messages sent (
Figure 5b) for the reference designs, the median number of messages



Stopping Silent Sneaks: Defending against Malicious Mixes with Topological Engineering Preprint ’22, , 2022, ,

sent (for the “simple” client model) before compromise is 100. In
contrast, Bow-Tie enjoys a significantly longer time and higher
number of messages sent until first compromise.

6.2.2 Compromised Fraction of Paths. We now evaluate how many
network paths the adversary may control by considering the frac-
tion of compromised paths metric. Recall that a path or route within
Mixnets is compromised if the entire route is composed by mali-
cious Mixnodes. Thus, we set the compromised fraction of paths 𝐹𝑏
in a stratified 𝑙-layer Mixnet using bandwidth-weighted message
forwarding as

𝐹𝑏 =

𝑙∏
𝑖=1

Amount of Malicious Bandwidth in Layer 𝑖
Amount of Bandwidth in Layer 𝑖 . (1)

BwRand
RandRand
RandBP
Bow-Tie

C
ul

m
ul

at
iv

e 
Pr

ob
.

0
0.2
0.4
0.6
0.8
1.0

Compromised Fraction of Paths
0.5% 1% 1.5% 2%

(a) Probability distribution on
compromised fraction of paths
with ℎ = 0.75.

BwRand
RandRand
RandBP
Bow-Tie

C
om

pr
om

is
ed

 fr
ac

tio
n

0%

5%

10%

Sampling fraction h
0.4 0.6 0.8 1.0

(b) Average compromised frac-
tion of paths for ℎ between 0.35

to 0.95.

Figure 6: Empirical distribution on compromised fraction of
paths and empirical average compromised fraction.

We empirically evaluate this metric, statistically derived over
1000 runs, with simulations that construct Mixnets using Bow-Tie
and reference algorithms. Adversarial bandwidth is set to 20% of
the total network bandwidth.

Results. Figure 6a shows that, when ℎ = 0.75, there is more
than a 99% chance of compromising less than 1% paths using Bow-
Tie, and the Rand- reference algorithms. In contrast, in BwRand
the adversary can compromise upto 2% paths. This is because
selecting all nodes by bandwidth in BwRand gives the adversary
that intelligently allocates bandwidth an advantage. This is not so
effective against Bow-tie since the non-guard layers use random
placement.

Figure 6b shows the worst-case expected compromise rates,
where all malicious relays are selected for use under all the values
of ℎ considered. We see that Bow-Tie, RandRand, and RandBP have
generally low compromise rates across all sampling fractionsℎ, with
Bow-Tie slightly higher (less than 0.05%) when ℎ < 0.6. This is due
to the fact that the guard layer is bandwidth weighted, however, the
non-guard layers minimize an intelligent adversary’s optimal allo-
cation strategy. In contrast, as ℎ decreases BwRand’s compromise
rates increase, with 10.9% of paths compromised when ℎ = 0.35.
The compromise rates are generally converging towards a lower
value (around 0.08%) as ℎ increases for all algorithms, which is
expected since more honest nodes will enter the active pool and
the fraction of adversarial relays will decrease.

This raises an interesting question about how to derive and adjust
the parameter of sampling fraction ℎ. The appropriate ℎ should

BwRand
RandRand
RandBP
Bow-Tie

C
ul

m
ul

at
iv

e 
Pr

ob
ab

ilit
y

0
0.2
0.4
0.6
0.8
1.0

Number of Mixes to Compromise
200 250 300 350 400

(a) Guessing Entropy

RandRand RandBP Bow-Tie BwRand

Pr
op

ag
at

io
n 

Ti
m

e 
(s

ec
)

0

0.2

0.4

0.6

Message Arriving Rate (msg/sec)
Λ=500 Λ=1000 Λ=1500 Λ=2000

(b) Expected queuing delay

Figure 7: Guessing Entropy and performance evaluation re-
sults. (a) Guessing Entropy: expected number of Mixnodes
the adversary had to compromise to trace a target message.
(b) Expected queuing delay, withmessage arriving rate Λ for
the Mixnet.

be able to handle all of the incoming traffic without overloading
the majority of Mixnodes, and should limit the number of paths
in the network to avoid very thin traffic from the perspective of
entropy [28]. Thus,ℎ should be set as a minimum value that satisfies
the throughput requirement, based on historical data or reasonable
predictions. We leave as future work the case when the volume of
incoming traffic changes suddenly within an epoch.

6.2.3 Guessing Entropy. We model the deanonymization of a given
message as a guess and let G represent the total number of guesses
for success (i.e. deanonymizing the target message). E(G) is com-
puted by selecting the nodes in descending order of the marginal
probability 𝑝𝑖 that the adversary can deanonymize the targeted
message when cumulatively compromising the 𝑖𝑡ℎ node. Thus, the
guessing entropy can be calculated by:

E(G) =
∑︁

𝑖∈ |𝑃𝑜𝑜𝑙𝑎𝑐𝑡𝑖𝑣𝑒 |
𝑖 · 𝑝𝑖 , (2)

where |𝑃𝑜𝑜𝑙𝑎𝑐𝑡𝑖𝑣𝑒 | represents the number of Mixnodes in the active
pool.

Results. Figure 7a shows the cumulative guessing entropy value
obtained from 1000 trials of each topological construction algo-
rithm, for a network containing ≈ 1000 nodes. We can see that the
median number of Mixnodes required to compromise by an adver-
sary for BwRand is around 250, while for other three algorithms,
the median is increased to less than 320. While Bow-Tie is edged
out by RandRand, and RandBP, it is significantly more secure in
the dynamic setting (above) and with better performance, as we
shall see next.

6.2.4 Performance Evaluation. We measure the expected queuing
delay (i.e., expected message queuing time) based on the topologies
generated by the MTG with ℎ = 0.75, 𝛼 = 0.2. The expected queuing
delay is calculated by using a 𝑀/𝐷/1 queue model [48]. The input
messages of the whole mix network can be treated as a Poisson
process with rate Λ. The message queuing time for each node is
inversely proportional to its capacity, e.g., for a Mixnode with 𝑏𝑖
bandwidth, the average processing time for it is 𝑢𝑖 = 1/𝑏𝑖 . 4

4We focus on bandwidth-weighted path selection since it performs an order of magni-
tude better than random path selection. The interested reader can refer to Appendix C
for the random path selection performance results.



Preprint ’22, , 2022, , Ma, and et al.

In bandwidth-weighted path selection, using 𝑈 to represent the
total bandwidth of the current layer, the expected queuing time of
this layer is:

𝑇𝑏 =

𝑘∑︁
𝑖=1

2 − Λ
𝑈

2(𝑈 − Λ) = 𝑘
2 − Λ

𝑈

2(𝑈 − Λ) . (3)

Results. Figure 7b shows the expected delay due to queuing for a
message going through the Mixnet. Indeed, algorithms that sample
using bandwidth (i.e., BwRand and Bow-Tie) achieve relatively
low processing delay and outperform random sampling schemes.
Compared to BwRand, Bow-Tie sacrifices less than 0.05 seconds
of queuing delay for a comparatively higher security level (see
Figures 5 and 6a).

Note that Bow-Tie topologies are also fast to generate: a sub-
second cost to both generate the Guard layer and to apply the bin
packing optimization to the other layers.

6.2.5 Recap. Our empirical results in this section confirm that the
construction and routing of a Mixnet is characterised by a security
and performance trade-off. Taken together, the results for these
metrics show that Bow-Tie provides a high level of protection for
users’ anonymity in a dynamic and realistic setting with a relatively
small sacrifice in performance.

6.3 The necessity of both client guard logic and
guard layers

6.3.1 Turn off Client Guard-logic for Bow-Tie? A natural question
is does the guard layer by itself (i.e. where the client does not
maintain a guard list) provide a high level of protection. To answer
this question we turn off the clients’ guard list maintenance logic
while they use the network, but keep Bow-Tie’s other aspects the
same (i.e. Bow-Tie still produces a guard layer).

0 1 2 3 4 5 6 7 8
Days to first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

bwrand
randrand
randbp
bow-tie

(a) Time to first compromised
message.

0 200 400 600 800 1K
Number of messages sent since first visit

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

bwrand
randrand
randbp
bow-tie

(b) Number of messages until
first compromised message.

Figure 8: Comparison between reference algorithms and
Bow-Tie without client side guard logic.

As we observe in Figure 8, a guard layer by itself has reduced
security at a comparable level to those schemes without guard
layers (i.e. RandRand, RandBP, and BwRand), although Bow-Tie
is still slightly better. Nevertheless, the client is expected to use a
fully compromised route extremely fast since each message is sent
at random (bandwidth-weighted here), and the users will expose
themselves to many Mixnodes. This implies that users should not
explore all potential routes, which is the exact effect of the client
guard-logic.

0 25 50 75 100 125 150 175 200
Days to first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

bwrand
randrand
randbp
bow-tie

(a) Time to first compromised
messag.

0 5000 10K 15K 20K 25K 30K
Number of messages until first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

bwrand
randrand
randbp
bow-tie

(b) Number of messages until
first compromised message.

Figure 9: Enabling client-side guard logic for reference algo-
rithms and comparing the results.

6.3.2 Turn on Client Guard-logic for Reference Methods? We now
turn on the client guard-list logic for all designs, Bow-Tie and the
references, since the client component is fundamentally indepen-
dent of the layer construction algorithm. For the reference designs
the client will select initial and replacement relays from the middle
layer using the client guard-list logic. This will allow us to gauge
the effect of the client guard-list on designs without an engineered
guard layer. Figure 9 shows the results of this comparison. Note that
the results we provide here are independent of the Guard’s position
in users’ routes. We see that all the reference designs improve with
client guard-logic enabled. However, it is clear that Bow-Tie enjoys
a significantly higher time to first compromise metric than the ref-
erence designs with client guard-list logic enabled. This means that
the guard layer provides an added benefit that the client guard-list
by itself does not provide, providing at least a 30% improvement
over the most similar reference design RandBP.

This confirms the necessity of both Bow-Tie’s guard layer and
client guard-logic that combined reduce clients’ guard exposure
more effectively than they each could alone.

7 INFLUENCE OF PROTOCOLS AND USER
BEHAVIOR

In general, user anonymity is significantly impacted by aspects that
we organize into three broad and independent families: topological
design choices, Mixnet protocol designs, and user behavior.

Our discussions and analysis so far concerned topological design
choices, which refer to engineering aspects of the network itself
(such as our guard design) to maximize users’ expected anonymity.
Other designs such as Atom [36] or XRD [38] add strong topo-
logical constrains making the anytrust assumption realistic and
trustworthy, but at the price of severe performance impact limiting
potential network use-cases and wide adoption. It is up to the user,
and or application designer what trade-off is appropriate for their
use-case.

So far we have not considered the impact of protocol integration
or client usage, which, if done carelessly, may nullify the benefits of
Bow-Tie’s topological design choices. For example, BiTorrent [44]
exchanges IP information with a tracker required by its application-
level protocol. For this reason, tunneling BiTorrent inside an anony-
mous network does not provide anonymity protection, yet this user
activity is observed in Tor [21]. In the same vein, for Mixnets we
cannot tunnel many existing protocols as-is because it may sim-
ilarly also nullify the Mixnet’s protection. For example, in email,



Stopping Silent Sneaks: Defending against Malicious Mixes with Topological Engineering Preprint ’22, , 2022, ,

0 50 100 150 200 250 300 350
Days to first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Loopix
Loopix+rdv
Loopix with Bow-Tie
Loopix+rdv with Bow-Tie

Figure 10: Influences of protocol interaction: benefit of
rendezvous-based protocols over no-recipient anonymity.

SMTP and IMAP servers contain many pieces of meta-information
that can link users to their activity, and even the plaintext if the user
does not manually set-up end-to-end encryption (which requires
advanced understanding of threats, email, and technology). It is also
the case for secure messaging applications, such as Signal, which
leverage a central server to enable confidential communications
(while exposing the users’ social graph to the central server). To
mitigate these threats, the Mixnet protocol suite has to offer the
means [69] to perform asynchronous messaging, which applications
could then use to build secure and private protocols.

Similarly, user behavior also has a significant impact. For users
sending a single message in the network, we can evaluate the user’s
anonymity via entropic considerations. Different entropy measures
may capture different criteria [48, 63] and lead to different interpre-
tation of the user’s anonymity.

We now bring these aspects into our investigation to round out
our evaluation of Bow-Tie.

7.1 Influence of Protocol Designs
We now consider the impact of a recipient anonymity property over
the Mixnet protocol design. Recipient anonymity may be needed
to improve users anonymity in some context, and unnecessary in
others. For example, uploading a file to a public-facing server would
not be recipient-anonymous. Exchanging messages asynchronously
with a peer at a private address would be recipient-anonymous. To
obtain recipient-anonymity, we assume the existence of a private
and secure Naming scheme and rendezvous protocol (also called
“dialing”) defined by the Mix network [39, 64, 68, 70].

There is a rich history of anonymous networks that claim strong
anonymity [4, 6, 8, 10, 14, 18, 27, 36, 37, 39, 40, 51, 61, 68, 70, 71].
Thoroughly studying and comparing the influence of those various
designs is out of scope of this paper. However, we can explore how
simple design choices can lead to significant recipient anonymity
improvements for continuous-time Mix networks.

Loopix [51] and the Nym Network [18] based on the Loopix de-
sign do not offer recipient anonymity for asynchronous messages
between clients. Other designs such as Tor [64], Vuvuzela [70],
Stadium [68] and Karaoke [39] do offer it thorough a rendezvous
protocol (also called “dialing”) to asynchronously connect peers
both seeking to communicate together anonymously. routesim can
model the two approaches and evaluate the benefit of rendezvous-
based protocols, with respect to users’ activity and the path length.
The user model is based on a real-world Email sending patterns
built from a dataset of University staff members. The dataset was
built from meta-info contained within the sendmail logs from the

0 50 100 150 200 250 300 350
Days to first compromise

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

AuthorX
AuthorY
AuthorX with Bow-Tie
AuthorY with Bow-Tie

Figure 11: Influences individual behaviours: comparing the
email behavior of two authors with/without Bow-Tie de-
signs.

university SMTP server over a period of two months with the send-
ing habits of hundreds IT staff members from the authors’ faculty. 5

The network churn rate between each epoch is 3% and the number
of hops to destination or rendezvous is 3. Figure 10 shows an eval-
uation of a typical Email sending pattern derived from the dataset.
We see that designs with rendez-vous protocol have better security
and in combination with Bow-Tie are significantly more secure.
Given those results, existing deployments, such as Nym, may find
valuable to incorporate recipient anonymity. However, there is a
cost to obtaining recipient anonymity this way; it doubles the band-
width consumption for asynchronous messaging, and requires the
establishment of an out-of-bound solution to propagate address-
ing information. Many different approaches have been detailed in
the literature [40, 66, 70]. Privately accessing and retrieving the
mailbox contents [25] is also a potential approach to gain recipient
anonymity, yet would limit the size of the anonymity set to the
number of mailboxes stored on a given mixnode and be significantly
more CPU costly.

7.2 Evaluating Individual Risks
Our earlier analysis considered a simple client. We now consider
and evaluate complex personal usage behaviors. We built several
datasets containing typical weekly behavior from years of our own
email communication patterns and fed them into routesim. Know-
ing how we behave in a typical period of one week, routesim
plays a sequence of events (i.e. sending emails)—that statistically
matches our recorded behavior—indefinitely through time. Note
that routesim could also simulate other usage patterns, provided a
dataset is available.

In routesim, many configuration options are possible. For this
experiment, we assume each user has a set of ten contacts, use the
Bow-Tie topology with a 3% Mixnode churn rate and an epoch
of 1 day, set the route length of the Mix network is three, and
assume that the Mix network exposes a protocol suite for asynchro-
nous messaging offering anonymity for both communicants (i.e.
a naming scheme and a rendezvous protocol). The Mix network
carries the same quantity of data as was typically contained in the
authors’ sending email patterns, rounded up to a product of the
Mixnet message payload length (2048 bytes). Essentially, a sender
sends the (end-to-end encrypted) message to the recipient’s Mail-
box located within one of the Mixnodes. The recipient anonymously
retrieves the Mailbox contents on demand. The protocol to check
and retrieve the encrypted content is assumed to be derived from
5See Appendix B for ethics details.



Preprint ’22, , 2022, , Ma, and et al.

a PIR protocol [9] to avoid leaking which Mailbox is queried to
the Mixnode. In routesim, we assume (it is configurable) that a
user’s Mailbox changes its location at each epoch (i.e., handled by
a different Mixnode selected at random in the first 𝑁 − 1 layers).
We advise Mixnet developers to never store any encrypted content
on a Mixnode that can exit to the clearnet, hence to never store
Mailboxes on a Mixnode that can be placed in the 𝑁𝑡ℎ layer.

Figure 11 shows the time to compromise the first pair6 of com-
municants with email-like communication patterns. The simulated
users AuthorX and AuthorY have a different email-like communica-
tion pattern in terms of frequency leading to a significant difference
in the time to first compromise. In this simulation, users change
their mailbox location every day, meaning that all emails sent the
same day to the same contact are all guaranteed to be exposed to
the same Mailbox. Therefore, with this design choice, the more the
user’s emails are sparsely sent in time, the more likely they are
exposed to different contact’s Mailboxes. Different design choices
would lead to different results. For example, users could decide to
change their Mailbox location not on a day-by-day basis, but rather
dependent on the number of email messages which they fetched.
Eventually such design choice needs to be enforced by the Mixnet
developers, and can be evaluated with routesim.

In the same vein, given an established design such as Bow-Tie,
end users such as journalists or whistleblowers can use routesim
to evaluate their chance of being deanonymized assuming a realistic
mix adversary. Results obtained may help them evaluating whether
the risks are worth their information.

8 RELATEDWORK
The literature is rich of Mixnets proposals [3, 4, 6, 8, 10, 14, 18, 25,
27, 36–38, 40, 49, 51, 61, 68, 70, 71]. Many of them put forward an
anytrust assumption over the network routes to address the insider
threat. Some of these proposals, such as Atom [36] or XRD [38],
discuss how to shape the network for this anytrust assumption to be
more realistic. These discussions relate to our approach. However,
they are applied to radically different Mixnet designs than the
continuous-time mix design [13, 17, 51]. In our work, we shape the
network to minimize the adversarial impact. We observe that the
research effort presented here is necessary to the practicability of
those proposed designs.

Some works investigate the detection and mitigation of active
malicious mixes and combine it with the Mixnet construction de-
sign. Dingledine and Syverson [23] discuss how to build a mix
cascade network through a reputation system that decrements the
reputation score of all nodes in a failed cascade, and increments the
reputation of nodes in a successful cascade. It improves the reliabil-
ity of mixnet and reduce the chance that an adversary controls an
entire cascade. However, some pitfalls are introduced by the repu-
tation system and the actual deployment is still a complex problem.
Leibowitz et al. propose Miranda [41], another reputation-based
design that detects and isolates active malicious mixes. They also
discuss how to construct the cascade mixnet based on their faulty
mixes detection scheme and a set of cascades are selected randomly
for the upcoming epoch. This design relies on a fixed set of mixes
and it is still challenging to deploy in the real world.

6The authors are always the message senders in these pairs.

Nym [17] network is designed to support privacy-enhanced ac-
cess to applications and services with metadata being protected
based on Loopix [51]. The stratified network is periodically con-
structed from a large number of available mixes run by profit-
motivated mix operators, who are compensated for their investment
with payment in Nym’s cryptocurrency tokens. Nym’s design [18],
is sketched out in a whitepaper, presenting their solution to con-
struct a Mixnet by randomly selecting mixes weighted by mixes’
stake and randomly placing them into layers. Nym uses a verifiable
random function (VRF) [46] to facilitate the features of decentraliza-
tion in their blockchain-based ecosystem. In our work, we expect
that sampling from bandwidth is a good proxy to the process of
sampling from stake and we abstract Nym’s sampling as a sam-
pling by bandwidth, with meaningful bandwidth values borrowed
from the Tor network (instead of ad-hoc stake values) as BwRand
(Section 5.2).

Guirat and Diaz [28] investigate how to optimize the Mixnet
parameters for a continuous-time mix network, and focus on the
number of layers and the width of the network (i.e., the number of
nodes in each layer). They theoretically analyze the fully compro-
mised rate for a continuous-time mix network in a designated shape
and they mainly concentrate on optimizing the Mixnet parameters
using the Shannon entropy [20, 58, 60] as the guiding metric.

9 CONCLUSION
In this paper, we address the question of ”how to shape the Mixnet
to strengthen the anytrust assumption?” and study the design of
Mixnet configuration and routing that limits the adversary’s power
to deanonymize traffic. We proposed Bow-Tie, a practical and effi-
cient novel design for mix network engineering; we present the first
thorough security analysis of stratified Mixnet against reasonably
realistic adversaries; we develop the routesim simulator that can
easily calculate users’ expected deanonymized probability. In the fu-
ture, we will further explore the case with untrusted configuration
server.

ARTIFACT
routesim is a Rust software open-sourced for the reviewing process
at https://anonymous.4open.science/r/routesim-4735/. MTG and var-
ious python scripts are open-sourced at https://anonymous.4open.
science/r/MixnetConstructionSimulator-FD0F/

REFERENCES
[1] Dakshi Agrawal and Dogan Kesdogan. 2003. Measuring anonymity: The disclo-

sure attack. IEEE Security & privacy 1, 6 (2003), 27–34.
[2] Greubel Andre, Dmitrienko Alexandra, and Kounev Samuel. 2018. Smartor:

Smarter tor with smart contracts: Improving resilience of topology distribution in
the tor network. In Proceedings of the 34th Annual Computer Security Applications
Conference. 677–691.

[3] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication over
Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, 551–
569. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
angel

[4] Yawning Angel, George Danezis, Claudia Diaz, Ania Piotrowska, and David
Stainton. 2017. Katzenpost Mix Network Specification. https://github.com/
Katzenpost/docs/blob/master/specs/mixnet.rst. (2017).

[5] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. 2007. Denial
of service or denial of security?. In Proceedings of the 14th ACM conference on
Computer and communications security. 92–102.

https://anonymous.4open.science/r/routesim-4735/
https://anonymous.4open.science/r/MixnetConstructionSimulator-FD0F/
https://anonymous.4open.science/r/MixnetConstructionSimulator-FD0F/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://github.com/Katzenpost/docs/blob/master/specs/mixnet.rst
https://github.com/Katzenpost/docs/blob/master/specs/mixnet.rst


Stopping Silent Sneaks: Defending against Malicious Mixes with Topological Engineering Preprint ’22, , 2022, ,

[6] David Chaum. 1988. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of cryptology 1, 1 (1988), 65–75.

[7] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri De
Ruiter, and Alan T Sherman. 2017. cMix: Mixing with minimal real-time asymmet-
ric cryptographic operations. In International conference on applied cryptography
and network security. Springer, 557–578.

[8] David L Chaum. 1981. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[9] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
information retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE, 41–50.

[10] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An
anonymous messaging system handling millions of users. In 2015 IEEE Symposium
on Security and Privacy. IEEE, 321–338.

[11] Alison C Cullen, H Christopher Frey, and Christopher H Frey. 1999. Probabilistic
techniques in exposure assessment: a handbook for dealing with variability and
uncertainty in models and inputs. Springer Science & Business Media.

[12] George Danezis. 2003. Mix-networks with restricted routes. In International
Workshop on Privacy Enhancing Technologies. Springer, 1–17.

[13] George Danezis. 2004. The traffic analysis of continuous-time mixes. In Interna-
tional Workshop on Privacy Enhancing Technologies. Springer, 35–50.

[14] George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion:
Design of a type III anonymous remailer protocol. In 2003 Symposium on Security
and Privacy, 2003. IEEE, 2–15.

[15] George Danezis and Ian Goldberg. 2009. Sphinx: A compact and provably secure
mix format. In 2009 30th IEEE Symposium on Security and Privacy. IEEE, 269–282.

[16] Marie Laure Delignette-Muller, Christophe Dutang, et al. 2015. fitdistrplus: An R
package for fitting distributions. Journal of statistical software 64, 4 (2015), 1–34.

[17] Claudia Diaz, Harry Halpin, and Aggelos Kiayas. 2021. The Nym Network-The
Next Generation of Privacy Infrastructure. Technical Report. Nym Technologies
SA.

[18] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. 2021. The Nym Network.
https://nymtech.net. (2021). Whitepaper. Accessed March 2022.

[19] Claudia Diaz, Steven J Murdoch, and Carmela Troncoso. 2010. Impact of network
topology on anonymity and overhead in low-latency anonymity networks. In
International Symposium on Privacy Enhancing Technologies Symposium. Springer,
184–201.

[20] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. 2002. Towards mea-
suring anonymity. In International Workshop on Privacy Enhancing Technologies.
Springer, 54–68.

[21] Roger Dingledine. 2010. Bittorrent over Tor isn’t a good idea. https://blog.
torproject.org/bittorrent-over-tor-isnt-good-idea/. (2010). Accessed: May 2022.

[22] Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. 2004. Synchronous
batching: From cascades to free routes. In International Workshop on Privacy
Enhancing Technologies. Springer, 186–206.

[23] Roger Dingledine and Paul Syverson. 2002. Reliable MIX cascade networks
through reputation. In International Conference on Financial Cryptography.
Springer, 253–268.

[24] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Ian Goldberg.
2012. Changing of the guards: A framework for understanding and improving
entry guard selection in Tor. In Proceedings of the 2012 ACM Workshop on Privacy
in the Electronic Society. 43–54.

[25] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh.
2021. Express: Lowering the Cost of Metadata-hiding Communication with
Cryptographic Privacy. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 1775–1792. https://www.usenix.org/conference/
usenixsecurity21/presentation/eskandarian

[26] S. Farrel and H. Tschofenig. 2014. Pervasive Monitoring Is an Attack. RFC 7258.
RFC Editor. 1–5 pages. https://www.rfc-editor.org/rfc/rfc7258.txt

[27] Michael J Freedman and Robert Morris. 2002. Tarzan: A peer-to-peer anonymiz-
ing network layer. In Proceedings of the 9th ACM Conference on Computer and
Communications Security. 193–206.

[28] Iness Ben Guirat and Claudia Diaz. 2022. Mixnet optimization methods. Proceed-
ings on Privacy Enhancing Technologies 1 (2022), 22.

[29] Incorporate Gurobi Optimization. 2018. Gurobi optimizer reference manual.
https://www.gurobi.com/documentation/9.1/refman/index.html. (2018).

[30] Aaron D Jaggard, Aaron Johnson, Sarah Cortes, Paul Syverson, and Joan Feigen-
baum. 2015. 20,000 in league under the sea: Anonymous communication, trust,
MLATs, and undersea cables. Technical Report. NAVAL RESEARCH LAB WASH-
INGTON DC.

[31] Aaron D Jaggard, Aaron Johnson, Paul Syverson, and Joan Feigenbaum. 2014.
Representing network trust and using it to improve anonymous communication.
arXiv preprint arXiv:1406.3583 (2014).

[32] Rob Jansen and Aaron Johnson. 2021. On the accuracy of Tor bandwidth esti-
mation. In International Conference on Passive and Active Network Measurement.
Springer, 481–498.

[33] Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul Syverson.
2017. PeerFlow: Secure Load Balancing in Tor. Proc. Priv. Enhancing Technol.

2017, 2 (2017), 74–94.
[34] Aaron Johnson, Rob Jansen, Aaron D Jaggard, Joan Feigenbaum, and Paul Syver-

son. 2015. Avoiding the man on the wire: Improving tor’s security with trust-
aware path selection. arXiv preprint arXiv:1511.05453 (2015).

[35] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013.
Users get routed: Traffic correlation on Tor by realistic adversaries. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security.
337–348.

[36] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. 2017.
Atom: Horizontally scaling strong anonymity. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles. 406–422.

[37] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle. Pro-
ceedings on Privacy Enhancing Technologies 2016, 2, 115–134.

[38] Albert Kwon, David Lu, and Srinivas Devadas. 2020. XRD: Scalable Messaging
System with Cryptographic Privacy. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). USENIX Association, Santa Clara,
CA, 759–776. https://www.usenix.org/conference/nsdi20/presentation/kwon

[39] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed Pri-
vate Messaging Immune to Passive Traffic Analysis. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 711–725. https://www.usenix.org/conference/osdi18/presentation/
lazar

[40] David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping secure com-
munication without leaking metadata. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 571–586.

[41] Hemi Leibowitz, Ania M Piotrowska, George Danezis, and Amir Herzberg. 2019.
No right to remain silent: isolating malicious mixes. In 28th {USENIX} Security
Symposium ({USENIX} Security 19). 1841–1858.

[42] Isis Lovercruft, George Kadianakis, Ola Bini, and Nick Mathewson. 2016. Another
algorithm for guard selection. Technical Report 271. https://gitweb.torproject.
org/torspec.git/tree/proposals/271-another-guard-selection.txt

[43] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah
Sherr. 2018. Understanding Tor Usage with Privacy-Preserving Measure-
ment. In Proceedings of the Internet Measurement Conference 2018 (IMC
’18https://gitweb.torproject.org/torspec.git/tree/proposals/310-bandaid-on-guard-
selection.txt). Association for Computing Machinery, New York, NY, USA,
175–187. https://doi.org/10.1145/3278532.3278549

[44] Pere Manils, Chaabane Abdelberi, Stevens Le Blond, Mohamed Ali Kaafar,
Claude Castelluccia, Arnaud Legout, and Walid Dabbous. 2010. Compromis-
ing Tor Anonymity Exploiting P2P Information Leakage. Research Report. https:
//hal.inria.fr/inria-00471556

[45] J.L. Massey. 1994. Guessing and entropy. In Proceedings of 1994 IEEE International
Symposium on Information Theory. 204–. https://doi.org/10.1109/ISIT.1994.394764

[46] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable random
functions. 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039) (1999), 120–130.

[47] Steven J Murdoch and George Danezis. 2005. Low-cost traffic analysis of Tor. In
2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE, 183–195.

[48] Steven J Murdoch and Robert NM Watson. 2008. Metrics for security and perfor-
mance in low-latency anonymity systems. In International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 115–132.

[49] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2022. Spec-
trum: High-bandwidth Anonymous Broadcast. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA, 229–248. https://www.usenix.org/conference/nsdi22/presentation/
newman

[50] Nym. 2019. The Nym Project’s sphinx implementation. https://github.com/
nymtech/sphinx. (2019). Accessed: April 2022.

[51] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. 2017. The loopix anonymity system. In 26th {USENIX} Security Sympo-
sium ({USENIX} Security 17). 1199–1216.

[52] The Tor Project. CollecTor - Tor Project. https://metrics.torproject.org/collector.
html.

[53] Florentin Rochet and Aaron Johnson. 2019. Towards load-balancing in Prop 271.
Technical Report 310. https://gitweb.torproject.org/torspec.git/tree/proposals/
310-bandaid-on-guard-selection.txt

[54] Florentin Rochet and Olivier Pereira. 2017. Waterfilling: Balancing the Tor
network with maximum diversity. Proceedings on Privacy Enhancing Technologies
2017, 2 (2017), 4–22.

[55] Florentin Rochet and Olivier Pereira. 2018. Dropping on the Edge: Flexibility
and Traffic Confirmation in Onion Routing Protocols. Proceedings on Privacy
Enhancing Technologies 2018, 2 (2018), 27–46.

[56] Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira.
2020. CLAPS: Client-Location-Aware Path Selection in Tor. Association for Com-
puting Machinery, New York, NY, USA, 17–34. https://doi.org/10.1145/3372297.
3417279

[57] Guntram Scheithauer. 2017. Introduction to cutting and packing optimization:
Problems, modeling approaches, solution methods. Vol. 263. Springer.

https://nymtech.net
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea/
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea/
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.rfc-editor.org/rfc/rfc7258.txt
https://www.gurobi.com/documentation/9.1/refman/index.html
https://www.usenix.org/conference/nsdi20/presentation/kwon
https://www.usenix.org/conference/osdi18/presentation/lazar
https://www.usenix.org/conference/osdi18/presentation/lazar
https://gitweb.torproject.org/torspec.git/tree/proposals/271-another-guard-selection.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/271-another-guard-selection.txt
https://doi.org/10.1145/3278532.3278549
https://hal.inria.fr/inria-00471556
https://hal.inria.fr/inria-00471556
https://doi.org/10.1109/ISIT.1994.394764
https://www.usenix.org/conference/nsdi22/presentation/newman
https://www.usenix.org/conference/nsdi22/presentation/newman
https://github.com/nymtech/sphinx
https://github.com/nymtech/sphinx
https://metrics.torproject.org/collector.html
https://metrics.torproject.org/collector.html
https://gitweb.torproject.org/torspec.git/tree/proposals/310-bandaid-on-guard-selection.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/310-bandaid-on-guard-selection.txt
https://doi.org/10.1145/3372297.3417279
https://doi.org/10.1145/3372297.3417279


Preprint ’22, , 2022, , Ma, and et al.

[58] Andrei Serjantov and George Danezis. 2002. Towards an information theoretic
metric for anonymity. In International Workshop on Privacy Enhancing Technolo-
gies. Springer, 41–53.

[59] Andrei Serjantov, Roger Dingledine, and Paul Syverson. 2002. From a trickle
to a flood: Active attacks on several mix types. In International Workshop on
Information Hiding. Springer, 36–52.

[60] Andrei Serjantov and Richard E Newman. 2003. On the anonymity of timed pool
mixes. In IFIP International Information Security Conference. Springer, 427–434.

[61] Emin Gün Sirer, Sharad Goel, Mark Robson, and Doǧan Engin. 2004. Eluding car-
nivores: File sharing with strong anonymity. In Proceedings of the 11th workshop
on ACM SIGOPS European workshop. 19–es.

[62] Robin Snader and Nikita Borisov. 2009. EigenSpeed: secure peer-to-peer band-
width evaluation.. In IPTPS. 9.

[63] Paul Syverson. 2009. Why I’m not an entropist. In International Workshop on
Security Protocols. Springer, 213–230.

[64] Paul Syverson, Roger Dingledine, and Nick Mathewson. 2004. Tor: The second-
generation onion router. In Usenix Security. 303–320.

[65] The Tor Project. 2022. Tor directory protocol, version 3. https://gitweb.torproject.
org/torspec.git/tree/dir-spec.txt. (2022). Accessed: May 2022.

[66] The Tor Project. 2022. Tor Protocol Specification. https://gitweb.torproject.org/
torspec.git/tree/tor-spec.txt. (2022). Accessed: May 2022.

[67] Matthew Traudt, Rob Jansen, and Aaron Johnson. 2021. Flashflow: A secure speed
test for tor. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE, 381–391.

[68] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
2017. Stadium: A distributed metadata-private messaging system. In Proceedings
of the 26th Symposium on Operating Systems Principles. 423–440.

[69] Nik Unger and Ian Goldberg. 2015. Deniable Key Exchanges for Secure Mes-
saging. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). Association for Computing Machinery, New
York, NY, USA, 1211–1223. https://doi.org/10.1145/2810103.2813616

[70] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. 137–152.

[71] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
2012. Dissent in numbers: Making strong anonymity scale. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12). 179–182.

[72] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields. 2004.
The predecessor attack: An analysis of a threat to anonymous communications
systems. ACM Transactions on Information and System Security (TISSEC) 7, 4
(2004), 489–522.

A GUARD’S POSITION CONSIDERATIONS
In Section 4.2, we present the Guard idea for Continuous-time
mixnets which aims at reducing users’ exposure to malicious mixn-
odes. Choosing the position of the Guard in users’ path of length 𝐿

is an interesting question leading the following analysis:

• Choosing the last layer could allow a malicious guard to per-
form re-identification attacks based on prior knowledge. For
example, if the network is used to connect to user-dependent
destinations (Services, set of contacts), then the a priori
knowledge of this relation would reveal the identity of the
mixnetwork user.
• Choosing a layer in [2..𝐿−1] has the advantage, compared to

Tor, to not directly bind the long-lived guard to the user. That
is, discovering the identity of a user’s guard does not lead
directly to the user, i.e. the Guard’s ISP can not be compelled
to reveal the client IP addresses connecting to the guard relay.
Low-latency anonymity networks such as Tor cannot move
the guard’s position into some layer [2..𝐿−1] as their threat’s
model expect end-to-end traffic confirmation to succeed in
deanomymizing a user-destination relation. Therefore, for
a low-latency design, moving the guard to a layer [2..𝐿 −
1] would achieve nothing. We do not have this issue with
Continuous-time mix-networks.

• Choosing the first layer has a massive performance advan-
tage in continuous-time mix networks using Sphinx pack-
ets [15], the state of the art packet format specification for
Continuous-time mix networks. Indeed, currently, a full cryp-
tographic handshake is performed for each Sphinx packet,
which is needlessly costly when all packets are sent to the
same first node (the guard), and only one cryptographic
handshake for a determined session period would lead to
much lower performance impact.
One possible method is for clients to perform L-1 Sphinx pro-
cessing (for hops 2..𝐿) and 1 TLS processing for the first hop.
We do a small scale experiment for preliminary indicative
results. We compare the throughput of a Rust sphinx im-
plementation [50] with a AES-128-GCM openssl benchmark,
the most used cipher in TLS1.3, over 1024 bytes blocks. The
choice of 1024 bytes comes from the default Sphinx packet
size choice. Over a AMD Ryzen 7 3700X, we were able to
perform 8261 Sphinx unwrap/s for a payload of 1024 bytes.
With AES-128-GCM, we processed ≈ 500× more packets per
seconds. Moreover, TLS has a maximum payload size of
16KiB, which means that multiple sphinx packets can be
encrypted within the same record, leading to a performance
improvement of ≈ 600×, on average from our benchmarks.

Therefore, choosing the guard layer position is a trade-off be-
tween user anonymity and performance. Users’ anonymity benefits
from guards in layer [2..𝐿−1], while network performance benefits
from guard position in the first layer, and a enhanced first packet
processing design described next.

Our experimental analysis and results in this paper are indepen-
dent of the Guard’s position within user’s path. We leave choice of
trade-off to the implementer.

B EMAIL DATASET ETHICS
The University email dataset collection ethics application was filed
with the faculty’s ethics process (application #41564). This was
approved prior to the IT department initating the collection of
the data. Only select meta-data (from email headers) was collected
relevant to email sending patterns. All personal information in the
headers was pseudonymized before we were given access.

C EMPIRICAL RESULTS OF RANDOM PATH
SELECTION

We evaluate the security and performance of Bow-Tie and reference
methods with random path selection using the metric of compro-
mised fraction of paths and expected queuing delay. Note that the
adversary’s best resource allocation policy under random path se-
lection is to inject as many malicious Mixnodes as possible, since
the quantity matters more than bandwidth. In our simulation, we
instantiate this best strategy as generating thousands of Mixnodes
with a minimum of 1MBps, since there could be an infinite number
of malicious Mixnodes if we do not set a lower bound.

(1) Security evaluation. We set the compromised fraction of paths
𝐹𝑟 in a stratified 𝑙-layer Mixnet using random message forwarding
as

https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://doi.org/10.1145/2810103.2813616


Stopping Silent Sneaks: Defending against Malicious Mixes with Topological Engineering Preprint ’22, , 2022, ,

BwRand
RandRand
RandBP
Bow-Tie

C
ul

m
ul

at
iv

e 
Pr

ob
.

0
0.2
0.4
0.6
0.8
1.0

Compromised Fraction of Paths
10% 20% 30% 40%

(a) Probability distribution on
compromised fraction of paths
with ℎ = 0.75.

BwRand
RandRand
RandBP
Bow-Tie

C
om

pr
om

is
ed

 fr
ac

tio
n

0%

10%

20%

30%

Sampling fraction h
0.4 0.6 0.8 1.0

(b) Average compromised frac-
tion of paths for ℎ between 0.35
to 0.95.

Figure 12: Compromised fraction of paths using random
path selection, 𝛼 = 0.2.

𝐹𝑟 =

𝑙∏
𝑖=1

Number of Malicious Mixnodes in Layer 𝑖
Number of Mixes in Layer 𝑖 . (4)

Figure 12a shows that, when ℎ = 0.75, BwRand limits the com-
promise rate between 5% and 9% with relatively higher security
guarantee in comparison to other methods. By looking at Figure 12b,
we also see that BwRand mitigates the adversary’s compromis-
ing power in a wide range of ℎ and provides the best protect
in this case. Therefore, BwRand coupled with a uniform path se-
lection may appear to be an interesting candidate. However, as
shown in Figure 12b, the best compromise rate that we can get
from BwRand&Random path selection (RPS) is around 1.89% with
ℎ = 0.35, which is comparable to the worst compromise rate that
we obtain from Bow-Tie&Bandwidth-weighted path selection (BPS)
is around 1.92% with ℎ = 0.35 (Figure 6b). Besides, BwRand&RPS
shows a dramatic increase as ℎ increase while Bow-Tie&BPS enjoys
a stable security level.

(2) Performance evaluation. Suppose there are 𝑛 nodes in one
layer, then the expected queuing time in random path selection
setting for this layer is:

𝑇𝑟 =

𝑛∑︁
𝑖=1

𝑛−1𝑢𝑖 (2 − 𝑛−1𝑢𝑖Λ)
2(1 − 𝑛−1𝑢𝑖Λ)

. (5)

RandRand RandBP Bow-Tie BwRand

Pr
op

ag
at

io
n 

Ti
m

e 
(s

ec
)

0.5
1.0

10.0
20.0
30.0

Message Arriving Rate (msg/sec)
Λ=10 Λ=40 Λ=70 Λ=100

Figure 13: Expected queuing delay, with message arriving
rate Λ for the Mixnet based on random path selection.

Figure 13 shows the expected delay due to queuing for a message
going through the Mixnet with random path seleciton. Still, algo-
rithms that sample using bandwidth (i.e., BwRand and Bow-Tie)
achieve relatively low processing delay and outperform random
sampling schemes. However, the Mixnet takes more time to handle

handles one order of magnitude low message arrival rates than in
Bandwidth-weighted path selection.

D ADVERSARY RESOURCE ALLOCATION

bwrand randrand randbp bow-tie

Peak

Peak

Peak

Peak

0.2%
0.4%
0.6%
0.8%

C
om

pr
om

is
ed

 F
ra

ct
io

n 
of

 P
at

hs

0.74%
0.76%
0.78%

0.8%

0.65%
0.7%

0.75%
0.8%
0.5%

1%
1.5%

2%

Injected Malicious Mixes Bandwidth (MBps)
0 50 100 150

Figure 14: Fully compromised fraction versus bandwidth
per injected malicious node. The adversary controls 2280
MBps bandwidth which is allocated to a number of equal-
size Mixnodes.

The results, displayed in Figure 14, show that the compromised
fraction of the adversary (Section 5.1) for different algorithms. The
optimal capacity sizes of Mixnodes that maximizes the compromis-
ing rate are aligned with the information shown in Figure 4 and
also confirms our choices of best resource allocation strategy (in
Section 5.3).



Preprint ’22, , 2022, , Ma, and et al.

Algorithm 2: Configuring Non-guard Layers
Input: candidate mix pool excludes guard nodes 𝑃 ′ = 𝑃 −𝐺 ;

sampling fraction ℎ.
Output: Configured two layers 𝐿𝑙 , 𝐿𝑟 for upcoming epoch 𝑖 .

1 𝐿𝑙 , 𝐿𝑟 ←− ∅
2 𝑃𝐴𝑐𝑡𝑖𝑣𝑒 ←− sample 2

3ℎ ∗ 𝑃𝑏𝑤 Mixnodes uniformly from 𝑃 ′

3 𝑛 ←− |𝑃𝐴𝑐𝑡𝑖𝑣𝑒 | // Binpacking placement starts

4 𝑊 ←− ∅
5 for 𝑗 ←− 0 to n do // prepare weights for ILP

6 𝑊 ←−𝑊 ∪ 𝑏 𝑗

7 𝑐 ←− ( ℎ3 + 𝜖) ∗ 𝑃𝑏𝑤 // expected capacity for each layer

8 𝑙 ←− 2 // number of projected layers

9 𝐿𝑙 , 𝐿𝑟 ←− 𝐼𝐿𝑃 (𝑊, 𝑙, 𝑐)
10 return 𝐿𝑙 , 𝐿𝑟

Algorithm 1: Configuring Guard Layer
Input: candidate mix pool 𝑃 with 𝑃𝑏𝑤 bandwidth; sampling

fraction ℎ; tolerance fraction 𝜏 .
Output: configured guard layer 𝐿𝑔 for upcoming epoch 𝑖; updated

guard set 𝐺 .
1 if first call then // Initialize the guard layer

2 Sample ℎ
3 ∗ 𝑃𝑏𝑤 nodes from 𝑃 , weighted by bandwidth, as a set

𝐴𝐺

3 Sample 𝜏 ∗ ℎ
3 ∗ 𝑃𝑏𝑤 nodes from 𝑃 −𝐴𝐺 , weighted by

bandwidth, as a set 𝐵𝐺
4 𝐺 ←− 𝐴𝐺 ∪ 𝐵𝐺 // Give nodes in 𝐴𝐺 and 𝐵𝐺 a common

label 𝐺

5 Place all 𝐴𝐺 nodes into guard layer 𝐿𝑔
6 foreach 𝑎𝑔 in 𝐴𝐺 do
7 𝑡𝐴𝐺 ←− 1 // Track working time as a guard

8 return 𝐿𝑔 , 𝐺
9 else // Maintain the guard layer

10 Update Mixnodes on/off status
11 Update Mixnodes stability metric (WMTBF )
12 𝐺, 𝐷𝐺 ←− MaintainGuardSet(𝐺)

13 foreach 𝑔 in𝐺 −𝐷𝐺 do
14 if 𝑡𝐴𝐺 > 0 then // Inherit old online 𝑎𝑔

15

16 Move node 𝑔 to 𝐴𝐺

17 𝐵𝐺 ←− 𝐺 −𝐷𝐺 − 𝐴𝐺

18 𝛿 ←− TotalBw (𝐴𝐺 ) −𝑇𝑙𝑜𝑤
19 if 𝛿 < 0 then // Insufficient 𝑎𝑔

20 𝐴𝐺 + = BSSample(𝐵𝐺 , |𝛿 |) // Add |𝛿 | nodes from 𝐵𝐺

21 Place all 𝐴𝐺 nodes into guard layer 𝐿𝑔
22 foreach 𝑎𝑔 in 𝐴𝐺 do
23 update 𝑡𝐴𝐺 // Track working time as a guard

24 return 𝐿𝑔 , 𝐺
25 Function MaintainGuardSet(𝐺):
26 Gather offline nodes in 𝐺 to a subset 𝐷𝐺
27 𝛿𝑙 ←− TotalBw(𝐺 −𝐷𝐺) −𝑇𝑙𝑜𝑤
28 𝛿ℎ ←− TotalBw(𝐺 −𝐷𝐺) −𝑇ℎ𝑖𝑔ℎ
29 if 𝛿𝑙 < 0 then // Too few online guards.

30 𝐺 + = BSSample(𝑃 −𝐺 , min { |𝛿𝑙 | , TotalBw(𝑃 −𝐺)})
31 else if 𝛿ℎ > 0 then// Too many online guards

32 𝑆 ←− {𝑔 with 𝑡𝐴𝐺 = 0}
33 𝐺 − = IBSSample(𝑆 , min { |𝛿ℎ | , TotalBw(S)})
34 return𝐺,𝐷𝐺

35 Function BSSample(𝑇 , 𝑘):
36 Normalize WMTBF to 0 − 1 scale for nodes in𝑇

37 Sort all nodes by bw×WMTBF in descending order
38 𝑆 ←−Mixnodes that add up to min {𝑘, TotalBw(T)}

bandwidth in order
39 𝑇 − =𝑆

40 return 𝑆

41 Note: function IBSSample() is the same as BSSample() except
sorting all nodes in an inverse order.

E ALGORITHMS


	Abstract
	1 Introduction
	2 Background and Motivation
	3 Threat Model
	4 Bow-Tie Design
	4.1 Bow-Tie Characteristics
	4.2 Bow-Tie Detail Description
	4.3 Bandwidth Discussion

	5 Methodology
	5.1 Security Metrics
	5.2 Reference Algorithms
	5.3 Adversary Modeling
	5.4 Adversary Resource Allocation

	6 Empirical Analysis of Bow-Tie
	6.1 Tools
	6.2 Analysis
	6.3 The necessity of both client guard logic and guard layers

	7 Influence of Protocols and User Behavior
	7.1 Influence of Protocol Designs
	7.2 Evaluating Individual Risks

	8 Related Work
	9 Conclusion
	References
	A Guard's Position Considerations
	B Email Dataset Ethics
	C Empirical Results of Random Path Selection
	D Adversary Resource Allocation
	E Algorithms

