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Directed Shortest Paths via Approximate Cost Balancing

JAMES B. ORLIN∗,Massachusetts Institute of Technology, USA

LÁSZLÓ A. VÉGH†, London School of Economics and Political Science, United Kingdom

We present an � (��) algorithm for all-pairs shortest paths computations in a directed graph with � nodes, � arcs, and

nonnegative integer arc costs. This matches the complexity bound attained by Thorup [31] for the all-pairs problems in

undirected graphs. The main insight is that shortest paths problems with approximately balanced directed cost functions

can be solved similarly to the undirected case. The algorithm inds an approximately balanced reduced cost function in an

� (�
√
� log�) preprocessing step. Using these reduced costs, every shortest path query can be solved in � (�) time using an

adaptation of Thorup’s component hierarchy method. The balancing result can also be applied to the ℓ∞-matrix balancing

problem.

CCS Concepts: · Theory of computation→ Shortest paths.

Additional Key Words and Phrases: shortest paths, cost balancing, component hierarchy

1 Introduction

Let� = (�,�, �) be a directed graph with nonnegative arc costs, and � = |� |,� = |�|. In this paper, we consider
the single-source shortest paths (SSSP) and the all-pairs shortest paths (APSP) problems. In the SSSP problem, the
goal is to ind the shortest paths from a given source node � ∈ � to every other node; in the APSP problem, the
goal is to determine the shortest path distances between every pair of nodes.
The seminal approach for SSSP is Dijkstra’s 1959 algorithm [7]. An � (� + � log�) implementation of this

algorithm using the Fibonacci heap data structure is due to Fredman and Tarjan [12]. Under the assumption that
all of arc lengths are integral, Thorup [33] improved the running time for SSSP to � (� + � log log�). Thorup’s
algorithm uses the word RAM model of computation, discussed in Section 2.1.
For the APSP problem, one can obtain � (�� + �2 log log�) by running the SSSP algorithm of [33] � times.

This has been the best previously known result for directed graphs. The main contribution of this paper is an
� (��) algorithm for APSP in the word RAM model.

A breakthrough result by Thorup [31] obtained a linear time SSSP algorithm in the word RAM model for
undirected graphs, implying � (��) for APSP. Our algorithm matches this bound for undirected graphs: it is
based on an � (�

√
� log�) preprocessing algorithm that enables SSSP queries in � (�) time.

Thorup [31] uses a label setting algorithm that is similar to Dijkstra’s algorithm. Label setting algorithms
maintain upper bounds � (�) on the true shortest path distances � (�) from the origin node � to each node � , and
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2 • James B. Orlin and László A. Végh

add nodes one-by-one to the set of permanent nodes � . At the time a node � is made permanent, � (�) = � (�)
holdsÐsee [1, Chapter 4]. In Dijkstra’s algorithm, � (�) ≤ � ( �) is true for all nodes � ∉ � in the iteration when
node � is made permanent. Relaxing this property is a key in further improvements

Let us deine the bottleneck costs for nodes �, � ∈ � as

� (�, �) := min

{

max
�∈�

� (�) : � is an �ś � path in �

}

. (1)

Dinitz [8] showed that label setting algorithms are guaranteed to ind the shortest path distances if the following
is true: whenever a node � is made permanent, � (�) ≤ � ( �) + � ( �, �) for all � ∉ � . If an algorithm satisies this
weaker condition, then at termination it obtains distances satisfying � ( �) ≤ � (�) + � (�, �) for all � and � , which in
turn implies the shortest path optimality conditions: � ( �) ≤ � (�) + � (�, �) for all (�, �) ∈ �Ðsee Lemma 4.2.

Thorup’s algorithm as well as the algorithm presented in this paper rely on this weaker guarantee of correctness.
Both algorithms accomplish this by creating a component hierarchyÐsee Deinition 2.2 for the variant used in this
paper. Thorup developed this tool for SSSP on undirected networks; the hierarchy framework was subsequently
extended to directed graphs in [15, 23, 24].

Our results also rely on the classical observation that shortest path computations are invariant under shifting the
costs by a node potential. For a potential � : � → R, the reduced cost is deined as �� (�, �) := � (�, �) +� (�) −� (�).
Computing shortest paths for � and any reduced cost �� are equivalent: if � is a �ś� path, then �� (�) =

� (�) + � (�) − � (�).
We extend the use of reduced costs to the bottleneck costs.

�� (�, �) := min

{

max
�∈�

�� (�) : � is an �ś � path in �

}

.

Our preprocessing step obtains a reduced cost function satisfying the following �-min-balancedness property for
a constant � > 1.

Deinition 1.1. A strongly connected directed graph � = (�,�, �) with nonnegative arc costs � ∈ R�≥0 is
�-min-balanced for some � ≥ 1 if for every arc � ∈ �, there exists a directed cycle � ⊆ � with � ∈ � , such that
� (� ) ≤ �� (�) for all � ∈ � .

The importance of �-min-balancedness in the context of hierarchy-based algorithms arises from the near-
symmetry of the bottleneck values � (�, �). Lemma 2.1 below shows a graph is �-min-balanced if and only if
� ( �, �) ≤ �� (�, �) for all �, � ∈ � . Thorup’s component hierarchy for undirected graphs implicitly relies on the
fact that � (�, �) = � ( �, �) for all nodes � and � . For a �-balanced reduced cost function �� , the values �� (�, �) and
�� ( �, �) are within a factor � . We can leverage this proximity to use component hierarchies essentially the same
way as for undirected graphs in Thorup’s original work [31], and achieve the same � (�) complexity for an SSSP
query, after an initial � (�

√
� log�) balancing algorithm.

This balancedness notion is closely related to the extensive literature on matrix balancing and gives an
improvement for approximate ℓ∞-balancing. We give an overview of the related literature in Section 1.1.2.

1.1 Related work

1.1.1 The SSSP and APSP problems In the context of shortest path problems, the choice of the computational
model is of high importance. The main choice is between the comparison-addition model with real costs, and
variants of word RAM models with integer costs (see Section 2.1). In the comparison-addition model, additions
and comparisons each take � (1) time, regardless of the quantities involved. Other operations are not permitted
except in so much as they can be simulated using additions and comparisons.

J. ACM



Directed Shortest Paths via Approximate Cost Balancing • 3

There is an important diference between these computational models in terms of lower bounds: sorting in
the comparison-addition model requires Ω(� log�), whereas no superlinear lower bound is known for integer
sorting. Since Dijkstra’s algorithmmakes nodes permanent in a non-decreasing order of the shortest path distance
� (�) from � , the � (� + � log�) Fibonacci-heap implementation [11] is optimal for Dijkstra’s algorithm in the
comparison-addition model. Moreover, this is still the best known running time for SSSP in this model.

The best running time for APSP in the comparison-addition model is � (�� + �2 log log�) by Pettie [24]. This
matches the best previous running time bounds for the integer RAMmodel, where the same bound was previously
attained in [15, 33].

Pettie’s [24] algorithm is based on the hierarchy framework. The same paper gives a lower bound that, at irst
glance, seems to imply that an � (�) running time for the directed SSSP may not be achievable.
Let � be the ratio between the largest and the smallest nonzero arc cost. Pettie argued that if a shortest path

algorithm for the directed SSSP is based on the hierarchy framework, then the running time of the algorithm
is Ω(� +min{� log �, � log�}), even if the hierarchy is provided beforehand. This follows via an information-
theoretic argument that is valid both in the comparison-addition as well as in the word RAM models. It uses the
fact that any hierarchy approach must make node � permanent before � whenever � ( �) ≥ � (�) + � (�, �). However,
this interpretation of hierarchy frameworks for directed networks does not allow for replacing the costs by
equivalent reduced costs, even though such a transformation may considerably change the bottleneck values
� (�, �). Therefore, his arguments do not contradict our development of an � (�) time algorithm for the directed
SSSP.

For undirected graphs, Pettie and Ramachandran [26] solve APSP in � (�� log� (�,�)) in the comparison-
addition model, where � (�,�) is the inverse Ackermann function. After an � (� +min{� log�, � log log � }) time
preprocessing step, every SSSP problem can be solved in time � (� log� (�,�)).
For dense graphs, that is, graphs with� = Ω(�2) edges, the classical Floyd-Warshall algorithm [9, 34] yields

� (��) = � (�3). The irst � (�3) algorithm was given by Fredman [11], in time � (�3/log1/3 �). This was followed
by a long series of improvements with better logarithmic factors, see references in [35]. In 2014, Williams [35]

achieved a breakthrough with a randomized algorithm running in time �3/2Ω (
√
log�) , by speeding up min-plus

(tropical) matrix multiplication using tools from circuit complexity. A deterministic algorithm of the same
asymptotic running time was obtained by Chan and Williams [4].

1.1.2 Approximate graph and matrix balancing Our notion of �-min-balanced graphs is closely related to previous
work on graph and matrix balancing. For � = 1, we simply say that� is min-balanced. A graph� is min-balanced
if and only if for each proper subset � of nodes, the following is true: the minimum cost over arcs entering � is at
equal to the minimum cost over arcs leaving �Ðsee Lemma 2.1.

Schneider and Schneider [27] deined max-balanced graphs where for every subset � , the maximum cost over
arcs entering � equals the maximum cost over arcs leaving � . For each � ∈ �, let �′ (�) = �max − � (�). Then
� is max-balanced with respect to �′ if and only if � is min-balanced with respect to � . For exact min/max-
balancing, the running time � (�� + �2 log�) by Young, Tarjan, and Orlin [36] is still the best known complexity
bound. Relaxing the exactness condition, we give an �

(

2� (� + 1)
√
� log�

)

algorithm for �-min-balancing for

any � ∈ Z≥0, � = 1 + 1/2�−1.
Min-balancing is a generalization of the min-mean cycle problem: if � is a min-mean cycle, then any min-

balanced residual cost function satisies �� (�) ≥ � for all � ∈ � and �� (�) = � for � ∈ � for some � ∈ R.
In fact, following [27], one can solve min-balancing as a sequence of min-mean cycle computations; see the
discussion after Theorem 3.1. Karp’s � (��) algorithm from 1978 [16] is still the best known strongly polynomial
algorithm for min-mean cycle problem. Weakly polynomial algorithms that run in � (�

√
� log(��)) time were

given by Orlin and Ahuja [18] and by McCormick [17]. The latter provides a scaling algorithm based on the

J. ACM



4 • James B. Orlin and László A. Végh

same subroutine of Goldberg [14] that plays a key role in our balancing algorithm. The algorithms [17, 18] easily
extend to inding an �-approximate min-mean cycle in � (�

√
� log(�/�)) time. That is, inding a reduced cost �� ,

a cycle � , and a value � such that �� (�) ≥ � for all � ∈ � and �� (�) ≤ (1 + �)� for all � ∈ � .
A restricted case of APSP is the problem of inding the shortest cycle in a network. Orlin and Sedeño-Noda

[19] show how to solve the shortest cycle problem in � (��) time by solving a sequence of � (truncated) shortest
path problems, each in � (�) time. Their preprocessing algorithm was the solution of a minimum cycle mean
problem in � (��) time. HoweverÐanalogously to the approach in this paperÐthey could have relied instead on
[17, 18] to ind a 2-approximation of the minimum cycle mean in � (�

√
� log�) time.

We say that a graph is weakly max-balanced if for every node � ∈ � , the maximum cost over arcs entering �
equals the maximum cost over arcs leaving � ; that is, we require the property in the deinition of max-balancing
only for singleton sets � = {�}.

This notion corresponds to the well-studied matrix balancing problem: given a nonnegative matrix� ∈ R�×� ,
and a parameter � ≥ 1, ind a positive diagonal matrix � such that in ���−1, the �-norm of the �-th column
equals the �-norm of the �-th row. Given� = (�,�, �), we let�� � = �

�� � if (�, �) ∈ � and�� � = 0 otherwise. Then,
balancing� in∞-norm amounts to inding a weakly max-balanced reduced cost �� .

Matrix balancing was introduced by Osborne [20] as a preconditioning step for eigenvalue computations. He
also proposed a natural iterative algorithm for ℓ2-norm balancing. Parlett and Reinsch [22] extended this algorithm
to other norms. Schulman and Sinclair [28] showed that a natural variant of the OsborneśParlettśReinsch (OPR)
algorithm inds an �-approximately balanced solution in ℓ∞ norm in time � (�3 log(��/�)), where � is the initial
imbalance. Ostrovsky, Rabani, and Yousei [21] give polynomial bounds for variants of the OPR algorithm for
ixed inite � values, in particular, � (� + �2�−2 log�) for a weighted randomized variant, where� is the ratio
of the sum of the entries over the minimum nonzero entry, and� is the number of nonzero entries. Recently,

Altschuler and Parillo [3] showed an �̃ (��−2 log�) bound for a simpler randomized variant of OPR. Cohen et

al. [5] use second order optimization techniques to attain �̃ (� log� log2 (��/�)), where � is the ratio between
the maximum and minimum entries of the optimal rescaling matrix � ; similar running times follow from [2].

The value � may be exponentially large; the paper [5] also shows a �̃ (�1.5 log(��/�)) bound via interior point
methods using fast Laplacian solvers.1

Our graph balancing problem corresponds to ℓ∞ matrix balancing. Except for [28], the above works are
applicable for inite ℓ� norms only

¯
. Compared to [28], our approximate balancing algorithm has lower polynomial

terms, but our running time depends linearly on 1/� instead of a logarithmic dependence.2

1.2 Overview

The rest of the paper is structured as follows. Section 2 introduces notation and basic concepts, including the
directed variant of component hierarchies used in this paper, and the comparison-addition and word RAM
computational models. Section 3 is dedicated to the approximate min-balancing algorithm. The algorithm is
developed in several steps: a key ingredient is a subroutine by Goldberg [14] that easily gives rise to a weakly
polynomial algorithm. In order to achieve a strongly polynomial bound, we need a further preprocessing step to
achieve an initial ‘rough balancing’. An additional technical contribution is a new variant of the Union-Find data

1In the quoted running times, �̃ (.) hides polylogarithmic factors. Various papers deine �-accuracy in diferent ways; here, we adapt the

statements to ℓ1-accuracy as in [3].
2We note that, in contrast to the previous work, we consider min- rather than max-balancing. The exact min- and max-balancing problems

can be transformed to each other by setting �′ (� ) = �max − � (� ) ; however, such a reduction does not preserve multiplicative approximation

factors, and hence our result cannot be directly compared with [28]. Nevertheless, it seems that both algorithms can be adaptable to both the

min and max settings. Such extensions are not included in this paper.
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structure, called Union-Find-Increase. At the beginning of Section 3, we give a detailed overview of the overall
algorithm and the various subsections.

In Section 4, we describe the shortest path algorithm for 3-min-balanced directed graphs. This is very similar
to Thorup’s original algorithm [31]. However, the setting is diferent, and we use a slightly diferent notion of
the component hierarchy. For completeness, we include a concise description of the algorithm and the proof of
correctness. Concluding remarks are given in the inal Section 5.

2 Notation and preliminaries

For an integer � , we let [�] = {1, 2, . . . , �}. We let Z≥0 denote the nonnegative integers and let Z>0 denote the
positive integers; similarly for Q≥0, Q>0, R≥0, and R>0. We let log� = log2 � refer to base 2 logarithm unless

stated otherwise. For a vector � ∈ R� and � ⊆ � , we let � |� ∈ R� denote the restriction of � to � .
Throughout, we let � = (�,�, �) be a directed graph with nonnegative arc costs � ∈ R�≥0. Let� = |�| and let

� denote the smallest integer power of 2 greater than or equal to |� |; we assume �,� ≥ 2. This choice instead
of � = |� | will be convenient in the word RAM model. We use �min = min�∈� � (�) and �max = max�∈� � (�) to
denote the smallest and largest values of the cost function. All graphs considered will be simple and loopless.
For a node � ∈ � , we let �(�) denote the set of the outgoing arcs from � . For an arc set � ⊆ �, we let � (� )

denote the set of nodes incident to � . For a node set � ⊆ � , let �[� ] denote the set of arcs in � with both
endpoints inside � .
For a node set � ⊆ � , let �̄ = � \ � denote the complement of � . We let (�, �̄) ⊆ � denote the set of arcs

directed from a node in � to a node in �̄ .
For a node set � ⊆ � , we denote the graph obtained by contracting � by �/� = (� ′, �′, �′). Here, � ′ =
(� \ � ) ∪ {�}; � represents the contracted node set. We include every arc (�, �) ∈ � in �′ with the same cost if
�, � ∉ � . Arcs with both endpoints in � are deleted. If � ∈ � or � ∈ � , the corresponding endpoint is replaced by �.
In case parallel arcs are created, we only keep one with the smallest cost. For a partition P = (�1, �2, . . . , �� ) of
� , the contraction �/P denotes the graph obtained after contracting (in an arbitrary order) each of the sets �� ,
� ∈ � in � .

We will assume that � = (�,�, �) is strongly connected; that is, a directed path exists between any two nodes.
If the input is not strongly connected, then we preprocess the graph as follows. We ind the strongly connected
components in � (� +�) time using Tarjan’s algorithm [29]. We select a value� greater than the sum of all arc
costs, pick one node in each strongly connected component, add a directed cycle on these nodes, and set the cost
of these arcs to� . This results in a strongly connected graph � ′ = (�,�′, �′) with |�′ | = � (� + �). Computing
shortest paths in� ′ provides the shortest paths in � ; if the shortest path distance between nodes � and � in � ′ is
at least� , then � is not reachable from � in � .

Dijkstra’s algorithm Dijkstra’s algorithm [7] is the starting point of the fastest algorithms for SSSP and APSP.
We now give a brief overview of the key steps. The algorithm maintains distance labels � (�) for each node � that
are upper bounds on � (�), the shortest path distance from � . The algorithm adds nodes one-by-one to a permanent
node set � with the property that � (�) = � (�) for every � ∈ � . Further, for every � ∈ � \ � , � (�) is the length of a
shortest �ś� path in the subgraph induced by the node set � ∪ {�}.
These are initialized as � (�) = 0, � (�) = ∞ for � ∈ � \ {�}, and � = ∅. Every iteration adds a new node to � ,

selecting the node � ∈ � \ � with the smallest label � (�). Then, the outgoing arcs (�, �) are considered, and � ( �)
is updated to min{� ( �), � (�) + � (�, �)}. The crucial property of the analysis is that this selection rule is correct,
that is, for � ∈ argmin{� ( �) : � ∈ � \ �}, we must have � (�) = � (�).

Bottleneck costs in balanced graphs Our shortest path algorithm requires the input graph to be 3-min-balancedÐ
see Deinition 1.1. As shown next, the bottleneck costs are approximately balanced in such graphs.

J. ACM



6 • James B. Orlin and László A. Végh

Recall the deinition of the bottleneck cost � (�, �) in (1). We extend the deinition to non-empty disjoint subsets
�,� ⊊ � as � (�,� ) := min{� (�, �) : � ∈ �, � ∈ � }. Equivalently, � (�, �̄) = min{� (�, �) : � ∈ �, � ∈ �̄}. By a bottleneck
�ś � path we mean an �ś � path where the maximum arc cost is � (�, �).

Lemma 2.1. The following are equivalent.

(1) � is �-min-balanced.
(2) For all proper subsets ∅ ≠ � ⊊ � , � (�̄, �) ≤ �� (�, �̄).
(3) For all � ∈ � and � ∈ � , � ( �, �) ≤ �� (�, �).

Proof. (1)⇒ (2). Suppose that � is �-min-balanced and ∅ ≠ � ⊊ � . Choose � ∈ argmin{� (�) : � ∈ (�, �̄)};
thus, � (�) = � (�, �̄). Let� be the bottleneck cycle containing � . Because� contains an arc � of (�̄, �), the following
is true: � (�̄, �) ≤ � (� ) ≤ �� (�) = �� (�, �̄).
(2) ⇒ (3). Suppose that (2) is true. For given nodes � and � , let � = {� ∈ � : � ( �, �) ≤ �� (�, �)}. Clearly,

� ∈ � . We show by contradiction that � ∈ � , and consequently, � ( �, �) ≤ �� (�, �). Suppose that � ∈ �̄ . Let
� ∈ argmin{� (�) : � ∈ (�, �̄)}, and suppose that � = (ℎ, ℓ). Then � ( �, ℎ) ≤ �� (�, �) because ℎ ∈ � ; further,
� (ℎ, ℓ) = � (�, �̄) ≤ �� (�̄, �) ≤ �� (�, �) by (2) and the fact that the bottleneck path from � to � includes an arc of
(�̄, �). Then � ( �, ℓ) ≤ max{� ( �, ℎ), � (ℎ, ℓ)} ≤ �� (�, �). But this implies that ℓ ∈ � , a contradiction.
(3) ⇒ (1). Suppose that (3) is true. Let � = ( �, �) be any arc of �; note that � ( �, �) ≤ � (�). Let � be a path

from � to � with arcs of length at most � (�, �), and let � = � ∪ {�}. Then � is a cycle, and max{� (� ) : � ∈ �} ≤
max{� (�, �), � (�)} ≤ max{�� ( �, �), � (�)} ≤ �� (�). Thus, � is �-min-balanced. □

The component hierarchy We now introduce the concept of a component hierarchy. This is a variant of Thorup’s
[31] component hierarchy, adapted for approximately min-balanced directed graphs. The papers [15, 23, 24] also
use component hierarchies for directed graphs. However, our notion exploits the �-min-balanced property, and
will be more similar to the undirected concept [31] in that it does not impose orderings of the children of the
vertices.

We use the standard terminology for a tree (� ′, �′) rooted at � ∈ � ′.
• For � ∈ � ′ \ {� }, the parent � (�) of � is the irst vertex after � on the unique path in the tree from � to � . All
nodes in the path are called the ancestors of � .
• For � ∈ � ′, children(�) ⊆ � ′ is the set of nodes � such that � (�) = � .
• For every � ∈ � ′, desc(�) ⊆ � ′ is the set of nodes in the subtree rooted at � .
• For �, � ∈ � ′, lca(�, �) is the least common ancestor of � and � , i.e., the unique vertex on the �ś� path in �′

that is an ancestor of both � and � .

Deinition 2.2. The tuple (� ∪ �, �, �, �) is called a component hierarchy of � for a strongly connected directed
graph � = (�,�, �) if
• (� ∪ �, �) is a tree with root � ∈ � , and � is the set of leaves.
• The vector � : � → Z>0 is such that each �(�) is an integer power of 2. For every � ∈ � \ {� }, �(�) ≤
�(� (�))/2.
• For any �, � ∈ � with lca(�, �) = � , we have �(�) ≤ � (�, �) ≤ 3�(�); moreover, there exists an �ś � path �
inside desc(�) ∩ � such that � (�) ≤ 3�(�) for every arc � ∈ � .

2.1 Computational models

Our results use two diferent computational models. The approximate min-balancing algorithm in Section 3 can
be implemented in the more restrictive comparison-addition model. However, the word RAM model is needed for
constructing the component hierarchy: we require the operation of rounding down numbers to the nearest power
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of two in order to obtain �(�) values that are powers of two. The shortest path algorithm in Section 4 uses integer
arithmetic in two parts: (1) storing vertices and nodes in buckets, and (2) in the Split/FindMin data structure.

The comparison-addition model The input is a set of real numbers, and only addition and comparison operations
are allowed; each takes constant time. Subtraction can be easily simulatedwith a constant overhead by representing
numbers in the form � − � . Multiplication by an integer � can be simulated by � (log� ) additions. See [23, 26]
for more details.

The algorithms in Section 3 also include division by a power of 2 in a restricted sense: for a value � = � (log�),
we require that all calculated values can be expressed as sums of quotients in the form� =

∑�
�=0��/2� , where the

�� values can be obtained as a diference of two sums of input values. We can work with such numbers in the
comparison-addition model by representing such a sum by ordered pairs (�1, �1), . . . , (�� , �� ).
One can convert the sum of quotients into a single quotient with denominator ≤ 2� in time � (�). Moreover,

additions, subtractions, and comparisons of sums of quotients can each be carried out in � (� + 1) steps. When
the approximate balancing algorithms are used as preprocessing for the APSP, one can multiply the outputs by 2�

at termination. Then the shortest path algorithms will determine the shortest path trees for the original problem
as well.

The word RAM model We use the standard random access machine model, where every memory cell can store
an integer of � bits. For convenience, we assume the word size is at least log(��max) so that each input and
output number its into a single word.

There is no universally accepted computational model for integer weights. We use the same model as in [15];
this is more restrictive than the one in [31], which also allows arbitrary multiplications. In our model, unit-time
operations include comparison, addition, subtraction, bit shifts by an arbitrary number of positions, and bitwise
boolean operations.

We do not allowmultiplications and divisions in general. However, the bit shift operations enablemultiplications
by integer powers of 2 in� (1) time. Due to the assumption that � is a power of 2, multiplying by a monomial term
such as ��� can be done in � (1) time if �, � = � (1). We will use divisions by powers of 2. These operations can
be simulated with constant overhead, maintaining a representation �/2� of the occurring numbers. Throughout,
we maintain numbers in such representation with � = � (log�).

We highlight the only two operations involving integer arithmetics that are used for constructing the component
hierarchy in Section 3.3 and for the bucketing operations in Section 4.3.

(i) Given � ∈ Z≥0, compute the largest integer power of 2 smaller or equal than � ; we denote this by ⌊�⌋2.
(ii) Given � ∈ Z≥0, and � ∈ Z≥0, compute ⌊�/2�⌋.

All other integer operations are only needed for Split/FindMin; we discuss this in more detail in Section 4.5.

Any running time bound obtained in the comparison-addition model is directly applicable to the word RAM
model. Bounds in the comparison-addition model can be worse than in the word RAM model. In particular,
restricted divisions in the comparison-addition model require � (�) time for numbers in the sum of quotients
form� =

∑�
�=0��/2� , in contrast to � (1) in the word RAM model where bit shift operations are permitted.

3 An algorithm for approximate min-balancing

This section is dedicated to the proof of the following theorem. The algorithm asserted in the theorem is
Algorithm 5 in Section 3.3.

Theorem 3.1. Assume we are given a strongly connected directed graph� = (�,�, �) with arc costs � ∈ R�≥0, and
a parameter � ∈ Z≥0; let � := 1 + 1/2�−1.
(a) There exists an�

(

2� (� + 1) ·�
√
� log�

)

time algorithm in the comparison-addition model that inds a potential

� ∈ R� such that �� is �-min-balanced.
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(b) For � = 0 and � = 3 and an integer input � ∈ Z�≥0, we can obtain a potential � ∈ Q� and a component hierarchy

of (�,�, �� ) in time �
(

�
√
� log�

)

in the word RAM model. Further, all � (�) values are integer multiples of

1/(4�3).

It is instructive to start the overview from exact min-balancing, that is, � = 1, even though our algorithm is not
applicable to this case. For � = 1, the exact max-balancing algorithms [27, 36] can be used (by negating the costs).
A simple and natural algorithm (see [27]) is based on the iterative application of min-mean cycle inding. First,
ind all arcs that are in a min-mean cycle in the graph; let � ≥ 0 denote the minimum cycle mean value, and � the
set of all arcs in such cycles. Every arc � ∈ � must have �� (�) = � if �� is a min-balanced reduced cost function.
It is easy to see that the min-cycle mean algorithm produces a potential � such that �� (�) ≥ � for all � ∈ �,

and �� (�) = � for all � ∈ � . We can then contract all strongly connected components of � , and recurse on the
contracted graph, by repeatedly modifying the potential � and contracting the components of min-mean cycles.
The current best running times are � (�� + �2 log�) for min-balancing [36] and � (��) for minimum-mean

cycle computation [16]. Both these running times are substantially higher than the overall running time in
Theorem 3.1.

We can thus only aford to approximately compute min-mean cycles. This can be achieved faster using a
subroutine in Goldberg’s paper [14], originally developed for a weakly polynomial algorithm for negative cycle
detection. There are some technical diferences from [14]; we present the detailed description of the subroutine
and the proof of correctness in Section 3.5.
The input to the subroutine Small-Cycles is a strongly connected directed graph with minimum arc cost �

and a parameter � > 0. In time � (�
√
�), it inds a reduced cost �� and strongly connected components of arcs

with reduced cost in the range of [�, � + 2�]. At the same time, the reduced cost of every arc between diferent
components is at least � + � .
If the input graph has positive arc costs, the iterative application of this subroutine yields a simple weakly

polynomial algorithm with running time �
(

2� (� + 1) ·�
√
� log (��max/�min)

)

, as described in Section 3.1.
In order to turn this into a strongly polynomial algorithm, in Section 3.2 we start by a preprocessing algorithm

that inds a 14�2-min-balanced reduced cost. An important step in this algorithm is to determine the balance
values � (�) for all arcs � ∈ �; this is deined as the smallest value � such that� contains a cycle � with � ∈ � and
� (� ) ≤ � for all � ∈ � . These balance values can be eiciently found using a simple recursive framework.

The strongly polynomial algorithm in Section 3.3 requires the input cost function to be 14�2-min-balanced.
How can we beneit from this ‘rough’ balance of the input? The weakly polynomial algorithm consists of
� (2� (� + 1) · log(��max/�min)) calls to Small-Cycles. If each call uses the entire arc set in the current contracted
graph, we obtain a total running time �

(

2� (� + 1) ·�
√
� log (��max/�min)

)

as above. However, when running
Small-Cycles with parameter �, it is possible to restrict attention to arcs � with � (�) ≤ 2��. We refer to such arcs
as active. If the input is assumed to be a 14�2-min-balanced cost-function, then each arc is active for � (2� log�)
calls of Small-Cycles prior to being contracted. Thus each arc contributes �

(

2� (� + 1)
√
� log�

)

to the total
running time.
In the weakly polynomial algorithm, the parameter � giving a lower bound on the minimum reduced cost

of non-contracted arcs increases by a factor at most 1 + 1/2� in each iteration. To avoid the dependence on
�max/�min in the strongly polynomial algorithm, this value may sometimes ‘jump’ by large amounts in iterations
with no active arcs.

An important technical detail is the maintenance of the reduced costs. In every iteration, we only directly
maintain �� (�) for the active arcs. Querying the reduced cost of a newly activated arc is nontrivial, since one or
both of its endpoints may have been part of one or more contracted cycles, each of which corresponds to a node
in the contracted graph. To compute the potential of an original node � , we need to add to the potential of node �
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the potentials of every contracted node � that contains node � . We develop a new extension of the Union-Find data
structure, called Union-Find-Increase by incorporating a new ‘increase’ operation. This is described in Section 3.4.

Contractions and preprocessing We use contractions several times. Whenever a set � is contracted, we let � be
the contracted node, and set the potential �� = 0. For each arc with one endpoint in � , we keep the same reduced
cost as immediately before the contraction.

Onmultiple occasions we need the subroutine Strongly-connected(�,�) that implements Tarjan’s algorithm
[29] to ind the strongly connected components of the directed graph (�,�) in time � ( |� | + |�|). The output
includes the strongly connected components (�1, �1), (�2, �2), . . . , (�� , �� ) in the topological order, namely, for
every arc (�, �) ∈ � such that � ∈ �� , � ∈ � � , it must hold that � ≤ � .

In Theorem 3.1, the input is a nonnegative cost function. For our algorithm, it is more convenient to assume a
strictly positive cost function. We now show how the nonnegative case can be reduced to the strictly positive
case by a simple � (�) time preprocessing. Recall the notation �min = min�∈� � (�) and �max = max�∈� � (�).

We irst call Strongly-connected(�,�0) on the subgraph of 0-cost arcs�0. We contract all strongly connected
components, and keep the notation � = (�,�) for the contracted graph, where the output of the subroutine
gives a topological ordering � = {�1, �2, . . . , ��} such that for every 0-cost arc (�� , � � ), we must have � < � . We
let �′ denote the smallest nonzero arc cost, and set � (�� ) = −��′/�. Then, it is easy to see that �� (�) ≥ �′/� for
every � ∈ �.
We then replace the cost function � by ��� , after which we obtain a cost function �′ with �′ ≤ �′ (�) ≤

�(�′ + �max) for every � ∈ �. This preprocessing algorithm can be implemented in � (� log�) time in the
comparison-addition model.

3.1 A simple weakly polynomial variant

The following subroutine is a variant of Refine in Goldberg’s paper [14].

Algorithm 1 Small-cycles

Input: A directed graph � = (�,�, �) with a cost function � ∈ R�, and � ∈ R, � ∈ R>0 such that � (�) ≥ � for
all � ∈ �.

Output: A partition P = (�1, �2, . . . , �� ) of the node set � and a potential vector � ∈ R� such that
(i) For every � ∈ [�], �� (�) ≥ � for every � ∈ �[�� ], and �� is strongly connected in the subgraph of arcs
{� ∈ �[�� ] : � ≤ �� (�) ≤ � + 2�};

(ii) �� (�) ≥ � + � for all � ∈ � \
(

∪�∈[� ]�[�� ]
)

;
(iii) −|� |� ≤ � (�) ≤ 0, and � (�) is an integer multiple of � for all � ∈ � .

Lemma 3.2. The subroutine Small-cycles(�, �, �,�, �) can be implemented in � ( |�|
︁

|� | log |� |) time in the
comparison-addition model.

The proof adapts the argument in [14]; it is deferred to Section 3.5. We now summarize the weakly polynomial
algorithm Simple-Min-Balance (Algorithm 2). We initialize �1 = �min and �1 = �1/2� . Every iteration calls
Small-Cycles for the current values of �� and �� . In Step 5, we contract each subset (some or all of which may
be singletons) in the partition P� returned by the subroutine, and iterate with the returned reduced cost, setting
the new value ��+1 = �� + �� . We update ��+1 to ��+1/2� whenever � is an integer multiple of 2� ; otherwise, we
keep ��+1 = �� . Thus, the value of �� doubles in every 2� iterations.

We let (�̂� , �̂� ) denote the contracted graph at iteration � . The algorithm terminates when �̂� has a single node
only, at iteration � = � .
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Algorithm 2 Simple-min-balance

Input: A strongly connected directed graph � = (�,�, �) with � ∈ R�
>0, parameters � ∈ Z≥0 and � = 1 + 1/2�−1.

Output: A potential � ∈ R� such that �� is �-min-balanced.

1: (�̂1, �̂1, �̂1) ← (�,�, �) ; � ← 1 ;
2: �1 ← min�∈� � (�) ; �1 ← �1/2�
3: while |�̂� | > 1 do
4: (P� , �� ) ← Small-Cycles(�� , �� , �̂� , �̂� , �̂� ) ;

5: (�̂�+1, �̂�+1, �̂�+1) ← (�̂� , �̂� , �̂��� )/P� ;
6: ��+1 ← �� + �� ;
7: if � is an integer multiple of 2� then ��+1 ← ��+1/2� ;
8: else ��+1 ← �� ;

9: � ← � + 1 ;
10: Uncontract (�̂� , �̂� , �̂� ), and compute the overall potential � ∈ R� ;
11: return � .

Uncontraction In the inal step of the algorithm, we uncontract all sets in the reverse order of contractions.
We start by setting � = �� . Assume a set � was contracted to a node � in iteration � , and we have uncontracted
all sets from iterations � + 1, . . . ,� . When uncontracting � , for every � ∈ � we set � (�) = �� (�) + � (�), i.e., the
potential right before contraction, plus the potential of � accumulated during the uncontraction steps. This takes
time � (�′) where �′ is the total size of all sets contracted during the algorithm; it is easy to bound �′ ≤ 2�. Thus,
the total time for uncontraction is � (�).

Lemma 3.3. Algorithm 2 inds a �-min-balanced cost function in time �
(

2� (� + 1) ·�
√
� log(��max/�min)

)

in
the comparison-addition model.

Proof. At initialization, �1 = �min, and �� increases by a factor 2 in every 2� iterations. At every iteration, we
can extend the cost function �̂� to the original arc set �: for an arc � contracted in an earlier iteration � < � , we let
�̂� (�) = �̂� (�) represent the value right before the contraction. It is easy to see that this extension of �̂� to � gives
a valid reduced cost of � .
Throughout, we have that �� ≤ �̂� (�) for all � ∈ �̂� , and �̂� (�) ≥ 0 for all contracted arcs. Thus, for any

cycle � ⊆ � that contains some non-contracted arcs in �̂� , 2�� ≤ �̂� (�) = � (�) ≤ ��max holds. Consequently,
�� ≤ ��max/2 throughout, implying a bound � (2� log(��max/�min)) on the number of iterations.
As explained above, the inal uncontraction and computing � can be implemented in � (�) time. To show that

the inal �� is �-min-balanced, consider an arc � ∈ �, and assume it was contracted in iteration � , that is, � ∈ �[� � ]
for a component � � of the partition P� . In particular, �� (�) = ��� (�) ≥ �� . The set � � is strongly connected in the
subgraph of arcs of reduced cost ≤ �� + 2�� ≤ ��� . Thus, at iteration � , � � contains a cycle� with � ∈ � such that
�̂� (� ) ≤ ��� for all � ∈ � . This cycle may contain nodes that were contracted during previous iterations. Every
component previously contracted contains a strongly connected subgraph of arcs with costs ��−1 +��−1 ≤ ���−1,
noting that the arc costs do not change anymore after contraction. Thus, when uncontracting a node, we can
extend � to a cycle of arc costs ≤ ��� . Hence, we can obtain a cycle �′ in the original graph � with � ∈ �′ and
�� (� ) ≤ ��� ≤ ��� (�) for all � ∈ �′.

The algorithm only performs addition and comparison operations, and divisions by 2� . Divisions only happen
when setting ��+1 = ��+1/2� . At such iterations, we have ��+1 = 2��min, where � = �/2� is an integer. As
remarked in Section 2.1, we can implement every step in � (� + 1) time. □
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3.2 A quick algorithm for rough balancing

In this section, we present the subroutine Rough-balance(�,�, �), which inds a potential � ∈ R� such that ��

is 14�2-min-balanced. As mentioned previously, this will be an important preprocessing step for the strongly
polynomial algorithm in Section 3.3. The running time can be stated as follows. Here, � (�,�) is the inverse
Ackermann function.

Lemma 3.4. Let� = (�,�, �) be a strongly connected directed graph with � ∈ R�
>0. Then, in time� (�� (�,�) log�),

we can ind a potential � ∈ R� such that �� is 14�2-min-balanced, where � = |� | and� = |�|. The algorithm can
be implemented in the comparison-addition model, and every �� (�) value will be an integer multiple of 4�2.

Given� = (�,�, �) with � ∈ R�≥0, and � > 0, we let� [≤ � ] denote the subgraph of� formed by the arcs � ∈ �
with � (�) ≤ � . For every � ∈ �, we deine � (�) ∈ R>0 as the smallest value � such that� [≤ � ] contains a directed
cycle � with � ∈ � . We call � (�) the balance value of � . Clearly, � is �-min-balanced if and only if � (�) ≤ �� (�)
for every � ∈ �.
The algorithm proceeds in two stages. Section 3.2.1 presents Find-Balance(�,�, �), which determines the

balance value � (�) for every arc in � ∈ �. The main algorithm Rough-Balance(�,�, �) follows in Section 3.2.2.

3.2.1 Determining the balance values Algorithm 3 presents the recursive subroutine Find-Balance(�,�, �).
Let � [1] < � [2] < . . . < � [�] denote the set of diferent arc cost values. If � = 1, i.e., all arc costs are the same,
then we return � (�) = � (�) = � [1] for every arc. Otherwise, we let � and � ′ denote the two consecutive values
in the middle. We identify the strongly connected components (�1, �1), (�2, �2), . . . , (�� , �� ) of � [≤ � ], and
recursively determine the � (�) values for � ∈ �� by calling the algorithm for each nonsingleton component
(�� , �� ). For all arcs � ∈ �[�� ] \�� , we set � (�) = � (�).
We then contract all components (�� , �� ) to singletons to obtain �̂ = (�̂ , �̂, �̂). We increase each arc cost �̂ (�)

in this graph to max{�̂ (�), � ′}, make another recursive call to the algorithm on �̂ , and use the obtained balanced
values for the pre-images of the contracted arcs.

Lemma 3.5. Algorithm 3 correctly computes the balance values in � in time � (� log�).

Proof. For any pair of nodes � and � in �� , � (�, �) ≤ � . If � = (�,�) ∈ � and � (�) > � , then � (�) = � (�) is
correctly determined. If � (�) ≤ � , then � ∈ �� , and � (�) ≤ � can be found recursively by inding the balance
values in (�� , �� ).

Suppose instead that � = (�,�) ∈ �, where � ∈ �� and� ∈ � � for � ≠ � . Then � (�) ≥ � ′, and we can replace
� (�) by �′ (�) = max{� (�), � ′} without changing � (�). In addition, contracting the strongly connected components
(�� , �� ) does not afect � (�). Thus, the algorithm correctly computes the balance numbers.
We now turn to the running time. The initial time to sort the arcs is� (� log�) = � (� log�). Let� (�′, � ′) be

the running time for the algorithm if the input has�′ sorted arcs with � ′ diferent costs. The algorithm inds the
median value for the arc costs and partitions the graph into subgraphs with�∗ arcs and�′ −�∗ arcs respectively,
where�∗ ∈ [1,�′ − 1]. This takes � (�′) time, and leads to the following recursion:

� (�′, � ′) ≤ � (�′) + max
�∗∈[1,�′ ]

{� (�∗, ⌊�/2⌋) +� (� −�∗, ⌊�/2⌋ + 1)} .

We conclude that � (�′, � ′) = � (�′ log(� ′ + 1)) because the number of diferent arc values is halved in every
recursive call. Hence, every arc can participate in at most ⌊log(� ′ + 1)⌋ recursive calls. □

3.2.2 Constructing the potential We now describe the algorithm Rough-balance(�,�, �). We irst compute the
balance values � (�) by running Find-Balance(�,�, �). We deine

� (�) := max

{

� (�), � (�)
2�

}

.
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Algorithm 3 Find-balance

Input: A strongly connected directed graph � = (�,�, �) with � ∈ Q�
>0.

Output: A function � : �→ Q giving the balance value � (�) of each arc � ∈ �.
1: Let � [1] < � [2] < . . . < � [�] denote the set of arc cost values � (�) ;
2: if � = 1 then � (�) ← � (�) for all � ∈ � ;
3: else

4: � ← �
[ ⌊

�
2

⌋ ]

; � ′ ← �
[ ⌊

�
2

⌋

+ 1
]

;
5: {(�1, �1), (�2, �2), . . . , (�� , �� )} ← Strongly-Connected(� [≤ � ]) ;
6: for � = 1, . . . , � do

7: if |�� | > 1 then

8: for � ∈ �[�� ] \�� do � (�) ← � (�) ;
9: �� ←Find-Balance(�� , �� , � |��

) ;
10: for � ∈ �� do � (�) ← �� (�) ;
11: obtain �̂ = (�̂ , �̂, �̂) by contracting every set � � , � ∈ [�] ;
12: for � ∈ �̂ do �̂ (�) ← max{�̂ (�), � ′} ;
13: �̂ ← Find-Balance(�̂) ;

14: for � ∈ � \
(

⋃�
�=1�[� � ]

)

do � (�) ← �̂ (�̂), where �̂ is the contracted image of � ;

15: return � .

For � ≥ 0, we let � [� ≤ � ] denote the subgraph of � formed by the arcs � ∈ � with � (�) ≤ � . We say that � ∈ �
is active with respect to the value � if � (�) ≤ � but � is not contained in any strongly connected component of
� [� ≤ � ].

The Rough-balance subroutine is shown in Algorithm 4. A value � ≥ 0 is maintained, and the graph �̂

denotes the contraction of the strongly connected components of � [� ≤ � ]; we use the � values also in �̂ that
refer to the pre-image of the arc in � . At the beginning of the irst iteration, � is set as the minimum � (�) value
in � ; in later iterations, we increase � by a factor 2�, or to the minimum of the � (�) values in the current �̂ .
Each iteration computes a topological ordering of the active arcs w.r.t. � . Then, the potential ��� of the �-th node

�� in the order is decreased by ��/(2�). We terminate once �̂ becomes a single node, i.e., � [� ≤ � ] is strongly
connected.

We handle contractions as in Section 3.1. That is, the inal reduced cost of an arc � is equal to its reduced cost
immediately before its endpoints got contracted into the same node. At the end, we uncontract and obtain the
overall potential in the original graph in time � (�).

We now turn to the proof of Lemma 3.4. As the irst step, we bound the reduced costs obtained in the algorithm.
The reduced costs are deined in the contracted graph, but can be naturally mapped back to the input graph � .

Lemma 3.6. Consider the potentials at the end of any iteration of Algorithm 4, and let �� (�) denote the reduced cost
of any arc � ∈ �. Then, |�� (�) −� (�) | ≤ 2�/3. If � is an active arc in the current iteration, then �� (�) ≥ � (�) + �/(6�).

Proof. The initial potential values are �� = 0 and are monotone decreasing throughout. The current iteration
decreases every potential by at most �/2. Since the value of � increases by at least a factor 2� ≥ 4 in every
iteration, the cumulative change in all iterations thus far is at most 2�/3. This implies the irst statement.
Assume now that � = (�� , � � ) is active. Then, �� (�) increases by at least �/(2�) in the current iteration, since

��� is decreased by a smaller amount than ��� . The second part follows, since the total change up to the previous
iteration with value � ′′ ≤ �/(2�) was 2� ′′/3 ≤ �/(3�). □
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Algorithm 4 Rough-balance

Input: A strongly connected directed graph � = (�,�, �) with � ∈ R�
>0.

Output: A potential � : � → R such that �� is 14�2-min-balanced.
1: obtain the balance values � (�) by calling Find-Balance(�) ;

2: for � ∈ � do � (�) ← max
{

� (�), � (� )2�

}

;

3: � ← 0 ; �̂ ← � ;
4: for � ∈ � do �� ← 0 ;

5: while |�̂ | > 1 do
6: � ← max{2��,min{� (�) : � ∈ �̂}} ;

7: contract all strongly connected components of �̂ [� ≤ � ] in �̂ ;

8: compute a topological ordering �̂ = {�1, �2, . . . , �� } of �̂ [� ≤ � ] such that � < � for all (�� , � � ) ∈ �̂ with
� (�� , � � ) ≤ � ;

9: for � = 1, . . . , � do ��� ← ��� − ��
2� ;

10: uncontract �̂ and map � back to the original graph � ;
11: return � .

Lemma 3.7. An arc � ∈ � is contained in a strongly connected component of � [� ≤ � ] if and only if � (�) ≤ � .
Every arc can be active in at most one iteration.

Proof. Suppose irst that � (�) ≤ � . By deinition of � (�), there exists a cycle� with � ∈ � such that � (� ) ≤ � (�)
for all � ∈ � . Consequently, � (� ) ≤ � (�) and � (� ) ≤ � (�) for all � ∈ � , showing that � is inside a strongly
connected component of� [� ≤ � ] whenever � (�) ≤ � . Conversely, assume that there exists a cycle�′ containing
� such that � (� ) ≤ � for all � ∈ �′. Since � (� ) ≤ � (� ), it follows that � (�) ≤ � .

Therefore, an arc � is active if and only if � (�) ≤ � < � (�). Since � (�) ≥ � (�)/(2�), and � increases by at least
a factor 2� between two iterations, it follows that each arc can be active at most once. □

Proof of Lemma 3.4. We irst show that the algorithm Rough-balance inds a 14�2-min-balanced cost func-
tion. Consider any arc � ∈ �, and let us pick a cycle � containing � such that � (� ), � (� ) ≤ � (�) for every � ∈ � .
Take the largest value of � during the algorithm such that � < � (�); let � ′ ≥ � (�) denote the value in the next

iteration. By Lemma 3.7, � ∈ �̂ in the current iteration, and � will be contracted in the next iteration, along with
the entire cycle� . Hence, |�� (� ) −� (� ) | ≤ 2�/3 for all � ∈ � for the inal reduced cost �� according to Lemma 3.6.

Claim 3.8. We have � ′ = 2�� or � ′ = � (�) = � (�).
Proof. If � ′ > 2�� , then � ′ = min{� (� ) : � ∈ �̂}. Hence, � ′ ≤ � (�) ≤ � (�) ≤ � ′. Equality must hold

throughout, which in particular implies � (�) = � (�) = � (�). □

We consider two cases.

Case I: � < � (�). By the above claim, � (�) ≤ � ′ ≤ 2�� (�). On the one hand, we have

�� (�) ≥ � (�) − 2

3
� ≥ 1

3
� (�) .

On the other hand, for every � ∈ � , we have

�� (� ) ≤ � (� ) + 2

3
� ≤ � (�) + 2

3
� (�) ≤

(

2� + 2

3

)

� (�) ≤ (6� + 2)�� (�) .

Hence, �� (�) ≤ (6� + 2)�� (�) < 14�2�� (�).
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Case II: � ≥ � (�). Since � < � ′, Claim 3.8 yields � ′ = 2�� ≥ � (�), and thus � ≥ � (�)/(2�). Consequently,
� ≥ � (�) = max{� (�), � (�)/(2�)}.

Since � (�) ≤ � < � (�), by Lemma 3.6, � is an active arc, and the second part of the lemma guarantees that

�� (�) ≥ � (�) + �

6�
.

For every � ∈ � , we have

�� (� ) ≤ � (� ) + 2

3
� ≤ � (�) + 2

3
� ≤

(

2� + 2

3

)

� ≤
(

2� + 2

3

)

6��� (�) ≤ 14�2�� (�)

showing that �� (�) ≤ 14�2�� (�). This completes the proof.

Running time bound The initial call to Find-Balance(�,�, �) takes � (� log�) time according to Lemma 3.5.
The signiicant terms in the running time are computing strongly connected components of� [� ≤ � ] along with
the topological ordering of active arcs, and updating the potentials. According to Lemma 3.7, each arc is active
at most once. Hence, it is either contracted in the irst iteration it appears in � [� ≤ � ], or the subsequent one.
Therefore, the total number of these operations is � (�). Maintaining the contracted graph using the Union-Find
data structure is � (�� (�,�)), see also Section 3.4. The number of operations in the inal uncontraction is � (�),
similarly to the argument in Section 3.1.
To implement in the comparison-addition model, note that every number during the computations will be

integer multiples of (2�)2. Additions, subtractions, and comparisons of numbers in this form can be implemented
in � (log�) time, as in Section 2.1. We also need multiplications by � ≤ � and by 2� as well as divisions by 2�;
these operations also take time� (log�). Hence, the total running time can be bounded by� (�� (�,�) log�). □

3.3 The strongly polynomial algorithm

We are ready to present the strongly polynomial algorithm as stated in Theorem 3.1. Given a graph � = (�,�, �)
with nonnegative arc costs, we preprocess it by contracting 0-cycles and changing to a strictly positive reduced
cost. We then apply the subroutine Rough-balance to ind a 14�2-min-balanced reduced cost function �� . We
can thus assume that the input of Algorithm 5 is a strictly positive and 14�2-min-balanced cost function � .
Algorithm 5 is similar to the weakly polynomial Algorithm 2. The two crucial diferences are that (a) the

subroutine Small-Cycles is called only for a subset of ‘active’ arcs; and (b) we may ‘jump’ over irrelevant values
of �.
At the beginning of the algorithm, we sort the arcs in the increasing order of costs � (�). At iteration � , we

maintain two key parameters, the ‘lower bound’ �� and the ‘step-size’ �� , a contracted graph (�̂� , �̂� , �̂� ), and a set
of active arcs �� ⊆ �̂� . This is the subset of arcs with �̂� (�) ≤ (� + 1)

(

1 + 1
2�

)

�� .
As in Algorithm 2, the parameters are initialized as �1 = � (�1), �1 = �1/2� . The iterations start with a call to

Small-Cycles for the current value of �� and �� , but restricted to the graph (�̂� (�� ), �� ) induced by the active
arcs; this returns a partition P� and potentials �� . With a slight abuse of notation, the node potentials �� are

extended to the entire node set �̂� , by setting �� (�) = 0 for � ∈ �̂� \ �̂� (�� ). We contract each non-singleton
subset in the partition P� ; the new costs �̂�+1 represent the contractions of �̂

��
� . However, we only maintain the

�̂�+1 (�) values explicitly for the active arcs �̂ , the contracted image of �� .
We now turn to the updates of �� and �� . In most iterations3, we set ��+1 = �� + �� , and keep ��+1 = �� .

Exceptions are the special iterations when � is an integer multiple of 2� , in which case we set ��+1 = ��+1/2� . In
these special iterations, the update deining ��+1 is also diferent. We start by letting ��+1 = �� + �� , and then
compare this value to min�∈�̂�+1

� (�)/(4�). If ��+1 is smaller, then we increase ��+1 to min�∈�̂�+1
� (�)/2. Note that

�� increases by at least a factor 2 between any two special iterations.

3More precisely, in 1 − 2−� fraction of all iterations; there are no such iterations for � = 0.
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Algorithm 5 Min-Balance

Input: A strongly connected directed graph � = (�,�, �) with a 14�2-balanced cost vector � ∈ R�
>0, parameters

� ∈ Z+ and � = 1 + 1/2�−1.
Output: A potential vector � ∈ R� such that �� is �-min-balanced.
1: sort all arcs in the increasing order of costs as � (�1) ≤ � (�2) ≤ . . . ≤ � (��) ;
2: (�̂1, �̂1, �̂1) ← (�,�, �) ; � ← 1 ;
3: �1 ← � (�1), �1 ← �1/2� ;
4: �1 ←

{

� ∈ � : � (�) ≤ (� + 1)
(

1 + 1
2�

)

�1
}

;

5: while |�̂� | > 1 do

6: (P� , �� ) ← Small-Cycles(�� , �� , �̂� (�� ), �� , �̂� ) ;
7: (�̂�+1, �̂ , �̂�+1) ← (�̂� , �� , �̂��� )/P� ;
8: ��+1 ← �� + �� ;
9: if � is an integer multiple of 2� then
10: if 4���+1 < min�∈�̂�+1

� (�) then ��+1 ← min�∈�̂�+1
� (�)/2 ;

11: ��+1 ← ��+1/2� ;
12: else ��+1 ← �� ;

13: ��+1 ← �̂ ∪
{

� ∈ �̂�+1 : (� + 1)
(

1 + 1
2�

)

�� < � (�) ≤ (� + 1)
(

1 + 1
2�

)

��+1
}

;
14: for � ∈ ��+1 \ �� do �̂�+1 (�) ←Get-Cost(�) ;

15: uncontract (�̂� , �̂� , �̂� ), and compute the overall potential � ∈ R� .
16: return � .

After updating ��+1 and ��+1, we update the set of active arcs by adding all arcs � ∈ �̂�+1 with cost � (�) ∈
(

(� + 1)
(

1 + 1
2�

)

�� , (� + 1)
(

1 + 1
2�

)

��+1
]

. We emphasize that � (�) here refers to the input costs and not the
reduced cost. The subroutine Get-Cost(�) obtains the reduced cost �̂� (�) of the newly added arcs. This will be
explained in Section 3.4, using the Union-Find-Increase data structure. We terminate once the graph is contracted to
a singleton; at this point, we uncontract and obtain the output potential � in the original graph as in Algorithm 2.

Let us now turn to the analysis. We let � denote the total number of iterations.

Lemma 3.9. Let � ∈ [� ] be an iteration of Algorithm 5 such that in all previous iterations � ∈ [�], �̂� (�) ≥ �� was
valid for all � ∈ �� . Then, |�̂�+1 (�) − � (�) | ≤ �

(

1 + 1
2�

)

�� for every � ∈ �̂� .

Proof. The condition guarantees that the input to Small-Cycles at all iterations � ≤ � satisies the requirement

on the arc costs. The potential �� found by Small-Cycles has values −|�̂� |�� ≤ �� (�) ≤ 0. Therefore, for each

� ∈ �̂� , |�̂�+1 (�) − � (�) | ≤ �
∑�
�=1 �� .

We show that
∑�
�=1 �� ≤

(

1 + 1
2�

)

�� . Indeed, ��+1 ≥ �� + �� in every iteration, implying
∑�−1
�=1 �� ≤ �� ; and

�� ≤ ��/2� . □

Lemma 3.10. In every iteration � ∈ [� ] of Algorithm 5, �̂� (�) ≥ �� for all � ∈ �̂� . The inal reduced cost function ��
is �-min-balanced. Further, every arc � ∈ � with � (�) < ��/(14�3) was contracted before iteration � .

Proof. Let us start with the irst claim. The proof is by induction. For � = 1, �̂1 (�) ≥ �1 is true for every
� ∈ � = �̂1 by the deinition of �1 = � (�1). Assume the claim was true for all 1 ≤ � ′ ≤ � ; we show it for � + 1.
Assume irst we set the value ��+1 = min� ∈�̂�+1

� (� )/2 in an iteration where � is divisible by 2� . This happens

if 2�(�� + �� ) < min� ∈�̂�+1
� (� )/2. Lemma 3.9 then implies that �̂ (�) > min� ∈�̂�+1

� (� ) − 2��� > ��+1 for every

� ∈ �̂�+1.

J. ACM



16 • James B. Orlin and László A. Végh

Let us next assume the update was ��+1 = �� + �� . If � ∈ �̂ , i.e., the contracted image of �� , then �̂�+1 (�) ≥
�� + �� = ��+1 is guaranteed by Small-Cycles. Let � ∈ �̂�+1 \ �� , i.e., � (�) > (� + 1)

(

1 + 1
2�

)

�� . Then, Lemma 3.9

shows �̂�+1 (�) >
(

1 + 1
2�

)

�� ≥ ��+1.
The �-min-balancedness property of the inal reduced cost �� follows as in Lemma 3.3 for the weakly polynomial

Algorithm 2.
Consider now an arc � ∈ � with � (�) < ��/(14�3). By the 14�2-min-balancedness of the input cost function � ,

there exists a cycle � ⊆ � such that � (� ) ≤ 14�2� (�) for all � ∈ � . The inal reduced cost �� is nonnegative, and
therefore

�� (�) ≤ �� (�) = � (�) ≤ 14�3� (�) < �� .
Recall that the inal reduced cost �� (�) equals �̂� ′ (�) for the iteration � ′ when � was contracted. Since �̂� (� ) ≥ ��
for all � ∈ �̂� , it follows that � ′ < � , as required. □

In Section 3.4 we will show that the overall running time of the operations Get-Cost(�) can be bounded as
� (�� (�,�)). We need one more claim that shows the geometric increase of �� .

Lemma 3.11. For every iteration � ′ ≥ 1, we have �� ′+2� ≥ 2�� ′ .

Proof. Let � = � ′ + 2� . Assume irst 2� |� ′ − 1. Then, �� ′ = �� ′/2� , and we have �� ′′ = �� ′ for all �
′′ ∈ [� ′, � − 1].

Consequently, �� ≥ �� ′ + 2��� ′ = 2�� ′ . The inequality may be strict if in iteration � − 1 we set �� > ��−1 + ��−1.
Assume now � ′ = �0 + � such that 2� |�0 − 1 and � ∈ [1, 2� − 1]. Then, �� ′ = ��0 (1 + �/2� ), ��0+2� ≥ 2��0 , and

�� = ��0+2� (1 + �/2� ) ≥ 2��0 (1 + �/2� ), thus, we again have �� ≥ 2�� ′ . □

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Part (a): the approximate min-balancing algorithm. Let us start with bounding the
total number of arithmetic operations. After the � (� log�) preprocessing algorithm, we run the algorithm
Rough-Balance to ind a 14�2-balanced cost function in time� (� log�) (Lemma 3.4). We now turn the analysis
of Algorithm 5. Let�� = |�� | denote the number of active arcs in iteration � . The number of arithmetic operations
in Small-Cycles in iteration � is bounded as max{� (1),� ((� + 1) ·��

√
�)}. The term � (1) is needed since

there may be some ‘idle’ iterations without any active arcs, that is,�� = 0. In such a case the update rule in
line 10 guarantees that new active arcs appear within the next� (2� ) iterations. Thus, the number ‘idle’ iterations
without active arcs can be bounded as � (�2� ), since every arc can give the minimum value in line 10 at most
once. The total running time of the ‘idle’ iterations is dominated by the other terms.

Let us now focus on the iterations containing active arcs. We show that

�︁

�=1

�� = � (2�� log�) . (2)

Consider any arc � ∈ �. Let �1 be the irst and �2 be the last iteration such that � ∈ �� . By deinition, �1 is the
smallest value such that � (�) ≤ (� + 1)

(

1 + 1
2�

)

��1 , and by the last part of Lemma 3.10 ��2/(14�3) ≤ � (�). Thus,
��2 ≤ 28�4��1 . Lemma 3.11 shows that �� increases by a factor 2 in every 2

� iterations. Hence, �2−�1 ≤ 2� log(28�4),
implying (2).

Hence, the total number of operations in the calls to Small-Cycles is bounded as�
(

2��
√
� log�

)

. The time of
contractions and cost updates can be bounded as� (�� (�,�)) as shown in Section 3.4, and the inal uncontraction
takes � (�).
Implementation in the comparison-addition model: As noted previously, Rough-Balance and Small-Cycles are
both implementable in this model. Algorithm 5 uses additions, comparisons, multiplications by 4�, divisions by 2
and by 2� . Further, all numbers in the computations will be integer multiples of 2� for � ≤ 2� + 1. As noted in
Section 2.1, all operations can be implemented in time � (� + 1). The running time bound follows.
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Part (b): obtaining the component hierarchy. Assume now � = 0 and � = 3; let us use the algorithm as
described in Algorithm 5 with two simple modiications: we set the initial value as �1 = ⌊� (�1)⌋2 in line 3, and if

4���+1 < min�∈�̂�+1
� (�), then we update ��+1 to

⌊

min�∈�̂�+1
� (�)/2

⌋

2
in line 10. Thus, these values are rounded

down to the nearest power of two. Such an operation is not allowed in the comparison-addition model, but can
be done by a most signiicant bit operation in the word RAM model.

Recalling also that � is a power of 2, and that we set ��+1 = ��+1/2� = ��+1 in every step, it follows that every
�� value is a power of 2.

The sets contracted during the algorithm can be naturally represented by a rooted tree (� ∪ �, �), where the
nodes � correspond to the leaves and the root � ∈ � to the inal contraction of the entire node set. If the set
represented by some � ∈ � was contracted at iteration � , we set �(�) = �� .

We claim that (� ∪ �, �, �) forms a component hierarchy of �� = (�,�, �� ). All �(�) = �� values are integer
powers of 2 (this is the reason for the additional rounding steps). It is immediate that the leaves in the subtree of
each � ∈ � form a strongly connected component in �� . Let � represent a set contracted in iteration � , that is,
� = �� for a set �� in the partition P� . If lca(�, �) = � for �, � ∈ � , that means that the nodes � and � got contracted
together in iteration � . We show that �(�) ≤ � (�, �) ≤ 3�(�), and that the nodes in desc(�) contain a path between
� and � of arcs with cost at most 3�(�); consequently, � (�, �) ≤ 3�(�). If � = 1, then �1 = ⌊�min⌋2, and �� is
strongly connected in the subgraph of arcs of cost at most 3�1. If � > 1, then (�̂� , �̂� ) contains a path between the
contracted images of � and � with all arc costs between �(�) = �� and 3�� , and every �ś � path must contain an arc
of cost ≥ �� . We can map this back to the original graph by uncontracting the sets from previous iterations; all
arc obtained in the uncontraction will have costs ≤ 3��−1 < 3�� .

Note that for � = 0 and an integer input, the Algorithm 5 inds an integer � . This is because all �� values are
integral, and Small-Cycles changes the potential by integer multiples of �� . However, the input to Algorithm 5
is not the original cost but the cost obtained after the preprocessing and Rough-Balance. Preprocessing returns
�� �̄ for a 1/�-integral potential �̄ . For an integer input � , Rough-Balance returns a 1/4�2-integral potential.
From these three steps, we can obtain a relabelling �� of the original potential that is 1/(4�3)-integral if the
original input cost was nonnegative integer. □

3.4 Union-Find-Increase: Maintaining the reduced costs

In Get-Cost(�), we need to compute the current reduced cost of an arc � . Let � = (�, �) in the original graph.

In the current contracted graph �̂� , � is mapped to an arc (�′, � ′); that is, � is in a contracted set represented by
node �′, and � is in a contracted set represented by � ′ (� = �′ and � = � ′ is possible). In the case that � is newly
active (that is, it was not active at the previous iteration), we need to recover the reduced cost �̂� (�). We do so by
performing the uncontractions, as in the inal step. Let � be the potential obtained by uncontracting all sets. To
compute � (�), we need to add up all the �� ′ (� [� ′]) values for every iteration � ′ ≤ � , where � [� ′] is the contracted
node in �̂� ′ representing � , and similarly for computing � ( �). Since there could have already been Ω(�) = Ω(�)
contractions of sets containing � and � , a naïve implementation would take � (�) to compute a single reduced
cost, or � (��) to obtain all current reduced costs.

We show that the time to calculate the reduced costs of newly active arcs in Small-Cycles can be bounded as
� (�� (�,�)) by using an appropriate variant of the classical Union-Find data structure that we call Union-Find-
Increase.

We refer the reader to [30] and [6, Chapter 21] for the description and analysis of Union-Find; we highlight the
simple modiications only. The data structure maintains a forest � on the node set � = {1, 2, . . . , �}, with each
tree in � corresponding to a set in the partition. For each � ∈ � , let Anc(�) be the ancestors of � in � (including �).
In addition, each � ∈ � is associated with a key value � (�) that is initially 0, and which changes dynamically.

We add two new operations to the data structure Union-Find: the operation Increase(�, �) increases � ( �) by � for
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all � in the same tree as �; and the operation Value(�) returns � (�). However, the � (�) values are not maintained
explicitly. Instead, the algorithm maintains auxiliary values � ( �) such that the following property is satisied for
all � ∈ � :

� (�) =
︁

�∈Anc(� )
� ( �) . (3)

We need to modify the original operations as follows:

• Suppose a Union operation is performed on root nodes � and � , and � is made the root of the combined
component. Then � (�) ← � (�) − � ( �).
• Suppose that a path compression takes place along path �1, . . . , �� , where �� is the root of the nodes in �1 to
�� . The Union-Find algorithm sets the parent of �� to �� for � ∈ [1, � − 1]. Let � ( �� ) = � ( ��+1) + . . . + � ( ��−1);
the time to compute the values are proportional to the length of the path. In addition to compressing the
path, we set � ( �� ) ← � ( �� ) + � ( �� ) for each � ∈ [1, � − 1].

Given these modiications, Increase(�, �) can be implemented by irst calling Find(�) to determine the root �
of the tree containing � , and increasing � ( �) by � . To implement Value(�), we irst run Find(�), which uses path
compression so that � becomes the child of the root node node � of the tree. Thus, we can return � (�) = � (�) +� ( �).

Clearly, the amortized complexity bound � (ℓ� (ℓ, �)) for a sequence of ℓ steps for Union-Find is applicable for
the modiied data structure.

When applying Union-Find-Increase to implement the operations Get-Cost(�), the key values � (�) correspond
to the uncontracted potentials � (�), and the sets to the pre-images of the nodes � ∈ �̂� in the original node
set � . We can further contract sets with the Union step. When �� (�) is changed by � for a contracted node

� ∈ �̂� , we need to update the potential of every original node represented by � ; this is achieved by Increase(�, �).
Finally, Get-Cost(�) for an arc � = (�, �) can be implemented by calls to Value(�) and Value( �), and setting
�̂� (�) = � (�) + � (�) − � ( �).
3.5 The adaptation of Goldberg’s algorithm

In this section, we prove Lemma 3.2, showing how the subroutine Small-Cycles can be implemented using a
modiication of Goldberg’s algorithm [14].

Let� = (�,�, �) be a directed graph with an integer cost function � ∈ Z�. Let � = |� |,� = |�|, and � = ∥� ∥∞.
Goldberg developed an � (�

√
� log�) algorithm that inds a shortest path in a network or else inds a negative

cost cycle. The algorithm runs in log� scaling phases. The key subroutine is Refine; this is called at each scaling
phase and takes � (�

√
�) time.

Algorithm 6 Refine

Input: A directed graph � = (�,�, �) with a cost function � ∈ Z� such that � (�) ≥ −1 for all � ∈ �.
Output: A negative cost cycle � , or a potential vector � ∈ Z� such that

(i) �� (�) ≥ 0 for all � ∈ �, and
(ii) −� + 1 ≤ � (�) ≤ 0 for every � ∈ � .

We describe the modiication Balanced-Refine that allows for negative cost cycles in a speciic way.
The running time of Balanced-Refine is also � (�

√
�). The subroutine Small-Cycles (see Lemma 3.2) calls

this for the cost function �̄ (�) =
⌊

� (� )−�
�

⌋

− 1. We obtain an arc set �′ and a potential �̄ . We return the partition

P formed by the (strongly) connected components of �′, and the potential � = ��̄ . Note that �̄ �̄ (�) ≤ 0 implies
� ≤ �� (�) ≤ � + 2� , and �̄ �̄ (�) ≥ 0 implies �� (�) ≥ � + � . The required properties then follow.
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Algorithm 7 Balanced-Refine

Input: A directed graph � = (�,�, �) with a cost function � ∈ Z� such that � (�) ≥ −1 for all � ∈ �.
Output: A potential vector � ∈ Z� and a subset of arcs �′ ⊆ � such that

(i) �′ is the union of directed cycles, and −1 ≤ �� (�) ≤ 0 for all � ∈ �′;
(ii) �� (�) ≥ 0 for all � ∈ � \�′, and
(iii) −� + 1 ≤ � (�) ≤ 0 for every � ∈ � .

To obtain an algorithm in the comparison-addition model, we do not need to compute the �̄ (�) values explicitly:
the only relevant information will be whether an arc cost is −1, 0, or positive. This simply corresponds to the
cases � ≤ � (�) < � +� , � +� ≤ � (�) ≤ � + 2� , and � + 2� < � (�). We can directly update the original potentials
� , subtracting �� whenever �̄ is decreased by � . This leads to an overhead� (log |� |) in the overall running time.

For completeness, we now describe the subroutines Refine and Balanced-Refine in parallel; omitted parts of
the analysis follow as in [14]. Both algorithms iteratively construct an integer potential � ∈ Z� . Throughout,
�� (�) ≥ −1 for all � ∈ �. At termination, �� (�) ≥ 0 for all arcs in the contracted graph. The main diference is
that Refine terminates once a negative cycle is found. In contrast, Balanced-Refine adds all negative cycles to
the arc set �′ and contracts them.
An arc with �� (�) ≤ 0 is called admissible; we let �� = (�,�� ) be the subgraph formed by admissible arcs.

Arcs with �� (�) = −1 are called improvable arcs, and nodes with incoming improvable arcs are called improvable
nodes; we denote this set as � ⊆ � .

TheDecycle subroutine eliminates all directed cycles from�� by contractions, using Strongly-Connected(�� ).
Refine terminates if a negative cost cycle is found; in contrast, Balanced-Refine adds all such cycles to �′ and
proceeds with the algorithm. Contractions are carried out as described in Section 3.
A set of nodes � ⊆ � is closed if no admissible arc leaves � . For a closed set, the subroutine Cut-Relabel(�)

decreases � (�) by 1 for every � ∈ � . The closedness of � guarantees that no improvable arcs are created.
Assume �� is acyclic. Let us pick any improvable node � , and let � be the set of nodes reachable from � in �� ;

this is a closed set. After Cut-Relabel(�), � is no longer improvable, and no new improvable nodes appear. In this
manner, we can decrease the number of improvable nodes in � (�) time. By alternating between the subroutines
Decycle and Cut-Relabel, one can eliminate all improvable nodes in � (��) time, resulting in a graph with
nonnegative reduced costs.

Goldberg improves this to � (�
√
�) time by eliminating at least

√
� improvable nodes in � (�) time, where

� = |� | is the number of improvable nodes in �� . The irst step in speeding up the running time is to eliminate
more than one improvable node when running Cut-Relabel.

A set � ⊆ � of improvable nodes is called an anti-chain in �� if for all nodes � and � in � , there is no directed
path from node � to node � in �� . Let � be the set of nodes reachable in �� from a node of � . After running
Cut-Relabel(�), none of the nodes in � are improvable.

In order to ind a large anti-chain of improvable nodes, Goldberg’s algorithm appends a source node � to (the
acyclic graph) �� and for each other node � , it adds an arc (�, �) with a cost of 0. Then for each node � in �� , the
algorithm determines the shortest path distance � ( �) in �� from node � to node � ; these values can be computed
in linear time for an acyclic graph.

Case I: � ( �) ≥ −
√
� for all nodes � ∈ � : For each integer � with −

√
� ≤ � ≤ −1, let �� = { � ∈ � : � ( �) = −�}.

This gives an anti-chain partition of � ; thus we have |�� | ≥
√
� for the largest one among these sets. After running

Cut-Relabel(�) for the nodes reachable from the largest anti-chain �� , the number of improvable nodes reduces

by at least
√
� in � (�) time.
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Case II: min�∈� � ( �) < −
√
� : In this case, there exists a directed path � in �� that contains improvable arcs

(�1,�1), (�2,�2), . . . , (�� ,�� ) for � ≥
√
� in this order. We now describe the subroutine Eliminate-Chain after

which none of the nodes in�� are improvable, and no new improvable nodes are created.
We start with the original variant of the subroutine used in Refine. The nodes�� are processed in reverse order.

For each node�� , � = �, � − 1, . . . 1, ind the sets �� of nodes reachable from�� in �� , and run Cut-Relabel(�� ).
No new improvable arcs are created, and if � ∉ �� for any improvable arc (�,�� ), then � is not improvable after
the change. It is easy to see that �� ⊊ � � for all 1 ≤ � < � ≤ � .

If � ∈ �� for an improvable arc (�,�� ) at any iteration, then we discover a negative cost cycle containing (�,�� ).
The subroutine Refine terminates at this point by returning this cycle. Goldberg [14] presents an eicient � (�)
implementation of Refine by exploiting that the sets �� are nested. The implementation (temporarily) contracts
the �� sets, and maintains a data structure using priority queues.

We now describe the variant of Eliminate-Chain used in Balanced-Refine. We say that an arc (�,�) is
eligible if (�,�) is improvable and if (�,�) is not contained in an admissible cycle. (This deinition is not relevant
in Refine, since that algorithm terminates if an improvable arc is in an admissible cycle.) We say that a node� is
eligible if there is an eligible arc directed into� . Initially, �� is acyclic, and hence� � is eligible for all � ∈ [�].

Now consider the iteration in which the eligible node�� is selected. We note that�� is not eligible after running
Cut-Relabel(�� ). This is because for any arc (�,�� ) that is still improvable after Cut-Relabel(�� ), we must
have � ∈ �� , implying that (�,�� ) was not eligible.

Let us select the smallest index � such that after Cut-Relabel(�� ),� � becomes reachable from�� in �� ; that
is, � � enters �� . Let us analyze the case when � < �; note that �� also contains every node on the subpath in �
from � � to�� . Thus, �ℓ is not eligible for any ℓ ∈ [ �, �] after Cut-Relabel(�� ). At the subsequent iteration of
Eliminate-Chain we skip all nodes in �� and instead select� �−1, which is eligible.
After running Cut-Relabel(�� ), Eliminate-Chain temporarily contracts �� in the same way as the version

used in Refine. Thus, Balanced-Refine uses essentially the same implementation and data structures as in [14].
At the end of Eliminate-Chain, we uncontract all �� ’s. Some of the�� ’s may now be improvable, however, all

improvable arcs incident to them are contained in directed admissible cycles. At the next call to Decycle, the
algorithm would contract any improvable arc that was not eligible. Subsequently, the number of improvable

nodes will have decreased by at least
√
� .

4 The shortest path algorithm

In this section, we assume that a 3-min-balanced directed graph � = (�,�, �) is given, along with a component
hierarchy (� ∪ �, �, �, �) for � (see Deinition 2.2). The algorithm described in this section is an adaptation of
Thorup’s [31] result to the setting of balanced directed graphs. We use the word RAM model throughout this
section.
We assume that the input cost function � is 3-min-balanced, integral, and strictly positive. This is justiied

by Theorem 3.1: in time � (�
√
� log�), one can obtain a strictly positive and 1/(4�3)-integral reduced cost ��

such that �� = (�,�, �� ) is 3-min-balanced. Since for any �ś � path � , �� (�) = � (�) − � (�) + � ( �), the set of
shortest paths between any two nodes is the same in � and �� . Integrality can be assumed after multiplying the
relabelled cost by 4�3 (recall that � is a power of 2); this again does not change the set of shortest paths.

4.1 Upper bounds for the component hierarchy

In the component hierarchy (� ∪ �, �, �, �), recall that for a vertex � ∈ � , desc(�) ⊆ � ∪ � denotes the set
of descendants of � (with � ∈ desc(�)). We introduce the shorthand notation desc(�, � ) = desc(�) ∩ � and
desc(�,� ) = desc(�) ∩� . For a node � ∈ � ∪ � , the height ℎ(�) is the length of the longest path between � and
a node in desc(�); in particular, ℎ(�) = 0 for � ∈ � .
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We deine the functions Γ, � : � → Q recursively, in non-decreasing order of ℎ(�) as follows.
Γ(�) := 3�(�) ( | children(�) | − 1) +

︁

�′∈children(�)\�
Γ(� ′) ,

� (�) :=
⌈

Γ(�)
�(�)

⌉

.

(4)

These values will be relevant for the buckets in the algorithm. As shown in the next lemma, Γ(�) is a bound on
the length of a shortest path between any two nodes in desc(�, � ); we will associate � (�) + 1 buckets with each
vertex � ∈ � .

Lemma 4.1. Let (� ∪ �, �, �, �) be a component hierarchy for a directed graph � = (�,�, �), and let Γ, � be as in
(4). For any pair of nodes �, � ∈ � and � = lca(�, �), there is an �ś � path � in desc(�, � ) of length at most Γ(�). In
addition,

︁

�∈�
� (�) < 7|� | .

Proof. Let �, � ∈ � and � = lca(�, �). The proof is by induction on ℎ(�). Consider the �ś � path � ′ in desc(�)
such that � (�) ≤ 3�(�) for all � ∈ � ′, as guaranteed by the property of the component hierarchy.
In the base case ℎ(�) = 1, the bound is immediate, since � ′ has at most | children(�) | − 1 arcs. Assume now

ℎ(�) > 1, and that the statement holds for any �′, � ′ with ℎ(lca(�′, � ′)) < ℎ(�). One can choose an �ś � path � that
satisies the following property for each child � of � . If �′ and � ′ are the irst and last nodes of � that are in desc(�),
then the subpath in � from �′ to � ′ consists of nodes of desc(�). By the inductive hypothesis, for each child �
of � , the length of the subpath in desc(�) is at most Γ(�). There are at most | children(�) | − 1 arcs in � between
diferent desc(�) subpaths; their cost is at most 3�(�) ( | children(�) | − 1). Thus, the bound � (�) ≤ Γ(�) follows.

Let us now turn to the second statement. We analyze the contribution of each � ∈ � to the sum
∑

�∈� Γ(�)/�(�).
Let � = �0, �1, �2, . . . , �� = � be the unique path in the tree (� ∪ �, �) from � to the root; thus, � (�� ) = ��+1 for
� = 0, . . . , � − 1. Then, the contribution of � to each Γ(�� ) is less than 3�(�1). Using that �(��+1) ≥ 2�(�� ) for each
� = 0, . . . , � − 1, we see that

︁

�∈�

Γ(�)
�(�) < 3

︁

�∈�

∞︁

�=1

1

2�−1
< 6|� | .

The statement follows noting also that |� | ≤ |� | − 1, since (� ∪ �, �) is a tree with leaves � , and � (�) <
1 + (Γ(�)/�(�)) for all � ∈ � \ � . □

4.2 Overview of the algorithm

Given the input directed graph � = (�,�, �), our goal is to compute the shortest path distances from a source
node � ∈ � to all nodes in � . We assume that a positive integer cost function and a component hierarchy are
given as above. We start with an informal overview and highlight some key ideas of the analysis.

The algorithm is a bucket-based label setting algorithm, similarly to a bucket-based implementation of Dijkstra’s
algorithm. For each node � ∈ � , we maintain an upper bound � (�) on the true distance � (�) from � , and gradually
extend the set � of permanent nodes. Initially, � (�) = 0 and � (�) = ∞ for � ∈ � \ {�} and � = {�}. At the iteration
at which � enters � , � (�) = � (�) will be guaranteed.

Recall that Dijkstra’s algorithm always selects a next node � to enter � with � ∈ argmin{� (�) : � ∈ � \ �}. To
obtain an � (�) algorithm, we relax this condition, and always add a new node � ∈ � \ � to � such that

� ( �) ≤ � (�) + � (�, �) ∀� ∈ � \ � . (5)

In accordance with this rule, the next lemma formulates the conditions that guarantee the correctness of our
algorithm.
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Lemma 4.2. Given a directed graph� = (�,�, �) with � ∈ R�≥0 and a source node � ∈ � , assume that an algorithm
proceeds by adding nodes in � one-by-one to a set � such that the following two invariants are maintained at every
iteration:

(a) For all � ∈ � and � ∈ � \ � , � ( �) ≤ � (�) + � (�, �).
(b) For all � ∈ � \ � , � ( �) is the length of a shortest path from � to � inside the node set � ∪ { �}.
Further, assume that initially � (�) = 0 and � is the irst node added to � . Then, at any point of the algorithm, for
every � ∈ � , we have � ( �) = � ( �) and � contains a shortest �ś � path.

Proof. For convenience, suppose that that the nodes are relabelled such that node � is the �-th node added to
� . The lemma is true for node 1 = � , since � (1) = � (1) = 0. We now assume inductively that the lemma is true
for nodes ℓ = 1 to � , and we prove it for node � + 1.
Let � be any path from node 1 to node � + 1. We show � (�) ≥ � (� + 1); together with (b), this implies

� (� + 1) = � (� + 1).
Let � (�) be the vertices of � . If � (�) ⊆ {1, . . . , � + 1}, then � (�) ≥ � (� + 1) by (b). Otherwise, let � be the irst

vertex of � that is not in {1, . . . , � + 1}. Let � ′ be the subpath of � from 1 to � . Then at the iteration in which node
� + 1 is added to � , we have

� (�) ≥ � (� ′) + � ( �, � + 1) ≥ � ( �) + � ( �, � + 1) ≥ � (� + 1) ,
where the second inequality follows by (a). This completes the proof. □

We rely on the component hierarchy and the use of buckets to eiciently implement the selection property (5).
We will also have (possibly ininite) � (�) values for certain vertices � ∈ � . Throughout, we maintain a set of
active vertices (we describe the treatment of active vertices in more detail later). Initially, the root � is the only
active vertex and all other vertices are inactive. At any point, the active vertices form an upper ideal (i.e., all
ancestors of an active vertex are also active). Once all their descendants are added to � , vertices in � also enter �
(become permanent); the algorithm terminates when � is added to � . A vertex is active during the iterations from
its activation until it is made permanent. One of the active vertices will be the current vertex, denoted as CV and
initalized as CV = � . This plays a special role: in particular, nodes added to � will always be among the children
of CV.
A vertex � is called a highest inactive vertex if � is inactive and � (�) is active. For an inactive vertex � , we let

HIA(�) denote its highest inactive ancestor : HIA(�) = � if � is a highest inactive vertex; otherwise, HIA(�) is � ’s
unique ancestor that is a highest inactive vertex.
The next lemma, proved in Section 4.4, shows that for every active vertex � , � (�) is a lower bound on

min{� ( �) : � ∈ desc(�, � )}, and when a node in � ∈ desc(�, � ) is added to � , � ( �) is within �(�) from � (�).
Lemma 4.3. Let � ∈ � \ � and let � be an active ancestor of � . Then, � (�) ≤ � ( �). In the iteration when � is added
to � , we also have � ( �) < � (�) + �(�).

Recalling the property of the component hierarchy that � (�, �) ≥ �(�) for � = lca(�, �), this immediately implies
property (5).

Buckets The choice of CV and the sequence of nodes added to � is guided by the use of buckets associated
with the vertices � ∈ � . The buckets of � are created when � is activated by the Activate(�) subroutine. Before
activation, � was a highest inactive vertex, and for all such vertices, we maintain � (�) = min{� ( �) : � ∈
desc(�, � )} using the Split/FindMin data structure. At activation, �(�) is set to �(�) · ⌊� (�)/�(�)⌋. Then an array
� (�) + 1 buckets is created for vertex � , indexed from 0 to � (�). The value range of the bucket with index � is
[�(�) + ��(�), �(�) + (� + 1)�(�)). We let� (�) := �(�) + (� (�) + 1)�(�) denote the upper range of the last bucket
for vertex � . We place a child � of � in the bucket whose value range contains � (�), or leave it unassigned if
� (�) > � (�).
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An important feature of the algorithm is that the value range of the buckets at � , created at activation,
contains the � (�) values for all � ∈ desc(�, � ) (Lemma 4.7). We now highlight the reason behind this. At the
iteration at which � is activated, let � = argmin{� ( �) : � ∈ desc(�, � )}. One can show that � (�) = � (�), and
that � ( �) ≥ � (�) for all � ∈ desc(�, � ). After activation, we have �(�) ≤ � (�) ≤ �(�) + �(�). By Lemma 4.1,
for any other node � ∈ desc(�, � ), there is a path in � with node � to node � of length at most Γ(�). Thus,
� ( �) ≤ � (�) + Γ(�) ≤ �(�) + (� (�) + 1)�(�) = � (�).

The current index CI(�), initialized as 0, refers to the index of the irst nonempty bucket, called the current
bucket. We will maintain � (�) as the lower endpoint of the current bucket, augmented by �(�) every iteration
the current bucket becomes empty. The vertex � is made permanent once CI(�) = � (�) + 1, that is, all its buckets
have been exhausted.

Recall also from Lemma 4.1 that the overall number of buckets for all vertices is bounded as � (�); this enables
an � (�) running time bound on the operations involving buckets.

The trajectory of the current vertex The algorithm is guided by the movement of the current vertex CV that
explores the component hierarchy. Initially, it moves down from the root � to the source node � , activating
all vertices along the �ś� path. As long as the current bucket at CV contains a node, we add such nodes to � .
Whenever a node � is added to � , the subroutine Update(�) scans over the outgoing arcs (�, �), and updates the
estimates � ( �) to min{� ( �), � (�) + � (�, �)} as in Dijkstra’s algorithm. This requires some additional updates in
the data structure, i.e., moving � to a diferent bucket if its parent � ( �) is active, or updating the � (�) value of its
highest inactive ancestor.

If the current bucket � at � = CV contains some vertices but no nodes, then CV moves down to a child vertex,
and also activates it in case it had not yet been active. If � is empty and if � is not the last bucket of � , then we
move the current bucket to the next one, i.e., increment CI(�) by 1, and increase � (�) by �(�). If the last bucket
at � becomes empty, then we make � permanent. At this point, all nodes and vertices in desc(�) must have been
already made permanent. The algorithm then replaces CV by � (�) if � ≠ � . The algorithm terminates once the
last bucket at the root � becomes empty and � is made permanent.
After incrementing CI(�) in the case that � is empty, we proceed to the next bucket with no change in CV if

� = � or if the new � (�) value is less than � (� (�)) + �(� (�)). On the other hand, if � (�) ≥ � (� (�)) + �(� (�)),
then the current vertex CV moves up to � (�), and � is moved from the current bucket at � (�) to a higher bucket.
Overall, this scheme allows � (CV) to be approximately minimal among the labels of active vertices, and thereby
enabling the properties asserted in Lemma 4.3.

Finally, if the last bucket at � becomes empty, then we make � permanent; at this point, all nodes and vertices
in desc(�) must have been already made permanent. The algorithm terminates once the last bucket at the root �
becomes empty and � is made permanent.

4.3 Description of the algorithm

A more formal description of the algorithm with pseudocodes is in order. Recall the basic notation regarding
component hierarchies from Section 2: � (�) (parent of �); children(�) (children of �); desc(�) (descendant of � ,
reined as desc(�, � ) for nodes and desc(�,� ) for vertices); lca(�, �) (least common ancestor of �).

The set � ⊆ � ∪� denotes the set of permanent nodes and vertices, initialized as � = ∅; the irst node entering
will be the source � . Shortest paths will be maintained using predecessor arcs: for each � ∈ � \ {�} with � (�) < ∞,
pred(�) ∈ � is an in-neighbour such that � (�) = � (pred(�)) + � (pred(�), �). The graph of the arcs (pred(�), �) is
acylic, and contains a path from the source � to every node � ∈ � with � (�) < ∞.
The description of the two main subroutines, Activate and Update follows.

The Activate subroutine and buckets Each vertex � ∈ � can be active or inactive. One of the active vertices will
be CV, the current vertex, initalized as CV = � .
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The labels are deined for all nodes (initially as � (�) = 0 and � (�) = ∞ for � ∈ � \ {�}), for all active vertices,
and for all highest inactive vertices. For the latter set, we maintain � (�) = min{� (�) : � ∈ desc(�)} using
the Split/FindMin data structure, as detailed in Section 4.5. For all other inactive vertices, the labels � (�) are
undeined.
The Activate(�) subroutine (Algorithm 8) is called the irst time CV is set to � . We create an array of

� (�) + 1 empty buckets, indexed � = 0, . . . , � (�), and denoted as Bucket(�, �). The buckets correspond to intervals
[Lower(�, �),Upper(�, �)) of length �(�). The 0th bucket starts at �(�), which equals � (�) rounded down to the
nearest integer multiple of �(�) (recall this is an integer power of 2).
For � ∈ � ∪ � , theMoveToBucket(�) procedure (Algorithm 9) checks if � (�) falls in the value range of a

bucket at the parent � = � ( �), places it in such a bucket, and if it was previously in a bucket, deletes it from there.

Algorithm 8 The Activate subroutine

1: procedure Activate(�)

2: �(�) ← �(�)
⌊

� (�)
� (�)

⌋

;

3: � (�) ← �(�); CI(�) ← 0 ;
4: for � = 0, . . . , � (�) do
5: Bucket(�, �) ← ∅ ;
6: Lower(�, �) ← �(�) + ��(�) ;
7: Upper(�, �) ← �(�) + (� + 1)�(�) ;
8: � (�) ← �(�) + (� (�) + 1)�(�) ;
9: for� ∈ children(�) ∩� do

10: � (�) ← min{� (�) : � ∈ desc(�)} ; ⊲ using the Split/FindMin data structure
11: MoveToBucket(� ) ;

12: for � ∈ children(�) ∩ � do

13: MoveToBucket( � ) ;

Algorithm 9 TheMoveToBucket subroutine

1: procedureMoveToBucket(� )
2: � ← � (�) ;
3: if � is active and � (�) < � (�) then
4: � ←

⌊

� (� )−� (�)
� (�)

⌋

;

5: if � ∉ Bucket(�, �) then
6: delete � from its current bucket (if any) ;
7: add � to Bucket(�, �) ;

The Update subroutine The Update subroutine (Algorithm 10) performs the label update step once a node
� is made permanent, similarly to Dijkstra’s algorithm. For every outgoing arc (�, �), if � (�) + � (�, �) is strictly
less than the current label � ( �), we reduce � ( �) to this value, and set the predecessor pred( �) to � . If the parent
� ( �) is active, we call MoveToBucket( �) to update the bucket containing � . Otherwise, we update � (�) for
� = HIA( �), i.e., the highest inactive ancestor of � , using Split/FindMin.

J. ACM



Directed Shortest Paths via Approximate Cost Balancing • 25

Algorithm 10 The Update subroutine

1: procedure Update(�)
2: for (�, �) ∈ �(�) do
3: if � (�) + � (�, �) < � ( �) then
4: � ( �) ← � (�) + � (�, �) ; pred( �) ← � ;
5: if � ( �) is active then MoveToBucket( � ) ;
6: else � ← HIA( �) ; � (�) ← min{� ( �), � (�)} ;
7: ⊲ using the Split/FindMin data structure

The overall algorithm The overall algorithm is shown in Algorithm 11. Initially, the current vertex is set
as the root: CV = � . At any given iteration, we let � = CV and let � denote the current bucket at � , i.e.,
� = Bucket(�,CI(�)).

If � contains a node � ∈ � , we make it permanent, i.e., add it to � , and call Update(�) to update the labels for
each out-neighbour � of � . If � contains no nodes but some vertices, we move CV to such a vertex� , and activate
it if necessary.
The remaining possibility is when the bucket � becomes empty in the current iteration. We increment the

counter CI(�) by 1 and accordingly update � (�) to � (�) + �(�), the starting point of the new current bucket. In
case CI(�) = � (�) + 1, i.e., if � was already the inal bucket, then we make � permanent, and unless � = � , we
move CV up to the parent � (�). If � = � then the algorithm terminates.

Otherwise, if CI(�) ≤ � (�), we check if the updated value � (�) ≥ � (� (�)) +�(� (�)), i.e., if the update requires
moving � to a higher bucket at � (�) (assuming � ≠ � ). If this is the case, CV moves up to � (�); otherwise, we
proceed with CV = � .

4.4 Analysis

Theorem 4.4. Algorithm 11 computes shortest paths from node � ∈ � to all other nodes in � (�).

We prove the theorem in two parts. Lemma 4.5 shows the running time bound � (�). Correctness follows
using Lemma 4.2 and Lemma 4.3 stated above. To prove the latter lemma, we need one more auxiliary statement
(Lemma 4.6) that relates the label of an active vertex to that of its active descendants.

Lemma 4.5. The total running time of Algorithm 11 is bounded as � (�).

Proof. The time for initialization is � (�). Let us show that the main while cycle is called � (�) times. We
consider the cases for � = CV and current bucket � as (i) � contains a node, or (ii) � contains a vertex but no
node, or (iii) � is empty.
Whenever case (i) occurs, a node is added to � , giving a bound of � (�) for this case. In case (iii), CI(�) is

incremented, and CV is possibly moved to � (�). The number of times this can occur is equal to the total number
of buckets, which is � (�) by Lemma 4.1.

Let us now turn to case (ii). Let � denote the distance of the current vertex CV from the root � in the component
hierarchy. Both in the irst and the inal iteration, CV = � , and thus � = 0. Whenever case (ii) occurs, � increases
by one. The only way � can decrease is if CV is moved from a vertex to its parent in case (iii). Thus, the total
number of occurrences of case (ii) is equal to the total number of increases in � , which equals the total number
of decreases, in turn bounded by � (�). Thus, each of the three cases can only occur � (�) times, bounding the
number of iterations of the while cycle.

The subroutine Update(�) is called once for each � ∈ � . At each call, the arcs in �(�) are scanned. The time to
update � ( �) for (�, �) ∈ �(�) is � (1). If � ( �) is active, then the time to put node � in the correct bucket at � ( �)
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Algorithm 11 Shortest-Paths

Input: A directed graph� = (�,�, �) with � ∈ Z�
>0, source node � ∈ � , a component hierarchy (� ∪ �, �, �) for

� .
Output: Shortest path labels for each � ∈ � from � .
1: � ← ∅ ;
2: � (�) ← 0 ; � (� ) ← 0 ;
3: for � ∈ � \ {�} do � ( �) ← ∞ ;

4: for � ∈ � do compute Γ(�) and � (�) as in (4) ;

5: CV← � ; Activate(� ) ;
6: while � ∉ � do

7: � ← CV ; � ← Bucket(�,CI(�)) ;
8: if � ∩ � ≠ ∅ then
9: select a node � ∈ � ∩ � and delete � from � ;
10: � ← � ∪ {�} ;
11: Update(�) ;
12: else if � ∩� ≠ ∅ then
13: select a vertex� ∈ � ∩� ;
14: CV← � ;
15: if � is inactive then Activate(� ) ;

16: else ⊲ � = ∅
17: CI(�) ← CI(�) + 1 ; � (�) ← � (�) + �(�) ;
18: if CI(�) = � (�) + 1 then
19: � ← � ∪ {�} ;
20: if � ≠ � then CV← � (�) ;
21: else if � ≠ � and � (�) ≥ � (� (�)) + �(� (�)) then
22: CV← � (�) ;
23: MoveToBucket(�) ;

24: return labels � (�): � ∈ � .

is � (1). A potential bottleneck occurs when � ( �) is inactive and � ( �) is updated. In this case, the algorithm
determines� = HIA( �) and then updates � (�). The amortized time to determine� and update � (�) is � (1)
using Thorup’s [31] implementation of the Split/FindMin data structure (see Section 4.5). Thus, the total time of
the updates is � (�).
We now consider Activate(�), which is called � (�) times. The total number of buckets is � (�), and each

� ∈ children(�) has to be placed in a bucket; note that
∑

�∈� | children(�) | ≤ 2� − 1. The overall time for creating
buckets and placing the children in buckets takes� (�). Further, we need to update � (�) for� ∈ children(�) ∩� .
For each� , this is again accomplished using the Split/FindMin data structure in amortized time � (1).
The total running time of the Split/FindMin operations can be bounded as� (�). The� (�) bound on the while

iterations, the total � (�) on Activate and � (�) on Update yields the overall � (�) bound. □

The next lemma will be key in proving Lemma 4.3.

Lemma 4.6. Let � and� be active vertices such that� ∈ desc(�,� ). Then
(i) � (�) ≤ � (�) + �(�); and
(ii) if CV ∈ desc(�,� ), then � (�) + �(�) ≤ � (�) + �(�).
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Proof. We start by showing part (ii). We prove it for the case � = � (�); this immediately implies the general
case. We irst consider the case that� has just become the current vertex and � was previously the current vertex.
Since � was selected from the current bucket of � , it follows that � (�) < � (�) + �(�). Moreover, � (�), � (�)
and �(�) are all integer multiples of �(�). (In the case that� was just activated, its label � (�) was obtained by
rounding its previous label down to the nearest multiple of �(�).) The claim that � (�) + �(�) ≤ � (�) + �(�)
follows.

If� is the current vertex, then � (�) may only change if the current bucket at� is empty, in which case � (�)
is incremented to � ′ (�) = � (�) +�(�). If � ′ (�) ≥ � (�) +�(�), then the current vertex moves up to � , at which
point CV ∉ desc(�,� ). Otherwise, � ′ (�) < � (�) + �(�), implying � ′ (�) + �(�) ≤ � (�) + �(�) as above.

In all other iterations when CV ∈ desc(�,� ), neither � (�) nor � (�) may change, and therefore the statement
remains valid. This completes the proof of part (ii).
Let us now show part (i); we do not assume � = � (�) for this proof. In light of part (ii), we can focus

on iterations when CV ∉ desc(�,� ). When � is activated, � = CV. Consider any iteration when CV leaves
desc(�,� ); this means that CV moves from � to � (�). This happens when the current bucket at � is empty
and � (�) ≥ � (� (�)) + �(� (�)); but again using divisibility this means � (�) = � (� (�)) + �(� (�)). By
part (ii) applied to � (�) and � , it follows that � (�) = � (� (�)) + �(� (�)) ≤ � (�) + �(�). In all subsequent
iterations until� becomes the current vertex again, � (�) remains unchanged, and � (�) may only increase. Thus,
� (�) ≤ � (�) + �(�) is maintained, implying (i). □

We are ready to show Lemma 4.3, restated here.

Lemma 4.3. Let � ∈ � \ � and let � be an active ancestor of � . Then, � (�) ≤ � ( �). In the iteration when � is added
to � , we also have � ( �) < � (�) + �(�).

Proof. Let us start with the second statement. When � is added to � , then� = � ( �) must be the current vertex,
and � is in the current bucket at � , that is, � (�) ≤ � ( �) < � (�) + �(�). According to Lemma 4.6(ii), we have
� (�) + �(�) ≤ � (�) + �(�). Thus, the second statement holds.
We now prove the irst statement by induction on the number of iterations. The statement clearly holds at

initialization: � is the only active vertex. � (� ) = 0, � (�) = 0, and � (�) = ∞ for � ∈ � \ {�}. Assume � (�) ≤ � ( �)
holds at the beginning of the current iteration for every pair � and � such that � ∈ � , � ∈ � is active, and
� ∈ desc(�, � ). The label of an active vertex may only increase, and the label of a node may only decrease in the
algorithm; we analyze the two cases separately.

Consider a pair of � and � such that� (�) increases.� (�) may only change when CV = � , and the current bucket
at � is empty; the new value is set to � ′ (�) = � (�) + �(�). We claim that � ′ (�) ≤ � ( �) holds. If � ∈ children(�),
then this is true because the current bucket was empty. Otherwise, let� ∈ children(�) ∩� be the vertex following
� on the �ś � path in the component hierarchy. Since the irst bucket is empty, we must have � (�) + �(�) ≤ � (�).
By induction, we have � (�) ≤ � ( �); thus, � ′ (�) ≤ � ( �) must still hold.
Consider now a pair � and � such that � ( �) decreases. This can happen in a call to Update(�) such that
(�, �) ∈ � and � ′ ( �) = � (�) + � (�, �) < � ( �). We need to show � ′ ( �) ≥ � (�).
Let � = lca(�, �); by the property of the component hierarchy, we have � (�, �) ≥ �(�). By induction,� (�) ≤ � (�),

and thus � (�) + �(�) ≤ � (�) + � (�, �). Since � and � are both on the path from � to � , either � ∈ desc(�,� ) or
� ∈ desc(�,� ).

If � ∈ desc(�,� ), then � (�) ≤ � (�) + �(�) ≤ � (�) + � (�, �) = � ′ ( �) using Lemma 4.6(i). If � ∈ desc(�,� ), then
also � ∈ desc(�,� ), and thus � (�) ≤ � (�) < � (�) + � (�, �) = � ′ ( �) by induction. This completes the proof of the
irst statement. □

Lemma 4.7. For every vertex � ∈ � and descendant � ∈ desc(�), � (�) < � (�).
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Proof. Let � (.) denote the labels immediately prior to the activation of vertex � , and let � ′ (.) be the labels
immediately after activation. Then � ′ (�) ≤ � (�) < � ′ (�) + �(�). Let � := argmin{� ( �) : � ∈ desc(�, � )}. Then
� (�) ≤ � (�) = � (�). By Lemma 4.1, for all � ∈ desc(�, � ),

� ( �) ≤ � (�) + Γ(�) ≤ � (�) + Γ(�) ≤ � (�) + � (�)�(�)
≤ � ′ (�) + (� (�) + 1)�(�) − 1 = � (�) − 1 .

□

We are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Lemma 4.5 provides the running time analysis. It remains to show that � (�) = � (�)
for every � ∈ � , and that the algorithm terminates with � ⊆ � .
We can use Lemma 4.2 to show that the algorithm correctly sets the labels inside � . For this, we need to verify

the following two properties:

(a) For all � ∈ � and � ∈ � \ � , � ( �) ≤ � (�) + � (�, �).
(b) For all � ∈ � \ � , � ( �) is the length shortest path from � to � inside the node set � ∪ { �}.
The proof of (b) follows the same argument as for Dijkstra’s algorithm, see e.g. [1, Section 4.5]. Part (a) clearly
holds in the irst step when � = {� }. At the iteration when a node � is added to � , consider any � ∈ � \ � , � ≠ � ,
and let � = lca(�, �). Then, Lemma 4.6 shows � ( �) − �(�) ≤ � (�) ≤ � (�). The claim follows since � (�, �) ≥ �(�)
is a property of the component hierarchy.

It remains to show that � ⊆ � at termination, i.e., at the iteration that sets � (� ) = � (� ) and makes � permanent.
For a contradiction, let � ∈ � \ � at the this iteration. Let � = �1, �2, . . . , �� (where �1 = � and �� = � ) be a shortest
path from node � to node � . Clearly, � ≥ 2, and without loss of generality, let us assume that each node �� , � ≤ � −1
was added to � during the algorithm (or else we can replace � by the irst node �� of � not added to �).

In the iteration when ℎ = ��−1 was added to � , we had � (ℎ) = � (ℎ) as shown above. Further, Update(�)
updated � ( �) to � (ℎ) + �ℎ� = � (�) = � (ℎ). Clearly, � (ℎ) = � (ℎ) for the rest of the algorithm. According to
Lemma 4.3, the inal iteration has

� (� ) = � (� ) ≤ � (ℎ) = � (ℎ) < � (� ) ,
where the irst equality follows by the termination condition, and the last inequality by Lemma 4.7. This completes
the proof. □

4.5 The Split/FindMin data structure

For each highest inactive vertex � , the algorithm needs to be able to compute � (�) = min{� ( �) : � ∈ desc(�, � )}.
To accomplish this, we will use the Split/FindMin data structure. Before reviewing this data structure, we note that
in addition to computing � (�) for highest inactive vertices, the data structure will need to be updated whenever
either of the following algorithmic operations takes place:

• When a highest inactive vertex is activated, the subset children(�) ∩� all become highest inactive vertices.
• In step Update(�), if � ( �) is updated, then � (�) should be updated for � = HIA( �).

The steps can be implemented using the Split/FindMin data structure. This was irst introduced by Gabow [13]
for the maximum weight matching problem, and can be stated as follows (see also [25]). The data structure is
initialized with a sequence � = {�1, . . . , ��} of � weighted elements. At each iteration, there is a set S, which is a
partition of � into consecutive subsequences. For every element �� , we maintain a key value � (�� ). At a given
operation described below, we let S(�� ) denote the unique subsequence S that contains �� . Note that S and S(�� )
are modiied whenever a split operation is called.

The operations are as follows:
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• init(�1, �2, . . . , ��): Create a sequence set S ← {(�1, �2, . . . , ��)} with � (�� ) = ∞ for all � ∈ [�].
• split(�� ): For S(�� ) = (� � , . . . , ��−1, �� , . . . , �� ), let S ← (S \ S(�� )) ∪ {(� � , . . . , ��−1), (�� , . . . , �� )}.
• indmin(�� ): Return min{� (� � ) : � � ∈ S(�� )}.
• descreasekey(�� ,�): Set � (�� ) ← min{� (�� ),�}.

To use this data structure for our setting, we take the component hierarchy (� ∪ �, �, �, �), and impose an
arbitrary ordering on the children of every vertex � ∈ � . This induces a total ordering on the set of leaves
� ; we index the node set � = {�1, �2, . . . , ��} accordingly. Then, all sets desc(�) will correspond to contiguous
subsequences of nodes. Initially, there are no active vertices and � is the set of nodes. Then � is activated. In
general, when a vertex � is activated, it corresponds to performing | children(�) | − 1 splits on the nodes in desc(�),
resulting in a consecutive subsequence for each child of � . (The nodes in children(�) correspond to subsequences
of length 1.) Whenever � ( �) is updated, this corresponds to a decreasekey operation. Using the Split/FindMin
data structure for the shortest path algorithm requires at most � indmin operations, at most � − 1 splits, and at
most� decreasekey operations.
For � (�) split and � (�) decreasekey operations with � ≥ �, Gabow [13] gave an implementation in

� (�� (�,�)) total time in the comparison-addition model. This was improved by Thorup to � (�) in the word
RAM model, using the atomic heaps data structure by Fredman and Willard [10]. The original implementation of
fusion trees permits all bitwise operations as well as multiplication. In a subsequent paper [32], Thorup showed
how to implement fusion trees on a mild extension of the AC0 model, thus avoiding the need for multiplication
except for multiplication by powers of 2.
We note that the data Split/FindMin structure was also used in all subsequent papers on shortest path prob-

lems using the hierarchy approach [15, 23, 24, 26]. In the comparison-addition model, an improved bound
� (� log� (�,�)) was given by Pettie [25].

5 Conclusions

In this paper, we have given an� (��) algorithm for the directed all pairs shortest paths problemwith nonnegative
integer weights. Our algorithm irst replaces the cost function by a reduced cost satisfying an approximate
balancing property in � (�

√
� log�) time. Subsequently, every shortest path computation can be done in linear

time, by adapting Thorup’s algorithm [31].
One might wonder if our technique may also lead to an improvement for APSP in the comparison-addition

model, where the best running time is � (�� + �2 log log�) by Pettie [24]. This running time bound is based
on multiple bottlenecks. However, as explained in Section 1.1.1, the approximate cost balancing is able to get
around the sorting bottleneck of [24]. Using the � (� log� (�,�)) implementation of Split/FindMin, an overall
� (�� log� (�,�)) might be achievable.

However, there is one remaining important bottleneck where our algorithm crucially relies on bit-shift
operations: the operationMoveToBucket( �), which places a node/vertex in the bucket at � = � ( �) containing
the value � ( �). Pettie and Ramachandran [26] show that these operations can be eiciently carried out in
� (1) amortized time per operation in a bucket-heap data structure, assuming the hierarchy satisies certain
‘balancedness’ property. Section 5 of the paper shows how the ‘coarse hierarchy’ obtainable from a minimum
spanning tree and used by Thorup can be transformed to a ‘balanced hierarchy’. This method does not seem to
easily apply to the directed hierarchy concept used in this paper.
Our approximate min-balancing algorithm may be of interest on its own, and has strong connections to the

matrix balancing literature as detailed in Section 1.1.2. For inding an (1 + �)-min-balanced reduced cost for
� = � (1), our algorithm takes �

(

1
�
�
√
� log�

)

time. One might wonder if there is an algorithm with the same

polynomial term �̃ (�
√
�) but with a dependence on log(1/�). We note that the algorithm in [28] for approximate

max-balancing has a log(1/�) dependence.
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