On the Effect of Onboarding Computing Students
without Programming-Confidence or -Experience

Pawel Grabarczyk
CCER: Center for
Computing Education Research
IT University of Copenhagen
Copenhagen, Denmark

ABSTRACT

Previous work demonstrates that students without prior program-
ming experience are worse off than their programming experienced
peers in terms of both Introductory Programming (CS1) grades and
dropout rates. Many universities, therefore, offer an onboarding
(CS0) course aimed at bridging the programming experience gap
by teaching the basics of programming to inexperienced students.

This paper reports on the effects of providing a three-day elective
onboarding course over a period of five years (2016-2020), involving
a total of N=798 software development students at the IT University
of Copenhagen. The paper compares 271 students who attended
versus a baseline of 527 who did not attend the onboarding course.

The results show that programming inexperienced students are
indeed able to “catch up” to the level of their experienced peers both
in terms of CS1 grades and dropout rates. Aside from objectively
increasing competence, the onboarding also increases confidence,
self-efficacy and diminishes insecurities, according to onboarded
participants. Finally, the results suggest that onboarding has the
potential to increase the diversity of students.

CCS CONCEPTS

« Social and professional topics — Computing education pro-
grams; Gender.

KEYWORDS

software development, computer science, computing, programming,
education, onboarding, gender, diversity, dropout, grades, compe-
tence, confidence, self-efficacy

ACM Reference Format:

Pawel Grabarczyk, Sebastian Mateos Nicolajsen, and Claus Brabrand. 2022.
On the Effect of Onboarding Computing Students without Programming-
Confidence or -Experience. In 22st Koli Calling International Conference
on Computing Education Research (Koli Calling °22), November 17-20, 2022,
Koli, Finland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.XXXX/
XXXXXXXXXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Koli Calling, November 17-20, 2022, Koli, Finland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8488-9/22/11...$15.00
https://doi.org/10.XXXX/XXXXXXX XXXXXXX

Sebastian Mateos Nicolajsen
CCER: Center for
Computing Education Research
IT University of Copenhagen
Copenhagen, Denmark

Claus Brabrand
CCER: Center for
Computing Education Research
IT University of Copenhagen
Copenhagen, Denmark

1 INTRODUCTION

Contemporary computer science students come to universities with
different backgrounds, competencies, and varying levels of confi-
dence. The lack of unified high school computer science education
and the variety of online materials students could encounter before
they enter the university makes it impossible to predict their level of
experience. Since computer science education tries to attract more
diverse groups of students, we can only expect the discrepancy
between levels of experience to increase.

The difference in initial experience level is something we should
avoid on its own as it has been shown to affect later performance of

students [1, 17, 19]. Studies show that prior programming (in)experience

has an impact on the future academic record of the students. This
is especially visible in the early stages of their academic education
[8, 17, 20, 21], but can sometimes extend further [1]. Additionally,
difference in initial experience level may negatively impact self-
efficacy of the less experienced students as comparison with peers
is the foundation for their self-efficacy perception [23]. Self-efficacy
is defined as a person’s own belief in their ability to succeed [23].
Low self-efficacy has been found to contribute to high dropout
rates in computing and teaching should therefore actively try to
increase self-efficacy of students [29]. Thus, an initiative which
allows peers without experience to meet and gain initial experi-
ences with programming will positively increase self-efficacy of
the student.

Apart from being a problem in and of itself, the lack of experi-
ence and confidence has an indirect impact on another big issue
related to computer science education, namely: gender imbalance.
As can be seen in [7, 35], there is a visible correlation between
the perceived self-efficacy and gender. Even though there are no
important differences at the level of typical computer operation,
such as browsing the web or utilizing office applications, males
tend to be more confident when it comes to programming and,
especially, robotics [27]. The upshot of this is that any action aimed
at candidates who perceive themselves as inexperienced has an
indirect impact on gender diversity.

Gender imbalance is a well-known problem in IT and there is
no doubt that one of the roots of this problem is the relative lack
of women opting for an IT education. It is therefore not surprising
that many universities employ programs that aim to change this
unsatisfactory trend. It seems safe to say that there is no single,
universally recognized “silver bullet” solution that could turn the
tides and that many, sometimes fragmentary actions should be
undertaken jointly. One of the tools for attracting women to the IT
study programs is onboarding (aka, CS0) courses that aim to bridge
the experience and competence gap by introducing programming

https://doi.org/10.XXXX/XXXXXXX.XXXXXXX
https://doi.org/10.XXXX/XXXXXXX.XXXXXXX
https://doi.org/10.XXXX/XXXXXXX.XXXXXXX

Koli Calling, November 17-20, 2022, Koli, Finland

inexperienced students to the basics of programming. In this paper,
we take a closer look at an elective three-day onboarding (CS0)
course called BooTIT which has been offered to new students a
couple of weeks before the university starts, at IT University of
Copenhagen, since 2016. We show that the effects of the course
and the feedback provided by the students can serve as a useful
illustration of the impact this type of initiative can have on the
unification of the freshmen cohort by boosting the competence and
confidence of those who chose it. In addition to this, the recognition
of the existence of such initiatives serves to broaden the recruitment
spectrum as it reassures students who may have doubts about their
abilities that they are indeed very welcome and eligible for a career
in computing; they will not be ostracized for lacking experience in
programming.

2 THE ONBOARDING COURSE

BooTIT is a three day programming course offered at the IT Uni-
versity of Copenhagen (ITU) to students who are enrolling in the
Bachelor’s programme Software development. Within this pro-
gramme, students initially face the CS1 equivalent 15 ECTs! course,
Introductory programming. Herein students familiarise themselves
with object-oriented programming with an emphasis on modelling
reality, using the “Objects First” approach [3] and a four week
project. BooTIT is constructed to complement this course. The
BooTIT course covers fundamental programming constructs in
depth which are also part of the curriculumn of the CS1 course and
its first four lectures. However, the fundamental concepts are at
the center of BooTIT allowing inexperienced students to become
familiar with their semantics and syntax in a way which the CS1
course does not facilitate. On the first day of BooTIT, students are
introduced to the basics of imperative programming; in particu-
lar, constants, variables, assignments, and operators. On day two,
students are introduced to control structures; in particular, condi-
tional and iteration statements. The third day focuses on further
programming techniques; in particular, Computational Thinking
and Object-Orientation. On the last day, the students also create
a project in small groups. Towards the end of the course, students
are asked to evaluate the course quantitatively and qualitatively.
Each day of the course is 6-7 hours of exercises and lecturing. The
entire course material is available on this link.?

2.1 The profile of BooTIT attendees

To properly evaluate the implications of our study, it is important to
clearly explain the characteristics of the group of students that are
represented in our data. The students self-assessed their own level
of programming experience and used this as a basis for signing up
for BooTIT. To help them with the evaluation, they got a descrip-
tion of programming concepts and were informed that if they were
familiar with these concepts, then the course was not intended for
them. Although signing up was not based on an objective assess-
ment of their competence, we believe that self-assessment is better
since it will incorporate not only experience, but also confidence and

self-efficacy.

1One academic year is 60 ECTs (European Credit Transfer and Accumulation System).
Zhttps://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K10ZAmJFKQCP?
usp=sharing

Nicolajsen et al.

2.2 The goals of BooTIT

The main goal of the CS0 course is to facilitate an active “hands on”
learning environment wherein students learn to program rather
than about programming. Along with being taught programming
language constructs, students are also taught about distinctions
between syntax and semantics. Apart from building the foundations
of programming experience, the course also aims to boost student
confidence and increase self-efficacy. The material is intentionally
kept to basics with lots of opportunities for help and feedback from
teaching assistants (TAs), to provide the students with successful
experiences with programming, and to show them that most of
their peers are at a similar level experience wise.

BooTIT uses continuous alternation between short spanned (stu-
dent passive) lecturing about some topic immediately followed by
(student active) exercises engaging the students with the same topic,
with immediate on-call assistance available from TAs.

All exercises are designed so that they conform to the Usk-
Mopb1ry-CREATE (UMC) framework [24] that organizes tasks into
a competence progression hierarchy. Each topic in the BooTIT
course contains exercises associated with this hierarchy; e.g., ex-
ercises where the students are tasked to merely run and describe
a piece of code (UsE), change a piece of code so that it does some-
thing slightly different (MobIFY), or construct some new (simple)
functionality (almost) from scratch (CREATE).

The exercises and examples utilised during the course all rep-
resent real-world concepts and processes. This approach has been
chosen to provide the students with insight into the real-world
relevance and usefulness of what they are taught.

2.3 Sample Exercise (Temperature Conversion)

For an example of this approach, let us consider a TEMPERATURE
CONVERSION exercise for teaching basic arithmetic, use of constants,
variables, and assignments. For this exercise, students are initially
supplied with a code skeleton that contains everything to convert
from degrees Celsius to degrees Fahrenheit except for the actual
temperature conversion calculation. First, students merely run this
code to observe that no conversion is performed (UsE). Then, stu-
dents are tasked with changing it so that it properly converts from
Celsius to Fahrenheit (Mop1rY). Finally, the students have to make
a new function that converts in the opposite direction (CREATE).

Exercises are often surrounded by similar exercises, e.g., the tem-
perature conversion exercise is followed by an exercise of currency
conversion rather than temperature; i.e., converting between USD
and DKK (using a fixed exchange rate), progressing from known to
unknown examples.

Other exercises include similar practices with varying scope and
ambition: Is 1T FRIpAY OR NoT?? (for teaching the basics of condi-
tional statements), a “TIME MACHINE” that prints your age for each
year in the future (for iteration), a BMI CALCULATOR (for the inter-
action between multiple inputs: height and weight), and a BANk
AccounT (for basic object-orientation; in particular, instantiation
and manipulation of objects).

3Similar to http://isitfriday.org/

https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K1oZAmJFKQCP?usp=sharing
https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K1oZAmJFKQCP?usp=sharing
https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K1oZAmJFKQCP?usp=sharing
http://isitfriday.org/

On the Effect of Onboarding Computing Students
without Programming-Confidence or -Experience

3 EFFECT

We consider the effect of the CS0 onboarding initiative through four
research questions or four dimensions:

(1) Student perspective: How do the students perceive the
onboarding initiative?

(2) Gender diversity: To what extent has the initiative affected
gender diversity among admitted students?

(3) Grades: To what extent has the initiative impacted grades
(competence) in the subsequent CS1 course?

(4) Dropout: To what extent has the initiative impacted reten-
tion during the first year?

For the last three dimensions, the effect is quantified by compar-
ing the 271 students who attended the (CS0) onboarding initiative
versus a baseline of the 527 students who did not. In total, this is
based on data comprising N=798 students over a period of five years
(2016-20).

3.1 Student Perspective

Through a course evaluation form, the students were invited to
review the course. The evaluation form contained a total of 12 open-
ended questions, of which we will detail those related to students’
experiences with the course and reasons for participation. The
remaining questions relate to the contents of the course and the
university as a whole.

Students were invited to rate their satisfaction with the BooTIT
initiative on a scale from 1-7 (where, e.g., 1 was very bad, 4 was
average, and 7 was very good). The average rating of BooTIT was:
6.31. No student rated the course average or worse (1-4); more than
half of the students gave it the second-highest score (6 out of 7),
and almost 40% gave it the maximum score of 7.

In the student evaluation form from years 2018-2020, the stu-
dents were asked to also state their reason for participating in
BooTIT (Note that these are translated from Danish to English.)
By coding the open-ended qualitative parts of the answers and
aggregating these, “lacking programming experience” was part of
79% of responses, but this number is potentially higher, as some
students simply stated more vaguely that they “wanted a good start
at university.” By coding the remaining open-ended questions and
comparing them, we also found that students report they sign-up
to BooTIT as a way to improve their competencies, suggesting the
lack of confidence in their abilities; e.g., ‘T hadn’t programmed before
and wanted some knowledge” and ‘T have tried a little coding and was
unsure about my abilities.” Many students reported on insecurities
about how they stacked up against their peers; e.g., ‘T have learned
not to be unsure about your own abilities compared to others” and
“Meeting new people who were in as deep water as me.” After the
course, students felt more prepared and calm about starting: ‘T have
learned a little about programming. I am more prepared to start”, T
feel more secure about starting. It seems less dangerous,” and ‘Tam
calmer about study start now!”. All suggesting a higher degree of
belief in their own ability, i.e., higher self-efficacy.

In 2021, the students (who attended BooTIT, but have yet to finish
their semester) were asked if they felt more ready to start their
studies as a result of the onboarding course: “Absolutely, now that
I know the basics.”, “I have never tried programming before, so I am

Koli Calling, November 17-20, 2022, Koli, Finland

Table 1: Gender composition of the group of students who
attended the CSO course versus those who did not (2016-20).

‘ WoMEN ‘ MEN ‘ ToTAaL
CS0: 70 201 271
Non-CS0: 83 444 527
Tora: | 153 | 645 [798

Table 2: Gender composition of the students on the Bachelor
of Software Development: before CSO was introduced (2010-
15); when CS0 was introduced (2016); and after CS0O was in-
troduced and advertized (2017-20). The 2021 data is prelim-
inary since the semester did not end yet. (Data not included
in the study is depicted in gray font.)

YEAR ‘ WOMEN ‘ MEN ‘ ToTAL l %WOMEN
2010 2 69 71 3%
2011 3 66 69 4%
2012 3 63 66 5%
2013 6 64 70 9%
2014 9 84 93 10%
2015 9 80 89 10%
2016 17 126 143 12%
2017 33 114 147 22%
2018 30 119 149 20%
2019 27 136 163 17%
2020 46 150 196 23%
2021 35 133 168 21%

definitely [ready] now.”, and “Yeah, now that the first dose of stress is
gone. So I definitely think it’ll be easier.”

OBSERVATION 1: BooTIT attendees were gen-
erally satisfied with the onboarding initiative.
Additionally, they reported that it helped them
gain competence, foster confidence, and dimin-
ish insecurity.

3.2 Gender Diversity

Since its inception in 2016, CSO has contributed to diversity by
attracting more programming inexperienced students. Since women
tend to self-assess as less experienced, an initiative of this kind has
an indirect, but noticeable impact on diversity [7, 35]. Table 1 details
the gender composition of the students attending CS0 versus those
who did not. In total, approximately a third of all enrolled students
(271 out of 798, or 34%) attended CS0. We see, however, that women
are much more likely to attend CSO than men. In fact, almost half
of all the women enrolled (70 out of 153, or 46%) attended CS0; in
contrast, less than a third of the men enrolled (201 out of 645, or
31%) attended CS0.

If prior programming experience were a prerequisite for the
educational programme, many of the students in the top row in
Table 1 would have been worse off or perhaps not even enrolled in
the educational programme (Bachelor of Software Development).

Koli Calling, November 17-20, 2022, Koli, Finland

Note that the motivation for opting to attend CS0 could be any
combination of low self-efficacy, lack of self-perceived competence
and/or confidence, but as described in Section 3.3, we can extrapolate
that (almost) all the participants have no previous programming
experience. Here, we, of course, need to take into account that
men are more inclined, than women, to overestimate their self-
perceived competence [2, 4, 12] and possibly also less willing to
solicit assistance.

The increase in the number of women is also visible on the
gender composition of the educational programme as detailed in
Table 2 (from 2010-21). The upper part in gray font gives the num-
bers from before CSO was instated (2010-15). We generally see a
low percentage of women of maximum 10%. In 2016, CS0 ran for
the first time. From 2017 and onwards, CS0 was adopted as a reg-
ular annual activity and its existence was heavily advertized; in
particular, it was emphasized that students did not need to have
any programming competencies whatsoever before starting the
programme. In general, we see a much higher ratio of women (as
highlighted in bold font in the table) in the programme, with a peak
of 23% women in 2020. The final row in the table shows the data
for students admitted in 2021, but this is not included in this study
as the students did not yet finish the semester.

Please note, however, that many other diversity initiatives were
also instated from 2016 and onwards (see Section 4.2), so it is difficult
to isolate the effect of CS0. We therefore defensively make the
following observation in relation to RQ2:

OBSERVATION 2: Women were more likely than
men to attend the CSO0 initiative as it was se-
lected by almost half of female students (as op-
posed to less than a third of male students).

3.3 Grades

Experience and skills prior to education have been demonstrated
to be a significant predictor for first-semester programming perfor-
mance [34]. Students who had no experience in programming have
been shown to score 6% lower on exams and 10% lower on pro-
gramming quizzes than their programming experienced peers. (As
would be expected, this performance gap diminishes over time and
is no longer perceptible by the end of the subsequent CS2 course.)

Table 3 shows the data on the self-reported experience level of
students who attended CS0 in 2021 and those who did not.* We see
that about half of the students who self-assessed as inexperienced
(see the NoNE column) attended CS0. Six students with SomE pro-
gramming experience attended CS0. Most of these students have left
during the first day of CS0, as they have realized that the course was
really not meant for them (in a few cases, this was also suggested
by TAs). For this reason the number of students who self-assessed
themselves as having a lot of experience in programming was, in
fact, lower.

4Students enrolled in the CS1 course of 2021 were asked to fill out a questionnaire
of a single question detailing whether they had no experience (HTML and Excel was
explicated as not counting), some experience (10-250 lines of self-written coherent
code), or lots of experience (ranging from more than 250 lines of code to professional
developer). The respondents were also explicitly asked not to include experience from
the CSO course. In total, 96 students out of the 186 students answered.

Nicolajsen et al.

Table 3: CSO attendance as a function of self-reported expe-
rience level (data from 2021).

‘ NONE ‘ SOME ‘ Lots
CS0: 21 6 0
Non-CSo0: 22 26 21
Tora: | 43 [32 [21

According to the experience-performance gap [34], students in the
NoNE column ought to perform worse (than average), the ones in
the SoME column should perform about average, and the ones in the
Lots column should perform better (than average). If BooTIT did
not have any effect, the cohort of (mainly inexperienced) students
who attended the CSO course would predictably perform worse
than the cohort of students (with mixed experience levels) who did
not attend it. In other words, the average CS1 grades of BooTIT
students should be worse than those of the Non-CS0 students. The
reason for it is simply that the set of non-attendees contained more
experienced students than the set of attendees.

If, however, BooTIT “works” as intended, the (minimal) effect
of it would be that the inexperienced students would be effectively
moved from the category NONE to the category SOME (now having
some programming experience). Based on this student experience
distribution, one would predict little to no differences in the average
grades of the two cohorts (BooTIT vs NoN-CS0 students). It is so,
because after the course both groups consist mostly of people with
"some" experience in programming.

This is exactly what we see: Figure 1 shows the distribution of
the first-attempt grades for the CS1 (Introductory Programming)
course for those who attended CS0 versus a baseline of those who
did not. The grade distribution among the two groups is almost
identical which is also evident by the averages of pass grades®
which are given in Table 4. (Data from 2021 is not included since
we do not yet have all the data.®) The average of the pass grades
among students who attended CSO was 6.89 versus 7.01 for the
ones who did not attend. The difference in average is only about
a tenth of a grade point (0.12).” Table 4 also shows that, curiously,
the percentage of students receiving the highest grade (A) is, in
fact, slightly higher among students attending CS0 (7.6%) compared
to the ones who did not take the onboarding course (only 7.1%),
although the difference is not statistically significant (p = 0.79).

5In Denmark, it is customary to compute the grade average of a course using the pass
grades only (the average for a large population ought to be around 7).

®The 2021 data will be included as soon as we have it.

"Note that the numerical distance between two adjacent grades in the Danish grade
scale is two or three

On the Effect of Onboarding Computing Students
without Programming-Confidence or -Experience

40%

30%

20%
S |}
o mo mn W['l

F Fx E D [o B A

WmCSO ONon-CSO

Figure 1: Distribution of CS1 grades for those who attended
CSO0 versus those who did not (2016-20). The Danish grade
values (-3, 00, 02, 4, 7, 10, 12) are shown along with the corre-
sponding ECTS grade-scale letters (F, Fx, E, D, C, B, A). F &
Fx are fail grades whereas E-A are pass grades.

Table 4: Grade statistics for the CS1 course for students who
attended CSO versus those who did not (2016-20).

| CS0 | Non-CS0
PASS GRADE AVERAGE: 6.89 7.01
HIGHEST GRADE (A): 7.6% 7.1%
FAILED COURSE (F OR Fx): 6.4% 6.0%

Similarly at the other end of the grade spectrum, the number of
students failing the exam (grades F or Fx) is virtually the same
among the two groups (6.4% vs 6.0%). Unsurprisingly, the difference
between the grades among the two groups is not statistically sig-
nificant (p = 0.55) using a Mann-Whitney U non-parametric test®
which does not assume that the data is normally distributed.
Identical to our findings, Aarhus University (AU) who also em-

ploy an onboarding initiative for inexperienced students on their
Bachelor of Computer Science finds that attendees (without prior
experience) are also 0.1 CS1 grade points behind students with
prior experience.” Interestingly, AU additionally has a group of
“little experienced” students who are apparently not offered their
(distributed) onboarding; those students are 0.4 CS1 grade points
behind which is an indication of a positive effect of onboarding
courses, in general. Comparingly, early onboarding has the advan-
tage over distributed semester-long onboarding that the students
will be more productive from their first day of CS1.

OBSERVATION 3: Despite the lack of confidence

in their experience level before starting at uni-

versity, CS0 attendees were able to achieve the

same level of competence as students who eval-

uated themselves highly.

3.4 Dropout

Table 5 shows the dropout rates (inverted retention) during the
first and second semester for those who attended CS0O versus a
baseline of those who did not. This is based on the students that
initiated their studies in 2016-20. We show only first-year dropout
as we find it unlikely that later dropout would be attributable to

8https://www.socscistatistics.com/tests/mannwhitney/
9Data from Kaj Grenbaek, Head of CS Department, Aarhus University.

Koli Calling, November 17-20, 2022, Koli, Finland

Table 5: Dropout rates during the first year for those who
attended CSO versus those who did not (2016-20).

DrorouT: ‘ CSo ‘ Non-CS0

6.3% (17/271)
8.9% (24/271)

6.3% (33/527)
7.4% (39/527)

1ST SEMESTER:

2ND SEMESTER:

1sT YEAR: | 15% (41/271) [14% (72/527)

lacking programming experience and/or confidence before starting
university, years earlier. The percentage of students dropping out
during the first semester is coincidentally exactly the same among
the two groups: 6.3% (in both cases). The dropout rate during the
second semester is 8.9% among the students that attended CS0 and
only slightly lower (7.4%) among those who did not.

We use a standard Z-score test'? to check if one proportion is
statistically significantly larger than the other. The dropout ratios
are not statistically significantly different with p = 0.99 and p = 0.47
for first and second semester dropout, respectively.

OBSERVATION 4: CS0 attendees were not drop-
ping out more frequently than their peers who
did not sign up for the onboarding course.

4 THREATS TO VALIDITY

We first consider construct validity and scrutinize how the data and
metrics involved were obtained and measured. Then, we examine
the internal validity and the threats to the validity of the study itself
and thus to its findings. Finally, we treat the external validity and
ponder the generalizability of our findings.

4.1 Construct Validity

Measuring gender? The information about the gender of partici-
pants was automatically obtained from the enrollment system based
on information from the Danish central person registry (CPR). The
gender in the registry is binary, but people can have their gender
information changed to reflect their self-identification. Clearly, it
would have been better to have had the students self-identify their
gender, with choices beyond the binary dichotomy of female xor
male. In retrospect, we did not ask the students for this information
during CSO0 as we did not anticipate that the data would later be
used in connection with a gender-related analysis.

Measuring CS0 attendance? Our data is based on students
signing up for rather than attending CSO0 since this was what had
been recorded by the university. There may, of course, be students
who signed up without attending (e.g., due to illness), but we ex-
pect this to be an insignificant number, not affecting the statistical
analyses. In contrast, students not signed up would not have been
able to attend. The attendance at CS0 was generally comparable to
what had been announced by the ITU study administration which
fit the capacity of the teaching venues. (In 2020, more space was
allocated due to the Covid-19 pandemic.)

Measuring dropout and grades? The sensitive dropout and
grade data were obtained by the ITU Statistics Unit according to

Ohttps://www.socscistatistics.com/tests/ztest/

https://www.socscistatistics.com/tests/mannwhitney/
https://www.socscistatistics.com/tests/ztest/

Koli Calling, November 17-20, 2022, Koli, Finland

their standard procedures. The aggregation of this sensitive in-
formation with CS0O attendance was also conducted by the ITU
Statistics Unit. For this paper, we were provided with only aggre-
gated anonymized data that does not reveal any information about
individual students.

4.2 Internal Validity

Can we equate CSO attendees with “students who lack ex-
perience”? Because of the way CS0 is organized and, especially,
advertised, it is tempting to treat the division between students
who attended the course and those who did not as a proxy for pro-
gramming (in)experience. Unfortunately, this cannot be done for
two reasons. First, we cannot be sure of the reasons why students
who did not attend CS0 decided not to enroll in the course. It is
possible that they did perceive themselves as inexperienced, yet
did not sign up for unrelated reasons. Second, students chose to
enroll based on their own self-assessment. This indicates the lack
of confidence but not necessarily the lack of experience. We tried
to mitigate it by giving the students a quick method of evaluation
of their experience (concept recognition described in section 2.2)
but we did not test their competence level directly.

Were the two groups really that different to begin with?
One may object that the two groups (attended vs unattended) fared
similarly, simply because there never were any significant differ-
ences between the two groups, to begin with. However, as succinctly
stated in [1]: “Previous work has shown that inexperienced students
under-perform their experienced peers when placed in the same intro-
ductory courses, and are more likely to drop out of the CS program.”
Besides, the teachers and TAs perceived that the students did not
have basic programming competencies on the first day of CS0, in
mid August; and that the students did have basic programming
competencies on the first days of CS1, in late August. As mentioned
earlier, the risk of incorrect self-assessment has also been decreased
by the fact the students had the ability to quickly compare their
knowledge to the level assumed in CS0.

Can the diversity increase be attributed to CS0? From 2016
and onwards, ITU introduced several other diversity initiatives,
many of which were deliberately aimed at recruiting women (e.g.,
IT-Camp and Coding Café). Many of these initiatives involved
showing female high-school students: (1) what programming is;
(2) that they fit in; (3) that they can learn how to program; and (4)
that programming can be used to address interesting real-world
problems. CS0, however, is different in serving specifically to widen
the recruitment profile to also include applicants (male and female)
who have never programmed before and to ease the beginning
of the Software Development education. It is an initiative that
complements well with many other diversity initiatives. We cannot
isolate the effect of CSO from that of other diversity initiatives, but
we can say that CSO facilitates the recruitment of students without
prior programming experience. Our assumption of the influence of
CS0 on gender diversity has been based on the correlation between
self-assessed inexperience and gender as well as on the fact that, as
suggested by this correlation, the percentage of women attending
in the course was higher than that of the men.

Can the equivalent dropout and grades be attributed to
CS0? Both the first-year dropout and CS1-grades were similar

Nicolajsen et al.

among the group of students who attended vs those who did not
attend CS0. One may object that the students just “caught up” some-
how (without it being due to CS0). Also, there were a number of
initiatives aimed at helping inexperienced students during the se-
mester (e.g., Live Coding and a Study Lab) instead of before the
semester (as was the case of CS0). We still believe that CS0 played
a significant role in students catching up as they were able to write
non-trivial programs on the last day of CS0. The results from AU’s
distributed semester-long onboarding (see Section 3.3) provides an
indication: their onboarded students (without programming experi-
ence) caught up, whereas their un-onboarded students (with little
experience) did not. This is an indication that the cause was, in fact,
onboarding. There is, however, a way to isolate experimentally the
effect of CSO from the other interventions: simply offer CS0 ran-
domly to only half of the inexperienced students and subsequently
compare those that attended versus those who did not. This experi-
ment, however, comes with non-trivial ethical considerations.

Is there a connection between onboarding courses and the
increase in gender diversity? As we pointed out in the introduc-
tion the connection between gender and the onboarding initiatives
such as CS0 remains to be indirect as it exists due to the existence
of another correlation - that of gender and self-estimated lack of
programming experience. As can be seen in Observation 3, this
connection can be seen in the case of our case study. The lack of
direct connection makes it difficult to measure the influence of
onboarding initiatives on the increase of gender diversity. It is even
less clear because of the existence of additional factors, such as
other initiatives aimed at increasing diversity. Still, we claim that
the connection between gender and the perception of the level of
experience—the sheer fact women tend to be less confident in their
pre-study competence shows that any action aimed at students
with low confidence has an indirect impact on gender diversity.

Teacher and TA involvement in this study. Since a cou-
ple of people were involved in both teaching CSO (as teacher or
TA) and writing this paper, there is a risk of (inadvertent) ob-
server/experimenter effect bias. It is nonetheless important to point
out that all of the activities related to this paper (down to the formu-
lation of hypotheses and research questions) happened long after
the course had ended. To our defense, we never knew we would
conduct this study until we recently found out that the data on who
attended CSO had, in fact, accidentally, not been deleted. The paper
is thus essentially based on “historically” collected data.

Impact of the Covid-19 pandemic. On March 13, 2020, Den-
mark entered a national lock-down in response to the Covid-19
pandemic.!! All physical teaching was suspended and transferred
online. By mid-August, however, CSO managed to run physically
(albeit with Covid-19 distancing requirements). The subsequent
CS1 course, however, ran virtually from late August 2020. This
obviously impacts this study. Nonetheless, we have not excluded
“the Corona year” (2020) from this study as the 2020 data does not
exhibit any different pattern than the data from the other years. All
observations and conclusions would have been the same if we had
excluded 2020 and based the study on data from 2016—-19 only.

UITU responded swiftly by locking down already two days earlier.

On the Effect of Onboarding Computing Students
without Programming-Confidence or -Experience

4.3 External Validity

Beyond Software Development? This study was carried out in
the context of a Software Development educational programme.
Since there is nothing intrinsic to Software Development in this
study aside from the role of programming, we expect this general-
izes to any (Computing) education for which programming plays
a fundamental role in the educational programme; in particular,
Computer Science and Software Engineering.

Beyond ITU and Denmark? Our study took place in a Dan-
ish educational context with predominantly Danish students. We
expect the results to generalize to other countries; especially ones
with similar access to computers and values such as a focus on
individuality, autonomy, and responsibility for own learning.

5 RELATED WORK

While CS0 is not unique as similar initiatives are implemented at
many other universities, it is interesting that, to the best of our
knowledge, no paper quantifies the effects of such a short spanned
pre-university onboarding initiative. There appears to be related
work considering either lifting inexperienced students or increasing
student diversity, but not both at the same time (as in our study).

Lifting Inexperienced Students. The documented impact prior
programming inexperience has on performance during CS1 [9, 18,
22] prompts the question: How do we aid the less experienced? To
answer this, studies often examine either differentiated CS1 courses
or fallback CSO courses.

Some universities offer multiple versions of CS1 courses, catering
to both those with experience as well as to those without [11], the
latter requiring an initial eligibility assessment. Other universities
assess students initially and strongly encourage students deemed
insufficiently competent to voluntarily register for the fallback CS0
course rather than directly for CS1 [13]. Other universities simply
“force” (involuntary) enrollment based on such tests [26].

Furthermore, studies also explore different approaches to CS0 as
a way of improving performance and retention within CS1 [28, 30]
and different methods and practices which have proved valuable in
improving the inclusion of novice programmers [5, 15].

Increasing Student Diversity. Increasing the diversity among
the computing student body has been a priority for many univer-
sities, especially over the last decade. A large focus has been on
gender imbalance, which has led to a number of interventions to
involve more women and share these interventions among insti-
tutions [33]. This includes initiatives in CS1 such as; considering
diversity in incitements [14], displaying the relevance to various
types of students [31], and increasing materials’ relation to both
reality [16] and people [10, 25]. All aiding in creating an inclusive
environment [32]. This CS0 attempts to embrace all of this, to create
a more inclusive environment [6].

6 CONCLUSION

As pointed out in the introduction, the lack of initial programming
experience can often have a lasting effect on the education process
of IT students. As argued in [1], educators should not be blinded by
positive cases of students who were able to surmount the challenges
and easily catch up with their experienced peers as they are rather
an exception than the norm. Regardless of how effectively the

Koli Calling, November 17-20, 2022, Koli, Finland

students are able to make up for the initial discrepancy, it can be
argued that ironing out the differences between them is the safest
way of minimizing dropout rates and closing the CS1 grade gap. The
reason for this is that while students are statistically able to catch
up, this is irrelevant from the psychological perspective. A student
struggling with the material and course does not know early on
that (s)he will eventually catch up and thus may get discouraged
prematurely. Thus, any attempt to increase self-efficacy of students
should be implemented in an attempt to decrease drop-out rates.
This is particularly interesting in the light of the correlation between
gender and prior programming (in)experience. Since women are
more likely to be inexperienced, the difficulty with catching up
contributes to the well-known problem of gender imbalance in
IT. This paper presented a closer look at the effects of an elective
onboarding initiative offered to the students at a Danish university.
We argue that an initiative of this type can positively affect three
aspects of early education that are related to the problem; it may
serve to:

(1) increase the competence of participants;
(2) increase the confidence of participants; and
(3) decrease the insecurity of participants.

Due to the correlation between perceived inexperience and gender,
any action that helps inexperienced students plays a double role as
it additionally helps to solve the problem of lack of gender equity.
We argue that running an onboarding course is an effective mean
that is advisable even in the case of short, condensed (three days)
courses similar to the CS0 course introduced here. Thus, we provide
the material used to teach the course on this link.'?

Since the length of the course should not have any bearing on the
second and the third effect, deciding on a condensed version may
be even preferable because of cost-effectiveness and the lack of risk
of an overlap with existing introductory courses. As a result, we
recommend the following:

RECOMMENDATION: We recommend that uni-
versities consider instating pre-university on-
boarding initiatives as a preemptive measure
for potentially decreasing dropout, for closing
the prior experience and confidence grade gap,
and for potentially increasing student diversity.

ACKNOWLEDGMENTS

The authors thank Rolf Fagerberg for sharing experiences with an
onboarding course at the University of Southern Denmark (SDU)
and inspiring us to study our data. We thank Kaj Grenbaek for
sharing the effects of a distributed onboarding initiative at Aarhus
University (AU). We also thank course programme administrator
Allette Bjorn Bundgaard for uncovering data on who attended the
five CS0 editions and Jane Andersen from the ITU Statistics Unit for
joining this data against the student data and providing it to us in
anonymized form. We thank Melissa Heegh Marcher for valuable
feedback and suggestions. Finally, we thank the many CS0 TAs
throughout the years for their assistance with running the course.

2https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K10ZAmJFKQCP?
usp=sharing

https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K1oZAmJFKQCP?usp=sharing
https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K1oZAmJFKQCP?usp=sharing
https://drive.google.com/drive/folders/1yKP14E07FINgn2izbtz6K1oZAmJFKQCP?usp=sharing

Koli Calling, November 17-20, 2022, Koli, Finland

REFERENCES

(1]

[10]

[11]

[12]

[13

[14]

[15

[17]

(18]

[19]

[20

[21

[22]

Christine Alvarado, Gustavo Umbelino, and Mia Minned. 2018. The Persistent Ef-
fect of Pre-College Computing Experience on College CS Course Grades. SIGCSE
’18: Proceedings of the 49th ACM Technical Symposium on Computer Science Edu-
cation (2018), 876-881.

Brad M Barber and Terrance Odean. 2001. Boys will be boys: Gender, overconfi-
dence, and common stock investment. The quarterly journal of economics 116, 1
(2001), 261-292.

David John Barnes, Michael Kolling, and James Gosling. 2006. Objects First with
Java: A practical introduction using BlueJ. Pearson Prentice Hall London.

Claes Bengtsson, Mats Persson, and Peter Willenhag. 2005. Gender and overcon-
fidence. Economics letters 86, 2 (2005), 199-203.

Cathy Bishop-Clark, Jill Courte, and Elizabeth V. Howard. 2006. Programming in
Pairs with Alice to Improve Confidence, Enjoyment, and Achievement. Journal
of Educational Computing Research 34 (3 2006). Issue 2. https://doi.org/10.2190/
CFKF-UGGC-]JG1Q-7T40

Valeria Borsotti. 2018. SIGSOFT Distinguished Paper - Barriers to Gender Diver-
sity in Software Development Education: Actionable Insights from a Danish Case
Study. In 2018 IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). 146-152.

T. Busch. 1995. Gender differences in self-efficacy and attitudes toward computers.
Journal of educational computing research 12, 2 (1995), 147-158.

Pat Byrne and Gerry Lyons. 2001. The effect of student attributes on success in
programming. ITiCSE *01: Proceedings of the 6th annual conference on Innovation
and technology in computer science education (2001), 49-52. https://doi.org/10.
1145/377435.377467

Pat Byrne and Gerry Lyons. 2001. The effect of student attributes on success
in programming. In Proceedings of the 6th annual conference on Innovation and
technology in computer science education. 49-52.

Ingrid Maria Christensen, Melissa Heegh Marcher, Pawet Grabarczyk, Therese
Graversen, and Claus Brabrand. 2021. Computing Educational Activities In-
volving PEOPLE Rather Than THINGS Appeal More to Women (Recruitment
Perspective). ACM International Computing Education Research conference (ICER
2021) (2021).

James P Cohoon and Luther A Tychonievich. 2011. Analysis of a CS1 approach for
attracting diverse and inexperienced students to computing majors. In Proceedings
of the 42nd ACM technical symposium on Computer science education. 165-170.
Shelley J Correll. 2001. Gender and the career choice process: The role of biased
self-assessments. American journal of Sociology 106, 6 (2001), 1691-1730.
Charles Dierbach, Blair Taylor, Harry Zhou, and Iliana Zimand. 2005. Experiences
with a CS0 course targeted for CS1 success. ACM SIGCSE Bulletin 37, 1 (2005),
317-320.

Allan Fisher and Jane Margolis. 2002. Unlocking the Clubhouse: The Carnegie
Mellon Experience. SIGCSE Bull. 34, 2 (June 2002), 79-83. https://doi.org/10.
1145/543812.543836

T. Flowers, C.A. Carver, and J. Jackson. 2004. Empowering students and building
confidence in novice programmers through Gauntlet. In 34th Annual Frontiers
in Education, 2004. FIE 2004. T3H/10-T3H/13 Vol. 1. https://doi.org/10.1109/FIE.
2004.1408551

Mark Guzdial. 2003. A Media Computation Course for Non-Majors. In Proceed-
ings of the 8th Annual Conference on Innovation and Technology in Computer
Science Education (Thessaloniki, Greece) (ITiCSE "03). Association for Computing
Machinery, New York, NY, USA, 104-108. https://doi.org/10.1145/961511.961542
Dianne Hagan and Selby Markham. 2000. Does it help to have some pro-
gramming experience before beginning a computing degree program? ITiCSE
’00: Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSEconference on Inno-
vation and technology in computer science education (2000), 25-28. https:
//doi.org/10.1145/343048.343063

Dianne Hagan and Selby Markham. 2000. Does it help to have some programming
experience before beginning a computing degree program?. In Proceedings of
the 5th annual SIGCSE/SIGCUE ITiCSEconference on Innovation and technology in
computer science education. 25-28.

Edward Holden and Elissa Weeden. 2003. The Impact of Prior Experience in
an Information Technology Programming Course Sequence. CITC4 '03 (2003),
41-46.

Edward Holden and Elissa. Weeden. 2003. The impact of prior experience in an
information technology programming course sequence. CITC4 '03: Proceedings
of the 4th conference on Information technology curriculum (2003), 41-46. https:
//doi.org/10.1145/947121.947131

Edward Holden and Elissa. Weeden. 2004. The experience factor in early pro-
gramming education. CITC5 ’04: Proceedings of the 5th conference on Information
technology education (2004), 211-218. https://doi.org/10.1145/1029533.1029585
Edward Holden and Elissa Weeden. 2004. The experience factor in early program-
ming education. In Proceedings of the 5th conference on Information technology
education. 211-218.

Piivi Kinnunen and Beth Simon. [n.d.]. CS Majors’ Self-Efficacy Perceptions in
CS1: Results in Light of Social Cognitive Theory. ([n.d.]), 8.

[24

[25

[26

[27

[29

(30]

[31

[32

[33

&
=)

(35]

Nicolajsen et al.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational Thinking for Youth in
Practice. ACM Inroads 2, 1 (Feb. 2011), 32-37. https://doi.org/10.1145/1929887.
1929902

Melissa Heegh Marcher, Ingrid Maria Christensen, Pawel Grabarczyk, Therese
Graversen, and Claus Brabrand. 2021. Computing Educational Activities In-
volving PEOPLE Rather Than THINGS Appeal More to Women (CS1 Appeal
Perspective). ACM International Computing Education Research conference (ICER
2021) (2021).

C. Marling and D. Juedes. 2016. Cs0 for computer science majors at ohio university.
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(2016), 138-143.

Allison Master, Sapna Cheryan, Adriana Moscatelli, and Andrew N Meltzoff. 2017.
Programming experience promotes higher STEM motivation among first-grade
girls. Journal of experimental child psychology 160 (2017), 92-106.

Kris Powers, Stacey Ecott, and Leanne M Hirshfield. 2007. Through the look-
ing glass: teaching CS0 with Alice. In Proceedings of the 38th SIGCSE technical
symposium on Computer Science Education. 213-217.

Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. 2004. Self-efficacy
and mental models in learning to program. In Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer science education. 171-175.
Mona Rizvi, Thorna Humphries, Debra Major, Meghan Jones, and Heather Lauzun.
2011. A CSO course using Scratch. Journal of Computing Sciences in Colleges 26, 3
(2011), 19-27.

Eric S. Roberts, Marina Kassianidou, and Lilly Irani. 2002. Encouraging Women
in Computer Science. SIGCSE Bull. 34, 2 (June 2002), 84-88. https://doi.org/10.
1145/543812.543837

Roli Varma. 2006. Making Computer Science Minority-Friendly. Commun. ACM
49, 2 (Feb. 2006), 129-134. https://doi.org/10.1145/1113034.1113041

Telle Whitney and Valerie Taylor. 2018. Increasing Women and Underrepresented
Minorities in Computing: The Landscape and What You Can Do. Computer 51,
10 (2018), 24-31. https://doi.org/10.1109/MC.2018.3971359

Chris Wilcox and Albert Lionelle. 2018. Quantifying the benefits of prior pro-
gramming experience in an introductory computer science course. In Proceedings
of the 49th acm technical symposium on computer science education. 80-85.

E. B. Witherspoon, C. D. Schunn, R. M. Higashi, and E. C. Baehr. 2016. Gender,
interest, and prior experience shape opportunities to learn programming in
robotics competitions. International Journal of STEM Education 3, 1 (2016), 1-12.

https://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40
https://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40
https://doi.org/10.1145/377435.377467
https://doi.org/10.1145/377435.377467
https://doi.org/10.1145/543812.543836
https://doi.org/10.1145/543812.543836
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/343048.343063
https://doi.org/10.1145/343048.343063
https://doi.org/10.1145/947121.947131
https://doi.org/10.1145/947121.947131
https://doi.org/10.1145/1029533.1029585
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/543812.543837
https://doi.org/10.1145/543812.543837
https://doi.org/10.1145/1113034.1113041
https://doi.org/10.1109/MC.2018.3971359

	Abstract
	1 Introduction
	2 The Onboarding Course
	2.1 The profile of BootIT attendees
	2.2 The goals of BootIT
	2.3 Sample Exercise (Temperature Conversion)

	3 Effect
	3.1 Student Perspective
	3.2 Gender Diversity
	3.3 Grades
	3.4 Dropout

	4 Threats to Validity
	4.1 Construct Validity
	4.2 Internal Validity
	4.3 External Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

