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The Adams methods are among the most effective [1, 6, 11] and popular for the 
solution of the initial value problem for nonstiff ordinary differential equations. 
The term Adams  method includes quite a few possibilities. All involve a predictor 
(explicit, Adams-Bashforth) formula and a corrector (implicit, Adams-Moulton) 
formula. The orders of these formulas have to be specified, and they need not be 
the same. For a predictor of order k the only possibilities for a corrector which 
have been seriously considered are those of orders k and k + 1. The number of 
iterations to be made with the corrector must be specified. Alternatively, a 
variable number of iterations could be made with the object of solving the 
corrector equation "exactly." If a fixed number of iterations is made, one must 
decide whether or not to end the computation of the step with a final evaluation 
of the derivative. Among the very best codes based on Adams methods, only two 
methods are represented here [1, 6, 11]. Method I uses a corrector of order one 
higher than the predictor (also known as local extrapolation when viewed differ- 
ently), corrects only once, and ends with a final evaluation. This method is 
represented by Krogh's DVDQ and by Shampine and Gordon's STEP. Method 
II iterates the corrector to "convergence" and hence is the Adams-Moulton 
method. It is represented by Gear's DIFSUB and its variants GEAR written by 
Hindmarsh and STIFF written by Kahaner and Sutherland [7]. 

Naturally the authors of the codes cited tried to select the best method from 
the class of Adams methods just described, but they came to different conclusions. 
Generally speaking, this author has seen no advantage to one method or the 
other. A striking exception reported in [11] occurs when the codes are confronted 
with a mildly stiff equation. It is of obvious practical value to understand such 
differences so as to improve the codes or to see that  a choice of method (code?} 
appropriate to the application is made. 
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There are several phenomena we would like to understand. The first thing we 
should like to clear up is why the results of [11] show that the various codes 
based on method II behave differently from one another despite the fact that  
their algorithmic details are simple variations. After doing this we should like to 
understand the differences between methods I and II. It is puzzling to some why 
method II shows any stability restriction at all in view of the facts that the first- 
order formula {alias backward Euler) is stiffly A-stable and the second (alias 
trapezoidal rule) is A-stable. We explain this and the even more puzzling fact that 
the codes show a more severe stability restriction at these orders than at higher 
ones with finite stability regions. The formulas of method I all have finite stability 
regions and they are smaller than those of method II, so it is puzzling that  the 
codes based on method I perform substantially better when confronted with 
stiffness. Our explanation for this suggests lines of future development for the 
codes based on method II. 

To account for the difference between the codes based on method II we first 
note that  the main algorithmic changes in going from DIFSUB to its descendant 
GEAR (or STIFF or another we cite below) are that the latter permits higher 
orders and uses a different way of deciding when convergence to the Adams- 
Moulton value has been achieved. The first change accounts, we believe, for most 
of the improved efficiency observed with GEAR for nonstiff problems. Gear 
himself wrote a variant of DIFSUB with these changes which was tested in [1] 
with the name NEW DIFSUB. It was concluded that  the changes led to "only a 
modest improvement" by the criteria of that study. However, in the presence of 
mild or severe stiffness the performance of GEAR was reported to be much better 
in [11, Fig. 2b and Table 4]. The availability of higher order formulas cannot 
explain this effect because the stability of the higher order formulas is much 
worse than that  of the orders implemented in DIFSUB. In the first place we do 
not think the higher order formulas were being used by the order selection 
algorithm for reasons we examine later. However, if they had been used, the 
reduced stability would have made GEAR less efficient than DIFSUB rather 
than more efficient. Thus to account for the behavior observed we must turn to 
the improved convergence test suggested by A. R. Curtis [4]. The iteration for 
the solution of the implicit equations is linearly convergent. The idea is to 
estimate this convergence rate and to use the rate to decide whether convergence 
has occurred one iteration faster than with the old test. We believe this is an 
important development which has not received the attention it deserves. Each 
iteration requires an evaluation of the differential equation, and essentially all 
evaluations are made for this purpose. Because failed steps are relatively unusual 
we may approximate the average number of iterations per step from the data 
reported in [1, 6] for the number of evaluations and the number of successful 
steps. According to this data, DIFSUB averages 2.8 iterations per step and NEW 
DIFSUB averages 1.8. This agrees very well with our expectation, based on the 
nature of the change, that the latter should average one fewer iterations per step. 
In the presence of mild stiffness when both codes should use the same order, we 
thus expect that  NEW DIFSUB, or equivalently GEAR or STIFF, should be 
more efficient than DIFSUB by a factor of about 1.8/2.8 -- 0.6. This expectation 
accounts for the differences seen in [11, Fig. 2b]. Table 4 of [11] reports what 
happens when a stiff problem is solved. In this case the ratio of costs is 9153/ 
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12787 = 0.7, which is in reasonable agreement with our prediction. (We note that  
the availability of higher orders may play a role in the difficult transient of this 
problem by affecting the order selection (as we discuss below).) In conclusion, we 
believe that the principal difference in the stability properties of the Adams- 
Moulton method as implemented in the GEAR, STIFF, and NEW DIFSUB 
codes and in DIFSUB is explained by the more efficient convergence test in the 
more recent codes. 

An explanation for the observed differences between methods I and II involves 
a number of factors. The first thing we explain is why the stability regions of the 
Adams-Moulton methods differ from what might be expected. The stability 
regions expected are those which assume the implicit equations are solved exactly. 
There are a number of schemes for solving these equations built into the codes, 
but the standard way is to use simple or functional iteration for nonstiffproblems. 
All the tests cited suppose this scheme. The Adams-Moulton formulas have the 
form yn = flo*hf(yn) + ~Pn, k when solving y" = f ly )  [3, p. 112]. Applying these 
formulas to the test equation used to define the stability region, y' -- hy with 
Re(h) _< 0, it is well known [3, p. 114] that convergence of simple iteration for 
arbitrary guesses y,.o holds if and only if I hflo*hl < 1. 

The point here is that the so lu t ion  t echn ique  imposes a restriction on the 
product hX of exactly the same kind as that posed by stability. We conclude that 
the effective stability region of an Adams-Moulton method based on simple 
iteration is the intersection of the usual region of absolute stability and the disc 
centered at the origin of radius 1/[ rio* [. The radii for the low orders are 

order 1 2 3 4 5 
radms 1 2 12 24 720/19 

The interesting thing here is that the regions of absolute stability decrease rapidly 
as the order increases, but the iteration restriction becomes less severe. We see 
then that, as imp lemen ted ,  the A-stable Adams-Moulton methods of orders 1 
and 2 are not actually A-stable. For higher orders the discs reported above do not 
restrict the stability regions of method II plotted in [3, p. 131]. On comparison we 
find that the effective stability restriction of a number of these higher order 
formulas is less severe than that  of the "A-stable" formulas. 

A simple numerical example will serve to emphasize the effect of the solution 
technique. The code STIFF allows one to specify either simple iteration or a 
variant of Newton's method (the chord method). When using the latter the 
backward Euler method and the trapezoidal rule are  A-stable, but the Newton 
iteration is not ordinarily used for nonstiff problems because it is unnecessary 
and it requires more storage, more overhead, and the expense of forming a 
Jacobian. We solved the test problem B2 of [2] which has a constant Jacobian 
with eigenvalues -0.1, -0.5, -1,  -4, -10 + 3i and is posed on [0, 20]. A pure 
absolute error tolerance of 10 -2 was selected with the intention that a crude 
tolerance lead to the use of low order (1 and 2) formulas where the differences in 
stability would be prominent. Using simple iteration the problem was solved in 
296 steps, and the maximum magnitude of the true (global} error seen at any step 
was 1.5 × 10 -2. Using the chord method with an analytical Jacobian, the problem 
was solved in 26 steps with a maximum error of 1.5 × 10 -2. The stability restriction 
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due to the use of simple iteration clearly must be taken into account to understand 
results obtained for mildly stiff problems by codes based on method II. 

The efficiency of a code depends on both the step size used and the cost of the 
step. To compare relative efficiency when the step size is restricted to lie in the 
stability region, we must scale the region by the number of function evaluations. 
The difficulty which arises here is that we do not know how many evaluations 
will be needed to solve the corrector equation. Because of this we have noticed 
no fair comparisons of the implicit and explicit Adams methods in the literature. 
The direct comparisons that  are seen assume, in effect, that  the costs are the 
same. However, we have already observed that  a figure of 2.8 evaluations per 
step is a reasonable one for one way of implementing the implicit formulas, and 
a figure of 1.8 is a reasonable average value for a more efficient (but somewhat 
less reliable} way. These figures are of considerable importance in the present 
context of stiffness as we have already observed in comparing implementations 
of method II. In what follows we assume the more efficient convergence test is 
used. 

We compare the stability plots for method II given in [3, p. 131] and those for 
method I given in [10, pp. 135-140]. The latter method costs two evaluations per 
step which we must account for in scaling the plots. The stiffly A-stable Adams- 
Moulton method of order 1 has an effective stability region which is the intersec- 
tion of the disc of radius 1 centered at the origin with the left-half complex plane. 
Scaling this to account for equal work we see the radius should be taken 1.2/1.8 
-- 1.1. One must examine the regions to assess their relative merits because their 
shapes are different, but we think that method I is quite a lot better at order 
1--up to a factor of almost 2. The A-stable Adams-Moulton method of order 2 
has an effective region which is the intersection of the disc of radius 2 with the 
left-half complex plane. This should be scaled to 2.2 to compare with the figure 
for method I. In this case method II is better, although it ranges from a little 
worse along the real axis to better by a factor of about 1.3 along the imaginary 
axis. Comparing the (scaled) figures of method II for higher orders to those of 
method I, it is clear that method II is quite a lot better for orders 3 through 6 
with the biggest advantages being along the real axis and the smallest (if any) 
along the imaginary axis. Because the codes we are discussing vary their orders, 
we must also consider the relative size of the best choice in either case. The best 
choice for method II (order 3) has a region which ranges up to three t imes the 
size of the best choices for method I. 

Comparison of the scaled stability regions shows that if the step size is limited 
by stability, the variable order codes based on method II should perform better 
than those based on method I and for some problems, much  b~tter. We have 
cited evidence that among the codes being studied, those based on method II 
perform worse, not better, than those based on method I. Below we report other 
computations supporting this contention. It must, then, be the case that  the codes 
based on method I do a better job of selecting their order in the presence of 
stiffness. In what follows we examine aspects of the order selection algorithms. 
Briefly, we believe that the codes based on method I do a pretty good job of 
selecting their order, that  those based on method II do not lower their order when 
they should, and that  those based on method II do not adopt the correct strategy 
for the Adams methods. 
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Because of the shapes of the regions, the best strategy for the formulas of 
method I in the presence of stiffness is not unambiguous, but a good approach is 
to lower the order. This was a design goal for STEP and it does so rather well. 
Indeed it performs well enough that using a low order is the basis of a pretty 
successful detector of stiffness in the companion code DE [10, ch. 8]. Krogh [8, 9] 
has also noted that this should happen and that it does in DVDQ although he 
has told the author that he does not consider this to be a reliable detector of 
stiffness in his code. Theoretical and numerical results given in the references 
cited show that these codes are doing a reasonably efficient job of selecting their 
order in the presence of stiffness. 

It is important that  the reader understand that the Gear family of codes 
implements two kinds of formulas, the Adams and the backward differentiation 
formulas. The same basic algorithms are used in both cases. While it is true that 
this approach is simple and saves a few statements in the code, it is evident that 
it must degrade the performance of one set of formulas in any situation in which 
the two sets behave differently. For example, it is obvious that considerations of 
efficiency are quite different as to the consequences of a change of step size when 
using simple iteration, as is typical with Adams methods, and when using the 
chord method with a Jacobian computed by differences, as is typical with 
backward differentiation formulas. The situation at hand is that  of the order 
selection. As the stability regions given in [3, p. 216] for the backward differen- 
tiation formulas show, the proper action in the presence of stability restrictions 
is to lower the order. However, we have seen that with the Adams-Moulton 
formulas the proper strategy is to move the order towards 3. This conflict, we 
believe, accounts in large measure for the relatively poor performance of the 
Adams formulas in this family of codes. 

At orders higher than 3 the strategy is the same for the two sets of formulas 
implemented in the Gear family of codes and we might hope that  the order 
selection algorithm would function properly. There is evidence in the literature 
based on computations done with the backward differentiation formulas that it 
does not. Gear [5, p. 14] has recommended that the sixth-order formula not be 
used at all because of its relatively poor stability region and the fact that the code 
will sometimes fail to lower the order when it should. This recommendation was 
adopted in GEAR, STIFF, and NEW DIFSUB. It ameliorates the stability 
problem but does not eliminate it as example B5 of the tests [2] shows. This 
example has a Jacobian with eigenvalues relatively near the imaginary axis, and 
the fifth-order formula exhibits a stability restriction. To be more specific, when 
B5 is solved with STIFF at a pure absolute error tolerance of 10 -6, it takes 99 
percent of its steps at order 5 and requires 4167 function evaluations to solve the 
problem. Restricting the maximum order to 4 enables the code to solve the 
problem with 3107 evaluations. The proper action, if possible, is to improve the 
order selection rather than drop the higher order formulas. Dropping the high 
order formulas must degrade the efficiency of the codes when sufficient accuracy 
is requested and this has been remarked in experiments with a modified DIFSUB 
[2, p. 36]. We were attempting to improve the algorithm when we learned of the 
work of Skelboe [12] who concurs that the order selection is faulty and proposes 
a remedy. He gives further numerical results illuminating the situation. 

The substantial body of experiment reported shows that  the Gear family may 
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not lower the  order  in the presence of stiffness as it should. We now demonst ra te  
tha t  when using the Adams formulas it does not  raise the order  when it should. 

Our first example is the solution of B2 with a pure absolute error  tolerance of 
10 -4. T h e  code GEAR solves this problem in 331 steps with a cost of 529 
evaluations to achieve a solution with a maximum error  of 4.8 × 10 -4. Th e  code 
S T E P  solves the problem in 188 steps with a cost of 387 evaluations and a 
maximum error  of 4.4 × 10 -4. The  lat ter  requires two evaluations for a successful 
step. The  ratio 2.06 of evaluations to steps should instill some caution as to our  
scheme used earlier of estimating the average number  of i terations for me thod  II. 
Fur thermore ,  the ratio 1.6 for GEAR shows the variat ion possible in the average 
of 1.8 we computed  earlier from extensive computations.  Returning to the mat te r  
at  hand, we observe tha t  steps are being taken more  cheaply by the GEAR code 
and we recall tha t  its stability regions are (much) be t te r  bu t  tha t  it is substantially 
more  expensive. A table of the orders used shows why: 

percent steps at orders 
1 2 3 4 5 6 7 8 

GEAR 31 59 5 5 0 0 0 0 
STEP 1 10 20 16 23 21 9 1 

T he  steps taken at  order  1 are especially inefficient relative to S TEP ,  but  the fact 
tha t  90 percent  of the steps were at inefficiently low orders explains why the code 
did not  realize its potential.  

The  variable order  codes star t  at order  1 so one might  think tha t  the low orders 
used by GEAR  in the last example originated in this way. We constructed an 
example to show tha t  this is not  the explanation. Consider 

y '  = g ' ( x )  - x [ y  - g(x)], y(0) = 1 

where g ( x )  = [(20 - x)/20] 1°. Obviously the solution is g ( x )  and the eigenvalue of 
the Jacobian is real. We solved this problem with a pure absolute error  tolerance 
of 10 -9 and gathered statistics on the two intervals [0, 2] and [2, 40]. At x = 1 the 
solution is already down to 9.5 × 10 -1° so the numerical  solution on [2, 40] is 
purely a quest ion of stability. The  stiffness increases on this interval and the fact 
tha t  the eigenvalue is real means  tha t  GEAR might  do three t imes as well as 
S T E P  if it chose a good order. Both  codes do about  the same on [0, 2] and both  
are at  order  6 when they reach x = 2. On [2, 40] GEAR took 1202 steps using 2064 
function evaluations and resulted in a maximum error  of 3 x 10 -9. On [2, 40] 
S T E P  took 613 steps using 1271 evaluations and had a maximum error  of 7 x 
10 -9. Again the code based on method  I performed ra ther  be t te r  than  tha t  based 
on me thod  II. The  orders used were 

percent steps at orders 
1 2 3 4 5 6 7 8 

GEAR 14 20 46 7 2 2 0 0 
STEP 0 6 14 40 25 10 6 0 

The  order  selection is be t te r  when dropping the order  but  the algori thm still went  
too far and took a third of the steps at an order  too low. 

In conclusion, we have been able to explain a variety of phenomena  exhibited 
by Adams codes in the presence of stiffness. In addition, we have shown tha t  the 
codes implementing method  II perform worse than  those implementing method  
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I but that they are potentially m o r e  efficient. To achieve this potential in the 
codes studied, the evidence we have displayed or cited says that the order 
selection algorithm must be improved in general and that in particular it must 
distinguish between the Adams formulas and the backward differentiation for- 
mulas. 

REFERENCES 

1 ENRIGHT, W H ,  AND HULL, T E Test  results on mmal  value methods for non-stiff ordinary 
deferential equations. S I A M  J. Numer. Ana l  13 (1976), 944-961. 

2. ENRIGHT, W H ,  HULL, T.E,  AND LINDBERG, B Companng numerical methods for stiff systems 
of O.D.E.'s B I T  15 (1975), 10-48. 

3. GEAR, C.W. Numerical Intt~al Value Problems in Ordtnary D~fferenttal Equatmns. Prentme- 
Hall, Englewood Chffs, N.J ,  1971 

4. GEAR, C.W. Prwate commumcatlon. 
5. HINDMARSH, A C. GEAR' Ordinary differential equation system solver. UCID-30001, Rev. 1, 

Lawrence Livermore Lab., Livermore, Calif., 1972 
6. HULL, T.E., ENRIGHT, W.H., FELLEN, B.M., AND SEDGWICK, A.E. Comparing numerical methods 

for ordinary differential equations. S I A M  J. Numer. Anal  9 (1972), 603-637. 
7. KAHANER, D., AND SUTHERLAND, D Code D207 of the program hbrary at Los Alamos Scientific 

Lab., Los Alamos, N. Mex. The author gratefully acknowledges the generosity and assistance of 
the writers of this code for privately communicating it to him for purposes of testing, evaluation, 
and development 

8 KROGH, F.T Changing stepsize in the integration of differential equations using modified divided 
differences Proc Conf. on the Numerical Solution of Ordinary Differential Equations, Lecture 
Notes m Mathematms No 362, Spnnger, New York, 1974 

9. KROGH, F.T. On testing a subroutine for the numerical integration of ordinary differential 
equatmns. J. A C M  20 (1973), 545-562. 

10. SHAMPINE, L.F., AND GORDON, M.K. Computer Solutton of Ordinary Dtfferent~al Equatmns 
The In~tml Value Problem. W.H. Freeman, San Francisco, 1975. 

11. SHAMPINE, L.F., WATTS, H.A., AND DAVENPORT, S.M Solwng nonstlff ordinary dlfferenhal 
equatmns-- the  state of the art  S I A M  Rev 18 (1976), 376-411. 

12 SKELBOE, S. The control of order and steplength for backward differentmtmn formulas. B I T  
17(1977), 91-107 

Received September 1977, revised January 1978 

ACM Transactions on Mathematical Software, Vol 4, No. 4, December 1978 


