
Proposing a Framework for Evaluating Learning Strategies in
Vehicular CPSs

Bastian Havers
havers@chalmers.se

Volvo Cars, Chalmers University
Sweden

Marina Papatriantafilou
ptrianta@chalmers.se
Chalmers University

Sweden

Ashok Koppisetty
ashok.chaitanya.koppisetty@volvocars.com

Volvo Cars
Sweden

Vincenzo Gulisano
vincenzo.gulisano@chalmers.se

Chalmers University
Sweden

ABSTRACT
Highly-connected Vehicular Cyber-Physical Systems (VCPSs) offer
manifold opportunities for distributing learning across the con-
tained vehicles, road-side units and servers. However, simulating
and evaluating particular distributed learning schemes poses a dif-
ficult problem in requiring realistic modeling of the vehicular fleet,
communication, and the learning itself. In this work, we postulate
a set of requirements for a framework simulating a complete learn-
ing workflow in a VCPS, and propose a modular architecture for
it. Using a prototype implementation, we show with an example
experiment the capabilities the proposed framework delivers for
evaluating novel learning schemes in custom scenarios.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
Simulation tools; • Computer systems organization → Em-
bedded and cyber-physical systems.

KEYWORDS
Vehicular Cyber-Physical Systems, Distributed Learning, Machine
Learning, Simulation

ACM Reference Format:
Bastian Havers, Marina Papatriantafilou, Ashok Koppisetty, and Vincenzo
Gulisano. 2022. Proposing a Framework for Evaluating Learning Strategies
in Vehicular CPSs. In 23rd International Middleware Conference (Middleware
’22), November 7–11, 2022, Quebec, QC, Canada. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3564695.3564775

1 INTRODUCTION
Using Machine Learning (ML) in Vehicular Cyber-Physical Systems
(VCPSs) of smart and connected vehicles has shown manifold valu-
able applications like object recognition from visual data [1], vehicle
maneuver planning [16, 23], or driver intention recognition [2, 28].

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9917-3/22/11. . . $15.00
https://doi.org/10.1145/3564695.3564775

Applications like these for smart driver assistance functionality are
projected to deliver fully autonomous driving in the near future.
As the data fed to the underlying ML models is usually sensed by
vehicles while the training of such models is performed centrally,
vehicle manufacturers and fleet operators need to retrieve raw data
from the vehicles. This can happen either via sporadic physical
access to vehicles or frequent wireless transmission. While the lat-
ter is preferable to access fresh data, it nonetheless incurs variable
costs for cellular broadband usage1 (this effect can be alleviated
through smart preprocessing/compression on the edge [14, 24], but
the issue of scaling remains). Notice that both approaches share the
risk of potential exposure of sensitive user data at the central data
center, which should be minimized according to privacy regulations
such as GDPR. Central data gathering can thus hinder scalability
of the training of models going forward due to rising transmission
costs and legal requirements. Such shortcomings can be alleviated
by alternatives utilizing the computational power on the system’s
edge, i.e., the vehicles’ onboard devices.

The spectrum of those alternatives spans from Federated Learn-
ing (FL) [6, 8, 10, 20], where a central server aggregates only model
parameters (instead of raw data) from the edge, to Gossip Learn-
ing (GL) [18, 26, 30], in which devices communicate their models
directly with each other without central coordination. Comparing
which of these approaches best suits the needs of a VCPS in question
can be difficult due to the variable system dimensions. Leaving out
the option of data collection via physical access due to its imprac-
ticality (e.g. stale data, hard to scale to large fleets), some of such
dimensions include vehicular on-board capabilities, available com-
munication channels (e.g. can vehicles employ vehicle-to-vehicle
communication or only vehicle-to-cloud?), individual vehicle us-
age patterns dictating when vehicles are turned on and how they
are moving about (influencing for example network coverage at a
vehicle’s location or proximity to other vehicles), the data distri-
bution in the fleet [9] and fleet size. Taken together, these forbid a
one-size-fits-all solution to decentralized learning in a VCPS.

It is costly, potentially slow, risky, and impractical to evaluate
decentralized learning approaches directly in the actual fleet due to,
among others, the complexity and safety requirements surrounding

1While cellular broadband costs have fallen sharply over the past years [37], the
data amounts required to train well-performing modern ML models such as Deep
Neural Networks (DNNs) over multi-dimensional data (e.g., images) are growing
approximately in proportion to increasing model complexity [12], potentially offsetting
decreased transmission costs per byte sent.

22

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3564695.3564775
https://doi.org/10.1145/3564695.3564775
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564695.3564775&domain=pdf&date_stamp=2022-11-22

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada Bastian Havers, Marina Papatriantafilou, Ashok Koppisetty, and Vincenzo Gulisano

on-board software. Thus, a framework able to accurately simulate
learning processes inside a VCPS, allowing the extraction of custom
metrics that make various learning approaches comparable and
parameterizable at lower costs and higher speeds, is needed before
turning to real-world test runs.

In this paper, we collate the requirements such a framework
needs to fulfill in order to help OEMs and fleet operators in testing
and evaluating practical alternatives to centralized ML, propose
a general modular architecture for such a framework to guide its
design, and show example results obtained with a prototype imple-
mentation that we have developed.

2 RELATEDWORK
To the best of our knowledge, no single framework exists that
answers all challenges mentioned in § 1. Nonetheless, many com-
plementary tools have been developed. Since we aim at discussing
the challenges and needs of a comprehensive framework rather than
specific implementations of it, we list and discuss some relevant
related examples here.

There exist several established tools to simulate vehicular traffic,
for example SUMO [19] and VISSIM [11]. Coupled with network
simulators such as OMNet++ [34] or NS3 [4], these can yield com-
bined tools to simulate and evaluate Vehicular Ad-Hoc Networks
(VANETs). An overview of such combined tools can be found in
[36], for example VEINS [31] or ezCar2x [29]. These tools both
enable the testing of applications relying on vehicle-to-vehicle and
vehicle-to-cloud communication and could serve as a basis for the
framework proposed in this work. However, their starting point is
the simulation of vehicles’ trajectories, while fleet operators and
vehicle manufacturers typically have access to unbiased real-world
vehicle trajectories and may thus not require full-blown traffic sim-
ulations, which may add extra overhead. It should be noted that
SUMO allows to generate routes from existing GPS data and can
thus allow experimentation exclusively with real data.

Several frameworks focus solely on the aspect of learning in
a distributed system, omitting any connection to VCPSs. Besides
the lacking ability to implement vehicular dynamics directly, they
offer no direct or only limited support for more advanced or hybrid
learning strategies. Flower [3] is an open-source framework that
allows to implement and experiment with various flavors of FL on
actual edge devices and single-machine setups and is flexible in
its support for various ML frameworks. However, its focus lies on
supporting FL only; thus, support for other types of distributed
learning such as GL is lacking. More straightforward tools such
as FLSim [35] offer, after some customization, a stripped-down
but also less feature-rich experimentation with FL strategies. The
framework TensorFlow Federated [33] offers "Federated Analytics"
functionality for more varied federated computations. However, for
implementing strategies such as GL [15], no singular framework
(comparable for example to Flower) could be found by the authors
of this paper.

In [7], the authors explore and evaluate one approach to GL in a
VCPS by combining the SUMO traffic andOMNet++ communication
simulators with the KerasML framework [5]. However, as that work
aims at evaluating only GL, it remains open if their experimentation

V2X

V2C

V2X

RSU

cloud server

P

V2C + V2X

travel path

Figure 1: Sketch of aVCPS. Via V2C (vehicle-to-cloud), any car
can communicate with the cloud server, while V2X (vehicle-
to-anything) is local-only: between cars, and cars and road-
side units (RSUs). Each car (see inset) collects data to train
an ML model (generally, also cloud server and RSU are ca-
pable of training). Vehicular dynamics are dictated by their
travel paths. Cars that are turned off (see: parked grey car)
temporarily do not partake in the VCPS.

framework would suit the needs of a more flexible tool that allows
even for hybrid solutions and simulated on-board deployment.

In summary, while all elementary parts of the sought-after frame-
work exist, no single tool covers all required dimensions in the
appropriate depth, and the complete design of such a unifying
framework remains open.

3 PROBLEMS AND REQUIREMENTS
Offering a framework to aid in developing, evaluating, and opti-
mizing strategies for learning from data gathered on the edge of
a VCPS poses several challenges. Such a framework must be able
to take the specifics of a highly evolving, connected vehicular fleet
into account both on the level of the individual vehicle and the
whole fleet. Furthermore, sufficiently realistic modeling of various
forms of communication between various actors in the system is
required, as well as modeling of the learning aspect itself. Eventu-
ally, all these aspects have to be simulated by taking into account
the real-time behavior of the various components.

The learning VCPS and the contained simulated agents are
sketched in Figure 1: Vehicles, equipped with an on-board unit
to transform data into an ML model (see inset), a cloud server, con-
nected to the vehicles via a V2C (vehicle-to-cloud) connection, and
RSUs (Road-Side Units) that can communicate with the vehicles via
short-range V2X (vehicle-to-anything) and the cloud server via a
wired connection.

Preliminaries. To define the requirements of the framework in
detail, we introduce a few key concepts: A learning problem defines
a real-world problem an analyst wants to solve, e.g. the predictive
maintenance of a certain component of the vehicle. Solving this

23

Proposing a Framework for Evaluating Learning Strategies in VCPSs Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada

learning problem requires the collection of relevant data by the ve-
hicle to learn from, with the distribution of data potentially varying
strongly between vehicles. This data is then processed using Ma-
chine Learning, which creates and iteratively updates an ML model
of the data, using techniques that span from supervised ones (where
ground truths for each data instance are accessible, e.g. generated
by humans or sensors) to semi-supervised or unsupervised ones
(where no ground truth exists, for example when trying to identify
anomalies or when clustering data). The learning problem is solved
once one can make predictions with the ML model satisfying some
requirements for the prediction’s accuracy (for supervised learning,
this can be measured through testing by for example the ratio of
correct vs. wrong predictions or a prediction’s closeness to a ground
truth; for unsupervised learning, this could be a measure for the
performance of the clustering).

How the learning problem is solved is defined through the learn-
ing strategy, describing how data and models are exchanged be-
tween vehicles and other actors in the system, and how and where
models are trained and potentially tested. Two example learning
strategies for supervised learning are the following2:

Fe
de
ra
te
d
Le
ar
ni
ng

The strategy proceeds in rounds. In each round, the cloud server
selects a subset of vehicles and transmits to them a so-called
global model. Each receiving vehicle 𝑣𝑖 uses its local data to fine-
tune (retrain) the global model locally, then sends the retrained
model 𝑤𝑖 back to the cloud server. The latter aggregates the
received models into a new global model𝑤 , using for example
Federated Averaging: 𝑤 =

∑
𝑖 𝑤𝑖 · 𝑑𝑖/(

∑
𝑗 𝑑 𝑗), where 𝑑𝑘 is the

data amount on vehicle 𝑘 (as presented in [22]).

O
pp
or
tu
ni
st
ic
∼ Each vehicle 𝑣𝑖 begins by training its own local model. Upon

getting close in space to another vehicle 𝑣 𝑗 , both vehicles ex-
change their models𝑤𝑖 ,𝑤 𝑗 , retrain the received model, and send
it back to the sender, who aggregates the received model with
its original model. Thus, each vehicle plays the role of a cloud
server in FL for all vehicles in its vicinity (as presented in [7]).

Amajor aspect of a VCPS affecting the feasibility of various learn-
ing strategies is the different modes of communication between
actors. We differentiate two main types:

a) Long-range cellular Vehicle-to-Cloud (V2C): Vehicles can em-
ploy metered cellular connections to connect with cellphone
towers, using e.g. 4G/LTE or 5G [21] communication technol-
ogy. As cellphone towers are connected to the Internet, V2C
allows vehicles to communicate with servers located at the vehi-
cle manufacturers. Communication speeds achievable via V2C
are the same as those achievable by mobile phones using the
same cellular technology and can range from 1000 to more than
10000 KB/s in ideal conditions. As sketched in Figure 1, the cloud
server can, barring coverage issues stemming from e.g. tunnels,
connect to any vehicle that is turned on.

b) Short-range Vehicle-to-X (V2X): This second family of con-
nections is more short-ranged. It encompasses various stan-
dards such as IEEE 802.11p (relying on WiFi) or the more recent
Cellular-V2X (relying on 4G/5G) to enable vehicle-to-vehicle

2Note that, implicitly, it is assumed that in these approaches the ground truth of the
learning problem can be generated on the vehicles themselves

communication (V2V) or the communication via and with road-
side units (RSUs). Line-of-sight range of these connections can
exceed 1000 m, although this range is reduced in the presence
of obstacles [27].

The viability of V2X communication is strongly dependent on
the vehicles’ spatial dynamics, i.e., how and when they move along
a given network of roads to come into proximity of other vehicles
and RSUs. As an example, Figure 1 shows each vehicle’s travel path,
dictating encounters in the VCPS.

Requirements list. Using the above concepts and definitions, the
framework should eventually allow the user to evaluate, for a given
learning problem, spatial dynamics and modes of communication,
a specific learning strategy using metrics relevant to the user.

Based on our own experiments with evaluating and refining
learning strategies in a VCPS (for example as part of the Edge Lab
initiative [32]), as well as reports and research from various OEMs
[8, 13], we have postulated the following key requirements for the
sought-after framework:

(1) Realistic fleet model. The framework needs to be able to model
the dynamics of each vehicle in a fleet, consisting of the ve-
hicle’s spatial trajectory as defined by real mobility data and
its current state, which is depending on the state of the other
system actors as well as external factors (e.g., a vehicle could be
turned off during the system’s evolution by the driver, making
it unavailable).

(2) Realistic ML support. To solve the learning problem, the actors in
the system need to be able to perform the training, exchange, and
testing of ML models, and do this in accordance with real-world
hardware capabilities of modern vehicles. Support for various
types of ML models is required to be able to tackle the manifold
learning problems arising in VCPSs, and to handle various data
distributions and preprocessing steps that the learning problem
dictates.

(3) Realistic communication model. Taking into account the two
forms of communication laid out previously, the framework
has to realistically model how vehicles communicate with each
other, with RSUs, and with the central server (the specifics of this
are defined by the VCPS at hand and by the intended learning
strategy). Depending on the state and the location of actors,
communication may or may not be possible at a given point in
time, and may fail at any time.

(4) Fine-grained metrics. The set of supported metrics should en-
compass the accuracy of the ML models in the system at various
points in time and the volume of communication transmitted
via the various communication channels, to enable a thorough
evaluation of various learning strategies. The implementation of
more custom metrics should be possible, such as computational
workloads of individual vehicles or the provenance of data.

(5) Flexible learning strategy support. The framework should allow
the flexible implementation and parametrization of learning
strategies to allow for easy experimentation and iteration. This
means supporting centralized ML, FL, GL, as well as hybrid
approaches.

24

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada Bastian Havers, Marina Papatriantafilou, Ashok Koppisetty, and Vincenzo Gulisano

HUs

Core
Simulator

metrics

if_____:

else___:
 ______Learning

Strategy Logic

Communication

Data
Preprocessing

distribute
train,
test,
aggregatevehicle data

+ models

v[1]

v[2]

v[n]

vehicle spatial
dynamics
v[1],v[2],...,v[n]

, ,
ML

Figure 2: Proposal of the framework’s modular architecture,
consisting of various modules (colored boxes, see § 4) cen-
tered around a Core Simulator (HU: Hardware Unit; v[i]: 𝑖-th
agent).

(6) Quick execution. The framework should realize a significant
speed-up over an experiment in a real VCPS and reduce unnec-
essary overheads to allow quick experiment repetition when
varying learning strategies.
With these requirements defined, we will in the following sec-

tion present a proposal for a framework architecture to tackle the
ensuing challenges.

4 ARCHITECTURE PROPOSAL
The architecture proposed here is built around a Core Simulator,
providing the elementary functionality of creating virtual agents
and then proceeding in discrete steps through the simulation time,
separated from the modules relevant to the learning problem to
increase flexibility and usability. Furthermore, modules relevant to
the learning problem may be designed as targeting the hardware
platform of real connected vehicles, while the Core Simulator can be
executed on off-the-shelf hardware. Figure 2 details the architecture
proposal: At the center sits the aforementioned Core Simulator
that orchestrates the remaining modules, starting with the Data
Preprocessing module. It provides the data residing on each of the 𝑛
simulated agents, here designated 𝑣 [1], 𝑣 [2], . . . , 𝑣 [𝑛] (these agents
are vehicles, road-side units, or the cloud server, see Figure 1). As
an example, for the problem of recognizing road signs from traffic
scenes, this module could crop and resize a given input data set
of images of traffic scenes (e.g. recorded by actual vehicles), split
the dataset into 𝑛 subsets according to a predefined distribution,
and assign each subset to a simulated vehicle as well as a test set to
the simulated cloud server, all according to the specification of the
learning problem at hand.

The ML module, likewise, keeps tabs on the current model(s) of
each agent in the system (not all actors may have their own model),
and provides functionality to train and test any model with any data
and to aggregate models into new ones and assign these to certain
agents. For example, in the aggregation step of Federated Learning,
the ML module may read the models of a subset of vehicles, per-
form a weighted average of these (e.g. by the data amount on each

vehicle in the subset [22]), and assign the result as the new model
of the cloud server. The ML module deploys these operations to
one or more HU (Hardware Unit), instances of the actual hardware
existing within vehicles that allows achieving realistic performance
and training times (while an agent is busy training, it may not be
available for other operations). When not impacting performance,
the HUs can run multiple operations in parallel to speed up the
simulation, e.g. simultaneously training multiple agents’ models.
Note that the HU corresponds to the training-capable simulated
agent, e.g. a vehicular on-board unit (OBU) or server hardware.
Additionally, the ML module exposes metrics about the accuracy
of various models in the simulated system.

Communication between agents is handled in the core simu-
lator by a Communication module, which for example could be a
communication simulator in itself (as in [31]). This module models
the transmission of various types of data in the system per the
communication type’s properties, impacting the bandwidth and
range of communication (for V2X, the range can be quite limited
and highly dependent on the involved vehicle’s position, requiring
the core simulator to pass trajectory data to the Communication
module). The Communication module also keeps track of the data
volumes transmitted and exposes this metric to the Core Simulator.
In the aforementioned FL aggregation step, the Communication
module would simulate cellular transmission of the models between
involved vehicles and the cloud server, covering both the transmis-
sion duration and its potential (partial) failure for vehicles that are
unreachable or turning off.

Vehicle spatial dynamics enter the Core Simulator statically, e.g.
as a file of GPS traces of all moving agents in the system. This
supports the use of historic GPS data, but also of simulated data
(pre-calculated with e.g. SUMO). As the act of learning in the VCPS
is assumed to not influence individual vehicles’ trajectories, it is
sufficient that the spatial dynamics data of the VCPS is replayed by
the core simulator.

The interaction of all modules of the system is parameterized by
a set of rules given in the Learning Strategy Logic module, defining
how the agents react in which situation and thus encoding the
learning strategy that is to be tested in a certain experiment run.
A comprehensive example of a learning strategy, together with an
evaluating experiment, can be found in section § 5.2.

Eventually, the Core Simulator outputs an experiment run’s
metrics timestamped in simulated time to enable analysis of the
system’s evolution under a learning strategy.

5 A PROTOTYPE IMPLEMENTATION:
ROADRUNNER

5.1 Implementation details
Having presented a proposal for the architecture of the desired
framework in § 4, we will in this section present a prototype imple-
mentation, Roadrunner, that we have used for initial experiments
with various learning strategies.

Roadrunner’s Core Simulator is written in Java and based on a
messaging scheme between simulated agents. The Core Simulator
uses user-defined network speeds for the two communication types,
V2C and V2X. Message transmission fails if agents are not in the
appropriate state (e.g. V2X messages can only be exchanged if the

25

Proposing a Framework for Evaluating Learning Strategies in VCPSs Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada

participants are within range of each other, and a vehicle shutting
off will result in any incoming or outgoing message failing). Ve-
hicles’ spatial trajectories are read from an input file, and at each
point in simulated time, the Core Simulator will change the state of
participating agents according to their current position and state
(i.e., once they have been turned on or off).

The Data Preprocessing and ML modules are written in Python,
based on the ML framework PyTorch [25]. The latter modules were
inspired by the work of [35], and further modularized, extended,
and converted into individual scripts that operate on vehicle data
andmodels stored as files on disk. To interface with the Data Prepro-
cessing and ML modules, the Java Core Simulator calls appropriate
scripts. These perform, for example, the initial distribution of data
onto the agents by splitting an original dataset into subsets and
storing each subset, assigned to a particular agent, on disk, or the
training of some agent’s model by reading its data and model file
and performing the training operation. The scripts time the dura-
tion of their execution and pass this value to the Core Simulator
to appropriately model the time spent by agents in various states.
The ML computations themselves are executed on a GPU as an
OBU stand-in (as GPUs are expected standard hardware on smart
vehicles) using build-in functionality of PyTorch3.

Using the logging tool Log4j, metrics are continuously extracted
from the simulation to represent the state of every actor, the ac-
curacy of the ML models in the simulation, and data transmission
volumes at every point in simulated time.

5.2 Sample Experiment: Testing an
opportunistic learning strategy

To exemplify the understanding our framework can enable, we
show an experiment from a real-world example. As shown in early
works on FL [22] (see § 3 for a primer on the FL learning strategy),
increasing the number of participants in an FL round can be one
way to increase the accuracy of the final model. However, when
deploying FL in a VCPS, and connecting cloud server and vehicles
with a V2C connection, contacting additional vehicles per round re-
sults in increased cellular costs. Inspired by Opportunistic Learning
(see § 3), we explore the addition of V2X to increase the number of
vehicles reached in each round. FL uses Federated Averaging (FA,
see § 3), which is mathematically associative, to aggregate a new
model through intermediate aggregation (see Figure 3). Around this
idea, we designed the learning strategy OPP (opportunistic):
Server: Send latest global model 𝑤 to 𝑅 random vehicles ("re-
porters") via V2C, start round timer. At end of round, request
new models from reporters. Aggregate received models into new
global model via FA, then start next round.
Reporters: Upon receiving 𝑤 from server, retrain 𝑤 . Upon op-
portunistically meeting a non-reporter vehicle, send to it𝑤 via
V2X. Wait to receive back retrained model and aggregate it with
own model via FA, to replace the own model. At end of round,
send own model back to the server.
Non-reporters: Upon receiving𝑤 via V2X from nearby reporter,
retrain𝑤 . Send it back to reporter after retraining, if reporter is
still in range. Else, discard𝑤 .
Thus, when during some round each of the 𝑅 reporters aggregates
3See https://pytorch.org/docs/stable/cuda.html

1 2

2

3

4

5

6

6

7

1

to
o

far

server
choose
reporters:0

reporters

retraining

data amount on current (next) global model
vehicle

model on

V2C

V2
X

Figure 3: A single round of OPP with two reporters (𝑣1, 𝑣3) and
one non-reporter (𝑣3). Encircled numbers indicate the order
of events. 𝑣4 is too far from the reporters to participate.

themodels from on average𝑁𝑅 non-reporters, this learning strategy
results in 𝑁 = 𝑅 · (𝑁𝑅 + 1) model contributions in that round, but
requires only 𝑅 ≤ 𝑁 connections via V2C4.

Figure 3 presents a sketch of a single round of OPP for two re-
porters: The circled numbers in the figure indicate the order of
events (0-7) and black right-arrows indicate retraining. 𝑑𝑖 are the
data amounts used for retraining on each vehicle. In detail: (1) the
model𝑤 is sent out to the reporters 𝑣1, 𝑣3, which retrain the model
using their local data (2). (3) meeting non-reporter 𝑣2, 𝑣1 forwards
the model 𝑤 there (via V2X), where it is retrained to 𝑤2 (4) and
sent back together (via V2X) with the training data amount 𝑑2 (5).
Then (6), 𝑣1 transmits the intermediate aggregate of its own and
the model from 𝑣2 to the server, and 𝑣3 does the same. Finally (7),
this intermediate aggregation yields a new model𝑤 ′ that is iden-
tical to the case in which all three involved vehicles are reporters.
Intuitively, this approach should improve performance, given that
the reporters get close to other vehicles during their trajectory for
times long enough to facilitate the exchange (e.g. in the sketch, 𝑣4
is too far away from any reporter), making this approach highly
dependent on the density of vehicles. Furthermore, it is intuitive
that a longer round duration will give more opportunities for local
aggregation of weights. Simultaneously, it will also increase the
duration of the whole learning process, and increase the probability
that a reporter vehicle is turned off by the driver before a round
ends, effectively discarding the models collected by this reporter.

Experiment Setup. To test whether these intuitions are correct,
we use Roadrunner. In the following experiment, we assume a
fixed V2C communication budget dictating the number of learn-
ing rounds we can perform. As a baseline case BASE, we perform
FL in the VCPS, contacting 5 vehicles each round over 75 rounds
of 30 seconds duration. In OPP, we also designate 5 reporters per
round for 75 rounds (thus using the same V2C communication bud-
get); however, we let reporters try to exchange their weights with
4In the worst case, no reporter will meet another vehicle for long enough to facilitate
a successful exchange of weights, thus 𝑁𝑅 = 0 and 𝑅 = 𝑁 . Note that we disregard
the case of reporters turning off during a round in this inequality, as that would also
impact standard FL

26

https://pytorch.org/docs/stable/cuda.html

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada Bastian Havers, Marina Papatriantafilou, Ashok Koppisetty, and Vincenzo Gulisano

0

5

10

15

#
V

2
X

-e
x
ch

a
n

g
es

average # exchanges

0 2500 5000 7500 10000 12500 15000
time [s]

0.0

0.1

0.2

0.3

0.4

M
L

a
cc

u
ra

cy

en
d
O
P
P

en
d
B
A
S
E

accuracy BASE accuracy OPP V2X exchanges

Figure 4: Evaluation experiment of learning strategy OPP
using Roadrunner: The blue and red solid curves show the
accuracy of the global model of BASE and OPP, respectively,
and the bar plot shows the number of V2X exchanges that
occur during a given round of OPP. Additionally indicated in
the figure are the average number of V2X exchanges and the
points in time at which 75 rounds of BASE and OPP have been
completed (and the respective run ends).

encountered vehicles, and set the round duration to 200 seconds.
Vehicle spatial dynamics are dictated by a proprietary real-world
GPS dataset of the city of Gothenburg, Sweden. As a supervised
learning problem, we choose the widely used training of a Con-
volutional Neural Network (CNN) for image recognition over the
CIFAR-10 dataset [17] as a representative of an automotive image
recognition problem. This dataset contains 60000 32x32 pixel color
images in 10 classes, of which 50000 are used for training and 10000
for testing the learning algorithm. The CNN has two convolutional
layers with max pooling followed by three fully connected layers;
during training, vehicles perform two epochs of stochastic gradient
descent with momentum. For the distribution of data over the ve-
hicles, we choose a highly skewed distribution of classes in which
every vehicle holds 80 samples to emulate the real-world scenario
of highly personalized data. V2X range is set to 200 m as an average
for urban driving.

The evaluation took place on server hardware with an Intel Xeon
E5-2620 v3 2.40GHz processor running the Core Simulator and an
Nvidia GeForce GTX 1080 Ti graphics card as a vehicular on-board
unit stand-in5.

Evaluation. In Figure 4, we visualize the results from one exper-
iment run: BASE (solid blue curve) finishes 75 rounds of training
after 3592 seconds, while OPP requires 16342 seconds. The large
speedup of the baseline is here explained by the much shorter round
duration: as vehicles are not instructed to communicate with other
vehicles in BASE, the round time can be set to a value that only
covers the time period for transmitting and locally re-training the

5While more modern GPUs, especially for the vehicular domain, outperform the GPU
used in this experiment, it can be assumed that the available headroom for ML training
in a vehicular setting is limited as on older GPUs.

model. The bar plot indicates how many model exchanges via V2X
occur in OPP, ranging from zero to 20. Thus, unlike in vanilla FL, the
number of contributions to the model is not static, but varies over
rounds, depending on the spatial dynamics of the vehicle (the dy-
namics allow or disallow encounters close enough and long enough
to exchange models via V2X). On average, just below 10 additional
model contributions are thus collected per round (indicated by the
dash-dotted horizontal line in Figure 4). Finally, this results in a
50% increase in final accuracy of OPP over BASE, while incurring
a 4.5 times longer total real-world run time, while employing the
same V2C communication budget and thus equal costs (assuming
on-board training and V2X usage costs are negligible).

The ability exemplified here, of quantifying trade-offs between
metrics such as data volumes, accuracy and duration, is crucial
for an analyst to make informed decisions about a learning strat-
egy and is the core contribution of any framework abiding by the
requirements from § 3.

6 CONCLUSIONS AND OUTLOOK
In this paper, we have motivated the need for a tool to evaluate
various learning strategies in a Vehicular Cyber-Physical System,
to help fleet operators and OEMs learn from data generated on the
vehicles themselves in a fashion that is optimal for their particular
fleet and use case. Furthermore, we have collated a list of specific
requirements for such a tool from an (industrial) user’s perspective.
As we show in the Related Work, existing works partially deliver
the required functionality, but no single tool fulfills the complete
requirements list. Therefore, we propose an architecture for a com-
plete tool that can evaluate various learning strategies, and we
present our prototype implementation of the tool along with pre-
liminary results to demonstrate the tool’s validity. As exemplified in
§ 5.2, the framework enables further understanding of the tradeoffs
between dimensions such as time, cost, and accuracy when develop-
ing efficient learning strategies in a specific VCPS. In future work,
we want to open-source the prototype implementation presented
in § 5 to open it for contributions from the community, with the
goal of increasing its resilience and enabling thorough testing of
the framework. Possible next steps are implementing additional
functionality in the prototype framework, where for example the
simulation of various forms of communication could be enriched
by integrating existing third-party network simulators, and increas-
ing the parallelism of the simulation to speed up learning strategy
development iterations.

ACKNOWLEDGMENTS
This work is supported by Volvo Car Corporation (Volvo Cars)
and the Swedish Government Agency for Innovation Systems VIN-
NOVA, project “Automotive Stream Processing and Distributed
Analytics (AutoSPADA)" (DNR 2019-05884) in the funding program
FFI: Strategic Vehicle Research and Innovation.

REFERENCES
[1] Furqan Alam, Rashid Mehmood, and Iyad Katib. 2017. D2TFRS: An object recog-

nition method for autonomous vehicles based on RGB and spatial values of
pixels. In International Conference on Smart Cities, Infrastructure, Technologies
and Applications. Springer, 155–168.

27

Proposing a Framework for Evaluating Learning Strategies in VCPSs Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada

[2] Holger Berndt, Jorg Emmert, and Klaus Dietmayer. 2008. Continuous driver
intention recognition with hidden markov models. In 2008 11th International IEEE
Conference on Intelligent Transportation Systems. IEEE, 1189–1194.

[3] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pe-
dro PB de Gusmão, and Nicholas D Lane. 2020. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390 (2020).

[4] Gustavo Carneiro. 2010. NS-3: Network simulator 3. In UTM Lab Meeting April,
Vol. 20. 4–5.

[5] Francois Chollet. 2018. Deep learning with Python and Keras: The practical guide
from the developer of the Keras library. MITP-Verlags GmbH & Co. KG, Bonn
(2018).

[6] Duncan Deveaux, Takamasa Higuchi, Seyhan Uçar, Chang-Heng Wang, Jérôme
Härri, and Onur Altintas. 2020. On the orchestration of federated learning
through vehicular knowledge networking. In 2020 IEEE Vehicular Networking
Conference (VNC). IEEE, 1–8.

[7] Mina Aghaei Dinani, Adrian Holzer, Hung Nguyen, Marco Ajmone Marsan,
and Gianluca Rizzo. 2021. Gossip Learning of Personalized Models for Vehicle
Trajectory Prediction. In 2021 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). IEEE, 1–7.

[8] Sonal Doomra, Naman Kohli, and Shounak Athavale. 2020. Turn Signal Prediction:
A Federated Learning Case Study. arXiv preprint arXiv:2012.12401 (2020).

[9] Romaric Duvignau, Bastian Havers, Vincenzo Gulisano, and Marina Papatri-
antafilou. 2021. Time-and Computation-Efficient Data Localization at Vehicular
Networks’ Edge. IEEE Access 9 (2021), 137714–137732.

[10] Ahmet M Elbir, Burak Soner, and Sinem Coleri. 2020. Federated Learning in
Vehicular Networks. arXiv preprint arXiv:2006.01412 (2020).

[11] Martin Fellendorf and Peter Vortisch. 2010. Microscopic traffic flow simulator
VISSIM. In Fundamentals of traffic simulation. Springer, 63–93.

[12] Google. 2022. The Size and Quality of a Data Set. https://developers.google.com/
machine-learning/data-prep/construct/collect/data-size-quality.

[13] Tobias Grosse-Puppendahl. 2018. Leveraging AI Technologies for Porsche’s
Future. https://www.linkedin.com/pulse/leveraging-ai-technologies-porsches-
future-tobias-grosse-puppendahl.

[14] Bastian Havers, Romaric Duvignau, Hannaneh Najdataei, Vincenzo Gulisano,
Marina Papatriantafilou, and Ashok Chaitanya Koppisetty. 2020. DRIVEN: A
framework for efficient Data Retrieval and clustering in Vehicular Networks.
Future Generation Computer Systems 107 (2020), 1–17.

[15] István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip learning as a
decentralized alternative to federated learning. In IFIP International Conference
on Distributed Applications and Interoperable Systems. Springer, 74–90.

[16] C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller. 2018. Automated
Driving in Uncertain Environments: Planning With Interaction and Uncertain
Maneuver Prediction. IEEE Transactions on Intelligent Vehicles 3, 1 (2018), 5–17.
https://doi.org/10.1109/TIV.2017.2788208

[17] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.
http://www.cs.toronto.edu/kriz/cifar.html.

[18] Sangsu Lee, Xi Zheng, Jie Hua, Haris Vikalo, and Christine Julien. 2021. Op-
portunistic Federated Learning: An Exploration of Egocentric Collaboration for
Pervasive Computing Applications. In 2021 IEEE International Conference on
Pervasive Computing and Communications (PerCom). IEEE, 1–8.

[19] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter
Wagner, and Evamarie Wießner. 2018. Microscopic Traffic Simulation using
SUMO, In The 21st IEEE International Conference on Intelligent Transportation
Systems. IEEE Intelligent Transportation Systems Conference (ITSC). https://elib.
dlr.de/124092/

[20] Sidi Lu, Yongtao Yao, and Weisong Shi. 2019. Collaborative learning on the edges:
A case study on connected vehicles. In 2nd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 19).

[21] IHS Markit. 2021. These OEMs are launching 5G-enabled cars years before the
tech goes mainstream. https://ihsmarkit.com/research-analysis/these-oems-
are-launching-5genabled-cars-years-before-the-tech-.html

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial Intelligence and Statistics. PMLR,
1273–1282.

[23] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. 2016. A Survey of
Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE
Transactions on Intelligent Vehicles 1, 1 (2016), 33–55. https://doi.org/10.1109/TIV.
2016.2578706

[24] Dimitris Palyvos-Giannas, Bastian Havers, Marina Papatriantafilou, and Vincenzo
Gulisano. 2020. Ananke: a streaming framework for live forward provenance.
Proceedings of the VLDB Endowment 14, 3 (2020), 391–403.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-W.

[26] Jason Posner, Lewis Tseng, Moayad Aloqaily, and Yaser Jararweh. 2021. Federated
learning in vehicular networks: opportunities and solutions. IEEE Network 35, 2

(2021), 152–159.
[27] Qualcomm. 2019. Cellular-V2X Technology Overview. https://www.qualcomm.

com/media/documents/files/c-v2x-technology-overview.pdf
[28] A. Rasouli, I. Kotseruba, and J. K. Tsotsos. 2018. Understanding Pedestrian

Behavior in Complex Traffic Scenes. IEEE Transactions on Intelligent Vehicles 3, 1
(2018), 61–70. https://doi.org/10.1109/TIV.2017.2788193

[29] Karsten Roscher, Sebastian Bittl, AA Gonzalez, M Myrtus, and Josef Jiru. 2014.
ezCar2X: rapid-prototyping of communication technologies and cooperative
ITS applications on real targets and inside simulation environments. In 11th
Conference Wireless Communication and Information. 51–62.

[30] Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. 2020. Federated learning
with cooperating devices: A consensus approach for massive IoT networks. IEEE
Internet of Things Journal 7, 5 (2020), 4641–4654.

[31] Christoph Sommer, David Eckhoff, Alexander Brummer, Dominik S Buse, Florian
Hagenauer, Stefan Joerer, and Michele Segata. 2019. Veins: The open source ve-
hicular network simulation framework. In Recent advances in network simulation.
Springer, 215–252.

[32] AI Sweden. 2022. Edge Learning Lab. https://www.ai.se/en/data-factory/edge-
lab.

[33] TensorFlow. 2022. TensorFlow Federated. https://www.tensorflow.org/federated.
[34] Andras Varga. 2010. OMNeT++. In Modeling and tools for network simulation.

Springer, 35–59.
[35] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated

learning on non-iid data with reinforcement learning. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 1698–1707. https://github.
com/iQua/flsim

[36] Julia Silva Weber, Miguel Neves, and Tiago Ferreto. 2021. VANET simulators: an
updated review. Journal of the Brazilian Computer Society 27, 1 (2021), 1–31.

[37] Business Wire. 2021. Strategy Analytics: Mobile Data Revenue Falls Below US$1
per Gigabyte as 5G Uplift Proves Elusive. https://www.businesswire.com/news/
home/20210413005861/en/Strategy-Anal.

28

https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://www.linkedin.com/pulse/leveraging-ai-technologies-porsches-future-tobias-grosse-puppendahl
https://www.linkedin.com/pulse/leveraging-ai-technologies-porsches-future-tobias-grosse-puppendahl
https://doi.org/10.1109/TIV.2017.2788208
http://www.cs.toronto.edu/kriz/cifar.html
https://elib.dlr.de/124092/
https://elib.dlr.de/124092/
https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/TIV.2016.2578706
https://www.qualcomm.com/media/documents/files/c-v2x-technology-overview.pdf
https://www.qualcomm.com/media/documents/files/c-v2x-technology-overview.pdf
https://doi.org/10.1109/TIV.2017.2788193
https://www.ai.se/en/data-factory/edge-lab
https://www.ai.se/en/data-factory/edge-lab
https://www.tensorflow.org/federated
https://github.com/iQua/flsim
https://github.com/iQua/flsim
https://www.businesswire.com/news/home/20210413005861/en/Strategy-Anal
https://www.businesswire.com/news/home/20210413005861/en/Strategy-Anal

	Abstract
	1 Introduction
	2 Related Work
	3 Problems and Requirements
	4 Architecture Proposal
	5 A prototype implementation: Roadrunner
	5.1 Implementation details
	5.2 Sample Experiment: Testing an opportunistic learning strategy

	6 Conclusions and Outlook
	Acknowledgments
	References

