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Abstract
Modern applications often manage time-varying data. De-

spite decades of research on temporal databases, which cul-

minated in the addition of temporal data operations into

the SQL:2011 standard, temporal data query and manipula-

tion operations are unavailable in most mainstream database

management systems, leaving developers with the unenvi-

able task of implementing such functionality from scratch.

In this paper, we extend language-integrated query to sup-

port writing temporal queries and updates in a uniform

host language, with the language performing the required

rewriting to emulate temporal capabilities automatically on

any standard relational database. We introduce two core

languages, 𝜆TLINQ and 𝜆VLINQ, for manipulating transaction

time and valid time data respectively, and formalise exist-

ing implementation strategies by giving provably correct

semantics-preserving translations into a non-temporal core

language, 𝜆LINQ. We show how existing work on query nor-

malisation supports a surprisingly simple implementation

strategy for sequenced joins. We implement our approach in

the Links programming language, and describe a non-trivial

case study based on curating COVID-19 statistics.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Information systems→ Struc-
tured Query Language; Temporal data.

Keywords: language-integrated query, temporal databases,

domain-specific languages, multi-tier programming
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1 Introduction
Most interesting programs access or query data stored persis-

tently, often in a database. Relational database management

systems (RDBMSs) are the most popular option and provide

a standard domain-specific language, SQL, for querying and

modifying the data. Ideally, programmers can express the

desired queries or updates declaratively in SQL and leave

the database to decide how to answer queries or perform up-

dates efficiently and safely (e.g. in the presence of concurrent

accesses), but there are many pitfalls arising from interfacing

with SQL from a general-purpose language, leading to the

well-known impedance mismatch problem [10]. These diffi-

culties range from run-time failures due to the generation

of queries as unchecked SQL strings at runtime, to serious

security vulnerabilities like SQL injection attacks [32].

Among the most successful approaches to overcome the

above challenges, and the approach we build upon in this pa-

per, is language-integrated query, exemplified by Microsoft’s

popular LINQ for .NET [25, 36] and in a number of other

language designs such as Links [9, 23] and libraries such as

Quill [29]. Within this design space we focus on a family of

techniques derived from foundational work by Buneman et

al. [3] on the nested relational calculus (NRC), a core query
language with monadic collection types; work by Wong [37]

on rewriting NRC expressions to normal forms that can be

translated to SQL, which forms the basis of the approach

taken in Links [8, 23] and has been adapted to F# [5].

Many interesting database applications involve data that

changes over time. Perhaps inevitably, temporal data man-
agement [19] has a long history. Temporal databases pro-

vide powerful features for querying and modifying data that

changes over time, and are particularly suitable for mod-

eling time-varying phenomena, such as enterprise data or

evolving scientific knowledge, and supporting auditing and

transparency about how the current state of the data was

achieved, for example in financial or scientific settings.

To illustrate how temporal databases work and why they

are useful, consider the following toy example: a temporal to-

do list. A temporal database can be conceptualised abstractly

as a function mapping each possible time instant (e.g. times

of day) to a database state [20]. For efficiency in the common

case where most of the data is unchanged most of the time,

temporal databases are often represented by augmenting

each row with an interval timestamp indicating the time

https://orcid.org/0000-0001-5143-5475
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period when the row is present. For technical reasons, closed-
open intervals [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) representing the times start ≤ 𝑡 <

end are typically used [34].

In our temporal to-do list, the table at each time instant

has fields “task”, a string field, and “done”, a Boolean field.

Additional fields “start” and “end” record the endpoints of

the time interval during which each row is to be considered

part of the table. An end time of∞ (“forever”) reflects that

there is no (currently known) end time and in the absence of

other changes, the row is considered present from the start

time onwards. For example, the table:

task done start end

Go shopping true 11:00 ∞
Cook dinner false 11:00 17:30

Walk the dog false 11:00 ∞
Cook dinner true 17:30 ∞
Watch TV false 11:00 19:00

represents a temporal table where all four tasks were added

at 11:00, with “Go shopping” being complete and the others

incomplete; at 17:30 “Cook dinner” was marked “done” from

then onwards, and at 19:00 “Watch TV” was removed from

the table without being completed. Technically, note that

this example interprets the time annotations as transaction
time, that is, the times indicate when certain data was in the

database; there is another dimension, valid time, and we will
discuss both dimensions in greater detail later on.

The problems of querying and updating temporal databases

have been well-studied, leading to the landmark language de-

sign TSQL2 [33] extending SQL. However, despite decades of

effort, only limited elements of TSQL2 were eventually incor-

porated into the SQL:2011 standard [22] and these features

have not yet been widely adopted. Directly implementing

temporal queries in SQL is possible, but painful: a TSQL2-

style query or update operation may grow by a factor of 10

or more when translated to plain SQL, which leaves plenty of

scope for error, and thus these powerful capabilities remain

outside the grasp of non-experts. In this paper we take first

steps towards reconciling temporal data management with

language-integrated query based on query normalisation.

We propose supporting temporal capabilities by translation

to ordinary language-integrated query and hypothesise that

this approach can make temporal data management safer,

easier to use and more accessible to non-experts than the

current state of affairs. As an initial test of this hypothesis

we present a high-level design, a working implementation,

and detail our experience with a nontrivial case study.

Although both language-integrated query and temporal

databases are now well-studied topics, we believe that their

combination has never been considered before. Doing so has

a number of potential benefits, including making the power

of well-studied language designs such as TSQL2 more acces-

sible to non-expert programmers, and providing a high-level

abstraction that can be implemented efficiently in different

ways. Our interest is particularly motivated by the needs

Types 𝐴, 𝐵 ::= 𝐶 | 𝐴→𝐸 𝐵 | Bag(𝐴) | (ℓ̃ : 𝐴) | Table(𝐴)
Base types 𝐶 ::= String | Int | Bool | Time
Effects 𝑒 ::= read | write
Effect sets 𝐸

Terms 𝐿,𝑀, 𝑁 ::= 𝑥 | 𝑐 | 𝑡
| 𝜆𝑥.𝑀 | 𝑀 𝑁 | ⊙{−→𝑀 }
| if 𝐿 then 𝑀 else 𝑁
| * + | *𝑀+ | 𝑀 ⊎ 𝑁 | for (𝑥 ← 𝑀 ) 𝑁
| (�ℓ = 𝑀 ) | 𝑀.ℓ | now
| query𝑀 | get 𝑀 | insert 𝑀 values 𝑁
| update (𝑥 ⇐ 𝐿) where 𝑀 set (�ℓ = 𝑁 )
| delete (𝑥 ⇐ 𝑀 ) where 𝑁

Figure 1. Syntax of 𝜆LINQ

of scientific database development, where data versioning

for accountability and research integrity are very important

needs that are not well-supported by conventional database

systems [4]. Temporal data management has the potential

to become a “killer app” for language-integrated query, and

this paper takes a first but significant step towards this goal.

The overarching contribution of this paper is the first ex-

tension of language-integrated query to support transaction

time and valid time temporal data.

Concretely, we make three main contributions:

1. Based on 𝜆LINQ (§2), a formalism based on the Nested

Relational Calculus (NRC) [31], we introduce typed

𝜆-calculi to model queries and modifications on trans-

action time (§3) and valid time (§4) databases. We give

semantics-preserving translations to 𝜆LINQ for both.

2. We show how existing work on query normalisation

allows a surprisingly straightforward implementation

strategy for sequenced joins (§5).
3. We implement our constructs in the Links functional

web programming language, and describe a case study

based on curating COVID-19 data (§6).

Although the concepts behind translating temporal

queries and updates into non-temporal core languages are

well known [34], our core calculi 𝜆TLINQ and 𝜆VLINQ are novel

and aid us in showing (to the best of our knowledge) the first

correctness results for the translations.

We relegate several details and all proofs to the extended

version of the paper [14].

2 Background: Language-Integrated Query
We begin by introducing a basic 𝜆-calculus, called 𝜆LINQ, to

model language-integrated query in non-temporal databases.

Our calculus is based heavily on the Nested Relational Cal-

culus [31], with support for database modifications heavily

inspired by the calculus of Fehrenbach and Cheney [13]. The

calculus uses a type-and-effect system to ensure database

accesses can occur in ‘safe’ places, i.e., that we do not attempt

to perform a modification operation in the middle of a query.

Effects include read (denoting a read from a database) and

write (denoting an update to the database).



Language-IntegratedQuery for Temporal Data GPCE ’22, December 06–07, 2022, Auckland, New Zealand

Types𝐴, 𝐵 include base types𝐶 , effect-annotated function

types 𝐴 →𝐸 𝐵, unordered collection types Bag(𝐴), record
types (ℓ𝑖 : 𝐴𝑖 )𝑖 denoting a record with labels ℓ𝑖 and types 𝐴𝑖 ,

and handles Table(𝐴) for tables containing records of type
𝐴. A record is a base record if it contains only fields of base

type. We assume that the base types includes at least Bool
and the Time type, which denotes (abstract) timestamps.

Basic terms include variables 𝑥 , constants 𝑐 , table handles

𝑡 , functions 𝜆𝑥 .𝑀 , application𝑀 𝑁 , n-ary operations ⊙{−→𝑀},
and conditionals if 𝐿 then 𝑀 else 𝑁 . We assume that the

set of operations contains the usual unary and binary rela-

tion operators, as well as the 𝑛-ary operations greatest and
least on timestamps which return their largest and smallest

arguments respectively. We assume that the set of constants

contains timestamps 𝜄 of type Time, and two distinguished

timestamps −∞ and∞ of type Time, which denote the mini-

mum and maximum timestamps respectively. The calculus

also includes the empty multiset constructor * +; the single-
ton multiset constructor *𝑀+; multiset union 𝑀 ⊎ 𝑁 ; and

comprehensions for (𝑥 ← 𝑀) 𝑁 . We write *𝑀1, . . . , 𝑀𝑛+ as
sugar for *𝑀1 +⊎ . . .⊎ *𝑀𝑛+. We also have records (ℓ𝑖 = 𝑀𝑖 )𝑖
and projection𝑀.ℓ . Term now retrieves the current time.

We write let 𝑥 = 𝑀 in 𝑁 as the usual syntactic sugar for

(𝜆𝑥.𝑁 ) 𝑀 , and𝑀 ;𝑁 as sugar for (𝜆𝑥.𝑁 )𝑀 for some fresh 𝑥 .

We also definewhere𝑀𝑁 as sugar for if 𝑀 then 𝑁 else * +.
We denote unordered collections with a tilde (e.g.,𝑀), and

ordered sequences with an arrow (e.g.,

−→
𝑀).

The get 𝑀 term retrieves the contents of a table into

a bag; insert 𝑀 values 𝑁 inserts values 𝑁 into table 𝑀 ;

update (𝑥 ⇐ 𝐿) where 𝑀 set (ℓ𝑖 = 𝑁𝑖 )𝑖 updates table
𝐿, updating the fields ℓ𝑖 to 𝑁𝑖 of each record 𝑥 satisfying

predicate𝑀 . The delete (𝑥 ⇐ 𝑀) where 𝑁 term removes

those records 𝑥 in table𝑀 satisfying predicate 𝑁 .

2.1 Typing Rules
Figure 2 shows the typing rules for 𝜆LINQ; the typing judge-

ment has the shape Γ ⊢ 𝑀 :𝐴 !𝐸, which can be read, “Under

type environment Γ, term 𝑀 has type 𝐴 and produces ef-

fects 𝐸”. The rules are implicitly parameterised by a data-

base schema Σ mapping table names to types of the form

Bag((ℓ𝑖 : 𝐶𝑖 )𝑖 ). Many rules are similar to those of the simply-

typed 𝜆-calculus extended with monadic collection opera-

tions [3] and a set-based effect system [24], and such standard

rules are relegated to the extended version.

Rule T-Query states that a term query𝑀 is well-typed if

𝑀 is of a query type: either a base type, a record type whose

fields are query types, or a bag whose elements are query

types. The term𝑀 must also only have read effects. These

restrictions allow efficient compilation to SQL [6, 8].

Rule T-Get states that get 𝑀 has type Bag(𝐴) if 𝑀
has type Table(𝐴), and produces the read effect. Rule T-

Table states that a table reference follows the type of

the table in the schema. T-Insert types a database insert

insert 𝑀 values 𝑁 , requiring 𝑀 to be a table reference of

type Table(𝐴), and the inserted values 𝑁 to be a bag of type

Bag(𝐴). T-Update ensures the predicate and update terms

are typable under an environment extended with the row

type, and ensures that all updated values match the type

expected by the row. Rule T-Delete is similar. All subterms

used as predicates or used to calculate updated terms must

be pure (that is, side-effect free), and all modifications have

the write effect.

2.2 Semantics
Figure 3 shows the syntax and typing rules of values, and

the big-step semantics of 𝜆LINQ. Most rules are standard, and

presented in the extended version. Values𝑉 ,𝑊 include func-

tions, constants, tables, fully-evaluated records, and fully-

evaluated bags *𝑉 +. Unlike the unary bag constructor *𝑀+,
fully-evaluated bags contain an unordered collection of val-

ues. All values are pure. We write ⊕ for record extension,

e.g., (ℓ1 = 𝑀) ⊕ (ℓ2 = 𝑁 ) = (ℓ1 = 𝑀, ℓ2 = 𝑁 ).
Since evaluation is effectful (as database operations can

update the database), the evaluation judgement has the shape

𝑀 ⇓Δ,𝜄 (𝑉 ,Δ′); this can be read “term𝑀 with current data-

base Δ at time 𝜄 evaluates to value 𝑉 with updated database

Δ′”. A database is a mapping from table names to bags of

base records. To avoid additional complexity, we assume

evaluation is atomic and does not update the time; one could

straightforwardly update the semantics with a tick opera-

tion without affecting any results.

We use two further evaluation relations for termswhich do

not write to the database:𝑀 ⇓★𝜄 𝑉 states that a pure term𝑀

(i.e., a term typable under an empty effect set) evaluates to𝑉 .

Similarly,𝑀 ⇓★Δ,𝜄 𝑉 states that a term𝑀 which only performs

the read effect evaluates to𝑉 . We omit the definitions, which

are similar to the evaluation relation but do not propagate

database changes (since no changes can occur).

Rule E-Now returns the current timestamp. Rule E-Query

evaluates the body of a query using the read-only evaluation

relation. Rule E-Get evaluates its subject to a table reference,

and then returns the contents of a table. Rule E-Insert does

similar, evaluating the values to insert, and then appending

them to the contents of the table. Rule E-Update iterates

over a table, updating a record if the predicate matches, and

leaving it unmodified if not. Finally, E-Delete deletes those

rows satisfying the deletion predicate.

𝜆LINQ enjoys a standard type soundness property.

Proposition 2.1 (Type soundness). If · ⊢ 𝑀 :𝐴 !𝐸 then there
exists some 𝑉 and Δ′ such that𝑀 ⇓Δ,𝜄 (𝑉 ,Δ′) and · ⊢ 𝑉 :𝐴 ! ∅.

More importantly, the type-and-effect system ensures that

query and update expressions in 𝜆LINQ can be translated to

SQL equivalent, even in the presence of higher-order func-

tions and nested query results [5, 6, 8, 23]. This alternative

implementation is equivalent to the semantics given here

but usually much more efficient since the database query
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Term typing

Γ ⊢ 𝑀 :𝐴 !𝐸
T-Query

Γ ⊢ 𝑀 :Bag(𝐴) !𝐸 𝐴 :: QType 𝐸⊆{read}
Γ ⊢ query𝑀 :Bag(𝐴) !𝐸

T-Now

Γ ⊢ now:Time ! ∅

T-Get

Γ ⊢ 𝑀 :Table(𝐴) !𝐸
Γ ⊢get 𝑀 :Bag(𝐴) ! {read} ∪ 𝐸

T-Insert

Γ ⊢ 𝑀 :Table(𝐴) !𝐸 Γ ⊢ 𝑁 :Bag(𝐴) ! ∅
Γ ⊢ insert 𝑀 values 𝑁 :( ) ! {write} ∪ 𝐸

T-Update

Γ ⊢ 𝐿:Table(𝐴) !𝐸
𝐴 = (ℓ𝑖 : 𝐵𝑖 )𝑖∈𝐼 Γ, 𝑥 : 𝐴 ⊢ 𝑀 :Bool ! ∅ ( 𝑗 ∈ 𝐼 ∧ Γ, 𝑥 : 𝐴 ⊢ 𝑁 𝑗 :𝐵 𝑗 ! ∅) 𝑗 ∈ 𝐽

Γ ⊢ update (𝑥 ⇐ 𝐿) where 𝑀 set (ℓ𝑗 = 𝑁 𝑗 ) 𝑗 ∈ 𝐽 :( ) ! {write} ∪ 𝐸

T-Delete

Γ ⊢ 𝑀 :Table(𝐴) !𝐸 Γ, 𝑥 : 𝐴 ⊢ 𝑁 :Bool ! ∅
Γ ⊢ delete (𝑥 ⇐ 𝑀 ) where 𝑁 :( ) ! {write} ∪ 𝐸

Query typing

A :: QType

𝐶 :: QType

(𝐴𝑖 :: QType)𝑖
(ℓ𝑖 : 𝐴𝑖 )𝑖 :: QType

𝐴 :: QType

Bag(𝐴) :: QType

Figure 2. Typing rules for 𝜆LINQ (selected)

Syntax of values, operations on values, and value typing

Values 𝑉 ,𝑊 ::= 𝜆𝑥.𝑀 | 𝑐 | 𝑡 | (ℓ𝑖 = 𝑉𝑖 )𝑖 | *𝑉 +

*𝑉 + ⊎̂ *𝑊 + ≜ *𝑉 ·𝑊 +

( (ℓ𝑖 = 𝑉𝑖 )𝑖∈𝐼 with (ℓ𝑗 =𝑊𝑗 ) ) ≜ (ℓ𝑖 = 𝑉𝑖 )𝑖∈𝐼\𝐽 ⊕ (ℓ𝑗 =𝑊𝑗 ) 𝑗 ∈ 𝐽

T-BagV

(Γ ⊢ 𝑉𝑖 :𝐴 ! ∅)𝑖
Γ ⊢ *𝑉 + :Bag(𝐴) ! ∅

Big-step reduction rules 𝑀 ⇓Δ,𝜄 (𝑉 ,Δ′ )

E-Now

now ⇓Δ,𝜄 (𝜄,Δ)

E-Query

𝑀 ⇓★Δ,𝜄 𝑉
query𝑀 ⇓Δ,𝜄 (𝑉 ,Δ)

E-Get

𝑀 ⇓Δ,𝜄 (𝑡,Δ′ )
get 𝑀 ⇓Δ,𝜄 (Δ′ (𝑡 ),Δ′ )

E-Insert

𝑀 ⇓Δ,𝜄 (𝑡,Δ′ ) 𝑁 ⇓★𝜄 𝑉
insert 𝑀 values 𝑁 ⇓Δ,𝜄 ( ( ),Δ′ [𝑡 ↦→ Δ′ (𝑡 ) ⊎̂𝑉 ] )

E-Update

𝐿 ⇓Δ,𝜄 (𝑡,Δ1 ) Δ2 = Δ1 [𝑡 ↦→ *upd(v) | v ∈ Δ1 (𝑡 )+]

upd(v) =
{
(v with �ℓ =𝑊 ) if𝑀 {v/𝑥 } ⇓★𝜄 true and (𝑁𝑖 {v/𝑥 } ⇓★𝜄 𝑊𝑖 )𝑖
v if𝑀 {v/𝑥 } ⇓★𝜄 false

update (𝑥 ⇐ 𝐿) where 𝑀 set (�ℓ = 𝑁 ) ⇓Δ,𝜄 ( ( ),Δ2 )

E-Delete

𝑀 ⇓Δ,𝜄 (𝑡,Δ1 ) Δ2 = Δ1 [𝑡 ↦→ *v ∈ Δ(𝑡 ) | 𝑁 {v/𝑥 } ⇓★𝜄 false+]
delete (𝑥 ⇐ 𝑀 ) where 𝑁 ⇓Δ,𝜄 ( ( ),Δ2 )

Figure 3. Semantics of 𝜆LINQ (selected)

optimiser can takes advantage of any available integrity con-

straints or statistics about the data.

3 Transaction Time
The first dimension of time we investigate is transaction
time [35], which records how the state of the database
changes over time. The key idea behind transaction time

databases is that update operations are non-destructive, so
we can always view a database as it stood at a particular

point in time.

Let us illustrate with the to-do list example from the in-

troduction. The original table is on the left. The table after

making some changes is shown on the right.

task done

Go shopping true
Cook dinner false
Walk the dog false
Watch TV false

task done

Go shopping true
Cook dinner true
Walk the dog false

However, since updates and deletions in 𝜆LINQ are destruc-

tive, we have lost the original data. Instead, let us see how

this could be handled by a transaction-time database:

task done start end

Go shopping true 11:00 ∞
Cook dinner false 11:00 ∞
Walk the dog false 11:00 ∞
Watch TV false 11:00 ∞

There are several methods by which we can maintain the

temporal information in the database: for example we could

maintain a tracking log which records each entry, or we

could use various temporal partitioning strategies [34]. In this
paper, we use a period-stamped representation, where each

record in the database is augmented with fields delimiting

the interval when the record was present in the database.

The time period is a closed-open representation, meaning

that each row is in the database from (and including) the

time stated in the start column, and is in the database up to

(but not including) the time stated in the end column. We

also assume that 𝑠𝑡𝑎𝑟𝑡 < 𝑒𝑛𝑑 always holds.
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Here, our database states that all four tasks were entered

into the database at 11:00. However, if we then decide to

check off “Cook dinner” at 17:30 and delete “Watch TV” at

19:00, we obtain the table shown in the introduction.

Since timestamps are either ∞ or only refer to the past;

users do not modify period stamps directly; and the informa-

tion in the database growsmonotonically, we can reconstruct

the state of the database at any given time.

3.1 Calculus
𝜆TLINQ extends 𝜆LINQ with native support for transaction time

operations; instead of performing destructive updates, we

adjust the end timestamp of affected rows and, if necessary,

insert updated rows. 𝜆TLINQ database entries are therefore of

the form 𝑉
[𝑉2,𝑉3 )
1

, where 𝑉1 is the record data and 𝑉2 and 𝑉3
are the start and end timestamps.

Figure 4 shows the syntax, typing rules, and semantics of

𝜆TLINQ; for brevity, we show the main differences to 𝜆LINQ.

Period-stamped database rows are represented as triples

data[start,end ) with type TransactionTime(𝐴), where data has
type 𝐴 (the type of each record), and both start and end
have type Time. A row is currently present in the database

if its end value is∞. We introduce three accessors: data𝑀
extracts the data record from a transaction-time row; start𝑀
extracts the start time; and end𝑀 extracts the end time. The

get construct has an updated type to show that it returns a

bag of TransactionTime(𝐴) values, rather than the records

directly. The typing rules for the other constructs remain the

same as in 𝜆LINQ.

The accessor rules ET-Data, ET-Start, and ET-End

project the expected component of the transaction-time row.

Rule ET-Insert period-stamps each record to begin at the

current time, and sets the end time to be∞. Rule ET-Delete
records deletions for current rows satisfying the deletion

predicate. Instead of being removed from the database, the

end times of the affected rows are set to the current times-

tamp. Finally, rule ET-Update performs updates for current

rows satisfying the update predicate. Instead of changing a

record directly, the upd definition generates two records: the
previous record, closed off at the current timestamp, and the

new record with updated values, starting from the current

timestamp and with end field∞. Returning to our running

example, define at(tbl, time) to return all records in tbl start-
ing before time and ending after time. We can then query

the database as it stood at 18:00:

at(t, time) ≜
for (𝑥 ← get t )

where (start 𝑥 ≤ time ∧ time < end 𝑥 )
*data 𝑥+

at(tbl, 18:00)

task done

Go shopping true
Cook dinner true
Walk the dog false
Watch TV false

Let current(t) = at(t,∞) return the current snapshot of 𝑡 .

We can then query the current snapshot of the database:

current(tbl) =

task done

Go shopping true
Cook dinner true
Walk the dog false

3.2 Translation
We can implement the native transaction-time semantics

for 𝜆TLINQ database operations by translation to 𝜆LINQ. Our

translation adapts the SQL implementations of temporal

operations by Snodgrass [34] to a language-integrated query

setting. We prove correctness relative to the semantics.

𝜆TLINQ has a native representation of period-stamped data,

whereas 𝜆LINQ requires table types to be flat. Consequently,

the translations require knowledge of the types of each

record. We therefore annotate each 𝜆TLINQ database term

with the type of table on which it operates (this can be

achieved through a standard type-directed translation pass).

The (omitted) translation of 𝜆TLINQ types into 𝜆LINQ
types is straightforward, save for TransactionTime(𝐴) which
is translated into a record (data:J𝐴K, start:Time, end:Time).
The same is true for the basic 𝜆-calculus terms. Timestamped

rows 𝑉
[𝑉start ,𝑉end )
data are translated to fit the above record type;

specifically, (data = J𝑉dataK, start = J𝑉startK, end = J𝑉endK).

Remark 3.1. We have chosen to represent a 𝜆TLINQ period-

stamped record as a nested record in 𝜆LINQ, but we could

equally adopt a flat representation. Since we build on the

Nested Relational Calculus, we take advantage of the abil-

ity to return nested results; previous work on query shred-

ding [6] allows us to flatten nested results in a later transla-

tion pass. A nested representation is more convenient for our

implementation and makes the translation simpler and more

compositional, so we mirror this choice in the formalism.

We define the flattening of a 𝜆TLINQ row and database as:

↓((ℓ𝑖 = 𝑉𝑖 ) [𝑊1,𝑊2 )
𝑖

) ≜ (ℓ𝑖 = 𝑉𝑖 )𝑖 ⊕ (start =𝑊1, end =𝑊2)
↓Δ ≜ [𝑡 ↦→ *↓̃𝐷+ | 𝑡 ↦→ *𝐷+ ∈ Δ]

Figure 5 shows the translation of 𝜆TLINQ terms into 𝜆LINQ.

The translation makes use of three auxiliary definitions.

Eta-expansion 𝜂 (𝑥, ℓ̃) eta-expands a variable of record type

with respect to a sequence of labels, and restrict(𝑥, ℓ̃, 𝑀) ap-
plies an eta-expanded record to a 𝑀 under a 𝜆-binder for

𝑥 (required since the 𝜆TLINQ predicates expect just the data

from the record, and not the period-stamping fields). Finally,

isCurrent(𝑀) tests whether the end field of𝑀 is∞.
Since timestamped rows are translated to records, the tem-

poral accessor functions are translated to record projection.

The get function is translated to retrieve the flattened 𝜆LINQ
representation of the table and pack it via 𝜂-expansion into

a bag of nested records. The translation of insert extends
the provided values with a start field referring to the current
timestamp and an end field set to∞, before inserting them
into the database.
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Additional Syntax for 𝜆TLINQ

Types 𝐴, 𝐵 ::= · · · | TransactionTime(𝐴) Timestamped rows 𝐷 ::= 𝑉
[𝑉2,𝑉3 )
1

Terms 𝐿,𝑀, 𝑁 ::= · · · | data𝑀 | start𝑀 | end𝑀 Values 𝑉 ,𝑊 ::= · · · | 𝐷

Modified Typing Rules for 𝜆TLINQ Γ ⊢ 𝑉 :𝐴 !𝐸 Γ ⊢ 𝑀 :𝐴 !𝐸

T-Row

Γ ⊢ 𝑉1:𝐴 ! ∅
Γ ⊢ 𝑉2:Time ! ∅ Γ ⊢ 𝑉3:Time ! ∅

Γ ⊢ 𝑉 [𝑉2,𝑉3 )
1

:TransactionTime(𝐴) ! ∅

T-Data

Γ ⊢ 𝑀 :TransactionTime(𝐴) !𝐸
Γ ⊢ data𝑀 :𝐴 !𝐸

T-Start

Γ ⊢ 𝑀 :TransactionTime(𝐴) !𝐸
Γ ⊢ start𝑀 :Time !𝐸

T-End

Γ ⊢ 𝑀 :TransactionTime(𝐴) !𝐸
Γ ⊢ end𝑀 :Time !𝐸

T-Get

Γ ⊢ 𝑀 :Table(𝐴) !𝐸
Γ ⊢ get 𝑀 :Bag(TransactionTime(𝐴) ) ! {read} ∪ 𝐸

Semantics for 𝜆TLINQ database operations 𝑀 ⇓TΔ,𝜄 (𝑉 ,Δ
′ )

ET-Data

𝑀 ⇓TΔ,𝜄 (𝑉
[𝑉2,𝑉3 )
1

,Δ′ )
data𝑀 ⇓TΔ,𝜄 (𝑉1,Δ

′ )

ET-Start

𝑀 ⇓TΔ,𝜄 (𝑉
[𝑉2,𝑉3 )
1

,Δ′ )
start𝑀 ⇓TΔ,𝜄 (𝑉2,Δ

′ )

ET-End

𝑀 ⇓TΔ,𝜄 (𝑉
[𝑉2,𝑉3 )
1

,Δ′ )
end𝑀 ⇓TΔ,𝜄 (𝑉3,Δ

′ )

ET-Insert

𝑀 ⇓TΔ,𝜄 (𝑡,Δ1 ) 𝑁 ⇓★𝜄 *𝑉 +
vs = *v [𝜄,∞) | v ∈ 𝑉 + Δ2 = Δ′ [𝑡 ↦→ Δ1 (𝑡 ) ⊎̂ vs]

insert 𝑀 values 𝑁 ⇓TΔ,𝜄 ( ( ),Δ2 )

ET-Delete

𝑀 ⇓TΔ,𝜄 (𝑡,Δ1 ) Δ2 = Δ1 [𝑡 ↦→ *del(v) | v ∈ Δ1 (𝑡 )+]
del(data[start,end) ) ={

data[start,𝜄) if end = ∞ and 𝑁 {data/𝑥 } ⇓★𝜄 true
data[start,end) otherwise

delete (𝑥 ⇐ 𝑀 ) where 𝑁 ⇓TΔ,𝜄 ( ( ),Δ2 )

ET-Update

𝐿 ⇓TΔ,𝜄 (𝑡,Δ1 ) Δ2 = Δ1 [𝑡 ↦→
⊎̂

* upd(v) | v ∈ Δ1 (𝑡 )+]
upd(data[start,end) ) =

*data[start,𝜄) , (datawith �ℓ = 𝑉 ) [𝜄,∞)+
if𝑀 {data/𝑥 } ⇓★𝜄 true, (𝑁𝑖 {data/𝑥 } ⇓★𝜄 𝑉𝑖 )𝑖 , and end = ∞

*data[start,end) + otherwise

update (𝑥 ⇐ 𝐿) where 𝑀 set (�ℓ = 𝑁 ) ⇓TΔ,𝜄 ( ( ),Δ2 )

Figure 4. Syntax, typing rules, and semantics of 𝜆TLINQ

A delete is translated as a 𝜆LINQ update operation, which
sets the end record of each affected row to the current times-

tamp. An update is translated in three steps: querying the

database to obtain the affected current records, with updated

values and timestamps; updating the database to close off

the existing affected rows; and materialising the insertion.

3.3 Metatheory
We restrict our attention to well formed rows and databases,

where the start timestamp is less than the end timestamp.

Definition 3.1 (Well formed rows and databases). A data-

base Δ is well formed, writtenwf(Δ), if for each timestamped

row 𝑉
[𝑉start ,𝑉end )
data in Δ we have that 𝑉start < 𝑉end .

Definition 3.2 (Maximum timestamp). Themaximum times-
tamp of a collection of records 𝐷 is defined as the maximum

timestamp in the set {𝑉end | 𝑉 [𝑉start ,𝑉end )data ∈ 𝐷,𝑉end ≠ ∞}, or
−∞ if the set is empty.

Themaximum timestamp of a database Δ, writtenmax(Δ),
is the maximum timestamp of all its constituent tables.

Again, 𝜆TLINQ enjoys type soundness.

Proposition 3.2 (Type soundness (𝜆TLINQ)). If · ⊢ 𝑀 :𝐴 !𝐸,
then given a wf(Δ) and 𝜄 such that max(Δ) ≤ 𝜄, then there
exists some 𝑉 and well formed Δ′ such that𝑀 ⇓TΔ,𝜄 (𝑉 ,Δ′).

We can now show that the translation is correct:

Theorem 3.1. If · ⊢ 𝑀 :𝐴 !𝐸 and𝑀 ⇓TΔ,𝜄 (𝑉 ,Δ′) wherewf(Δ)
and max(Δ) ≤ 𝜄, then J𝑀K ⇓↓Δ,𝜄 (J𝑉 K, ↓Δ′).

4 Valid Time
The other dimension of time we will look at is valid time,
which tracks when something is true in the domain being
modelled. Each timestamp therefore defines the period of
validity (PV) of each record.

Unlike in a transaction time database, the database

does not necessarily grow monotonically since we can

apply destructive updates and deletions. Furthermore,

whereas in a transaction time database timestamps can only

refer to the past (or ∞), in a valid time database we may

state that a row is valid until some specific point in the

future (for example, the end of a fixed-term employment

contract). A further difference from transaction time

databases is that users can modify timestamps directly, and

can also apply updates and deletions over a time period.

Let us illustrate with the ‘employees’ table of an HR database:

name position salary start end

Alice Lecturer 40000 2010 2018

Alice Senior Lecturer 50000 2018 ∞
Bob PhD Student 15000 2019 2023

Charles PhD Student 15000 2018 2022
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Auxiliary Definitions
𝜂 (𝑥, ℓ̃ ) ≜ (ℓ𝑖 = 𝑥.ℓ𝑖 )𝑖

restrict(𝑥, ℓ̃, 𝑀 ) ≜ (𝜆𝑥.𝑀 ) 𝜂 (ℓ̃, 𝑥 )
isCurrent(𝑀 ) ≜ 𝑀.end = ∞

Translation on database terms
Jdata𝑀K = J𝑀K.data

Jstart𝑀K = J𝑀K.start

Jend𝑀K = J𝑀K.end

Jget(ℓ𝑖 :𝐴𝑖 )𝑖 𝑀K =
query
for (𝑥 ← get J𝑀K)

*(data = 𝜂 (𝑥, ℓ̃ ), start = 𝑥.start, end = 𝑥.end )+

Jinsert(ℓ𝑖 :𝐴𝑖 )𝑖 𝑀 values 𝑁 K =
let rows =

for (𝑥 ← J𝑁 K)
*𝜂 (𝑥, ℓ̃ ) ⊕ (start = now, end = ∞)+

in
insert J𝑀K values rows

Jdelete(ℓ𝑖 :𝐴𝑖 )𝑖 (𝑥 ⇐ 𝑀 ) where 𝑁 K =
update (𝑥 ⇐ J𝑀K)

where (restrict(𝑥, ℓ̃, J𝑁 K) ∧ isCurrent(𝑥 ) )
set (end = now)

Jupdate(ℓ𝑖 :𝐴𝑖 )𝑖∈𝐼 (𝑥 ⇐ 𝐿) where 𝑀 set (ℓ = 𝑁 𝑗 ) 𝑗 ∈ 𝐽 K =
let tbl = J𝐿K in
let affected =

query
for (𝑥 ← get tbl)

where ( (restrict(𝑥, {ℓ𝑖 }𝑖∈𝐼 , J𝑀K) ∧ isCurrent(𝑥 ) ) )

H (ℓ𝑖 = 𝑥.ℓ𝑖 )𝑖∈𝐼\𝐽 ⊕(ℓ𝑗 = restrict(𝑥, {ℓ𝑖 }𝑖∈𝐼 , J𝑁 𝑗 K) ) 𝑗 ∈ 𝐽 ⊕
(start = now, end = ∞) I

in
update (𝑥 ⇐ tbl)

where (restrict(𝑥, ℓ̃, J𝑀K) ∧ isCurrent(𝑥 ) )
set (end = now) ;

insert tbl values affected

Figure 5. Translation from 𝜆TLINQ into 𝜆LINQ

The first modification is to hire Dolores as a professor, on

an open-ended contract. As this is an insertion operation on

the database at the current moment in time, it is known as a

current insertion. We can write the following query:

insert employees values
(name = “Dolores”, position = “Professor”, salary = 70000)

Next, we want to record that Alice has resigned. We can

write the following current deletion query:

delete (𝑥 ⇐ employees) where 𝑥.name = “Alice”

The resulting table state shows that Dolores is a Professor

from the current time onwards, and that the ‘end’ field of

Alice’s current row is updated to the current year:

name position salary start end

Alice Lecturer 40000 2010 2018

Alice Senior Lecturer 50000 2018 2022

Dolores Professor 70000 2022 ∞
· · · · · · · · · · · · · · ·

A powerful feature of valid-time databases is the ability

to perform sequenced modifications, which apply an update

or deletion over a particular period of applicability (PA). In

fact, current modifications are a special case of sequenced

modifications applied from now until∞. Suppose that Do-
lores has agreed to act as Head of School between 2023 and

2028. We can record this using a sequenced update query:

update sequenced (𝑥 ⇐ employees)
between 2023 and 2028where (𝑥.name = “Dolores”)
set (position = “Head of School”)

with the resulting table being:

name position salary start end

Dolores Professor 70000 2022 2023

Dolores Head of School 70000 2023 2028

Dolores Professor 70000 2028 ∞
· · · · · · · · · · · · · · ·

Since the period of applicability of the sequenced update is

entirely contained within the period of validity of Dolores’s

row, we end upwith three rows: the unchanged record before

and after the PA, and the updated record during the PA. We

also allow a sequenced deletion, and a sequenced insertion,
where each record’s period of validity is given explicitly.

Additionally, suppose that all PhD students are to be given

a 1-year extension due to the disruption caused by the pan-

demic; in this case we want to change the period of validity

directly. This is known as a nonsequenced update. We cannot

express this modification using either current or sequenced

modifications since we must calculate the each row’s new

end date from its previous end date. We can write the modi-

fication as follows, noting that we can both read from, and

write to, the period of validity directly:

update nonsequenced (𝑥 ⇐ employees)
where ( (data 𝑥 ) .position = “PhD student”)
set ( ) valid from (start 𝑥 ) to (end 𝑥 + 1)

The resulting table shows that the ‘end’ field of Bob’s and

Charles’ records are updated to 2024 and 2023 respectively:

name position salary start end

Bob PhD Student 15000 2019 2024

Charles PhD Student 15000 2018 2023

· · · · · · · · · · · · · · ·

4.1 Calculus
The 𝜆VLINQ calculus gives a direct semantics to valid time op-

erations. Like 𝜆TLINQ, 𝜆VLINQ has a native notion of a period-

stamped database row, with accessors for the data and each

timestamp; the typing rules, reduction rules, and translations

are straightforward adaptations of those in 𝜆TLINQ.

Figure 6 shows how the syntax and typing rules for

𝜆VLINQ differ from those of 𝜆LINQ. Unlike in 𝜆TLINQ, we

can use the term 𝑀
[𝑀2,𝑀3 )
1

to construct a valid-time

row. Sequenced insertions are described by the term

insert sequenced 𝑀 values 𝑁 where TV-SeqInsert en-

sures that 𝑁 is a bag of timestamped records. Sequenced

updates are described by:
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Syntax

Types 𝐴, 𝐵 ::= ValidTime(𝐴)
Terms 𝐿,𝑀, 𝑁 ::= · · · | 𝐿 [𝑀,𝑁 ) | data𝑀 | start𝑀 | end𝑀 | insert sequenced 𝑀 values 𝑁

| update sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑀3 set (�ℓ = 𝑁 )
| update nonsequenced (𝑥 ⇐ 𝐿) where 𝑀 set (�ℓ = 𝑁 ) valid from 𝑁 ′

1
to 𝑁 ′

2

| delete sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑁
| delete nonsequenced (𝑥 ⇐ 𝑀 ) where 𝑁

Values 𝑉 ,𝑊 ::= · · · | 𝑉 [𝑉2,𝑉3 )
1

Typing rules Γ ⊢ 𝑀 : 𝐴 ! 𝐸
TV-Get

Γ ⊢ 𝑀 :Table(𝐴) !𝐸
Γ ⊢ get 𝑀 :Bag(ValidTime(𝐴) ) ! {read} ∪ 𝐸

TV-SeqInsert

Γ ⊢ 𝑀 :Table(𝐴) !𝐸 Γ ⊢ 𝑁 :Bag(ValidTime(𝐴) ) ! ∅
Γ ⊢ insert sequenced 𝑀 values 𝑁 :( ) ! {write} ∪ 𝐸

TV-SeqUpdate

Γ ⊢ 𝐿:Table(𝐴) !𝐸 𝐴 = (ℓ𝑖 : 𝐵𝑖 )𝑖∈𝐼 Γ ⊢ 𝑀1:Time ! ∅ Γ ⊢ 𝑀2:Time ! ∅ Γ, 𝑥 : 𝐴 ⊢ 𝑀3:Bool ! ∅ ( 𝑗 ∈ 𝐼 ∧ Γ, 𝑥 : 𝐴 ⊢ 𝑁 𝑗 :𝐵 𝑗 ! ∅) 𝑗 ∈ 𝐽
Γ ⊢ update sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑀3 set (ℓ𝑗 = 𝑁 𝑗 ) 𝑗 ∈ 𝐽 :( ) ! {write} ∪ 𝐸

TV-NonseqUpdate

Γ ⊢ 𝐿:Table(𝐴) !𝐸 𝐴 = (ℓ𝑖 : 𝐵𝑖 )𝑖∈𝐼 Γ, 𝑥 : ValidTime(𝐴) ⊢ 𝑀 :Bool ! ∅
( 𝑗 ∈ 𝐼 ∧ Γ, 𝑥 : ValidTime(𝐴) ⊢ 𝑁 𝑗 :𝐵 𝑗 ! ∅) 𝑗 ∈ 𝐽 Γ, 𝑥 : ValidTime(𝐴) ⊢ 𝑁 ′

1
:Time ! ∅ Γ, 𝑥 : ValidTime(𝐴) ⊢ 𝑁 ′

2
:Time ! ∅

Γ ⊢ update nonsequenced (𝑥 ⇐ 𝐿) where 𝑀 set (ℓ𝑗=𝑁 𝑗 ) 𝑗 ∈ 𝐽 valid from 𝑁 ′
1
to 𝑁 ′

2
:( ) ! {write} ∪ 𝐸

TV-SeqDelete

Γ ⊢ 𝐿:Table(𝐴) !𝐸1 Γ ⊢ 𝑀1:Time !𝐸2 Γ ⊢ 𝑀2:Time !𝐸3 Γ, 𝑥 :𝐴 ⊢ 𝑁 :Bool ! ∅
Γ ⊢ delete sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑁 :( ) ! {write} ∪ 𝐸1 ∪ 𝐸2 ∪ 𝐸3

TV-NonseqDelete

Γ ⊢ 𝑀 :Table(𝐴) !𝐸 Γ, 𝑥 : ValidTime(𝐴) ⊢ 𝑁 :Bool ! ∅
Γ ⊢ delete nonsequenced (𝑥 ⇐ 𝑀 ) where 𝑁 :( ) ! {write} ∪ 𝐸

Figure 6. Syntax and typing rules for 𝜆VLINQ

update sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑀3 set (�ℓ = 𝑁 )
Terms𝑀1 and𝑀2 must be of type Time, referring to the pe-

riod of applicability of the sequenced update. Nonsequenced

updates are described by the term:

update nonsequenced (𝑥 ⇐ 𝐿)
where𝑀 set (�ℓ = 𝑁 ) valid from 𝑁 ′

1
to 𝑁 ′

2

with TV-NonseqUpdate stating that the database row (in-

cluding period information) is bound as 𝑥 in the predicate

𝑀 , update terms 𝑁 𝑗 , and new time periods 𝑁 ′
1
and 𝑁 ′

2
.

Finally, the term:

delete sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑁

describes a sequenced deletion which removes the portion

of each record satisfying 𝑁 between times𝑀1 and𝑀2.

Since current insertions, updates, and deletions are special

cases of sequenced operations, we need not consider them

explicitly; for completeness, direct semantics can be found in

the extended version. Instead, we show macro translations

to the sequenced constructs. Current insertions can be imple-

mented by desugaring to sequenced insertions, annotating

each row with [now,∞):

insert 𝑀 values 𝑁 { let rows = for (𝑥 ← 𝑁 )*𝑥 [now,∞)+ in
insert sequenced 𝑀 values rows

Current updates and deletions can be implemented as se-

quenced updates and deletions where the period of applica-

bility spans from now until∞:

update (𝑥 ⇐ 𝐿) where 𝑀 set (ℓ𝑖 = 𝑁𝑖 )𝑖 {
update sequenced (𝑥 ⇐ 𝐿)
between now and∞where𝑀 set (ℓ𝑖 = 𝑁𝑖 )𝑖

delete (𝑥 ⇐ 𝑀 ) where 𝑁 {
delete sequenced (𝑥 ⇐ 𝑀 ) between now and ∞ where 𝑁

Fig. 7 shows selected reduction rules: we show sequenced

inserts and updates, and nonsequenced updates; the rules

for other cases employ similar ideas and are included in the

extended version. Nonsequenced updates and deletes are

similar to their analogues in 𝜆LINQ but allow access to, and

modification of, row timestamps. For sequenced insertions,

EV-SeqInsert checks that the period of validity for each

row is correct (i.e., that the start field is less than the end
field) and appends the provided bag to the table. Sequenced

updates and deletions must account for the various ways that

the period of applicability can overlap the period of validity.

There are five main cases, corresponding to the five ways

two closed-open intervals can overlap (or fail to do so):
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Reduction rules 𝑀 ⇓VΔ,𝜄 (𝑉 ,Δ
′ )

EV-Row

𝑀1 ⇓VΔ,𝜄 (𝑉1,Δ1 )
𝑀2 ⇓V𝜄,Δ1 (𝑉2,Δ2 ) 𝑀3 ⇓V𝜄,Δ2 (𝑉3,Δ3 )

𝑀
[𝑀2,𝑀3 )
1

⇓VΔ,𝜄 (𝑉
[𝑉2,𝑉3 )
1

,Δ3 )

EV-SeqInsert

𝑀 ⇓VΔ,𝜄 (𝑡,Δ1 ) 𝑁 ⇓★𝜄 *𝑉 + ∀data[start,end) ∈ 𝑉 .start < end
Δ2 = Δ1 [𝑡 ↦→ Δ1 (𝑡 ) ⊎̂ *𝑉 +]

insert sequenced 𝑀 values 𝑁 ⇓VΔ,𝜄 ( ( ),Δ2 )

EV-SeqUpdate

𝐿 ⇓VΔ,𝜄 (𝑡,Δ1 ) 𝑀1 ⇓★𝜄 𝑉start 𝑀2 ⇓★𝜄 𝑉end 𝑉start < 𝑉end Δ2 = Δ1 [𝑡 ↦→
⊎̂

* upd(𝑑 ) | 𝑑 ∈ Δ1 (𝑡 )+]

upd(v [start,end) ) =



*𝑊 [start,end)+ if𝑀3{v/𝑥 } ⇓★𝜄 true and𝑉start ≤ start and𝑉end ≥ end (Case 1)
*𝑊 [start,𝑉end ) , v [𝑉end ,end)+ if𝑀3{v/𝑥 } ⇓★𝜄 true and𝑉start ≤ start and𝑉end < end (Case 2)
*v [start,𝑉start ) ,𝑊 [𝑉start ,𝑉end ) , v [𝑉end ,end)+ if𝑀3{v/𝑥 } ⇓★𝜄 true and𝑉start > start and𝑉end < end (Case 3)
*v [start,𝑉start ) ,𝑊 [𝑉start ,end)+ if𝑀3{v/𝑥 } ⇓★𝜄 true and𝑉start > start and𝑉end ≥ end (Case 4)
*v [start,end)+ otherwise (Case 5)

where for all cases,𝑊 = (v with�ℓ =𝑊 ′ ) given (𝑁𝑖 ⇓★𝜄 𝑊 ′𝑖 )𝑖
update sequenced (𝑥 ⇐ 𝐿) between 𝑀1 and 𝑀2 where 𝑀3 set (ℓ𝑖 = 𝑁𝑖 )𝑖 ⇓Δ,𝜄 ( ( ),Δ2 )

EV-NonseqUpdate

𝐿 ⇓Δ,𝜄 (𝑡,Δ1 ) Δ2 = Δ1 [𝑡 ↦→ *upd(𝑑 ) | 𝑑 ∈ Δ1 (𝑡 )+]

upd(𝐷 = v [start,end) ) =


(v with �ℓ =𝑊 ) [𝑊start ,𝑊end ) if 𝑀 {𝐷/𝑥 } ⇓★𝜄 true and (𝑁𝑖 {𝐷/𝑥 } ⇓★𝜄 𝑊𝑖 )𝑖 and

𝑁 ′
1
{𝐷/𝑥 } ⇓★𝜄 𝑊start and 𝑁

′
2
{𝐷/𝑥 } ⇓★𝜄 𝑊end and𝑊start <𝑊end

𝐷 if𝑀 {𝐷/𝑥 } ⇓★𝜄 false

update nonsequenced (𝑥 ⇐ 𝐿) where 𝑀 set (ℓ𝑖 = 𝑁𝑖 )𝑖 valid from 𝑁 ′
1
to 𝑁 ′

2
⇓Δ,𝜄 ( ( ),Δ2 )

Figure 7. Reduction rules for 𝜆VLINQ (selected)

Case 1: PA overlaps PV entirely
PV

PA

In the case of a sequenced deletion, the entire row will be

deleted. In the case of a sequenced update, the entire row

will be updated.

Case 2: PA overlaps PV on the left
PV

PA

In the case of a sequenced deletion, the overlapping por-

tion will be deleted; in the case of a sequenced update, the

overlapping portion will contain the updated values and the

remaining portion of the PV will contain the previous values.

Case 3: PA contained within PV
PV

PA

In the case of a sequenced deletion, there will be two records:

the portion of the PV before the start of the PA, and the

portion of the PV after the end of the PA. In the case of a

sequenced update, there will be three records: the portion of

the PV before the start of the PA, and the portion of the PV

after the end of the PA will contain the original values, and

the overlapping portion will contain the updated values.

Case 4: PA overlaps PV on the right
PV

PA

Similar to case 2, but at the end of the PV.

Case 5: PA entirely before or after PV
PV

PA PA

In the case of either a sequenced deletion or a sequenced

update, the row will be unaffected.

4.2 Translation
Figure 8 illustrates the translation from 𝜆VLINQ into 𝜆LINQ.

We discuss the translations for sequenced inserts and both se-

quenced and nonsequenced updates; the other modifications

are similar and included in the extended version. As before,

we require annotations on each of the database update terms.

Nonsequenced updates and deletions can be updated di-

rectly by their corresponding 𝜆LINQ operation; we use an

auxiliary definition, lift, which lifts the flat representation

into the nested representations expected by the predicate

and update fields. Sequenced inserts flatten the contents of

the provided bag and map directly to an insert.
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Linsert(ℓ𝑖 :𝐴𝑖 )𝑖 sequenced 𝑀 values 𝑁 M =
let tbl = L𝑀M in
let rows =

for (𝑥 ← L𝑁 M)
*𝜂 (𝑥.data, ℓ̃ ) ⊕ (start = 𝑥.start, end = 𝑥.end )+

in
insert tbl values rows

L update(ℓ𝑖 :𝐴𝑖 )𝑖∈𝐼 sequenced (𝑥 ⇐ 𝐿)
between𝑀1 and𝑀2 where𝑀3

set (ℓ𝑗 = 𝑁 𝑗 ) 𝑗 ∈ 𝐽
M =

let tbl = L𝐿M in
let aStart = L𝑀1M in
let aEnd = L𝑀2M in
let lRows = startRows(tbl, pred, aStart ) in
let rRows = endRows(tbl, pred, aEnd ) in
update (𝑥 ⇐ tbl)

where (pred ∧ (𝑥.start < aEnd ) ∧ (𝑥.end > aStart ) )

set ©«
(ℓ𝑗 = restrict(𝑥, {ℓ𝑖 }𝑖∈𝐼 , L𝑁 𝑗 M) ) 𝑗 ∈ 𝐽 ,
start = greatest(𝑥.start, aStart ),
end = least(𝑥.end, aEnd )

ª®¬ ;
insert tbl values lRows;
insert tbl values rRows

where

pred ≜ restrict(𝑥, {ℓ𝑖 }𝑖∈𝐼 , L𝑀3M)
startRows(tbl, pred, aStart ) ≜ query

for (𝑥 ← get tbl)
where (pred ∧ (𝑥.start < aStart ) ∧ (𝑥.end > aStart ) )
*𝜂 (𝑥, {ℓ𝑖 }𝑖∈𝐼 ) ⊕ (start = 𝑥.start, end = aStart )+

endRows(tbl, pred, aEnd ) ≜ (symmetric)

L update(ℓ𝑖 :𝐴𝑖 )𝑖∈𝐼 nonsequenced (𝑥 ⇐ 𝐿) where𝑀
set (ℓ𝑗 = 𝑁 𝑗 ) 𝑗 ∈ 𝐽 valid from 𝑁 ′

1
to 𝑁 ′

2

M =

update(ℓ𝑖 :𝐴𝑖 )𝑖∈𝐼 (𝑥 ⇐ L𝐿M)
where (lift(𝑥, L𝑀M) )

set ©«
( (ℓ𝑗 = lift(𝑥, L𝑁 𝑗 M) ) 𝑗 ∈ 𝐽 ,
start = lift(𝑥, L𝑁 ′

1
M),

end = lift(𝑥, L𝑁 ′
2
M) )

ª®¬
where lift(𝑥, 𝑓 ) ≜
(𝜆𝑥.𝑓 ) (data = 𝜂 (𝑥, {ℓ𝑖 }𝑖∈𝐼 ), start = 𝑥.start, end = 𝑥.end )

Figure 8. Translation from 𝜆VLINQ into 𝜆LINQ (selected cases)

The remaining sequenced operations are themost complex

to translate. Since a sequenced modification may partition

a row, the startRows and endRows functions calculate the
records which must be inserted before and after the period

of applicability. To translate a sequenced update, we calcu-

late the rows to insert, perform an update to set the new

values and set the new period of applicability to the over-

lap between the PA and PV using the greatest and least
functions, and finally materialise the insertions. Sequenced

deletions (shown in the extended version) are similar but

delete the rows that overlap the PA instead of updating them.

4.3 Metatheory
Evaluation preserves typing and well-formedness.

Proposition 4.1 (Preservation (𝜆VLINQ)). If · ⊢ 𝑀 :𝐴 !𝐸 and
𝑀 ⇓VΔ,𝜄 (𝑉 ,Δ′) for some wf(Δ), then · ⊢ 𝑉 :𝐴 ! ∅ and wf(Δ′).

Unlike 𝜆LINQ and 𝜆TLINQ, evaluation in 𝜆VLINQ is partial in
order to reflect the need for dynamic checks that start times

precede end times. In practice, our implementation evalu-

ates temporal updates as single transactions and raises an

exception (aborting the transaction) when a well-formedness

check fails, but our formalisation assumes updates preserve

well-formedness in order to avoid clutter.

Our translation from 𝜆VLINQ into 𝜆TLINQ satisfies the fol-

lowing correctness property:

Theorem 4.1. If · ⊢ 𝑀 :𝐴 !𝐸 and 𝑀 ⇓VΔ,𝜄 (𝑉 ,Δ′) for some

wf(Δ), then L𝑀M ⇓↓Δ,𝜄 (L𝑉 M, ↓Δ′)

5 Sequenced Joins
Queries that join multiple tables are straightforward to en-

code using language integrated query. Keeping with our

employee database, say we wish to separate out the salary

into a separate table. The non-temporal employee database

might look as follows:

employees
name position band

Alice Senior Lecturer A08

Bob PhD Student B01

Charles PhD Student B01

Dolores Professor A10

salaries
band salary

A08 40000

A09 50000

A10 70000

B01 15000

We can get the salary for each employee as follows:

query
for (𝑒 ← get employees)

for (𝑠 ← get salaries)
where (𝑒.band = 𝑠.band )
*(name = 𝑒.name, salary = 𝑠.salary)+

name salary

Alice 40000

Bob 15000

Charles 15000

Dolores 70000

Joining a temporal table with a non-temporal table is also eas-

ily expressible. Consider a version of our previous temporal

employees table from just after when Dolores joined:

name position band start end

Alice Lecturer A08 2010 2018

Alice Senior Lecturer A09 2018 ∞
Bob PhD Student B01 2019 2023

Charles PhD Student B01 2018 2022

Dolores Professor A10 2022 ∞

We can join this table with the non-temporal salaries table

as follows; for clarity, we denote valid-time get as getV:

query
for (𝑒 ← getv employees)

for (𝑠 ← get salaries)
where ( (data 𝑒 ) .band = 𝑠.band )
*(name = 𝑒.name, salary = 𝑠.salary) [start 𝑒,end 𝑒 )+

giving us the corresponding table in Section 4.

Things get more interesting when both tables are temporal.

Salaries are not static over time; bands go up with inflation,

for example. Suppose we now have two temporal tables.

Consider the above table along with a temporal salaries table

showing a pay increase in 2015:
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band salary start end

A08 38000 2000 2015

A09 48000 2000 2015

A08 40000 2015 ∞
A09 50000 2015 ∞
· · · · · · · · · · · ·

What does it mean to join two temporal tables? In essence,

we want to record all configurations of a particular joined
record, creating new records with shorter periods of validity

whenever data from either underlying table changes. Con-

cretely, joining the above two temporal tables would give:

name salary start end

Alice 38000 2010 2015

Alice 40000 2015 2018

Alice 50000 2018 ∞
· · · · · · · · · · · ·

Now there are records for Alice forthree different periods:
• The first when Alice was on salary band A08, confer-

ring a salary of £38000.

• The second when band A08 increased to £40000.

• The third when Alice was promoted to band A09.

Such joins are called sequenced because they (conceptually)
evaluate the join on the whole sequence of states encoded by

each table. Manually writing the sequenced joins in SQL is

error-prone. We instead introduce a construct, join, which
allows us to write the following:

join
for (𝑒 ← getv employees)
for (𝑠 ← getv salaries)

where ( (data 𝑒 ) .band = (data 𝑠 ) .band )
*(name = (data 𝑒 ) .name, salary = (data 𝑠 ) .salary)+

Note that we do not need to calculate the period of validity

for each resulting row; this is computed automatically.

Figure 9 shows how sequenced joins can be implemented;

we show the constructs for valid time, but the same technique

can be used for transaction time. The typing rule requires

that the result of a join query is flat (nested sequenced

queries are conceptually nontrivial).

As mentioned earlier, queries can be rewritten to normal

forms for conversion to SQL, as shown in Figure 9. The

structure of these normal forms allows sequenced joins to

be implemented through a simple rewrite: the greatest and
least functions are used to calculate the intersections of

the periods of validity for each combination of records from

each generator, with the modified predicate ensuring that the

periods of overlap make sense. The calculated overlapping

periods of validity are then returned in the resulting row.

6 Implementation and Case Study
The Links programming language [9] is a statically-typed

functional web programming language which allows client,

server, and database code to be written in a uniform language.

We have extended Links with support for the constructs

described in Sections 3 and 4, as well as support for temporal

Typing rules A :: FQType Γ ⊢ 𝑀 :𝐴 !𝐸

𝐶 :: FQType (ℓ𝑖 : 𝐶𝑖 )𝑖 :: FQType

Γ ⊢ 𝑀 :Bag(𝐴) !𝐸 𝐴 :: FQType 𝐸 ⊆ {read}
Γ ⊢ join𝑀 :Bag(ValidTime(𝐴) ) !𝐸

Normal forms
Queries 𝑄 ::= 𝐾1 ⊎ · · · ⊎𝐾𝑛
Comprehensions 𝐾 ::= for (𝐺 ) where 𝑃 * 𝑆+
Generators 𝐺 ::= 𝑥 ← get 𝑡 | 𝑥 ← getv 𝑡
Normalised terms 𝑆 ::= 𝑃 | 𝑅
Base terms 𝑃 ::= 𝑐 | 𝑥.ℓ | ⊙{−→𝑃 }
Record terms 𝑅 ::= (ℓ𝑖 = 𝑃𝑖 )𝑖

Translation on normal forms

∥join𝑄 ∥ = query ∥𝑄 ∥ ∥𝐾1 ⊎ · · · ⊎𝐾𝑛 ∥ = ∥𝐾1 ∥ ⊎ · · · ⊎ ∥𝐾𝑛 ∥

∥𝑃 ∥ = 𝑃 ∥𝑅 ∥ = 𝑅

∥ for
(
𝑥1 ← getv 𝑡1, . . . , 𝑥𝑚 ← getv 𝑡𝑚,
𝑦1 ← get 𝑡 ′

1
, . . . , 𝑦𝑛 ← get 𝑡 ′𝑛

)
where (𝑃 )
*𝑅+

∥ =
for

(
𝑥1 ← getv 𝑡1, . . . , 𝑥𝑚 ← getv 𝑡𝑚,
𝑦1 ← get 𝑡 ′

1
, . . . , 𝑦𝑛 ← get 𝑡 ′𝑛

)
where (𝑃 ∧ joinStart < joinEnd )
*𝑅 [joinStart,joinEnd)+

where joinStart ≜ greatest(𝑥1 .start, . . . , 𝑥𝑚 .start )
joinEnd ≜ least(𝑥1 .end, . . . , 𝑥𝑚 .end )

Figure 9. Sequenced joins

joins as described in Section 5. In this section, we describe a

case study based on curating COVID-19 data.

Our translations from 𝜆VLINQ into 𝜆LINQ are trivially real-

isable in SQL. Queries can be compiled using known tech-

niques (e.g., [8]). The startRows and endRows functions can
be compiled using an SQL WITH statement, and there is a

direct correspondence between 𝜆LINQ modification opera-

tions and their SQL equivalents. Each translated temporal

modification is executed as an SQL transaction, with primary

key and referential integrity constraint checking deferred

until the end of the transaction.

Case study. We have used the temporal features of Links

in two prototypes based on curated scientific databases: cu-

ration of publicly available COVID-19 data, and storage and

curation of XML documents [18] using the Dynamic Dewey

labelling algorithm [38].

We concentrate on the first application
1
; a previous proto-

typewhich used a preliminary version of the language design

has previously been presented as a short demo paper [17]. In

2020, the Scottish Government began releasing various data

about the COVID-19 pandemic [26], which included weekly

data of fatalities in Scotland in various categories (such as

1
Links code is available at https://github.com/vcgalpin/links-covid-curation
[16]

https://github.com/vcgalpin/links-covid-curation
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‘Sex’). Each weekly release was a CSV file, with a row for

each subcategory (e.g., ‘Sex’ has the subcategories ‘Male’ and

‘Female’) and a column for each week for which data was

available. Each release included an additional week column

with the latest data (see Figure 10). Importantly, each release

could include revisions to data for previous weeks.

Information about the changes to the data over time is

often desired to understand its provenance and assess its

trustworthiness [4]. From a provenance point of view, this

data is interesting because a column for an earlier week may

contain updated data. We developed a web application for

the querying of the data ("How do the Male and Female sub-

categories compare in terms of the change in fatalities from

last week to this week?") as well as querying the changes

in the data ("How do the Male and Female subcategories

compare in terms of number of updates to existing values?").

Considering the non-temporal data, an entry in a database

table would be a row consisting of the key fields subcat and

weekdate and a value field giving the corresponding count. In

the case of the temporal data, the key fields are insufficient

to uniquely identify the value of the count because it may

have different values over time. Thus the time validity fields

are necessary to provide a key for the value.

The prototype uses a valid time table for fatality data to

capture the notion that a count value, either brand new or an

update, becomes valid as soon as the CSV is uploaded into

the interface
2
(this can be a different time from when the

new value is accepted and written to the database). In Links

it is possible to specify the names of the period stamping

fields, which have the built-in type DateTime. This table is

defined using the following Links code; we have omitted

some details in the code snippets for brevity.

var covid_data =

table "covid_data"

with (subcat: Int, weekdate: String, count: Int)

using valid_time(valid_from, valid_to)

from database "covid_curation";

The prototype’s upload workflow is as follows: the user up-

loads a new CSV file, and the count values for the new week

are added to the database. For counts that pertain to earlier

weeks and that now have different values, the user is shown

these counts and can accept them, reject them or move them

to a pending list for a later decision. In terms of implemen-

tation, brand new count values are added to the table with

a sequenced insert, using the upload time as the start time.

The Links code for this and other examples can be found

in the extended version. The process is more complex for

updated count values, because the interface shows the user

previous value, to support decision making. This requires a

conditional join over the current state of the covid_data table

and the count values from the CSV file. If a modification is

2
Other possibilities for the start time of validity are the date of the release

of the CSV file or the start of the new week.

accepted, it is added using a sequenced update. Figure 10 il-
lustrates how the table changes as a result of a single update.

The prototype also provides functionality to query

data, both as current data, and as data with informa-

tion about changes. The current data is obtained using

a current query. The result is a list of weeks and counts

grouped by subcategory. This is repeated for each category.

fun getCurrentData (category) {

query nested {

for (x <-- subcategory)

where (x.cat == category)

[(subcat_name = x.subcat_name, cat = x.cat,

results =

for (y <- vtCurrent(covid_data))

for (z <-- week)

where (y.subcat == x.subcat &&

y.weekdate == z.weekdate &&

z.all_zero == false)

[(count = y.count, weekdate = y.weekdate)])]}

}

Instead of an explicit get construct, Links uses the ‘double ar-
row’ comprehension <-- to represent a nontemporal database

query, with <-t- and <-v- supporting transaction time and

valid time queries respectively. The ‘single arrow’ compre-

hension <- denotes a list comprehension. Finally, vtCurrent

is a standard library function which performs a valid time

query to obtain the values valid at the current time.

For update provenance queries of individual counts, a self

join is computed over the subcategory and week fields of the

valid time table to provide a nested result table where each

count is associated with a list of count values and their associ-

ated start and end time information. This is a nonsequenced

query because the time period information is explicitly added

to the result table. The user can specify the subcategory and

week they are interested in, and obtain details of modifi-

cations. The interface also supports update provenance by

week and by category. This is illustrated in Figure 11.

7 Discussion
Efficiency. Our main focus has been on portability: by dis-

tilling a language design and formalising and implementing

a translation from temporal calculi to non-temporal calculi,

we allow temporal functionality to be used on a mainstream

DBMS. The cost of portability is that our translations will

inevitably not perform as well as a native implementation.

Although we do not make any specific claims about effi-

ciency, we have no reason to believe that the performance is

any different to hand-translated SQL.

In particular, as discussed in §6, all translated queries can

be run directly on the database and do not require in-memory

processing. Previous work on language-integrated query

(e.g., [6, 9]) shows how the “nested loop” style of query is

translated into efficient SQL, and our translation of queries
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Week Subcat Count Valid-from Valid-to
30-Mar-2020 Female 126 <first CSV upload> <later CSV upload>
30-Mar-2020 Female 127 <later CSV upload> <forever>
30-Mar-2020 Male 156 <first CSV upload> <forever>

Week Subcat Count Valid-from Valid-to
30-Mar-2020 Female 126 <first CSV upload> <forever>
30-Mar-2020 Male 156 <first CSV upload> <forever>

Updates from the CSV of 13-Apr-2020

New data from the CSV of 30-Mar-2020

Figure 10. Example of data uploads, sequenced insertion and sequenced update

Figure 11. Interface screenshot: history of a count

happens prior to normalisation. Further optimisation is sub-

sequently performed by the DBMS, and anecdotally we have

not observed any performance issues in any applications we

have written using the temporal extensions to Links.

Supporting existing native implementations. Some

(mainly proprietary) DBMSs, for example Teradata [1], have

native support for some temporal features inspired by TSQL2

or SQL:2011. Although we are yet to explore this, an advan-

tage of the LINQ approach is that temporal SQL syntax could

be generated for backends which support temporal opera-

tions directly, while maintaining functionality in mainstream

backends without native temporal support.

The translation between our temporal modification con-

structs and SQL:2011 (and similarly, TSQL2) would be fairly

direct. Consider a sequenced update in 𝜆VLINQ:

update sequenced (𝑥 ⇐ employees)
between 2022−01−1 and 2022−10−29where (𝑥.salary < 30000)
set (salary = 𝑥.salary + 1000)

This could be implemented in SQL:2011 as follows:

UPDATE employees
FOR PORTION OF EPeriod
FROM DATE '2022-01-01' TO DATE '2022-10-29'

WHERE salary < 30000
SET salary = salary + 1000

Moving between the two DBMSs would not require any

changes to application source code. However, not all oper-

ations can be as straightforwardly translated: in particular,

SQL:2011 does not natively support sequenced joins.

8 Related and Future Work
Most of the focus of effort on language-integrated query

has been (perhaps unsurprisingly) on queries rather than

updates, beginning with the foundational work on nested

relational calculus by Buneman et al. [3] and on rewrit-

ing queries for translation to SQL by Wong [37]. Lindley

and Cheney [23] presented a calculus including both query

and update capabilities and our type and effect system for

tracking database read and write access is loosely based on

theirs. More recently a number of contributions extending

the formal foundations of language-integrated query have

appeared, including to handle higher-order functions [8],

nested query results [6], sorting/ordering [21], grouping and

aggregation [27, 28], and deduplication [30]. Our core cal-

culus 𝜆LINQ only incorporates the first two of these, and

developing a core calculus that handles more features, as

well as translating temporal queries involving them, is an

obvious future direction. To the best of our knowledge no

previous work on language-integrated query has considered

temporal data specifically.

The ubiquity and importance of time in applications of

databases was appreciated from an early stage [7] and led

to a significant community effort to standardise temporal

extensions to SQL based on the TSQL2 language design in

the 1990s and early 2000s [33]. This effort ultimately re-

sulted in standardisation of a relatively limited subset of

the original proposal in SQL:2011 [22]. Since then temporal

database research has progressed steadily, including recent

contributions showing how to implement temporal dataman-

agement as a layer on top of a standard RDBMS [11], and

establishing connections between temporal querying and

data provenance and annotation models [12].

Snodgrass [34] describes how to implement TSQL2-style

updates and queries by translation to SQL, but we are not

aware of previous detailed formal proofs of correctness of
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translations for transaction time and valid time updates. Al-

though timestamping rows with time intervals is among

the most popular ways to represent temporal databases as

flat relational tables, it is not the only possibility. Jensen et

al. [20] proposed a bitemporal conceptual data model that
captures the abstract meaning of a temporal table and used

it to compare different representation strategies.

There can be multiple representations of the same abstract

temporal data, leading to consideration of the problem of co-

alescing or normalizing the intervals to save space and avoid

ambiguity. Nonsequenced updates can be used to perform

modifications that have different effects on representations

of the same conceptual table. We have not considered co-

alescing or other common issues such as how to handle

operations such as deduplication, grouping and aggregation

(including emptiness testing), or integrity constraints in a

temporal setting. Some of these issues appear orthogonal to

the high-level language design and could be incorporated

“under the hood” into the implementation or even performed

directly on the database.

One important future application is to retrofit temporal

aspects to expert-curated databases, an example being the

Guide to Pharmacology Database (GtoPdb) that summarises

pharmacological targets and interactions [2]. Links has been

used to implement a workalike version of GtoPdb [15] and

we hope to build on this to provide a fully versioned imple-

mentation of GtoPdb. An important requirement here is to

minimise changes to the existing system.

Finally we mention two immediate next steps. First, we

plan to investigate bitemporal databases [35], which allow

transaction and valid time to be used together, in turn allow-

ing us to write queries such as “when was it recorded that

Bob’s contract length was extended?”. Bitemporal databases

are considerably more difficult to formalise and reason about,

so we aim to investigate how bitemporal support can be

added in a compositional manner. Second, at present, the

result of a sequenced join must be a flat record; further work

is required to understand the semantics and implementation

techniques for joins that produce nested results.

9 Conclusions
In spite of decades of work on temporal databases and even

an extension to the SQL standard, mainstream support for

temporal data remains limited, requiring developers to im-

plement temporal functionality from scratch. In this paper,

we have shown how to extend language-integrated query to

support transaction time and valid time data, making tem-

poral data management accessible without explicit DBMS

support. We have formalised our constructs and translational

implementation strategies based on those proposed by Snod-

grass [34], and proved that the translations are semantics-

preserving. We have implemented our approach in the Links

programming language and assessed its value through a case

study. Our work is a first but significant step towards fully

supporting temporal data management at the language level.
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