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ABSTRACT
Recently, min-max optimization problems have received increasing

attention due to their wide range of applications in machine learn-

ing (ML). However, most existing min-max solution techniques

are either single-machine or distributed algorithms coordinated

by a central server. In this paper, we focus on the decentralized
min-max optimization for learning with domain constraints, where

multiple agents collectively solve a nonconvex-strongly-concave

min-max saddle point problem without coordination from any

server. Decentralized min-max optimization problems with domain

constraints underpins many important ML applications, includ-

ing multi-agent ML fairness assurance, and policy evaluations in

multi-agent reinforcement learning.We propose an algorithm called

PRECISION (proximal gradient-tracking and stochastic recursive

variance reduction) that enjoys a convergence rate of O(1/𝑇 ),
where 𝑇 is the maximum number of iterations. To further reduce

sample complexity, we propose PRECISION+
with an adaptive

batch size technique. We show that the fast O(1/𝑇 ) convergence
of PRECISION and PRECISION+

to an 𝜖-stationary point imply

O(𝜖−2) communication complexity and O(𝑚
√
𝑛𝜖−2) sample com-

plexity, where𝑚 is the number of agents and 𝑛 is the size of dataset

at each agent. To our knowledge, this is the first work that achieves

O(𝜖−2) in both sample and communication complexities in decen-

tralized min-max learning with domain constraints. Our experi-

ments also corroborate the theoretical results.
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1 INTRODUCTION
In recent years, machine learning (ML) has achieved a great success

in many areas, including robotics[43], image recognition[35], natu-

ral language processing[33], recommender systems[11], to name

just a few. Traditionally, the training of ML models is deployed

in high-performance computer clusters co-located at large-scale

data centers with easy access to big training datasets. However,

with more diverse ML applications emerging, the deployment of

ML has also been migrating to the edge of computing and com-

munication networks due to the following reasons: First, in many

ML applications, data are generated and collected through diverse

data sources that are geographically disperse (e.g., smart mobile

devices, vehicles, environmental sensors, satellite imagery). Second,

because of the limited communication capabilities of the devices

and data privacy concerns, it is expensive or even infeasible to send

the data collected at the edge networks to the cloud for centralized

processing. These real-world limitations have spawned the rapid

development of decentralized learning over edge networks in recent

years, which can leverage highly flexible peer-to-peer edge comput-

ing networks with arbitrary topologies [19, 32]. Also, thanks to the

resilience to single-point-of-failure, data privacy, and simple imple-

mentations, decentralized learning has attracted growing interest

recently, and has found various science and engineering applica-

tions, e.g., distributed robotics control [39, 55], network resource

allocation [16, 40], dictionary learning [8], multi-agent systems

[6, 55], multi-task learning [49, 53], and information retrieval [1].

From amathematical perspective, conducting decentralized learn-

ing over a computing network amounts to solving an optimization

problem distributively and collaboratively by a group of agents in the
network. However, among the existing literature of decentralized

learning, most works are focused on the standard loss minimization

formulation, i.e., minx∈R𝑑 𝑓 (x), where 𝑓 (·) denotes the loss objec-
tive function of learning and x denotes the global model parameters

to be learned, and 𝑑 is the model dimension. While this standard

loss minimization formulation is sufficiently general to cover a wide

range of ML applications (e.g., robotic network [17, 36, 44]), sensor

network [9, 34, 38]), power network [5, 10, 12, 13]), it has become

increasingly apparent that its mathematical structure is not rich

enough to capture new requirements of ever-emerging ML appli-

cations. Notably, many sophisticated ML problems nowadays can

be expressed as the so-called “min-max” optimization in the form

of minx∈X maxy∈Y 𝑓 (x, y), where x and y are both parameters to

be learned (may have different dimensionality), and X and Y are

some conforming real subspaces for x and y, respectively. Although
min-max optimization also has a long history that dates back to

1945 [48], research on decentralized min-max optimization remains

in its infancy so far and results in this area are surprisingly limited.

https://doi.org/10.1145/3565287.3610267
https://doi.org/10.1145/3565287.3610267
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In this paper, rather than studying the unstructured general de-

centralized min-max problems as in [22, 23], we focus on a subclass

of interesting decentralized min-max optimization, where multiple

agents collectively solve a domain-constrained nonconvex-strongly-
concave (NCX-SCV) min-max problem. The constraint frequently

emerges in various scenarios, such as autonomous driving [3], and

safety-constrained[27, 28], etc. The decentralized constrained NCX-

SCV min-max problem is important because it arises naturally

from many recently emerging multi-agent ML applications, such as

multi-agent fairness constraints in adversarial training [51], policy

evaluation in multi-agent reinforcement learning (MARL) [37], and

multi-agent fairness assurance in ML [2, 41] (see Section 2 for more

in-depth discussions).

However, designing effective and efficient algorithms for solving

decentralized constrained NCX-SCV min-max problems is highly

non-trivial due to the following technical challenges: First, min-

max optimization tackles a composition of an inner maximization

problem and an outer minimization problem. This tightly coupled

inner-outer mathematical structure, together with the decentral-

ized nature and the non-convexity of the outer problem, render

the design and theoretical analysis of the algorithms rather diffi-

cult. Moreover, the constrained structures in both the inner and

outer problems impose yet another layer of challenges in the algo-

rithmic design for decentralized constrained NCX-SCV min-max

problems. Second, the decentralization over edge computing net-

works faces two fundamentally conflicting performance metrics. On

one hand, due to the high dimensionality of deep learning models

and large datasets, it is infeasible to exploit information beyond

first-order stochastic gradients to determine search directions in

algorithm design. Although the variance of stochastic gradients

can be reduced by increasing the number of training samples in

mini-batches, doing so incurs higher computational costs for the

stochastic gradients. On the other hand, if one uses fewer training

samples in each iteration to trade for a lower computational cost,

the larger variance in the stochastic gradients inevitably leads to

more communication rounds to reach a certain training accuracy

(i.e., slower convergence). The high communication complexity is

particularly problematic in wireless edge networks, where com-

munication connections could be low-speed and highly unreliable.

Third, constrained decentralized min-max optimization presents a

significantly greater challenge than its unconstrained counterpart.

This is primarily due to the non-smooth nature of the domain con-

straints and the intricate coupling between these constraints and

the min-max problem structure.

The major contribution of this paper is that we propose a series

of new algorithmic techniques to address the challenges above and

achieve low sample and communication complexities in decentral-

ized constrained NCX-SCV min-max problems. Our main technical

results and their significance are summarized as follows:

• We propose a decentralized constrained min-max optimization

algorithm called PRECISION (proximal gradient-tracking and

stochastic recursive variance reduction) and show that, to achieve

an 𝜖-stationary point, PRECISION enjoys a convergence rate of

O(1/𝑇 ) (𝑇 is the maximum number of iterations). This result fur-

ther implies an [O(𝑚
√
𝑛𝜖−2),O(𝜖−2)] sample-communication

complexity scalings, where𝑚 is the number of agents, and 𝑛 is

the size of the local dataset at each agent.

• To relax the full gradient evaluation requirement in PRECISION,
we propose an enhanced algorithm called PRECISION+

, which is

based on an adaptive batch size technique. PRECISION+
further

reduces the sample complexity of PRECISION, while retaining
the same [O(𝑚

√
𝑛𝜖−2), O(𝜖−2)] sample-communication com-

plexity scaling laws as those of PRECISION. Moreover, a lower

sample complexity can be obtained in PRECISION+
by slightly

trading off its communication complexity (the trade-off is only

reflected in the hidden Big-O constants).

• We note that both PRECISION and PRECISION+
algorithms in-

tegrate two proximal operators for both the inner and outer con-

straints (on x and y), variance reduction techniques for both inner
and outer updates, and gradient-tracking-based updates in both

inner and outer variables. In this sense, both PRECISION-based
algorithms can be viewed as a triple hybrid approach, which ne-

cessitates new performance analysis and proof techniques. It is

also worth pointing out that the proposed algorithmic and proof

techniques in PRECISION could be of independent interest in

decentralized min-max learning theory in general.

The rest of the paper is organized as follows. In Section 2, we first

provide the preliminaries of the decentralized min-max optimiza-

tion problems and discuss related works. In Section 3, we propose

two stochastic variance reduced algorithms, namelyPRECISION and

PRECISION+
. The convergence rate, communication complexity,

and sample complexity of PRECISION and PRECISION+
are also

provided in Section 3. Section 4 provides numerical results to verify

our theoretical findings, and Section 5 concludes this paper.

2 PRELIMINARIES AND RELATEDWORK
To facilitate subsequent technical discussions, in Section 2.1, we

first provide the basics of decentralized min-max optimization and

its consensus formulation. Then, we formally define the notions of

sample and communication complexities of the consensus form of

decentralized min-max optimization problems. Next, in Section 2.2,

we provide an overview of related work of existing optimization

algorithms for solving min-max learning problems and their perfor-

mance in terms of their sample and communication complexities,

thus putting our work in comparative perspectives.

2.1 Preliminaries of Decentralized Min-Max
Optimization

1) Network Consensus Formulation: Consider an undirected

connected network G = (N ,L), where N and L are the sets of

nodes (agents) and edges, respectively, with |N | =𝑚. Each agent

has local computation capability and is able to communicate with

the set of its neighboring agents defined as N𝑖 ≜ {𝑖′ ∈ N , : (𝑖, 𝑖′) ∈
L}. For presentation simplicity, we assume that each agent 𝑖 has

𝑛 data samples and thus there are 𝑚𝑛 data samples in total
1
. In

decentralized min-max optimization, the agents in the network

distributively and collaboratively solve the following decentralized

min-max optimization problem:

1
We note that with more complex notation, all our proofs and results continue to hold

in cases with unequal sized local datasets.
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min

x∈X
max

y∈Y

[
1

𝑚

𝑚∑︁
𝑖=1

𝐹𝑖 (x, y) + ℎ(x)
]
, (1)

where x ∈ X and y ∈ Y are parameters to be trained for the outer-

min and inner-max problems, respectively, the sets X ⊆ R𝑝1
and

Y ⊆ R𝑝2
are closed and convex sets, 𝐹𝑖 (x, y) ≜ 1

𝑛

∑𝑛
𝑗=1

𝑓𝑖 𝑗 (x𝑖 , y𝑖 |𝝃𝑖 𝑗 )
denotes the local objective function, and ℎ(x𝑖 ) is a proper convex
function (possibly non-differentiable) that usually plays the role

of regularization. Here, 𝐹𝑖 (x, y) is only observable to node 𝑖 and

is assumed to be non-convex with respect to x for a fixed y, and
strongly concave with respect to y for a fixed x. To solve Problem (1)

in a decentralized fashion, a common approach is to rewrite it in

the following equivalent form:

min

{x𝑖∈X,∀𝑖 }
max

{y𝑖∈Y,∀𝑖 }


1

𝑚𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗 (x𝑖 , y𝑖 |𝝃𝑖 𝑗 ) + ℎ(x𝑖 )
 ,

subject to x𝑖 = x𝑖′ , y𝑖 = y𝑖′ , ∀(𝑖, 𝑖′) ∈ L, (2)

where x𝑖 and y𝑖 are the local copies of the original parameters x and

y at agent 𝑖 , respectively. The equality constraints in (2) ensure that

the local copies at all agents are equal to each other, hence the name

“consensus form.” Clearly, Problems (1) and (2) share the same solu-

tion. In the rest of this paper, we will focus on solving Problem (2),

which will be referred to as a decentralized non-convex-strongly-

concave (NCX-SCV) consensus min-max optimization problem. The

goal of decentralized consensus min-max optimization is to design

an algorithm to attain a collective 𝜖-stationary point {x𝑖 , y𝑖 ,∀𝑖}
that satisfies the following condition:

1

𝑚

𝑚∑︁
𝑖=1

∥x𝑖−x∥2

︸           ︷︷           ︸
Outer consensus

error

+ 1

𝑚

𝑚∑︁
𝑖=1

∥y𝑖−y∥2

︸            ︷︷            ︸
Inner consensus

error

+E∥y∗−ȳ∥2︸      ︷︷      ︸
Saddle point

error

+




 1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x, y)




2

︸                  ︷︷                  ︸
Global gradient norm

≤𝜖2,

where x̄ ≜ 1

𝑚

∑𝑚
𝑖=1

x𝑖 , ȳ ≜ 1

𝑚

∑𝑚
𝑖=1

y𝑖 , and y∗ represents the maxi-

mizer point of 𝐹 over y, where y∗ (x̄) ∈ arg maxy∈Y 𝐹 (x̄, y),
As mentioned in Section 1, two of the most important perfor-

mance metrics in decentralized optimization are the sample and

communication complexities. In this paper, we adopt two definitions

of sample and communication complexities that are widely used in

the decentralized optimization literature (e.g., [45]) to measure the

efficiency of our algorithms:

Definition 1 (Sample Complexity). The sample complexity is
defined as the total number of incremental first-order oracle (IFO)
calls required across all nodes until an algorithm converges to an
𝜖-stationary point, where one IFO call evaluates a pair of gradients
(∇x 𝑓𝑖 𝑗 (x, y),∇y 𝑓𝑖 𝑗 (x, y)) at node 𝑖 .

Definition 2 (Communication Complexity). Let a round of
communications be a time window during which each node sends a
vector to its neighboring nodes while receiving a set of vectors from all
its neighboring nodes. Then, the communication complexity is defined
as the total number of rounds of communications required until an
algorithm converges to an 𝜖-stationary point.

2) Motivating Application Examples:With the basics of de-

centralized constrained NCX-SCV min-max optimization, we pro-

vide two examples to further motivate its practical relevance:

• Multi-Agent Fair ML: Consider a machine learning task with

dataset {𝑏𝑖 𝑗 , [ ˜𝝃⊤
𝑖 𝑗
, 𝝃 ∗⊤

𝑖 𝑗
]⊤} over a multi-agent network, where

𝑏𝑖 𝑗 is the observed label of the 𝑗-th sample at the 𝑖-th agent,

˜𝝃𝑖 𝑗 ∈ R𝑑1
denotes the corresponding nonsensitive features and

𝝃𝑖 𝑗 ∈ R𝑑2
represents the sensitive features. In the problem of

Fair ML, fairness is imposed by adding a regularization term

that penalizes the statistical correlation between the learning

model output
ˆ𝑏𝑖 𝑗 and the sensitive attributes 𝝃 ∗

𝑖 𝑗
. In binary case,

one example is the Renyi correlation [2] as a regularization to

impose fairness, under which the multi-agent fair ML problem

can be written as a decentralized NCX-SCVmin-max problem [2]:

minx∈X maxy∈Y E𝑖
[
L(𝐹𝑖 (x, y|𝝃𝑖 ), 𝑏𝑖 )−𝜆𝑙

∑𝑐
𝑗=1

𝑦2

𝑖 𝑗
f𝑖 𝑗 (x𝑖 , 𝝃𝑖 )+𝜆𝑙

·∑𝑐
𝑗=1

𝑦𝑖 𝑗𝑆f𝑖 𝑗 (x, 𝝃𝑖 )
]
, where 𝑆 = 2𝑆 − 1, 𝑆 = {0, 1}, denotes the

sensitive attribute, L is the loss function, 𝜆𝑙 is a positive scalar
balancing fairness and goodness-of-fit, 𝑐 is the class label and

f𝑖 𝑗 (x, 𝝃𝑖 ) represents the vector-valued output of a neural network
after soft-max layer.

• Data Poisoning Attack: Consider a decentralized learning problem
with𝑚 agents trying to learn a common model. An adversary

has the ability to inject noise into the training samples of a subset

of agents. Let y𝑖 denote the model parameter and let x𝑖 denote
the injected poisoned data parameter. In this problem, the adver-

sary tries to maximize the loss function while the other agents

aim at minimizing the loss function. Thus, the data poisoning

attack problem has the following NCX-SCV min-max problem:

maxx∈X miny∈Y
∑𝑚
𝑖=1

1

|𝝃𝑖 |
∑
ℓ∈𝝃𝑖 log

(
1+exp

( (
−𝑣ℓy𝑇𝑖

(
𝑤ℓ+x𝑖

) ) )
,

where 𝑣ℓ ∈ R and𝑤ℓ ∈ R𝑑 denote the ℓ-th data point’s label and

the feature vector, respectively.

2.2 Related Work
1) Centralized NCX-SCV Min-Max Optimization: In the litera-

ture, the state-of-the-art algorithms for solving NCX-SCV optimiza-

tion problems in the centralized setting are GDA [20], min-max-

PPA [21], and SREDA [26]. Specifically, Lin et al. [20] proposed

a gradient-based GDA method to find a first-order Nash equilib-

rium point. In each iteration, GDA performs gradient descent over

the x-variable and gradient ascent over the y-variable. GDA has

an O(1/𝑇 ) convergence rate for NCX-SCV min-max optimization

problems, where 𝑇 is the maximum number of iterations. Also, it

requires a full gradient evaluation in each iteration, which implies

an O(𝑛𝜖−2) sample complexity to achieve an 𝜖 convergence error.

The Minimax-PPA method is proposed in [21] to solve NCX-NCV

problem and achieves an
˜O
(
𝑛𝜀−2

)
sample complexity. These meth-

ods have a high sample complexity in the big-data regime with a

large 𝑛. To overcome this issue, several variance reduction methods

have also been proposed. For example, in [26], a variance reduction

algorithm named SREDA is proposed, which is further enhanced by

[52] to allow a larger step-size. SREDA achieves an
˜O
(
𝑛 +

√
𝑛𝜖−2

)
sample complexity for large 𝑛, thus having a lower sample com-

plexity than GDA and minimax-PPA. However, SREDA can only

handle min-max problems with constraints on x but not on y. We
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summarize the above comparisons in Table 1. While the above al-

gorithms achieve varying degrees of success in solving NCX-SCV

min-max problems, they are developed for the centralized setting,

which is fundamentally different from our work.

Table 1: Comparisons among algorithms for NCX-SCV min-
max problems (𝑚 is the number of agents, 𝑛 is the size of
dataset for each agent, and 𝜖 is the convergence error. Our
proposed algorithms are marked in bold.

Algorithm
∗ Proximal Sample Commun. Decen-

Operator Complex. Complex. tralized

GDA [20] y ˜O
(
𝑛𝜀−2

)
- ✗

Minmax-PPA [21] x and y ˜O
(
𝑛𝜀−2

)
- ✗

SREDA [26] x ˜O
(
𝑛 +

√
𝑛𝜀−2

)
- ✗

PRECISION
x and y O(𝑚

√
𝑛𝜖−2 ) O (𝜖−2 ) ✓

PRECISION+

2) Decentralized Min-Max Optimization: As mentioned in

Section 1, existing results on decentralized min-max optimization

are quite limited. The earliest attempt is the CSPSG method [29],

which considered the most ideal convex-concave (CX-CV) setting.

Due to its simplistic SGD-type updates, CSPSG has high sample and

communication complexities of O(𝜖−4). DPOSG [22] considered

unstructured nonconvex-nonconave (NCX-NCV) unconstrained de-

centralized min-max problems in the context of large-scale GANs,

and proposed to leverage the classical DSGD [32] approach to de-

centralize the centralized counterpart algorithm called OGDA [30].

Due to the limitations inherent in DSGD, DPOSG suffers from a

high sample complexity of O(𝜖−12). In contrast, DPPSP [23] also

studied unstructured NCX-NCV decentralized min-max optimiza-

tion problems with constraints. Due to the use of basic proximal

SGD-type updates, DPPSP also suffers high sample and communi-

cation complexities of O(𝜖−4).
Compared to the simplistic algorithmic techniques in [22, 23], our

PRECISION algorithms is a triple hybrid algorithm that integrates

proximal operators, variance reductions, and gradient tracking, thus

achieving much lower sample and communication complexities.

We note that although our significantly lower sample and com-

munication complexities are achieved under the more structured

NCX-SCV setting, we believe our techniques can also be applied to

NCX-NCV to improve the sample and communication complexities

of existing works. This will be left in our future work.

The most related work to ours is GT-GDA [46], which also stud-

ied constrained decentralized NCX-SCV min-max optimization.

The key difference between GT-GDA and our work is that only

one constraint set is imposed on either x or y, but not on both. In

contrast, we consider the more complex case where both x and y
are constrained. GT-GDA also requires several inner updates for y
and then performs one update for x, which is similar to alternating

direction method of multipliers [4] (ADMM) update scheme. Also,

our algorithms achieve a lower sample complexity O(𝑚
√
𝑛𝜖−2)

than that of O(𝑚𝑛𝜖−2) in GT-GDA. To conclude this section, we

summarize the above comparisons in Table 2. Another closely re-

lated work can be found in [54], where the authors developed a

Table 2: Comparisons among algorithms for decentralized
min-max problems.

Algorithm
∗ Proximal Sample Commun.

Problem

Operator Complex. Complex.

DPOSG [22] - O(𝜖−12 ) O (log(1/𝜖 ) ) NCX-NCV

CSPSG [29] x and y O(𝜖−4 ) O (𝜖−4 ) CX-CV

DPPSP [23] x and y O(𝜖−4 ) O (𝜖−4 ) NCX-NCV

GT-GDA [46] x or y O(𝑚𝑛𝜖−2 ) O (𝜖−2 ) NCX-SCV

PRECISION
x and y O(𝑚

√
𝑛𝜖−2 ) O (𝜖−2 ) NCX-SCV

PRECISION+

decentralized optimization method for a multi-agent reinforcement

learning policy evaluation problem based on the mean squared

projected Bellman error (MSPBE), which can be formulated as a

finite-sum minimax problem. However, our work differs from [54]

in the following aspects: (i) Unlike [54], our method can handle

non-smooth objectives. However, the direct proximal extension of

the algorithm in [54] may diverge in solving the decentralized prob-

lem [14]. To this end, we propose a specialized proximal operator

x̃𝑖
(
x𝑖,𝑡

)
to address this challenge, see detailed discussions in our Re-

mark 1; (ii) Our approach addresses general decentralized min-max

optimization problems, while [54] is limited to RL policy evaluation.

3 SOLUTION APPROACH
In this section, we first present our PRECISION andPRECISION+

al-

gorithms in Sections 3.1 and 3.2, respectively. Then, we provide the

main theoretical results and the key insights of the PRECISION and

PRECISION+
algorithms in Section 3.3. Due to space limitation and

for better readability, we relegate some proof details of the theoret-

ical results to our online technical report [24].

3.1 The PRECISION Algorithm
To solve the consensus form of decentralized min-max problem

in Problem (2), we adopt the network consensus mixing approach

in the literature [32]. Toward this end, we let M ∈ R𝑚×𝑚
denote

the consensus weight matrix and let [M]𝑖𝑖′ denote the element in

the 𝑖-th row and the 𝑖′-th column in M. M satisfies the following

properties [32, 47]:

(a) Doubly stochastic:
∑𝑚
𝑖=1

[M]𝑖𝑖′ =
∑𝑚
𝑖′=1

[M]𝑖𝑖′ = 1;

(b) Symmetric: [M]𝑖𝑖′ = [M]𝑖′𝑖 , ∀𝑖, 𝑖′ ∈ N ;

(c) Network-Defined Sparsity: [M]𝑖𝑖′ > 0 if (𝑖, 𝑖′) ∈ L; otherwise

[M]𝑖𝑖′ = 0, ∀𝑖, 𝑖′ ∈ N .

Note that the above properties imply that the eigenvalues of M are

real and can be sorted as −1 < 𝜆𝑚 (M) ≤ · · · ≤ 𝜆2 (M) < 𝜆1 (M) = 1.

For notational convenience, we define the second-largest eigenvalue

in magnitude of M as 𝜆 ≜ max{|𝜆2 (M) |, .., |𝜆𝑚 (M) |}, which will

play an important role in the step-size selection and analysis of the

algorithm’s convergence rate. With the above notation, we are now

in a position to describe our proposed algorithms.

As mentioned in Section 1, our PRECISION algorithm can be

viewed as a triple hybrid of proximal, gradient tracking, and vari-

ance reduction techniques. Next, we will see that these techniques

can be organized into three key algorithmic steps:
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• Step 1 (Local Proximal Operations): In each iteration 𝑡 , each agent

𝑖 first performs the following proximal operations to cope with

the constraint sets X and Y for the outer and inner variables,

respectively:

x̃𝑖 (x𝑖,𝑡 ) =arg minx𝑖 ∈X ⟨p𝑖,𝑡 , x𝑖 − x𝑖,𝑡 ⟩

+ 𝜏

2

∥x𝑖 − x𝑖,𝑡 ∥2 + ℎ(x𝑖 ), (3)

ỹ𝑖 (y𝑖,𝑡 )=arg miny𝑖 ∈Y


y𝑖 −

(
y𝑖,𝑡 + 𝛼d𝑖,𝑡

)

2

, (4)

where p𝑖,𝑡 and d𝑖,𝑡 are two auxiliary vectors for gradient tracking
purposes and will be defined shortly, 𝜏 > 0 is a constant proximal

control parameter, and 𝛼 > 0 is a constant parameter to control

the magnitude of the updates of y.
• Step 2 (Consensus Update): Next, each agent 𝑖 updates the outer

and inner model parameters x𝑖 , y𝑖 :

x𝑖,𝑡+1=
∑︁
𝑖′∈N𝑖

[M]𝑖𝑖′x𝑖′,𝑡︸             ︷︷             ︸
(a)

+𝜈
(
x̃𝑖 (x𝑖,𝑡 ) − x𝑖,𝑡

)︸                ︷︷                ︸
(b)

, (5)

y𝑖,𝑡+1 =
∑︁
𝑖′∈N𝑖

[M]𝑖𝑖′y𝑖′,𝑡︸             ︷︷             ︸
(a)

+𝜂 (ỹ𝑖 (y𝑖,𝑡 ) − y𝑖,𝑡 )︸               ︷︷               ︸
(b)

, (6)

where 𝜈 and 𝜂 are the step-sizes for updating x- and y-variables,
respectively. Note that in (5) and (6), component (𝑎) is a local
weighted average at agent 𝑖 , which is also referred to as “con-

sensus step,” and component (𝑏) performs a local update in the

spirit of Frank-Wolfe given the proximal points x̃ and ỹ, which is

different from the conventional decentralized stochastic gradient

updates [31].

• Step 3 (Local Gradient Estimate): In the next step, each agent 𝑖 esti-

mates its local gradients using the following gradient estimators:

v𝑖,𝑡 =


∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ), if mod(𝑡, 𝑞) = 0,

v𝑖,𝑡−1+ 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡

(
∇x 𝑓𝑖 𝑗 (x𝑖,𝑡 , y𝑖,𝑡 )

−∇x 𝑓𝑖 𝑗 (x𝑖,𝑡−1, y𝑖,𝑡−1)
)
, o.w.

(7a)

u𝑖,𝑡 =


∇y𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ), if mod(𝑡, 𝑞) = 0,

u𝑖,𝑡−1+ 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡

(
∇y 𝑓𝑖 𝑗 (x𝑖,𝑡 , y𝑖,𝑡 )

−∇y 𝑓𝑖 𝑗 (x𝑖,𝑡−1, y𝑖,𝑡−1)
)
, o.w.

(7b)

Here, S𝑖,𝑡 is the sample mini-batch in the 𝑡-th iteration, and 𝑞 is

a preset inner loop iteration number.

• Step 4 (Gradient Tracking): Each agent 𝑖 updates p𝑖 and d𝑖 by
averaging over its neighboring tracked gradients:{

p𝑖,𝑡 =
∑
𝑖′∈N𝑖

[M]𝑖𝑖′p𝑖′,𝑡−1 + v𝑖,𝑡 − v𝑖,𝑡−1,

d𝑖,𝑡 =
∑
𝑖′∈N𝑖

[M]𝑖𝑖′d𝑖′,𝑡−1 + u𝑖,𝑡 − u𝑖,𝑡−1 .
(8)

Our PRECISION algorithm can be intuitively understood as fol-

lows: In PRECISION, each agent conducts both descent and ascent

steps, since Problem (2) minimizes over x and maximizes over y.
Note that v𝑖,𝑡 and u𝑖,𝑡 in (7) only contain the gradient information

of the local objective function 𝐹𝑖 (x, y). Merely updating with direc-

tions v𝑖,𝑡 and u𝑖,𝑡 cannot guarantee the convergence of the global

Algorithm 1 PRECISION/PRECISION+
at Agent 𝑖 .

If PRECISION :|R𝑖,𝑡 |=𝑛;
If PRECISION+

:

|R𝑖,𝑡 | = min{𝑐𝛾𝜎2 (𝛾𝑡 )−1 , 𝑐𝜖𝜎
2𝜖−1, 𝑛}.

1: Set prime-dual parameter pair (x𝑖,0, y𝑖,0) = (x0, y0).
2: Draw R𝑖,0 samples without replacement and calculate local

stochastic gradient estimators as

p𝑖,0=v𝑖,0=
1

|R𝑖,0 |
∑︁
𝑗∈R𝑖,0

∇x 𝑓𝑖 𝑗 (x𝑖,0, y𝑖,0);

d𝑖,0=u𝑖,0=
1

|R𝑖,0 |
∑︁
𝑗∈R𝑖,0

∇y 𝑓𝑖 𝑗 (x𝑖,0, y𝑖,0);

3: for 𝑡 = 1, · · · ,𝑇 do
4: Update local parameters (x𝑖,𝑡+1, y𝑖,𝑡+1) as in Eq. (3)-(6);

5: Compute local estimators (v𝑖,𝑡+1, u𝑖,𝑡+1) as in Eq. (7);

6: Track global gradients (p𝑖,𝑡+1, d𝑖,𝑡+1) as in Eq. (8);

7: end for

objective function 𝐹 (x, y). Therefore, we introduce two auxiliary

variables p𝑖,𝑡 and d𝑖,𝑡 for global gradient tracking purposes. As

each agent 𝑖 updates these two variables by performing the local

weighted aggregation shown in (8), p𝑖,𝑡 and d𝑖,𝑡 track the directions
of the global gradients.

It is insightful to compare PRECISION with our most related

work, the GT-GDA method in [46]. In GT-GDA, agent 𝑖 computes

the local full gradients in the 𝑡-th iteration as follows:

v𝑖,𝑡 = ∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ), u𝑖,𝑡 = ∇y𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ). (9)

Different from GT-GDA [46], PRECISION estimates the local gra-

dients in Eq. (7) at agent 𝑖 . In Eq. (7), the algorithm evaluates a full

gradient ∇𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) only every 𝑞 steps. For other iterations with

mod(𝑡, 𝑞) ≠ 0, PRECISION uses local stochastic gradients estimated

by a mini-batch
1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡
∇y 𝑓𝑖 𝑗 (x𝑖,𝑡 , y𝑖,𝑡 ) and a recursive correc-

tion term u𝑖,𝑡−1− 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡
∇y 𝑓𝑖 𝑗 (x𝑖,𝑡−1, y𝑖,𝑡−1). Thanks to the pe-

riodic full gradients and recursive correction terms, PRECISION is

able to achieve a convergence rate of O(1/𝑇 ). Moreover, due to the

stochastic subsampling ofS𝑖,𝑡 , PRECISION has a lower sample com-

plexity than GT-GDA [46]. The full description of PRECISION is

shown in Algorithm 1.

3.2 The PRECISION+ Algorithm
Note that in PRECISION, full gradients are required for every 𝑞

steps, which may still incur high computational costs in some situ-

ations. Also, in the initialization phase of PRECISION (before the

main loop), agents need to evaluate full gradients, which could

be time-consuming. To address these challenges, we enhance the

PRECISION with an adaptive batch size technique, and this en-

hanced version is called PRECISION +
. Specifically, we modify the

gradient estimators in (7a) and (7b) in iteration 𝑡 with mod(𝑡, 𝑞) = 0

as follows :

v𝑖,𝑡 =
1

|R𝑖,𝑡 |
∑︁

𝑗∈R𝑖,𝑡

∇x 𝑓𝑖 𝑗 (x𝑖,𝑡 , y𝑖,𝑡 ), (10)
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u𝑖,𝑡 =
1

|R𝑖,𝑡 |
∑︁

𝑗∈R𝑖,𝑡

∇y 𝑓𝑖 𝑗 (x𝑖,𝑡 , y𝑖,𝑡 ), (11)

where R𝑖,𝑡 is a subsample set (sampling without replacement),

whose size is chosen as

|R𝑖,𝑡 | = min{𝑐𝛾𝜎2 (𝛾𝑡 )−1 , 𝑐𝜖𝜎
2𝜖−1, 𝑛}. (12)

Here, 𝑐𝛾 and 𝑐𝜖 are problem-dependent constants to be defined later,

𝜎2
is the variance bound of data heterogeneity across agents (also

defined later), and 𝛾𝑡+1 ≜
1

𝑞

∑𝑡
𝑖=(𝑛𝑡−1)𝑞 ∥x̃𝑡 − 1 ⊗ x̄𝑡 ∥2

, where ⊗
represents the Kronecker product operator.

The selection of |R𝑖,𝑡 | is motivated by the fact that the periodic

full gradient evaluation only plays an important role in the later

stage of the convergence process: in the later stage of the conver-

gence process, we need more accurate update direction. Later, we

will see that under some mild assumptions and parameter settings,

PRECISION+
has the same convergence rate as that of PRECISION.

The full description of the PRECISION+
algorithm is also illustrated

in Algorithm 1.

3.3 Theoretical Results of the PRECISION and
PRECISION+ Algorithms

Before presenting the theoretical results of our algorithms, we first

state the following assumptions:

Assumption 1 (Global Objective). The functions 𝐹 (x, y) =
1

𝑚

∑𝑚
𝑖=1

[𝐹𝑖 (x𝑖 , y𝑖 )] and 𝐽 (x) = maxy∈Y 𝐹 (x, y) satisfy:
(a) (Boundness from Below): There exists a finite lower bound 𝑄∗ =

𝑄 (x∗) = infx (𝐽 (x) + ℎ(x)) > −∞;

(b) (Strong Concavity in y): Local objective function 𝐹𝑖 (x, ·) is 𝜇-
strongly concave for fixed x ∈ R𝑝1 , i.e., there exists a posi-
tive constant 𝜇 such that ∥∇y𝐹𝑖 (x, y) −∇y𝐹𝑖 (x, y′)∥ ≥ 𝜇∥y−
y′∥,∀ 𝒙, y, y′ ∈R𝑝2 , 𝑖 ∈ [𝑚].

(c) (Bounded Gradient at Maximum): The partial gradient at every
(x,∇x𝐹 (𝑥, y∗ (x))) pair is bounded, i.e., ∥∇x𝐹 (x, y∗ (x))∥ < ∞,
∀ x ∈ R𝑝1 .

Assumptions 1(a) and 1(b) are standard in the literature. Assump-

tion 1(c) guarantees that ∇𝐽 (x) = ∇x𝐹 (x, y∗ (x)).
Assumption 2 (Lipschitz Smoothness of Local Objectives).

The function 𝑓𝑖 𝑗 (x, ·) is 𝐿𝑓 -Lipschitz smooth, i.e., there exists a con-
stant 𝐿𝑓 > 0, such that ∇𝑓𝑖 𝑗 (x, y) = [∇x 𝑓𝑖 𝑗 (x, y]⊤,∇y 𝑓𝑖 𝑗 (x, y)⊤)⊤
satisfies ∥∇𝑓𝑖 𝑗 (x, y) −∇𝑓𝑖 𝑗 (x′, y′)∥2 ≤ 𝐿2

𝑓
∥x− x′∥2 +𝐿2

𝑓
∥y−y′∥2,

∀ x, x′ ∈ X, y, y′ ∈ Y, 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛].
Further, we have the following assumption only for the algorithm

PRECISION+
:

Assumption 3 (Bounded Variance). There exists a constant
𝜎2 > 0, such that E∥∇𝑓𝑖 𝑗 (x, y) − ∇𝐹𝑖 (x, y)∥2 ≤ 𝜎2, ∀ x, y, ∈ R𝑝 , 𝑖 ∈
[𝑚], 𝑗 ∈ [𝑛].

To address the challenges in characterizing the convergence rate

for NCX-SCV decentralized constrained min-max problems, we

propose the following new metric, which is the key to the success

of establishing all convergence results in this paper:

𝔐𝑡 ≜E[∥x̃𝑡 − 1 ⊗ x̄𝑡 ∥2 + ∥x𝑡 − 1 ⊗ x̄𝑡 ∥2

+ ∥y𝑡 − 1 ⊗ ȳ𝑡 ∥2 + ∥y∗𝑡 − ȳ𝑡 ∥2], (13)

where y∗𝑡 denotes y∗ (x̄𝑡 ) = arg max𝑦∈R𝑝 𝐹 (x̄𝑡 , y). The first two

terms in (13) are inspired by the metric in SONATA [42], which

measures the converging progress of non-convex decentralized

minimization problems (not min-max). The third term in (13) mea-

sures the consensus error of local copies on y. The fourth term

in (13) quantifies ȳ𝑡 ’s convergence to the point y∗𝑡 for 𝐹 (x̄𝑡 , ·). Thus,
as 𝔐𝑡 → 0, we have that the algorithm reaches a consensus on

a first-order stationary point (FOSP) of the original decentralized

constrained min-max optimization problem.

With the metric in (13), the convergence rates of algorithms

PRECISION /PRECISION+
can be characterized as follows:

Theorem 1 (Convergence of PRECISION). Under Assump-

tion 1 (a)-(d) and Assumption 2, suppose that 𝛽 ≤ min

{
𝜏
12
, 1

3

}
,

𝛼 ≤ 1

4𝐿𝑓
, 𝑞 = |S𝑖,𝑡 | = ⌈

√
𝑛⌉ hold and let 𝑐1 = 1−𝜆2

1+𝜆2
, if the step-sizes

satisfy: 𝜂 ≤ min

{
1

8
,

𝑐1𝑚𝜇

375𝛼𝐿2

𝑓

,
15𝐿2

𝑓

𝛽𝜇𝛼2𝑐1

,
3𝑐2

1
𝑚

10(1+𝑐1 )𝜇𝛼

}
, 𝜈 ≤ min

{
𝑐1𝑚𝛽

40𝐿2

𝑓

,

2𝑐1𝑚𝛽
5𝜏 ,

2𝑐1𝛽𝜇
2𝑚

375𝐿4

𝑓

, 5𝜏
3𝑚𝑐1

, 𝜏
6𝑚 (1+1/𝑐1 ) ,

3𝜇𝜂𝛼𝜏

17𝐿2

𝑓

, 𝜏

3(𝐿𝑓 +𝐿2

𝑓
/𝜇 )

}
, then the fol-

lowing convergence result for the PRECISION algorithm holds:

1

𝑇

𝑇−1∑︁
𝑡=0

E[𝔐𝑡 ] ≤
E[𝔭0 −𝑄∗]

min{𝐶1,𝐶2,𝐶3, 𝜈𝐿
2

𝑓
/2}(𝑇 + 1)

,

where 𝑄∗ = 𝑄 (x∗) and 𝔭𝑡 is a potential function defined as:

𝔭𝑡 ≜ 𝑄 (x̄𝑡 ) +
4𝜈𝐿2

𝑓

𝛽𝜇𝜂2
∥ȳ𝑡 − y∗𝑡 ∥2

+ 1

𝑚

𝑚∑︁
𝑖=1

[∥x𝑖,𝑡 − x̄𝑡 ∥2 + ∥y𝑖,𝑡 − ȳ𝑡 ∥2], (14)

and𝐶1,𝐶2,𝐶3 ≥ 0 are constants. Due to space limitation, detailed defi-
nition of these constants are relegated to our technical report [24]. Also,
in (14),𝑄 (x𝑡 ) ≜ maxy 𝐹 (x𝑡 , y) +ℎ(x𝑡 ), and y∗𝑡 = arg maxy 𝐹 (x𝑡 , y).

Theorem 2 (Convergence of PRECISION+
). Under Assump-

tion 1 (a)-(d), Assumptions 2-3, and the same parameter settings as
in Theorem 1, with additional parameters 𝑐𝛾 and 𝑐𝜖 satisfying the
conditions:

𝑐𝛾 ≥ ( 75𝜂𝛼

8𝜇

1

𝑚
+ 𝜈

𝛽

1

𝑚
) 𝜈𝜏

12

, 𝑐𝜖 > 0, (15)

and the potential function as stated in Theorem 1, the following con-
vergence result for PRECISION+ holds:

1

𝑇

𝑇−1∑︁
𝑡=0

E[𝔐𝑡 ] ≤
E[𝔭0 −𝑄∗]

(𝑇 + 1) min{𝐶1,𝐶
′
2
,𝐶3, 𝜈𝐿

2

𝑓
/2}

+
(

75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
𝜖

𝑐𝜖
, (16)

where the constant 𝐶′
2
≥ and the definition of 𝐶′

2
is relegated to our

technical report [24].

Remark 1. Compared to existing works on decentralized min-

max optimization[46, 54], it is worth noting that the main difficulty

in establishing convergence results in Theorem 1 and Theorem 2

arises from the proximal operator in the outer-level subproblem.

This operator precludes the use of conventional descent lemmas
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Figure 1: Comparisons of algorithms for decentralized NCX-SCV min-max optimization problems.

for convergence analysis, as outlined in Lemma 3 in the Appen-

dix. Furthermore, unlike in single-agent constrained bilevel opti-

mization, the direct proximal extension of the algorithm in [14]

(x̃𝑖,𝑡 = arg minx∈X ∥x − (x𝑖,𝑡 − 𝜏p𝑖,𝑡 )∥2
) will diverge for the decen-

tralized constrained min-max problem in this paper. To address this

challenge, we employ a special proximal update rule in (3). The

proximal operator x̃𝑖,𝑡 in (3), consensus updating (5), and the corre-

sponding local update (5) are the key in addressing the non-smooth
objective challenge encountered in decentralized learning.

Remark 2. In Theorems 1 and 2, the step-sizes and convergence

rates depend on the network topology. For a sparse network, 𝜆 is

close to (but not exactly) one (recall that 𝜆 = max{|𝜆2 |, |𝜆𝑚 |} < 1),

the step-size needs to be smaller as 𝜆 gets close to one, which leads to

a slower convergence. Additionally, the convergence performance

of PRECISION+
is affected by constant ( 75𝜂𝛼

16𝜇
2

𝑚 + 𝜈
2𝛽

2

𝑚 ) 𝜖
𝑐𝜖
, which

depends on the inexact gradient estimation at the 𝑡-th iteration

with mod(𝑡, 𝑞) = 0. Intuitively, a larger value of 𝑐𝜖 allows us to use

a larger batch size as shwon in (12), which in turn leads to faster

convergence. Theoretically, we can observe that a larger value of

𝑐𝜖 results in a smaller constant ( 75𝜂𝛼
16𝜇

2

𝑚 + 𝜈
2𝛽

2

𝑚 ) 𝜖
𝑐𝜖

in (16), thereby

yielding a more accurate estimation.

Following from Theorems 1 and 2, we immediately have the sam-

ple and communication complexity results for the PRECISION and

PRECISION+
algorithms:

Corollary 3. Under the conditions in Theorems 1 and 2, and with
𝑞 =

√
𝑛, to achieve an 𝜖-stationary solution, the following results for

the PRECISION and PRECISION+ algorithms hold:
• Communication Complexity: the numbers of total communication
rounds are upper bounded by O(𝜖−2)

• Sample Complexity: The total samples evaluated across the network
are upper bounded by O(𝑚

√
𝑛𝜖−2)).

Remark 3. The PRECISION/PRECISION+
algorithms have the

same communication complexity as GT-GDA [46], but the sample

complexity is a

√
𝑛-factor lower than that of GT-GDA [46]. This is

particularly advantageous in “big data” scenarios, where 𝑛 is large

(i.e., the size of local datasets is large). Although the theoretical

complexity bounds for PRECISION+
is the same as PRECISION,

the fact that PRECISION+
does not need full gradient evaluations

implies that PRECISION+
uses significantly fewer samples than

PRECISION in practice. Our numerical results in the next section

will also empirically confirm this.

4 EXPERIMENTAL RESULTS
In this section, we conduct numerical experiments to demonstrate

the performance of our proposed PRECISION and PRECISION+
al-

gorithms using a decentralized NCX-SCV regression problem on

“a9a" dataset from LIBSVM repository, which is publicly available

in [7]. In the supplementary material, we also provide additional

experiments for environments of AUC maximization problem on

dataset “a9a"[7] and ‘MNIST"[18]. Due to the lack of existing algo-

rithms for decentralized NCX-SCV with simultaneous outer and

inner constraint sets (cf. Section 2.2 for details), we compare our

algorithms with two stochastic algorithms as the baselines in our

experiments. These baselines can be viewed as “stripped-down”

versions of PRECISION /PRECISION+
by removing gradient track-

ing or variance reduction techniques. Due to the space limitation,

detailed experimental settings are relegated to our Appendix [24].

1) Logistic Regression Model and Datasets:We use the fol-

lowing decentralized NCX-SCV min-max regression problem with

datasets

{(
a𝑖 𝑗 , 𝑏𝑖 𝑗

)}𝑛
𝑗=1

, where a𝑖 𝑗 ∈ R𝑑 is the feature of the 𝑗-th

sample of agent 𝑖 and 𝑏𝑖 𝑗 ∈ {1,−1} is the associated label:

min

x𝑖 ∈X
max

y𝑖 ∈Y
1

𝑚

𝑚∑︁
𝑖=1

𝐹𝑖 (x𝑖 , y𝑖 ), (17)

where 𝐹𝑖 (x𝑖 , y𝑖 ) is defined as:

𝐹𝑖 (x𝑖 , y𝑖 ) ≜
1

𝑛

𝑛∑︁
𝑗=1

(
𝑦𝑖 𝑗 𝑙𝑖 𝑗 (x𝑖 ) −𝑉 (y𝑖 ) + 𝑔(x𝑖 )

)
. (18)

In (18), the loss function is 𝑙𝑖 𝑗 (x𝑖 ) ≜ log

(
1 + exp

(
−𝑏𝑖 𝑗a⊤𝑖 𝑗x𝑖

))
and

𝑔(x𝑖 ) is a non-convex regularizer defined as:𝑔(x𝑖 ) ≜ 𝜆2

∑𝑑
𝑘=1

𝛼𝑥2

𝑖𝑘

1+𝛼𝑥2

𝑖𝑘

,

where 𝑉 (y𝒊) = 1

2
𝜆1∥𝑛y𝑖 − 1∥2

2
and we set the constraints X =

[0, 10]𝑑 ,Y = [0, 10]𝑛 . We choose constants 𝜆1 = 1/𝑛2
, 𝜆2 = 10

−3

and 𝛼 = 10. We test the convergence performance of our algorithms

using the “a9a" dataset from LIBSVM repository, which is publicly

available at [7].

2) Algorithms comparision: Due to the very limited results of

decentralized constrained min-max optimization in the literature, in

our experiments, we adopt the following algorithms as our baselines

for performance comparisons:

• Prox-DSGDA (proximal decentralized stochastic gradient descent

ascent): This algorithm is motivated by DSGD [15, 32]. Each

agent updates its local parameters as 𝜽𝑖,𝑡+1 =
∑

𝑗∈N𝑖
[M]𝑖 𝑗𝜽 𝑗,𝑡 −
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𝛾 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡
∇𝜽 𝑓𝑖 𝑗 (𝜽𝑖,𝑡 ,𝝎𝑖,𝑡 ) and 𝝎𝑖,𝑡+1 =

∑
𝑗∈N𝑖

[M]𝑖 𝑗𝝎 𝑗,𝑡 −
𝜂 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡
∇𝝎 𝑓𝑖 𝑗 (𝜽𝑖,𝑡 ,𝝎𝑖,𝑡 ).

• Prox-GT-SGDA (proximal gradient-tracking-based stochastic gra-

dient descent ascent): This algorithm is motivated by the GT-

SGD algorithm [25, 50]. GT-SGDA has the same structure as

that of GT-GDA, but it updates v𝑖,𝑡 and u𝑖,𝑡 using stochastic

gradients as follows: v𝑖,𝑡 = 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡
∇𝜽 𝑓𝑖 𝑗 (𝜽𝑖,𝑡 ,𝝎𝑖,𝑡 ) and

u𝑖,𝑡 = 1

|S𝑖,𝑡 |
∑

𝑗∈S𝑖,𝑡
∇𝝎 𝑓𝑖 𝑗 (𝜽𝑖,𝑡 ,𝝎𝑖,𝑡 ).

3) Results: From Fig. 1(a) and 1(b), we can see that our proposed

PRECISION+
algorithm converges much faster than other algo-

rithms (PRECISION, Prox-GT-SGDA and Prox-DSGDA) in terms

of the total number of first-order oracle evaluations. We can also

observe that both PRECISION and PRECISION+
have lower sam-

ple complexities than those of the other two algorithms. As shown

in Figs. 1(c) and 1(d), PRECISION and PRECISION+
have much

lower communication costs than those of Prox-DSGDA and Prox-

GT-SGDA. Our experimental results thus verify our theoretical

analysis that PRECISION /PRECISION+
have both low sample and

communication complexities in decentralized constrained min-max

optimization problems.

5 CONCLUSION
In this paper, we studied the decentralized constrained non-convex-

strongly-concave (NCX-SCV) min-max optimization and developed

two algorithms called PRECISION and PRECISION+
. We showed

that, to achieve an 𝜖-stationary point of a decentralized constrained

NCX-SCVmin-max problem, PRECISION andPRECISION+
achieve

the communication complexity of O(𝜖−2) and sample complexity

of O(𝑚
√
𝑛𝜖−2), where𝑚 is the number of agents and 𝑛 is the size

of dataset for each agent. Our numerical studies also verified the

theoretical performance of our proposed algorithms. We note that

decentralized constrained min-max learning remains an under-

explored area, and our work opens up several interesting directions

for future research. For example, the agents need to send outer and

inner model parameter pairs to their neighbors in our algorithm,

both of which could be high dimensional. In our future work, it

would be interesting to adopt communication-efficient mechanisms

(e.g., compression techniques) to further reduce the communication

cost, especially for large-scale deep learning models.
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A PROOF SKETCH OF MAIN RESULTS
Due to space limitation, we outline the key steps of the proofs of

Theorems 1 and 2. The complete version of our proofs is available in

our technical report [24]. Before diving in our theoretical analysis,

we first provide the following notations:

• x̄𝑡 = 1

𝑚

∑𝑚
𝑖=1

x𝑖,𝑡 and x𝑡 = [x⊤
1,𝑡
, · · · , x⊤𝑚,𝑡 ]⊤ for any vector

x;
• ∇x𝐹𝑡 = [∇x𝐹 (x1,𝑡 , y1,𝑡 )⊤, · · · ,∇x𝐹 (x𝑚,𝑡 , y𝑚,𝑡 )⊤]⊤;
• ∇y𝐹𝑡 = [∇y𝐹 (x1,𝑡 , y1,𝑡 )⊤, · · · ,∇y𝐹 (x𝑚,𝑡 , y𝑚,𝑡 )⊤]⊤;
• E(x𝑡 ) = 1

𝑚

∑𝑚
𝑖=1

∥x𝑖,𝑡 − x̄𝑡 ∥2
for any vector x.

Also, the result below is useful for our subsequent analysis.

Lemma 1. Under Assumption 1, the funciton 𝐽 (x) = 𝐹 (x, y∗ (x))
w.r.t x is Lipschitz smooth, i.e., there exists a positive constant 𝐿𝐽 , such
that

∥∇𝐽 (x) − ∇𝐽 (x′)∥ ≤ 𝐿𝐽 ∥x − x′∥, ∀x, x′ ∈ R𝑑 , (19)

where the Lipschitz constant is 𝐿𝐽 = 𝐿𝑓 + 𝐿2

𝑓
/𝜇 for Algorithm 1. This

lemma follows immediately from Lemma 4.3 in [20].

Lemma 2. Under Assumption 1, y∗ (x) = arg maxy 𝐹 (x, y) is Lips-
chitz continuous, i.e., there exists a positive constant 𝐿𝑦 , such that

∥y∗ (x) − y∗ (x′)∥ ≤ 𝐿𝑦 ∥x − x′∥, ∀x, x′ ∈ R𝑑 , (20)

where the Lipschitz constant is 𝐿𝑦 = 𝐿𝑓 /𝜇.

A.1 Important Lemmas for Proving Main
Theorems

We first show the following descent property of PRECISION algo-

rithm on the function 𝑄 (·), which is stated in the following lemma:

Lemma 3 (Descent Ineqality on 𝑄 (x)). Under Assumption 1,
the following descent inequality holds:

𝑄 (x̄𝑡+1) −𝑄 (x̄𝑡 ) ≤
𝜈𝐿2

𝐹

2𝛽



y∗𝑡 − ȳ𝑡


2 + 𝜈

2𝛽



∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡


2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 −1 ⊗ x̄𝑡 ∥2−

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 −1 ⊗ x̄𝑡 ∥2 .

(21)

where 𝑄 (x𝑡 ) = maxy 𝐹 (x𝑡 , y) + ℎ(x𝑡 ) and y∗𝑡 = arg maxy 𝐹 (x̄𝑡 , y).

Next, consider the error bound



ȳ𝑡 − y∗𝑡


2

in Lemma 3, we have

the following Lemma:

Lemma 4 (Error Bound on y∗ (x)). Under Assumption 1, the
following inequality holds for PRECISION/PRECISION+ :

ȳ𝑡+1−y∗𝑡+1



2 ≤
(
1− 𝜇𝜂𝛼

4

) 

ȳ𝑡 − y∗𝑡


2− 3𝜂

4

∥ỹ𝑡 − 1 ⊗ ȳ𝑡 ∥2

+ 75𝜂𝛼

16𝜇



¯d𝑡 − ∇y𝐹 (x̄𝑡 , ȳ𝑡 )


2 +

17𝐿2

𝑦𝜈
2

2𝜇𝜂𝛼𝑚
∥x̃𝑡 − 1 ⊗ x̄𝑡 ∥2 . (22)

By telescoping the combined results of previous lemmas from 0

to 𝑇 + 1 and after some rearrangements, we arrive at the following

results:
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Lemma 5. Under Assumption 1 and condition 𝜂 ≤ 1/2𝐿𝑓 , the
following inequality holds for PRECISION/PRECISION+ :

𝑄 (x̄𝑇+1)−𝑄 (x̄0)+
4𝜈𝐿2

𝐹

𝛽𝜇𝜂2

[
∥ȳ𝑇+1−y∗𝑇+1∥

2−∥y∗
0
−ȳ0∥2

]
≤

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

{
− 3𝜂

4

∥ỹ𝑡 − 1 ⊗ ȳ𝑡 ∥2 + 75𝜂𝛼

16𝜇

2

𝑚
∥∇y𝐹 (x𝑡 , y𝑡 ) − ¯d𝑡 ∥2

+
17𝐿2

𝑦𝜈
2

2𝜇𝑚𝜂𝛼
∥x̃𝑡 − 1 ⊗ x̄𝑡 ∥2

}
+ 𝜈

2𝛽

2

𝑚
∥∇x𝐹 (x𝑡 , y𝑡 ) − p̄𝑡 ∥2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1 ⊗ x̄𝑡 ∥2 −

(𝜈𝜏
𝑚

−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
· ∥x̃𝑡 −1⊗ x̄𝑡 ∥2+

[ 𝜈
𝛽

𝐿2

𝐹

𝑚
+

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝐹

𝑚

] 𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2

+ ∥ȳ𝑡 − y𝑖,𝑡 ∥2] −
𝜈𝐿2

𝐹

2𝛽



ȳ𝑡 − y∗𝑡


2

. (23)

Next, we bound the iterates contraction of ∥x𝑡 − 1 ⊗ x̄𝑡 ∥2
and

∥y𝑡 − 1 ⊗ ȳ𝑡 ∥2
in (23).

Lemma 6 (Iterates Contraction). The following contraction
properties of the iterates hold:

∥x𝑡 − 1 ⊗ x̄𝑡 ∥2 ≤ (1 + 𝑐1)𝜆2∥x𝑡−1 − 1 ⊗ x̄𝑡−1∥2

+ (1 + 1

𝑐1

)𝜈2∥x̃𝑡−1 − x𝑡−1∥2,

∥y𝑡 − 1 ⊗ ȳ𝑡 ∥2 ≤ (1 + 𝑐2)𝜆2∥y𝑡−1 − 1 ⊗ ȳ𝑡−1∥2

+ (1 + 1

𝑐2

)𝜂2∥ỹ𝑡−1 − y𝑡−1∥2, (24)

where 𝑐1 and 𝑐2 are arbitrary positive constants. Additionally, we
have

∥x𝑡 − x𝑡−1∥2 ≤ 8E(x𝑡−1) + 2𝜈2∥x̃𝑡−1 − x𝑡−1∥2,

∥y𝑡 − y𝑡−1∥2 ≤ 8E(y𝑡−1) + 2𝜂2∥ỹ𝑡−1 − y𝑡−1∥2 . (25)

Next, we bound the gradient tracking errors

∑𝑇
𝑡=0

∥¯d𝑡 − ∇x𝐹𝑡 ∥2

and

∑𝑇
𝑡=0

∥p̄𝑡 − ∇y𝐹𝑡 ∥2
in (23).

Lemma 7 (Error of Gradient Estimator). Under Assumption
2, we have the following error bounds for the gradient trackers:

𝑇∑︁
𝑡=0

∥¯d𝑡 − ∇x𝐹𝑡 ∥2 ≤
𝑇∑︁
𝑡=1

E∥¯d(𝑛𝑡−1)𝑞 − ∇x𝐹 (x(𝑛𝑡−1)𝑞,

y(𝑛𝑡−1)𝑞)∥2 + 𝐿2

𝑓

(
∥x𝑡 − x𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

)
, (26)

𝑇∑︁
𝑡=0

∥p̄𝑡 − ∇y𝐹𝑡 ∥2 ≤
𝑇∑︁
𝑡=1

E∥p̄(𝑛𝑡−1)𝑞 − ∇y𝐹 (x(𝑛𝑡−1)𝑞,

y(𝑛𝑡−1)𝑞)∥2 + 𝐿2

𝑓

(
∥x𝑡 − x𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

)
, (27)

where 𝑛𝑡 is the largest positive integer satisfing (𝑛𝑡 − 1)𝑞 ≤ 𝑡 .

Proof Sketch of Lemma 7. Define

𝐴𝑖,𝑡 =¯d𝑖,𝑡 −∇x𝐹𝑖,𝑡 ; 𝐵𝑖,𝑡 =
1

|S𝑖,𝑡 |
∑︁
𝑗∈S𝑖,𝑡

∇x 𝑓𝑖,𝑡 (x𝑖,𝑡 , y𝑖,𝑡 )

−∇x 𝑓𝑖,𝑡 (x𝑖,𝑡−1, y𝑖,𝑡−1)+∇x𝐹𝑖,𝑡−1−∇x𝐹𝑖,𝑡 . (28)

Note that E𝑡 [𝐵𝑖,𝑡 ] = 0, where the expectation is taken over the

randomness of data sampling at the 𝑡-th iteration. Thus,

E𝑡 ∥𝐴𝑖,𝑡 ∥2 = ∥𝐴𝑖,𝑡−1∥2 + E𝑡 ∥𝐵𝑖,𝑡 ∥2 . (29)

Also, with |S𝑖,𝑡 | = 𝑞, we have

E𝑡 ∥𝐵𝑖,𝑡 ∥2 ≤
𝐿2

𝑓

𝑞

(
∥x𝑖,𝑡 −x𝑖,𝑡−1∥2 + ∥y𝑖,𝑡 −y𝑖,𝑡−1∥2

)
. (30)

Taking full expectation and telescoping (30) over 𝑡 from (𝑛𝑡 −
1)𝑞 + 1 to 𝑡 , where 𝑡 ≤ 𝑛𝑡𝑞 − 1, we have E∥𝐴𝑡 ∥2 ≤ E∥𝐴(𝑛𝑡−1)𝑞 ∥2 +∑𝑡
𝑟=(𝑛𝑡−1)𝑞+1

𝐿2

𝑓

𝑞 E
(
∥x𝑟−x𝑟−1∥2+∥y𝑟−y𝑟−1∥2

)
. Thus,

∑𝑡
𝑘=0
E∥𝐴𝑘 ∥2 ≤∑𝑡

𝑟=0
∥𝐴(𝑛𝑟 −1)𝑞 ∥2+∑𝑡

𝑟=1
𝐿2

𝑓

(
∥x𝑟 −x𝑟−1∥2+∥y𝑟 −y𝑟−1∥2

)
.We have

similar result while 𝐴𝑖,𝑡 = p̄𝑖,𝑡 −∇y𝐹𝑖,𝑡 . This completes the proof of

of Lemma. 7. □

A.2 Proof Sketch of Theorem 1
Proof. Following the defined potential function 𝔭 and the result

of Lemma 3-7, we have

E𝔭𝑇+1−𝔭0 ≤𝜈𝐿𝑓 2
2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

−𝐶1

𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

∥x̄𝑡 − x𝑖,𝑡 ∥2 −𝐶2

𝑇∑︁
𝑡=0

∥x̃𝑡 − 1 ⊗ x̄𝑡 ∥2

−𝐶3

𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥ȳ𝑡 −y𝑖,𝑡 ∥2]−𝐶4

𝑇∑︁
𝑡=0

∥ỹ𝑡 − 1 ⊗ ȳ𝑡 ∥2 , (31)

𝐶1,𝐶2,𝐶3,𝐶4 are some constants and can be found in Eqs.(98) -

Eqs.(101) in our technical report [24]. Suppose that 𝛽 ≤ min

{
𝜏
12
, 1

3

}
,

𝛼 ≤ 1

4𝐿𝑓
hold and let 𝑐1 = 1−𝜆2

1+𝜆2
, if step-sizes satisfy Thm. 1 to

ensure 𝐶1,𝐶2,𝐶3,𝐶4 ≥ 0. We can conclude that

1

𝑇 + 1

𝑇∑︁
𝑡=0

𝔐𝑡 ≤ E[𝔭0 −𝑄∗]
min{𝐶1,𝐶2, 𝜈𝐿

2

𝑓
/2}(𝑇 + 1)

. (32)

This completes the proof Theorem 1. □

A.3 Proof Sketch of Theorem 2
Proof. For PRECISION+

, we have

E∥¯d(𝑛𝑡−1)𝑞 − ∇x𝐹 (𝑛𝑡−1)𝑞 ∥2

= E∥p̄(𝑛𝑡−1)𝑞 − ∇y𝐹 (𝑛𝑡−1)𝑞 ∥2 =
𝐼 (N𝑠<𝑀 )

N𝑠
𝜎2 . (33)

Recall that N𝑠 = min{𝑐𝛾𝜎2 (𝛾 (𝑘 ) )−1, 𝑐𝜖𝜎
2𝜖−1, 𝑀}, we have

𝐼 (N𝑠<𝑀 )
N𝑠

≤ max{ 𝛾
(𝑘 )

𝑐𝛾𝜎
2
,

𝜖

𝑐𝜖𝜎
2
} ≤ 𝛾 (𝑘 )

𝑐𝛾𝜎
2
+ 𝜖

𝑐𝜖𝜎
2
. (34)

Since 𝛾𝑡+1 = 1

𝑞

∑𝑡
𝑖=(𝑛𝑡−1)𝑞 ∥x̃𝑡 − 1 ⊗ x̄𝑡 ∥2

. Plugging (34) to Lemma

5, we have the following result, with additional parameter setting

𝑐𝛾 ≥ ( 75𝜂𝛼
8𝜇

1

𝑚 + 𝜈
𝛽

1

𝑚 ) 𝜈𝜏
12
. For PRECISION+

, following the defined

potential function 𝔭 and the result of Lemma 3-7, with 𝔭𝑇+1 ≥ 𝑄∗
,

we reach the conclusion. □
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B FURTHER EXPERIMENTS AND ADDITIONAL RESULTS
In the followings, we provide the detailed settings for our experiments:

1) AUC Maximization Model and Datasets:
We apply the following AUCmaximization problemwith a given dataset

{
a𝑖 𝑗 , 𝑏𝑖 𝑗

}𝑛
𝑗=1

where a𝑖 𝑗 denotes a feature vector and 𝑏𝑖 𝑗 ∈ {−1, +1}
indicates the corresponding label. With function ℎx of a classification model parameterized by x𝒊 ∈ X, the AUC is defined as

max

x𝒊∈X
1

𝑒+𝑒−
∑︁

𝑏𝑖 𝑗=+1,𝑏𝑖 𝑗=−1

I{ℎx𝑖 (a𝑖 𝑗 )≥ℎx𝑖 (a𝑗 𝑗 )}, (35)

where 𝑒+ (𝑒−) indicates the number of positive (negative) samples and I denotes the indicator function. The above optimization problem has

the following equivalent minimax formulation:

min

x𝑖 ,𝑐1,𝑐2

max

𝑦𝑖

1

𝑚

𝑚∑︁
𝑖=1

𝐹𝑖 (x𝑖 , 𝑐1, 𝑐2, 𝜆)

:=
1

𝑚

𝑚∑︁
𝑖=1

{
(1 − 𝜏)

(
ℎx𝑖

(
a𝑖 𝑗

)
− 𝑐1

)
2

I{𝑏𝑖 𝑗=1} − 𝜏 (1 − 𝜏)𝑦2

𝑖 + 𝜏
(
ℎx𝑖

(
a𝑖 𝑗

)
− 𝑐2

)
2

I{𝑏𝑖 𝑗=−1}

+2(1 + 𝑦𝑖 )𝜏ℎx𝒊

(
a𝑖 𝑗

)
I{𝑏𝑖 𝑗=−1} − 2(1 + 𝑦𝑖 ) (1 − 𝜏)ℎx𝑖

(
a𝑖 𝑗

)
I{𝑏𝑖 𝑗=1}

}
,

where 𝜏 := 𝑒+/
(
𝑒+ + 𝑒−

)
is the ratio of positive data.

We test the convergence performance of our algorithms using the “a9a" dataset from LIBSVM repository, which is publicly available at [7]

and ‘MNIST"[18].

2) Decentralizednetworks:We use a five-node multi-agent system, with the communication graph G being generated by the Erd¥os-Rènyi
graph, where the edge connectivity probability is 𝑝𝑐 = 0.6. The network consensus matrix is chosen as W = I − 2

3𝜆max (L) L, where L is the

Laplacian matrix of G, and 𝜆max (L) denotes the largest eigenvalue of L. The generated topology is shown in Figure 2.

Figure 2: Network topology

B.1 Algorithms comparison
In this subsection, we provide an additional experiment on the algorithms’ comparison. We run all algorithms for solving optimization

problem over AUC maximization problem under a9a dataset and mnist dataset. In this experiment, we initialized the parameters from the

normal distribution for all the algorithms and fixed learning rates as 𝛾 = 10
−1, 𝜂 = 10

−1
. From Figure 3, we observe our proposed algorithms

PRECISION/PRECISION+
enjoy low sample and communication complexities on solving AUC maximization problem under both “a9a”

dataset and “MNIST” dataset.

B.2 Learning rate setting
We use a 5-node multi-agent system with a generated topology as shown in Figure 2. In this experiment, we choose the datasize 𝑛 = 2000,

mini-batch size 𝑞 = ⌈
√
𝑛⌉. Figs. 4 illustrate the convergence metric 𝔐 performance of PRECISION with different learning rates 𝛾 and 𝜂. We

fix a relatively small learning rate 𝛾 = 10
−1

while comparing 𝜂; and set 𝜂 = 10
−1

while comparing 𝛾 . In this experiment, we observe that

methods with a smaller learning rate have a smaller slope in the figure, which leads to a slower convergence.

B.3 Topology setting
We use a 5-node multi-agent system and experiment on three different topologies. The generated topology with different sparsity are shown

in Fig. 5. The datasize for each agent is 𝑛 = 100 and we set the constant learning rate 𝛾 = 0.1, 𝜂 = 0.1 and mini-batch size 𝑞 = ⌈
√
𝑛⌉. We
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(a) Algorithms comparison on “a9a” dataset. (b) Algorithms comparison on “MNIST” dataset.

Figure 3: Algorithms Comparision on AUC maximization problem .
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(a) Step-size comparison on Regression.
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(b) Step-size comparison on AUC maximization.

Figure 4: Algorithm(PRECISION ) performance with different step-size.

(a) Topology sparsity 𝑝𝑐 = 0.3. (b) Topology sparsity 𝑝𝑐 = 0.6. (c) Topology sparsity 𝑝𝑐 = 0.9. (d) Topology sparsity 𝑝𝑐 = 0.5 with 20 nodes.

Figure 5: Topology.

observe that the convergence metric𝔐 is insensitive to the network topology. The subplot in Fig. 6(a) and Fig. 6(b) show that 𝔐 slightly

increase as 𝑝𝑐 decreases.

B.4 Node setting
We test the following experiments on different multi-agent systems. The generated topology with a 20-node system are shown in Figs. 5(d).

The constant learning rate𝛾 = 0.1, 𝜂 = 0.1 and mini-batch size 𝑞 = ⌈
√
𝑛⌉. We compare our proposed algorithm PRECISION/PRECISION+

with

two baseline algorithms Prox-GT-SGDA and Prox-DSGDA in terms of the convergence metric in (13). We observe similar results as shown in

Section 4. Thus, we can conclude that our proposed algorithms PRECISION/PRECISION+
enjoy low sample and communication complexities

in general.

C PROOF OF LEMMAS
Before diving in our theoretical analysis, we first define the following notations:

• x̄𝑡 = 1

𝑚

∑𝑚
𝑖=1

x𝑖,𝑡 and x𝑡 = [x⊤
1,𝑡
, · · · , x⊤𝑚,𝑡 ]⊤ for any vector x;
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(b) Topology sparsity comparison on AUC
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Figure 6: Algorithms Comparision.

• ∇x𝐹𝑡 = [∇x𝐹 (x1,𝑡 , y1,𝑡 )⊤, · · · ,∇x𝐹 (x𝑚,𝑡 , y𝑚,𝑡 )⊤]⊤;
• ∇y𝐹𝑡 = [∇y𝐹 (x1,𝑡 , y1,𝑡 )⊤, · · · ,∇y𝐹 (x𝑚,𝑡 , y𝑚,𝑡 )⊤]⊤;
• E(x𝑡 ) = 1

𝑚

∑𝑚
𝑖=1

∥x𝑖,𝑡 − x̄𝑡 ∥2
for any vector x.

C.1 Proof of Lemma 3:
Our first step is to show the descent property of PRECISION algorithm on the function 𝑄 (·) as shown in Lemma 3.

Proof. Let 𝐽 (x𝑡 ) = maxy 𝐹 (x𝑡 , y). According to the algorithm update, we have:

𝐽 (x̄𝑡+1) − 𝐽 (x̄𝑡 )
(𝑎)
≤ ⟨∇𝐽 (x̄𝑡 ), x̄𝑡+1 − x̄𝑡 ⟩ +

𝐿𝐽

2

∥x̄𝑡+1 − x̄𝑡 ∥2

≤
〈
∇𝐽 (x̄𝑡 ) , 𝜈

(
1

𝑚

∑︁
𝑖∈𝑀

x̃𝑖,𝑡 − x̄𝑡

)〉
+
𝜈2𝐿𝐽

2






 1

𝑚

∑︁
𝑖

x̃𝑖,𝑡 − x̄𝑡






2

≤ 𝜈
1

𝑚

∑︁
𝑖

〈
∇𝐽 (x̄𝑡 ) , x̃𝑖,𝑡 − x̄𝑡

〉
+
𝜈2𝐿𝐽

2

1

𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2

≤ 𝜈
1

𝑚

∑︁
𝑖

〈
∇𝐽 (x̄𝑡 ) − p𝑖,𝑡 − 𝜏

(
x̄𝑡 − x𝑖,𝑡

)
, x̃𝑖,𝑡 − x̄𝑡

〉
+
𝜈2𝐿𝐽

2

1

𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2

− 𝜈𝜏

𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2 − ℎ (x̄𝑡+1) + ℎ (x̄𝑡 )

≤ 𝜈

𝑚

∑︁
𝑖

〈
∇𝐽 (x̄𝑡 ) − p𝑖,𝑡 , x̃𝑖,𝑡 − x̄𝑡

〉
+ 𝜈𝜏

𝑚

∑︁
𝑖

〈
x𝑖,𝑡 − x̄𝑡 , x̃𝑖,𝑡 − x̄𝑡

〉
+
𝜈2𝐿𝐽

2𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2 − 𝜈𝜏

𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2 − ℎ (x̄𝑡+1) + ℎ (x̄𝑡 ) , (36)

where (a) is because of Lipschitz continuous gradients of 𝐽 .

□

𝑄 (x̄𝑡+1) ≤ 𝑄 (x̄𝑡 ) +
𝜈

𝑚

∑︁
𝑖

〈
∇𝐽 (x̄𝑡 ) − p𝑖,𝑡 , x̃𝑖,𝑡 − x̄𝑡

〉
+ 𝜈𝜏

𝑚

∑︁
𝑖

〈
x𝑖,𝑡 − x̄𝑡 , x̃𝑖,𝑡 − x̄𝑡

〉
+
𝜈2𝐿𝐽

2𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2 − 𝜈𝜏

𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2

≤ 𝑄 (x̄𝑡 ) +
𝜈

𝑚

∑︁
𝑖

〈
∇𝐽 (x̄𝑡 ) − ∇x𝐹 (x̄𝑡 , ȳ𝑡 ), x̃𝑖,𝑡 − x̄𝑡

〉
+ 𝜈

𝑚

∑︁
𝑖

〈
∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡 , x̃𝑖,𝑡 − x̄𝑡

〉
+ 𝜈𝜏

𝑚

∑︁
𝑖

〈
x𝑖,𝑡 − x̄𝑡 , x̃𝑖,𝑡 − x̄𝑡

〉
+
𝜈2𝐿𝐽

2𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2 − 𝜈𝜏

𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2
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≤ 𝑄 (x̄𝑡 ) +
𝜈

𝑚

∑︁
𝑖

1

2𝛽



∇𝐽 (x̄𝑡 ) − ∇x𝐹 (x̄𝑡 , ȳ𝑡 )


2 + 𝜈

𝑚

∑︁
𝑖

𝛽

2



x̃𝑖,𝑡 − x̄𝑡


2

+ 𝜈 1

2𝛽



∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡


2 + 𝜈

𝑚

∑︁
𝑖

𝛽

2



x̃𝑖,𝑡 − x̄𝑡


2

+ 𝜈𝜏

𝑚

1

2𝛽

∑︁
𝑖



x̄𝑡 − x𝑖,𝑡


2 + 𝜈𝜏

𝑚

∑︁
𝑖

𝛽

2



x̃𝑖,𝑡 − x̄𝑡


2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2

≤ 𝑄 (x̄𝑡 ) +
𝜈𝐿2

𝐹

2𝛽𝑚

∑︁
𝑖



y∗𝑡 − ȳ𝑡


2 + 𝜈

2𝛽



∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡


2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 +

(
𝛽𝜈

𝑚
+ 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2

≤ 𝑄 (x̄𝑡 ) +
𝜈𝐿2

𝐹

2𝛽



y∗𝑡 − ȳ𝑡


2 + 𝜈

2𝛽

∑︁
𝑖



∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡


2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2 , (37)

C.2 Proof of Lemma 4
Note that in the RHS of Lemma 3, there is an error term ∥y∗𝑡 − ȳ𝑡 ∥2

. Here, Lemma 4 states the contraction property of this error term.

Proof. Recall that y∗𝑡 = y∗ (x̄𝑡 ) = arg maxy 𝐹 (x̄𝑡 , y). We have:

ȳ𝑡+1 − y∗𝑡


2

=






ȳ𝑡 + 𝜂
(

1

𝑚

∑︁
𝑖∈𝑀

ỹ𝑖 − ȳ𝑡

)
− y∗𝑡






2

=


ȳ𝑡 − y∗𝑡



2 + 2𝜂

〈
ȳ𝑡 − y∗𝑡 ,

1

𝑚

∑︁
𝑖∈𝑀

ỹ𝑖 − ȳ𝑡

〉
+ 𝜂2






 1

𝑚

∑︁
𝑖∈𝑀

ỹ𝑖 − ȳ𝑡






2

≤


ȳ𝑡 − y∗𝑡



2 + 2𝜂

〈
ȳ𝑡 − y∗𝑡 ,

1

𝑚

∑︁
𝑖∈𝑀

ỹ𝑖 − ȳ𝑡

〉
+ 𝜂2 ∥ỹ𝑡 − 1ȳ𝑡 ∥2 . (38)

From the projection operation, we have

ỹ𝑖 (y𝑖,𝑡 )=𝑎𝑟𝑔𝑚𝑖𝑛y𝑖 ∈Y


y𝑖 −

(
y𝑖,𝑡 + 𝛼d𝑖,𝑡

)

2

. (39)

Due to the optimality condition for the constrained convex optimization, we have〈
ỹ𝑖 −

(
y𝑖,𝑡 + 𝛼d𝑖,𝑡

)
, y − ỹ𝑖

〉
≥ 0, ∀y ∈ Y, 𝑖 ∈ 𝑀. (40)

Thus, we have

⟨−d𝑖,𝑡 + 𝛼−1
(̃
y𝑖 − y𝑖,𝑡

)
, y − ỹ𝑖 ⟩ ≥ 0,∀y ∈ Y, 𝑖 ∈ 𝑀. (41)

Moreover, we have

𝐹 (x̄𝑡 , y) − 𝐹 (x̄𝑡 , ȳ𝑡 ) −
〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) , y − ȳ𝑡

〉
≤ − 𝜇

2

∥y − ȳ𝑡 ∥2
(42)

Rearranging the terms in the above inequality, we have

𝐹 (x̄𝑡 , y) +
𝜇

2

∥y − ȳ𝑡 ∥2 ≤𝐹 (x̄𝑡 , ȳ𝑡 ) +
〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) , y − ȳ𝑡

〉
≤𝐹 (x̄𝑡 , ȳ𝑡 ) +

1

𝛼

〈
ỹ𝑡 − 1ȳ𝑡 , y − 1

𝑚

∑︁
𝑖∈𝑀

ỹ𝑖

〉
+

〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 , y − 1

𝑚

∑︁
𝑖∈𝑀

ỹ𝑖

〉
+

〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) , ỹ𝑡 − 1ȳ𝑡

〉
− 1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 . (43)

Since 𝐹 (x, y) is gradient Lipschitz and due to the condition in this lemma

𝛼 ≤ 1

2𝐿𝐹
≤ 1

𝐿𝐹
,

we have
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− 1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 ≤ −𝐿𝐹

2

∥ỹ𝑡 − 1ȳ𝑡 ∥2

≤ 𝐹 (x𝑡 , ỹ𝑡 ) − 𝐹 (x̄𝑡 , ȳ𝑡 ) −
〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) , ỹ𝑡 − 1ȳ𝑡

〉
. (44)

𝐹 (x̄𝑡 , y) +
𝜇

2

∥y − ȳ𝑡 ∥2 ≤𝐹 (x𝑡 , ỹ𝑡 ) +
1

𝛼
⟨ỹ𝑡 − 1ȳ𝑡 , y − ỹ𝑡 ⟩

+
〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 , y − ỹ𝑡

〉
+ 1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 . (45)

Note that in the last inequality, we have

1

𝛼
⟨ỹ𝑡 − 1ȳ𝑡 , y − ỹ𝑡 ⟩ +

1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2

=
1

𝛼
⟨ỹ𝑡 − 1ȳ𝑡 , ȳ𝑡 − ỹ𝑡 ⟩ +

1

𝛼
⟨ỹ𝑡 − 1ȳ𝑡 , y − ȳ𝑡 ⟩ +

1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2

=
1

𝛼
⟨ỹ𝑡 − 1ȳ𝑡 , y − ȳ𝑡 ⟩ −

1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 , (46)

which thus leads to

𝐹 (x̄𝑡 , y) +
𝜇

2

∥y − ȳ𝑡 ∥2 ≤ 𝐹 (x̄𝑡 , ỹ𝑡 ) +
1

𝛼
⟨ỹ𝑡 − 1ȳ𝑡 , y − ȳ𝑡 ⟩

+
〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 , y − ỹ𝑡

〉
− 1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 . (47)

We let y = y∗𝑡 and obtain

𝐹
(
x̄𝑡 , y∗𝑡

)
+ 𝜇

2



y∗𝑡 − ȳ𝑡


2 ≤𝐹 (x̄𝑡 , ỹ𝑡 ) +

1

𝛼

〈
ỹ𝑡 − 1ȳ𝑡 , y∗𝑡 − ȳ𝑡

〉
+

〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 , y∗𝑡 − ỹ𝑡

〉
− 1

2𝛼
∥ỹ𝑡 − 1ȳ𝑡 ∥2 , (48)

which further yields

𝜇

2

∥y∗𝑡 − ȳ𝑡





2 + 1

2𝛼





 ỹ𝑡 − 1ȳ𝑡 ∥2

≤ 1

𝛼

〈
ỹ𝑡 − 1ȳ𝑡 , y∗𝑡 − ȳ𝑡

〉
+

〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 , y∗𝑡 − ỹ𝑡

〉
. (49)

𝐹
(
x̄𝑡 , y∗𝑡

)
≥ 𝐹 (x̄𝑡 , ỹ𝑡 ) is due to strong concavity and y∗𝑡 = argmaxy∈Y 𝐹 (x̄𝑡 , y) . In addition, for the last term of the above inequality, we

further bound it as follows 〈
∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 , y∗𝑡 − ỹ𝑡

〉
≤ 2

𝜇



∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡


2 + 𝜇

4



y∗𝑡 − ȳ𝑡


2 + 𝜇

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 . (50)

Then, we have

2𝜂
〈
ỹ𝑡 − 1ȳ𝑡 , ȳ𝑡 − y∗𝑡

〉
≤ −𝜂𝛼𝜇

2



ȳ𝑡 − y∗𝑡


2 − 2𝛼 − 𝜂𝛼𝜇

2

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 4𝜂𝛼

𝜇



∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡


2

, (51)

which gives the upper bound of the second term on the right-hand side of 38. Then, we have

ȳ𝑡+1 − y∗𝑡


2 ≤ 2 − 𝜂𝛼𝜇

2



ȳ𝑡 − y∗𝑡


2 − 2𝜂 − 𝜂𝛼𝜇 − 2𝜂2

2

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 4𝜂𝛼

𝜇



∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡


2

.. (52)

Thus, according to the condition of this lemma that 𝜂 ≤ 1/8 and 𝛼 ≤ (4𝐿𝐹 )−1 ≤ (4𝜇)−1
by the fact 𝐿𝐹 ≥ 𝜇 > 0, we have

−2𝜂 − 𝜂𝛼𝜇 − 2𝜂2

2

≤ −3𝜂

4

, (53)

which eventually leads to 

ȳ𝑡+1 − y∗𝑡


2 ≤

(
1 − 𝜂𝛼𝜇

2

) 

ȳ𝑡 − y∗𝑡


2 − 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 4𝜂𝛼

𝜇



∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡


2

. (54)
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Denoting y∗ (x𝑡 ) and y∗ (x𝑡+1) as y∗𝑡 and y∗
𝑡+1

for abbreviation, we start the proof by decomposing the term



ȳ𝑡+1 − y∗
𝑡+1



2

as follows



ȳ𝑡+1 − y∗𝑡+1



2

=


ȳ𝑡+1 − y∗𝑡 + y∗𝑡 − y∗𝑡+1



2

≤
(
1 + 𝜇𝜂𝛼

4

) 

ȳ𝑡+1 − y∗𝑡


2 +

(
1 + 4

𝜇𝜂𝛼

) 

y∗𝑡 − y∗𝑡+1



2

≤
(
1 + 𝜇𝜂𝛼

4

) 

ȳ𝑡+1 − y∗𝑡


2 +

(
1 + 4

𝜇𝜂𝛼

)
𝐿2

y ∥x̄𝑡+1 − x̄𝑡 ∥2 . (55)

Next, plugging the updating rule x̄𝑡+1 = x̄𝑡 + 𝜈
(

1

𝑚

∑
𝑖 x̃𝑖,𝑡 − x̄𝑡

)
into the above inequality, we obtain



ȳ𝑡+1 − y∗𝑡+1



2 ≤
(
1 + 𝜇𝜂𝛼

4

) 

ȳ𝑡+1 − y∗𝑡


2 +

(
1 + 4

𝜇𝜂𝛼

)
𝐿2

y𝜈
2






 1

𝑚

∑︁
𝑖

x̃𝑖,𝑡 − x̄𝑡






2

. (56)

Furthermore, we have



ȳ𝑡+1 − y∗𝑡


2

≤
(
1 − 𝜂𝛼𝜇

2

) 

ȳ𝑡 − y∗𝑡


2 − 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 4𝜂𝛼

𝜇



∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡


2

. (57)

According to the conditions 0 < 𝛼 ≤ (4𝐿𝐹 )−1 , 0 < 𝜂 ≤ 1/8 and due to 𝐿𝐹 ≥ 𝜇 > 0, we have

𝛼 ≤ 1

4𝐿𝐹
≤ 1

4𝜇
, and 𝜂𝛼 ≤ 1

32𝜇
, (58)

which yield

(
1 + 𝜇𝜂𝛼

4

) (
1 − 𝜇𝜂𝛼

2

)
= 1 − 𝜇𝜂𝛼

2

+ 𝜇𝜂𝛼

4

− 𝜇2𝜂2𝛼2

4

≤ 1 − 𝜇𝜂𝛼

4

(59)

−
(
1 + 𝜇𝜂𝛼

4

)
3𝜂

4

≤ −3𝜂

4

,
4𝜂𝛼

𝜇

(
1 + 𝜇𝜂𝛼

4

)
=

4𝜂𝛼

𝜇
+ 𝜂2𝛼2 <

75𝜂𝛼

16𝜇
(60)

and

(
1 + 4

𝜇𝜂𝛼

)
𝐿2

y𝜈
2 ≤ 129

32

𝐿2

y𝜈

𝜇𝜂𝛼
<

17𝐿2

y𝜈
2

2𝜇𝜂𝛼
(61)

We eventually obtain



ȳ𝑡+1 − y∗𝑡+1



2 ≤
(
1 − 𝜇𝜂𝛼

4

) 

ȳ𝑡 − y∗𝑡


2 − 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2

+ 75𝜂𝛼

16𝜇



¯d𝑡 − ∇y𝐹 (x̄𝑡 , ȳ𝑡 )


2 +

17𝐿2

y𝜈
2

2𝜇𝜂𝛼𝑚
∥x̃𝑡 − 1x̄𝑡 ∥2 . (62)

which completes the proof. □

C.3 Proof of Lemma 5
Next, by combining the results from Lemmas 3-4, we have the descent result shown in Lemma 5.
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Proof. From Lemmas 3-4, we have

𝑄 (x̄𝑡+1) −𝑄 (x̄𝑡 ) +
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

[
∥ȳ𝑡+1 − y∗𝑡+1

∥2 − ∥y∗𝑡 − ȳ𝑡 ∥2
]

≤
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

[ (
− 𝜇𝜂𝛼

4

) 

ȳ𝑡 − y∗𝑡


2 − 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 75𝜂𝛼

16𝜇



¯d𝑡 − ∇y𝐹 (x̄𝑡 , ȳ𝑡 )


2

+
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
∥x̃𝑡 − 1x̄𝑡 ∥2

]
+
𝜈𝐿2

𝐹

2𝛽



ȳ𝑡 − y∗𝑡


2 + 𝜈

2𝛽



∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡


2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2

=
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

[
− 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 75𝜂𝛼

16𝜇



¯d𝑡 − ∇y𝐹 (x̄𝑡 , ȳ𝑡 )


2

+
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
∥x̃𝑡 − 1x̄𝑡 ∥2

]
−
𝜈𝐿2

𝐹

2𝛽



ȳ𝑡 − y∗𝑡


2 + 𝜈

2𝛽



∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡


2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2 . (63)

Note that

∥∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − p̄𝑡 ∥2

=∥∇x𝐹 (x̄𝑡 , ȳ𝑡 ) −
1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) +
1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − p̄𝑡 ∥2

≤2∥∇x𝐹 (x̄𝑡 , ȳ𝑡 ) −
1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 )∥2 + 2∥ 1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − p̄𝑡 ∥2

≤ 2

𝑚

𝑚∑︁
𝑖=1

∥∇x𝐹 (x̄𝑡 , ȳ𝑡 ) − ∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 )∥2 + 2∥ 1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − p̄𝑡 ∥2

≤
2𝐿2

𝐹

𝑚

𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2] + 2∥ 1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − p̄𝑡 ∥2 . (64)

Similarly, we have:

∥∇y𝐹 (x̄𝑡 , ȳ𝑡 ) − ¯d𝑡 ∥2 ≤
2𝐿2

𝐹

𝑚

𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2+∥ȳ𝑡 − y𝑖,𝑡 ∥2]

+ 2∥ 1

𝑚

𝑚∑︁
𝑖=1

∇y𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − ¯d𝑡 ∥2 . (65)

Thus, we have

𝑄 (x̄𝑡+1) −𝑄 (x̄𝑡 ) +
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

[
∥ȳ𝑡+1 − y∗𝑡+1

∥2 − ∥y∗𝑡 − ȳ𝑡 ∥2
]

≤
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

{
− 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 75𝜂𝛼

16𝜇

[ 2𝐿2

𝐹

𝑚

𝑚∑︁
𝑖=1

(∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2) + 2∥ 1

𝑚

𝑚∑︁
𝑖=1

∇y𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − ¯d𝑡 ∥2
]

+
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
∥x̃𝑡 − 1x̄𝑡 ∥2

}
+ 𝜈

2𝛽

{ 2𝐿2

𝐹

𝑚

𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2] + 2∥ 1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖 (x𝑖,𝑡 , y𝑖,𝑡 ) − p̄𝑡 ∥2
}

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2 −

𝜈𝐿2

𝐹

2𝛽



ȳ𝑡 − y∗𝑡


2

(𝑎)
≤

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

{
− 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 75𝜂𝛼

16𝜇

[ 2𝐿2

𝐹

𝑚

𝑚∑︁
𝑖=1

(∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2) + 2

𝑚
∥∇y𝐹 (x𝑡 , y𝑡 ) − ¯d𝑡 ∥2

]
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+
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
∥x̃𝑡 − 1x̄𝑡 ∥2

}
+ 𝜈

2𝛽

{ 2𝐿2

𝐹

𝑚

𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2] + 2

𝑚
∥∇x𝐹 (x𝑡 , y𝑡 ) − p̄𝑡 ∥2

}
+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2 −

𝜈𝐿2

𝐹

2𝛽



ȳ𝑡 − y∗𝑡


2

=
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

{
− 3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 + 75𝜂𝛼

16𝜇

2

𝑚
∥∇y𝐹 (x𝑡 , y𝑡 ) − ¯d𝑡 ∥2

+
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
∥x̃𝑡 − 1x̄𝑡 ∥2

}
+ 𝜈

2𝛽

2

𝑚
∥∇x𝐹 (x𝑡 , y𝑡 ) − p̄𝑡 ∥2

+ 𝜈𝜏

2𝛽𝑚
∥x𝑡 − 1x̄𝑡 ∥2 −

(
𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
∥x̃𝑡 − 1x̄𝑡 ∥2

+
[ 𝜈
𝛽

𝐿2

𝐹

𝑚
+

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝐹

𝑚

] 𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2] −
𝜈𝐿2

𝐹

2𝛽



ȳ𝑡 − y∗𝑡


2

, (66)

where (a) due to ∥ 1

𝑚

∑𝑚
𝑖=1

x𝑖,𝑡 − 𝑥𝑡 ∥2 ≤ 1

𝑚

∑𝑚
𝑖=1

∥x𝑖,𝑡 − 𝑥𝑡 ∥2
.

Telescoping the above inequality, we have the stated result. □

C.4 Proof of Lemma 6
Next, we prove the contraction of iterations in the following lemma, which is useful in analyzing the decentralized gradient tracking

algorithms.

Proof. First for the iterates x𝑡 , we have the following contraction:

∥M̃x𝑡 − 1x̄𝑡 ∥2 = ∥M̃(x𝑡 − 1x̄𝑡 )∥2 ≤ 𝜆2∥x𝑡 − 1x̄𝑡 ∥2 . (67)

This is because x𝑡 − 1x𝑡 is orthogonal to 1, which is the eigenvector corresponding to the largest eigenvalue of M̃, and 𝜆 = max{|𝜆2 |, |𝜆𝑚 |}.
Hence,

∥x𝑡 − 1x̄𝑡 ∥2 = ∥M̃x𝑡−1 + 𝜈 (x̃𝑡−1 − x𝑡−1) − 1[x̄𝑡−1 + 𝜈 (
1

𝑚

∑︁
𝑖

x̃𝑖 − x𝑡−1)] ∥2

≤ (1 + 𝑐1)𝜆2∥x𝑡−1 − 1x̄𝑡−1∥2 + (1 + 1

𝑐1

)𝜈2∥x̃𝑡−1 − x𝑡−1∥2 . (68)

For y𝑡 , we have

∥y𝑡 − 1ȳ𝑡 ∥2 ≤ (1 + 𝑐2)𝜆2∥y𝑡−1 − 1ȳ𝑡−1∥2 + (1 + 1

𝑐2

)𝜂2∥ỹ𝑡−1 − ȳ𝑡−1∥2 . (69)

According to the update, we have

∥x𝑡 − x𝑡−1∥2 = ∥M̃x𝑡−1 + 𝜈 (x̃𝑡−1 − x𝑡−1) − x𝑡−1∥2

=∥(M̃ − I)x𝑡−1 + 𝜈 (x̃𝑡−1 − x𝑡−1)∥2 ≤ 2∥(M̃ − I)x𝑡−1∥2 + 2𝜈2∥x̃𝑡−1 − x𝑡−1∥2

=2∥(M̃ − I) (x𝑡−1 − 1x̄𝑡−1)∥2 + 2𝜈2∥x̃𝑡−1 − x𝑡−1∥2

≤8∥(x𝑡−1 − 1x̄𝑡−1)∥2 + 2𝜈2∥x̃𝑡−1 − x𝑡−1∥2

≤8E(x𝑡−1) + 2𝜈2∥x̃𝑡−1 − x𝑡−1∥2
(70)

and also

∥y𝑡 − y𝑡−1∥2 ≤ 8E(y𝑡−1) + 2𝜂2∥ỹ𝑡−1 − y𝑡−1∥2
(71)

□

Lemma 8 (Differential Bound on Estimator). Under Assumption 1, the following inequalities hold:

𝑇∑︁
𝑡=1

E∥v𝑡 − v𝑡−1∥2 ≤
𝑇∑︁
𝑡=1

3𝐿2

𝐹E∥x𝑡−1 − x𝑡 ∥2 + 3𝐿2

𝐹E∥y𝑡−1 − y𝑡 ∥2, (72)

𝑇∑︁
𝑡=1

E∥u𝑡 − u𝑡−1∥2 ≤
𝑇∑︁
𝑡=1

3𝐿2

𝐹E∥x𝑡−1 − x𝑡 ∥2 + 3𝐿2

𝐹E∥y𝑡−1 − y𝑡 ∥2 . (73)
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Proof. For ∥v𝑡 − v𝑡−1∥2
, we have

E∥v𝑡 − v𝑡−1∥2 = E∥v𝑡 − ∇xF𝑡 + ∇xF𝑡 − ∇xF𝑡−1 + ∇xF𝑡−1 − v𝑡−1∥2

≤3E∥v𝑡 − ∇x𝐹𝑡 ∥2 + 3E∥∇x𝐹𝑡 − ∇x𝐹𝑡−1∥2 + 3E∥∇x𝐹𝑡−1 − v𝑡−1∥2

≤3𝐿𝐹E∥x𝑡−1 − x𝑡 ∥2 + 3𝐿2

𝐹E∥y𝑡−1 − y𝑡 ∥2 . (74)

Thus, we have:

∑𝑇
𝑡=1
E∥v𝑡 − v𝑡−1∥2 ≤ ∑𝑇

𝑡=1
3𝐿2

𝐹
E∥x𝑡−1 − x𝑡 ∥2 + 3𝐿2

𝐹
E∥y𝑡−1 − y𝑡 ∥2

, and similarly,

∑𝑇
𝑡=1
E∥u𝑡 − u𝑡−1∥2 ≤ ∑𝑇

𝑡=1
3𝐿2

𝐹
E∥x𝑡−1 −

x𝑡 ∥2 + 3𝐿2

𝐹
E∥y𝑡−1 − y𝑡 ∥2

. □

C.5 Proof of Lemma 7
Next, we bound the error of the gradient estimators as the follows:

Proof. From the algorithm update, we have:

∥ ¯d𝑖,𝑡 −∇𝒙𝐹𝑖,𝑡︸        ︷︷        ︸
𝐴𝑖,𝑡

∥2= ∥¯d𝑖,𝑡−1+
1

|S𝑖,𝑡 |
∑︁
𝑗∈S𝑖,𝑡

∇𝒙 𝑓𝑖, 𝑗 (𝒙𝑖,𝑡 , y𝑖,𝑡 )−∇𝒙 𝑓𝑖, 𝑗 (𝒙𝑖,𝑡−1, y𝑖,𝑡−1)−∇𝒙𝐹𝑖,𝑡 ∥2

=∥ ¯d𝑖,𝑡−1−∇𝒙𝐹𝑖,𝑡−1︸               ︷︷               ︸
𝐴𝑖,𝑡−1

+ 1

|S𝑖,𝑡 |
∑︁
𝑗∈S𝑖,𝑡

∇𝒙 𝑓𝑖,𝑡 (𝒙𝑖,𝑡 , y𝑖,𝑡 )−∇𝒙 𝑓𝑖,𝑡 (𝒙𝑖,𝑡−1, y𝑖,𝑡−1)+∇𝒙𝐹𝑖,𝑡−1−∇𝒙𝐹𝑖,𝑡︸                                                                                  ︷︷                                                                                  ︸
𝐵𝑖,𝑡

∥2

=∥𝐴𝑖,𝑡−1∥2 + ∥𝐵𝑖,𝑡 ∥2 + 2⟨𝐴𝑖,𝑡−1, 𝐵𝑖,𝑡 ⟩. (75)

Note that E𝑡 [𝐵𝑖,𝑡 ] = 0, where the expectation is taken over the randomness in 𝑡 th iteration. Thus,

E𝑡 ∥𝐴𝑖,𝑡 ∥2 = ∥𝐴𝑖,𝑡−1∥2 + E𝑡 ∥𝐵𝑖,𝑡 ∥2 . (76)

Also, with |S𝑖,𝑡 | = 𝑞, we have

E𝑡 ∥𝐵𝑖,𝑡 ∥2=E𝑡 ∥
1

|S𝑖,𝑡 |
∑︁
𝑗∈S𝑖,𝑡

∇𝒙 𝑓𝑖, 𝑗 (𝒙𝑖,𝑡 , y𝑖,𝑡 )−∇𝒙 𝑓𝑖, 𝑗 (𝒙𝑖,𝑡−1, y𝑖,𝑡−1)−∇𝒙𝐹𝑖,𝑡 +∇𝒙𝐹𝑖,𝑡−1∥2

≤ 1

|S𝑖,𝑡 |2
∑︁
𝑗∈S𝑖,𝑡

E𝑡 ∥∇𝒙 𝑓𝑖, 𝑗 (𝒙𝑖,𝑡 , y𝑖,𝑡 )−∇𝒙 𝑓𝑖, 𝑗 (𝒙𝑖,𝑡−1, y𝑖,𝑡−1)−∇𝒙𝐹𝑖,𝑡 + ∇𝒙𝐹𝑖,𝑡−1∥2

≤
𝐿2

𝑓

𝑞

(
∥𝒙𝑖,𝑡 − 𝒙𝑖,𝑡−1∥2 + ∥y𝑖,𝑡 − y𝑖,𝑡−1∥2

)
. (77)

Taking full expectation and telescoping (77) over 𝑡 from (𝑛𝑡 − 1)𝑞 + 1 to 𝑡 , where 𝑡 ≤ 𝑛𝑡𝑞 − 1, we have

E∥𝐴𝑡 ∥2 ≤ E∥𝐴𝑡−1∥2 +
𝐿2

𝑓

𝑞
E
(
∥𝒙𝑡 − 𝒙𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

)
≤ E∥𝐴(𝑛𝑡−1)𝑞 ∥2 +

𝑡∑︁
𝑟=(𝑛𝑡−1)𝑞+1

𝐿2

𝑓

𝑞
E
(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
. (78)
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Thus, we have:

𝑡∑︁
𝑘=0

E∥𝐴𝑘 ∥2 =

𝑞−1∑︁
𝑘=0

E∥𝐴𝑘 ∥2 + · · · +
𝑡∑︁

𝑘=(𝑛𝑡−1)𝑞
E∥𝐴𝑘 ∥2

≤𝑞∥𝐴0∥2 +
𝑞−1∑︁
𝑘=1

𝑘∑︁
𝑟=1

𝐿2

𝑓

𝑞

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
+ · · ·

+
(
𝑡 − (𝑛𝑡 − 1)𝑞

)
∥𝐴(𝑛𝑡−1)𝑞 ∥2 +

𝑡∑︁
𝑘=(𝑛𝑡−1)𝑞+1

𝑘∑︁
𝑟=(𝑛𝑡−1)𝑞+1

𝐿2

𝑓

𝑞

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
≤𝑞∥𝐴0∥2 +

𝑞−1∑︁
𝑟=1

𝑞−1∑︁
𝑘=𝑟

𝐿2

𝑓

𝑞

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
+ · · ·

+
(
𝑡 − (𝑛𝑡 − 1)𝑞

)
∥𝐴(𝑛𝑡−1)𝑞 ∥2 +

𝑡∑︁
𝑟=(𝑛𝑡−1)𝑞+1

𝑡∑︁
𝑘=𝑟

𝐿2

𝑓

𝑞

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
≤𝑞∥𝐴0∥2 +

𝑞−1∑︁
𝑟=1

𝐿2

𝑓

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
+ · · ·

+
(
𝑡 − (𝑛𝑡 − 1)𝑞

)
∥𝐴(𝑛𝑡−1)𝑞 ∥2 +

𝑡∑︁
𝑟=(𝑛𝑡−1)𝑞+1

𝐿2

𝑓

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
=

𝑡∑︁
𝑟=0

∥𝐴(𝑛𝑟 −1)𝑞 ∥2 +
𝑡∑︁

𝑟=1

𝐿2

𝑓

(
∥𝒙𝑟 − 𝒙𝑟−1∥2 + ∥y𝑟 − y𝑟−1∥2

)
. (79)

Thus, we have:

𝑇∑︁
𝑡=0

∥¯d𝑡 −∇𝒙𝐹𝑡 ∥2 ≤
𝑇∑︁
𝑡=0

E∥¯d(𝑛𝑡−1)𝑞−∇𝒙𝐹 (𝑛𝑡−1)𝑞)∥2+
𝑇∑︁
𝑡=1

𝐿2

𝑓

(
∥𝒙𝑡 −𝒙𝑡−1∥2+∥y𝑡 −y𝑡−1∥2

)
(80)

Similarly, we have:

𝑇∑︁
𝑡=0

∥p̄𝑡 −∇y𝐹𝑡 ∥2 ≤
𝑇∑︁
𝑡=0

E∥p̄(𝑛𝑡−1)𝑞−∇y𝐹 (𝑛𝑡−1)𝑞)∥2+
𝑇∑︁
𝑡=1

𝐿2

𝑓

(
∥𝒙𝑡 −𝒙𝑡−1∥2+∥y𝑡 −y𝑡−1∥2

)
. (81)

This completes the proof. □

D PROOF FOR THEOREM 1 AND THEOREM 2
With Lemmas 1-8 and the defined potential function, we have:

𝑄 (x̄𝑇+1) −𝑄 (x̄0) +
4𝜈𝐿2

𝐹

𝛽

[
∥ȳ𝑇+1 − y∗𝑇+1

∥2 − ∥y∗
0
− ȳ0∥2

]
≤ 75𝜂𝛼

16𝜇

2

𝑚

𝑇∑︁
𝑡=0

∥∇y𝐹 (x𝑡 , y𝑡 ) − ¯d𝑡 ∥2 + 𝜈

2𝛽

2

𝑚

𝑇∑︁
𝑡=0

∥∇x𝐹 (x𝑡 , y𝑡 ) − p̄𝑡 ∥2

︸                                                                                ︷︷                                                                                ︸
𝑅1

−𝜈𝐿𝐹
2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

+ 𝜈𝜏

2𝛽𝑚

𝑇∑︁
𝑡=0

∥x𝑡 − 1x̄𝑡 ∥2 +
[ 𝜈
𝛽

𝐿2

𝐹

𝑚
+

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝐹

𝑚

] 𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥x̄𝑡 − x𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2]

−
(
−

17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
𝑇∑︁
𝑡=0

∥x̃𝑡 − 1x̄𝑡 ∥2 −
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2 , (82)
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With the defined potential function 𝔭, we have

E𝔭𝑇+1 − 𝔭0 ≤ 75𝜂𝛼

16𝜇

2

𝑚

𝑇∑︁
𝑡=0

∥∇y𝐹 (𝒙𝑡 , y𝑡 ) − ¯d𝑡 ∥2 + 𝜈

2𝛽

2

𝑚

𝑇∑︁
𝑡=0

∥∇𝒙𝐹 (𝒙𝑡 , y𝑡 ) − p̄𝑡 ∥2

︸                                                                                 ︷︷                                                                                 ︸
𝑅1

−
𝜈𝐿𝑓

2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

+ 𝜈𝜏

2𝛽𝑚

𝑇∑︁
𝑡=0

∥𝒙𝑡 − 1𝒙𝑡 ∥2 +
[ 𝜈
𝛽

𝐿2

𝑓

𝑚
+

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

] 𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥𝒙𝑡 − 𝒙𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2]

−
(
−

17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
𝑇∑︁
𝑡=0

∥𝒙̃𝑡 − 1𝒙𝑡 ∥2 −
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

𝑇∑︁
𝑡=0

∥ỹ𝑡+1 − ȳ𝑡 ∥2 , (83)

For the term 𝑅1, we have

75𝜂𝛼

16𝜇

2

𝑚

𝑇∑︁
𝑡=0

E∥∇y𝐹𝑡 − ¯d𝑡 ∥2 + 𝜈

2𝛽

2

𝑚

𝑇∑︁
𝑡=0

E∥∇𝒙𝐹𝑡 − p̄𝑡 ∥2

≤ 75𝜂𝛼

16𝜇

2

𝑚
E
( 𝑇∑︁
𝑡=0

∥¯d(𝑛𝑡−1)𝑞 − ∇𝒙𝐹 (𝑛𝑡−1)𝑞 ∥2 +
𝑇∑︁
𝑡=1

𝐿2

𝑓

(
∥𝒙𝑡 − 𝒙𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

) )
+ 𝜈

2𝛽

2

𝑚
E
( 𝑇∑︁
𝑡=0

∥p̄(𝑛𝑡−1)𝑞 − ∇y𝐹 (𝑛𝑡−1)𝑞 ∥2 +
𝑇∑︁
𝑡=1

𝐿2

𝑓

(
∥𝒙𝑡 − 𝒙𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

) )
=𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

) 𝑇∑︁
𝑡=1

E
(
∥𝒙𝑡 − 𝒙𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

)
+ 75𝜂𝛼

16𝜇

2

𝑚

𝑇∑︁
𝑡=0

E∥¯d(𝑛𝑡−1)𝑞 − ∇𝒙𝐹 (𝑛𝑡−1)𝑞 ∥2 + 𝜈

2𝛽

2

𝑚

𝑇∑︁
𝑡=0

E∥p̄(𝑛𝑡−1)𝑞 − ∇y𝐹 (𝑛𝑡−1)𝑞 ∥2 . (84)

Plugging the above results, we have

E𝔭𝑇+1 − 𝔭0 ≤ −
𝜈𝐿𝑓

2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2 + 𝜈𝜏

2𝛽𝑚

𝑇∑︁
𝑡=0

∥𝒙𝑡 − 1𝒙𝑡 ∥2

−
[
1 − (1 + 𝑐1)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

] 𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥𝒙𝑡 − 𝒙𝑖,𝑡 ∥2]

−
[
1 − (1 + 𝑐2)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

] 𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥ȳ𝑡 − y𝑖,𝑡 ∥2]

−
(
−(1 + 1

𝑐1

)𝜈2 −
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
𝑇∑︁
𝑡=0

∥𝒙̃𝑡 − 1𝒙𝑡 ∥2

− [
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

− (1 + 1

𝑐2

)𝜂2]
𝑇∑︁
𝑡=0

∥ỹ𝑡+1 − ȳ𝑡 ∥2

+ 𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

) 𝑇∑︁
𝑡=1

E
(
∥𝒙𝑡 − 𝒙𝑡−1∥2 + ∥y𝑡 − y𝑡−1∥2

)
+ 75𝜂𝛼

16𝜇

2

𝑚

𝑇∑︁
𝑡=0

E∥¯d(𝑛𝑡−1)𝑞 − ∇𝒙𝐹 (𝑛𝑡−1)𝑞 ∥2 + 𝜈

2𝛽

2

𝑚

𝑇∑︁
𝑡=0

E∥p̄(𝑛𝑡−1)𝑞 − ∇y𝐹 (𝑛𝑡−1)𝑞 ∥2

= −
𝜈𝐿𝑓

2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

−
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− 𝜈𝜏

2𝛽𝑚
− (1 + 𝑐1)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂2

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
︸                                                                                                 ︷︷                                                                                                 ︸

𝐶1

𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥𝒙𝑡 − 𝒙𝑖,𝑡 ∥2]
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−
(
−2𝜈2𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 1

𝑐1

)𝜈2 −
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
︸                                                                                                     ︷︷                                                                                                     ︸

𝐶2

𝑇∑︁
𝑡=0

∥𝒙̃𝑡 − 1𝒙𝑡 ∥2

−
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 𝑐2)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
︸                                                                                      ︷︷                                                                                      ︸

𝐶3

𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥ȳ𝑡 − y𝑖,𝑡 ∥2]

− [
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

− (1 + 1

𝑐2

)𝜂2 − 2𝜂𝛼𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
]︸                                                                ︷︷                                                                ︸

𝐶4

𝑇∑︁
𝑡=0

∥ỹ𝑡 − ȳ𝑡 ∥2
(85)

For PRECISION , the outer loop calculates the full gradients. Thus, we have E∥¯d(𝑛𝑡−1)𝑞 −∇𝒙𝐹 (𝑛𝑡−1)𝑞 ∥2 = E∥p̄(𝑛𝑡−1)𝑞 −∇y𝐹 (𝑛𝑡−1)𝑞 ∥2 = 0.

Choosing 𝑐1 = 𝑐2 = 1−𝜆2

1+𝜆2
, we have

𝐶1 =
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− 𝜈𝜏

2𝛽𝑚
− (1 + 𝑐1)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥

[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− 𝜈𝜏

2𝛽𝑚
− (1 − 𝑐1) −

𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥ 𝑐1 −

𝑐1

5

− 𝑐1

5

− 𝑐1

5

− 𝑐1

5

− 𝑐1

5

= 0 (86)

𝐶2 =

(
−2𝜈2𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 1

𝑐1

)𝜈2 −
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
≥ − 𝜈𝜏

6𝑚
− 𝜈𝜏

6𝑚
− 𝜈𝜏

6𝑚
+ 𝜈𝜏

𝑚
− 𝜈𝜏

6𝑚
− 𝜈𝜏

12𝑚
− 𝜈𝜏

6𝑚
> 0 (87)

𝐶3 =
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 𝑐2)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥

[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 − 𝑐2) −

𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥ 𝑐2 −

𝑐2

5

− 𝑐2

5

− 𝑐2

5

− 𝑐2

5

− 𝑐2

5

= 0 (88)

𝐶4 = [
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

− (1 + 1

𝑐2

)𝜂2 − 2𝜂𝛼𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
] ≥

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

−
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

8

−
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

8

= 0 (89)

With parameters

𝜂 ≤ min{ 𝑐1𝑚𝜇

375𝛼𝐿2

𝑓

,
15𝐿2

𝑓

𝛽𝜇𝛼2𝑐1

,
3𝑐2

1
𝑚

10(1 + 𝑐1)𝜇𝛼
}

𝜈 ≤ min{𝑐1𝑚𝛽

40𝐿2

𝑓

,
2𝑐1𝑚𝛽

5𝜏
,

2𝑐1𝛽𝜇
2𝑚

375𝐿4

𝑓

,
5𝜏

3𝑚𝑐1

,
𝜏

6𝑚(1 + 1/𝑐1)
,

3𝜇𝜂𝛼𝜏

17𝐿2

𝑓

,
𝜏

3(𝐿𝑓 +
𝐿2

𝑓

𝜇 )
}

𝛽 ≤ min{ 𝜏

12

,
1

3

}, (90)

we have the stated result for PRECISION :

𝑇∑︁
𝑡=0

(
E[∥𝒙̃𝑡 − 1𝒙𝑡 ∥2 + ∥𝒙𝑡 − 1𝒙𝑡 ∥2] + E∥y∗𝑡 − ȳ𝑡 ∥2

)
≤ E[𝔭0 − 𝔭𝑇+1]

min{𝐶1,𝐶2, 𝜈𝐿
2

𝑓
/2}

. (91)
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For PRECISION+
, we have that

E∥¯d(𝑛𝑡−1)𝑞 − ∇𝒙𝐹 (𝑛𝑡−1)𝑞 ∥2 = E∥p̄(𝑛𝑡−1)𝑞 − ∇y𝐹 (𝑛𝑡−1)𝑞 ∥2 =
𝐼 (N𝑠<𝑀 )

N𝑠
𝜎2

(92)

Recall that N𝑠 = min{𝑐𝛾𝜎2 (𝛾 (𝑘 ) )−1, 𝑐𝜖𝜎
2𝜖−1, 𝑀}. Then we have

𝐼 (N𝑠<𝑀 )
N𝑠

≤ 1

min{𝑐𝜖𝜎2 (𝜖)−1, 𝑐𝛾𝜎
2 (𝛾 (𝑘 ) )−1}

= max{ 𝛾
(𝑘 )

𝑐𝛾𝜎
2
,

𝜖

𝑐𝜖𝜎
2
} ≤ 𝛾 (𝑘 )

𝑐𝛾𝜎
2
+ 𝜖

𝑐𝜖𝜎
2
. (93)

Thus, we have

𝑄 (𝒙𝑇+1) −𝑄 (𝒙0) +
4𝜈𝐿2

𝐹

𝛽

[
∥ȳ𝑇+1 − y∗𝑇+1

∥2 − ∥y∗
0
− ȳ0∥2

]
≤ 75𝜂𝛼

16𝜇

2

𝑚

𝑇∑︁
𝑡=0

∥∇y𝐹 (𝒙𝑡 , y𝑡 ) − ¯d𝑡 ∥2 + 𝜈

2𝛽

2

𝑚

𝑇∑︁
𝑡=0

∥∇𝒙𝐹 (𝒙𝑡 , y𝑡 ) − p̄𝑡 ∥2

︸                                                                                 ︷︷                                                                                 ︸
𝑅1

−𝜈𝐿𝐹
2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

+ 𝜈𝜏

2𝛽𝑚

𝑇∑︁
𝑡=0

∥𝒙𝑡 − 1𝒙𝑡 ∥2 +
[ 𝜈
𝛽

𝐿2

𝐹

𝑚
+

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝐹

𝑚

] 𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥𝒙𝑡 − 𝒙𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2]

−
(
−

17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
𝑇∑︁
𝑡=0

∥𝒙̃𝑡 − 1𝒙𝑡 ∥2 −
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2

≤( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚
)

𝑇∑︁
𝑡=0

(𝛾
(𝑡 )

𝑐𝛾
+ 𝜖

𝑐𝜖
) − 𝜈𝐿𝐹

2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

+ 𝜈𝜏

2𝛽𝑚

𝑇∑︁
𝑡=0

∥𝒙𝑡 − 1𝒙𝑡 ∥2 +
[ 𝜈
𝛽

𝐿2

𝐹

𝑚
+

4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝐹

𝑚

] 𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥𝒙𝑡 − 𝒙𝑖,𝑡 ∥2 + ∥ȳ𝑡 − y𝑖,𝑡 ∥2]

−
(
−

17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
𝑇∑︁
𝑡=0

∥𝒙̃𝑡 − 1𝒙𝑡 ∥2 −
4𝜈𝐿2

𝐹

𝛽𝜇𝜂𝛼

3𝜂

4

∥ỹ𝑡 − 1ȳ𝑡 ∥2

(94)

Since 𝛾𝑡+1 = 1

𝑞

∑𝑘
𝑖=(𝑛𝑘−1)𝑞 ∥𝒙̃𝑡 − 1𝒙𝑡 ∥2

.

E𝔭𝑇+1 − 𝔭0 ≤ −
𝜈𝐿𝑓

2

2

𝑇∑︁
𝑡=0



ȳ𝑡 − y∗𝑡


2

−
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− 𝜈𝜏

2𝛽𝑚
− (1 + 𝑐1)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂2

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
︸                                                                                                 ︷︷                                                                                                 ︸

𝐶1

𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥𝒙𝑡 − 𝒙𝑖,𝑡 ∥2]

−
(
𝑐𝛾 (

75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚
) − 2𝜈2𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 1

𝑐1

)𝜈2 −
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
︸                                                                                                                                    ︷︷                                                                                                                                    ︸

𝐶2

𝑇∑︁
𝑡=0

∥𝒙̃𝑡 − 1𝒙𝑡 ∥2

−
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 𝑐2)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
︸                                                                                      ︷︷                                                                                      ︸

𝐶3

𝑇∑︁
𝑡=0

𝑚∑︁
𝑖=1

[∥ȳ𝑡 − y𝑖,𝑡 ∥2]

− [
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

− (1 + 1

𝑐2

)𝜂2 − 2𝜂𝛼𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
]︸                                                                ︷︷                                                                ︸

𝐶4

𝑇∑︁
𝑡=0

∥ỹ𝑡 − ȳ𝑡 ∥2
(95)
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Choosing 𝑐1 = 𝑐2 =
2𝜆𝑚 (𝑀 )

𝜆
, we have

𝐶1 =
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− 𝜈𝜏

2𝛽𝑚
− (1 + 𝑐1)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥

[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− 𝜈𝜏

2𝛽𝑚
− (1 − 𝑐1) −

𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥ 𝑐1 −

𝑐1

5

− 𝑐1

5

− 𝑐1

5

− 𝑐1

5

− 𝑐1

5

= 0 (96)

𝐶′
2
=

(
𝑐𝛾 (

75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚
) − 2𝜈2𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 1

𝑐1

)𝜈2 −
17𝐿2

y𝜈
2

2𝜇𝑚𝜂𝛼
+ 𝜈𝜏

𝑚
−
𝜈2𝐿𝐽

2𝑚
− 𝜈𝛽

𝑚
− 𝜈𝜏𝛽

2𝑚

)
≥ − 𝜈𝜏

12𝑚
− 𝜈𝜏

6𝑚
− 𝜈𝜏

6𝑚
− 𝜈𝜏

6𝑚
+ 𝜈𝜏

𝑚
− 𝜈𝜏

6𝑚
− 𝜈𝜏

12𝑚
− 𝜈𝜏

6𝑚
= 0 (97)

𝐶3 =
[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 + 𝑐2)𝜆2 − 𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥

[
1 − 8𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
− (1 − 𝑐2) −

𝜈

𝛽

𝐿2

𝑓

𝑚
−

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

75𝜂𝛼

16𝜇

2𝐿2

𝑓

𝑚

]
≥ 𝑐2 −

𝑐2

5

− 𝑐2

5

− 𝑐2

5

− 𝑐2

5

− 𝑐2

5

= 0 (98)

𝐶4 = [
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

− (1 + 1

𝑐2

)𝜂2 − 2𝜂𝛼𝐿2

𝑓

( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚

)
] ≥

4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

4

−
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

8

−
4𝜈𝐿2

𝑓

𝛽𝜇𝜂𝛼

3𝜂

8

= 0 (99)

With parameters

𝑐𝛾 ≥ ( 75𝜂𝛼

8𝜇

1

𝑚
+ 𝜈

𝛽

1

𝑚
) 𝜈𝜏

12

𝜂 ≤ min{ 𝑐1𝑚𝜇

375𝛼𝐿2

𝑓

,
15𝐿2

𝑓

𝛽𝜇𝛼2𝑐1

,
3𝑐2

1
𝑚

10(1 + 𝑐1)𝜇𝛼
}

𝜈 ≤ min{𝑐1𝑚𝛽

40𝐿2

𝑓

,
2𝑐1𝑚𝛽

5𝜏
,

2𝑐1𝛽𝜇
2𝑚

375𝐿4

𝑓

,
5𝜏

3𝑚𝑐1

,
𝜏

6𝑚(1 + 1/𝑐1)
,

3𝜇𝜂𝛼𝜏

17𝐿2

𝑓

,
𝜏

3(𝐿𝑓 +
𝐿2

𝑓

𝜇 )
}

𝛽 ≤ min{ 𝜏

12

,
1

3

}, (100)

Thus, for PRECISION+
, we have the following convergence results:

1

(𝑇 + 1)

𝑇∑︁
𝑡=0

(
E[∥𝒙̃𝑡 − 1𝒙𝑡 ∥2 + ∥𝒙𝑡 − 1𝒙𝑡 ∥2] + E∥y∗𝑡 − ȳ𝑡 ∥2

)
≤ E[𝔭0 − 𝔭𝑇+1]
(𝑇 + 1) min{𝐶1,𝐶

′
2
, 𝜈𝐿2

𝑓
/2}

+ ( 75𝜂𝛼

16𝜇

2

𝑚
+ 𝜈

2𝛽

2

𝑚
) 𝜖
𝑐𝜖

. (101)

With 𝔭𝑇+1 ≥ 𝑄∗
, we reach the conclusion.

E SUPPORTING LEMMAS
Lemma 9. Under Assumption 1, 𝒚∗ (𝒙) = arg max𝒚 𝐹 (𝒙,𝒚) is Lipschitz continuous, i.e., there exists a positive constant 𝐿𝒚 , such that

∥𝒚∗ (𝒙) −𝒚∗ (𝒙′)∥ ≤ 𝐿𝒚 ∥𝒙 − 𝒙′∥, ∀𝒙, 𝒙′ ∈ R𝑑 , (102)

where the Lipschitz constant is 𝐿𝒚 = 𝐿𝑓 /𝜇.

Proof. See Lemma 4.3 in [20]. □

Lemma 10. Under Assumption 1, the function 𝐽 (𝒙) = 𝐹 (𝒙,𝒚∗ (𝒙)) satisfies that ∇𝐽 (𝒙) = ∇𝒙𝐹 (𝒙,𝒚∗ (𝒙)).
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Proof. Since 𝐽 (𝒙) = 𝐹 (𝒙,𝒚∗ (𝒙)), by chain rule, we have

𝑑 𝐽 (𝒙) = 𝜕𝐹 (𝒙,𝒚)
𝜕𝒙

���
𝒚=𝒚∗ (𝒙 )

· 𝑑𝒙 + 𝜕𝐹 (𝒙,𝒚)
𝜕𝒚

���
𝒚=𝒚∗ (𝒙 )

· 𝜕𝜔
∗ (𝒙)
𝜕𝒙

· 𝑑𝒙, (103)

where 𝜕𝐹 (𝒙,𝒚)/𝜕𝒙 and 𝜕𝐹 (𝒙,𝒚)/𝜕𝒚 are respectively the partial differential of 𝐹 w.r.t the first variate 𝒙 and the second variate 𝒚. Note that

𝒚∗ (𝒙) is the unique optimal point such that 𝐹 (𝒙,𝒚) reaches the maximums. So, it follows that
𝜕𝐹 (𝒙,𝒚 )

𝜕𝒚 |𝒚=𝒚∗ (𝒙 ) = 0 for all 𝒙 . Also, from

Lemma 9, we have 𝜕𝜔∗ (𝒙)/𝜕𝒙 is bounded. Thus, it follows that

𝑑 𝐽 (𝒙) = 𝜕𝐹 (𝒙,𝒚)
𝜕𝒙

���
𝒚=𝒚∗ (𝒙 )

· 𝑑𝒙, (104)

which is ∇𝐽 (𝒙) = ∇𝒙𝐹 (𝒙,𝒚∗ (𝒙)).
□


	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Preliminaries of Decentralized Min-Max Optimization
	2.2 Related Work

	3 Solution Approach
	3.1 The PRECISION Algorithm
	3.2 The PRECISION+ Algorithm
	3.3  Theoretical Results of the PRECISION and PRECISION+ Algorithms

	4 Experimental Results
	5 Conclusion
	References
	A Proof Sketch of Main Results
	A.1  Important Lemmas for Proving Main Theorems
	A.2  Proof Sketch of Theorem 1
	A.3  Proof Sketch of Theorem 2

	B  Further experiments and additional results
	B.1 Algorithms comparison
	B.2 Learning rate setting
	B.3 Topology setting
	B.4 Node setting

	C Proof of Lemmas
	C.1  Proof of Lemma 3:
	C.2 Proof of Lemma 4
	C.3  Proof of Lemma 5
	C.4 Proof of Lemma 6
	C.5 Proof of Lemma 7

	D Proof for Theorem 1 and Theorem 2
	E Supporting lemmas

