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ABSTRACT
Unmanned Aerial Systems (UAS), commonly known as drones,
have revolutionized various industries with their diverse appli-
cations. As the demand for seamless and intuitive drone control
grows, researchers are exploring innovative approaches to improve
human-swarm interaction. This paper presents a novel method
for operating a swarm of drones in real time using wearable tech-
nology and machine learning. Through the integration of motion
capture data and classification algorithms, we strive to achieve an
intuitive level of control that is accessible to users with varying
skill levels. While the full realization of this approach remains a
work in progress, our research lays the groundwork for future en-
deavors in this domain. In this paper, we discuss the limitations
of existing control methods and present our methodology for data
preprocessing, model training and testing, and result analysis. Our
findings indicate the potential of this approach and open avenues
for refining the interaction between humans and drone swarms.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Motion capture; • Human-centered computing →
Gestural input.
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1 INTRODUCTION
Unmanned Aerial Systems (UAS), also known as drones, have been
transforming our world. Hence, methods of controlling them have
evolved and developed over the years, with recent studies aiming
to find more intuitive and seamless ways to control, as the standard
remote controller requires lots of skill, practice and precision to
operate effectively. These methods have mainly included the use
of Electroencephalography (EEG), drone cameras, and wearable
technologies. In this study, we aim to develop an intuitive and
seamless method of operating a swarm of drones in real-time. It
will be easy and simple for any individual to control a swarm or
singular drone, even without prior knowledge or experience. While
we were not able to completely accomplish our goal, we have laid
the foundation for future work to do so. In the rest of the paper, we
will discuss in detail other current methods of controlling drones,
our methodology, our conclusions, and future discussion.

2 LITERATURE REVIEW
In this section, we will go in-depth into the several methods being
researched to control drones.

2.1 EEGs
EEGs have enabled drone control through Brain-Computer Inter-
faces (BCIs). BCIs interpret brain signals into commands, enabling
drone manipulation in simulations and the real world [2, 8, 10, 20].
However, complexity is constrained; studies have rudimentary com-
mands and can only manage a singular drone [2, 20] or the entire
swarm [10].

2.2 Drone Camera
Cameras have been a popular method to control drones, particularly
with machine learning (ML). The user’s hand gestures prompt the
computer to capture the hand image and subsequently identify
and respond accordingly [18]. Another use of ML is Deep Learning
and Neural Networks. In [18] the authors utilized the YOLOv3
algorithm and Deep Neural Networks (DNN) with computer vision
to recognize hand gestures, and then to control the drone. Although
the use of cameras is successful in controlling the drone, it has
several constraints that hinder its real-world practicality, such as
the need for a clear line of sight between the operator and reliable
lighting.

2.3 Wearable Technologies
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There are many kinds of wearable technologies that have been used
to control drones. Some use glove(s) or a sleeve with sensors, and
others use different motion controllers such as smart watches.

2.3.1 Gloves and Sleeves. Using gloves and sleeves has been a
common method for controlling drones. These are equipped with
sensors that process movement data and interpret certain motions
as certain commands. They all follow the general framework of
receiving raw data from sensors on the glove(s) or sleeve, then
data is processed to identify which command should be performed
[3, 7, 9, 11, 13, 15–17]. Many of the gloves utilize flex sensors to
better detect hand movements [7, 9, 16, 17], and ML is often incor-
porated in these methods in order to more accurately identify the
correct command to perform. Some common ML algorithms used
are Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Decision Tree (DT), and Naive Bayes (NB) [11, 17]. Out of these four
algorithms, SVM and KNN performed the best, with SVM having
a slight edge (around 2%-3% higher in accuracy, precision, recall,
and F-score) over KNN [11, 17]. However, these studies all have
very specific predefined gestures or motions for every command,
making operating the drones more of a memory exercise than an
intuitive one.

2.3.2 Smaller Devices. Another popular method is to utilize motion
controllers with sensors in some way to control drones [1, 4, 6, 12,
14, 19]. Usually, these devices, such as smartwatches, control the
drone by recognizing the user’s motions [1, 6, 12]. The wearable
device obtains the user’s data, then utilizes a computer or algorithm
to process and identify the command. A commonly-used sensor is
the Inertial Measurement Unit (IMU), as it allows the computer to
accurately obtain movement data, including rotation [3, 6, 11, 15].
The Leap Motion Controller is another commonly-used controller
that uses its sensors to track the hand [19]. These motion controllers
are advantageous in their compact and convenient form factor, but
they are limited to fewer and more precise motions. These studies
were tested in simulated environments and real life. However, most
lacked the intuitive experience that we are aiming for. We are
going to utilize ML classification algorithms in order to develop
an intuitive and seamless experience to operate a swarm of drones
using wearable technology.

3 METHODOLOGY
In this section, we will go into detail about the methodology fol-
lowed in this project.

3.1 Preprocess Data
We utilized two existing .csv files containing motion capture data,
both recorded using a Vicon optical motion capture camera system.
The first dataset was provided by Dr. José Baca and the other was
acquired from an online repository [5]. The first dataset consisted
of 8 gesture classes: Dab Left, Dab Right, Go Forward, Go Left,
Go Right, Land, Stop, and Up. The second dataset consisted of 5
gesture classes: Go Forward, Land, Point, Stop, and Up. The first
dataset contained data from a single person, whereas the second
dataset contained data from 14 individuals who performed every
gesture. Additionally, the first dataset had 5,096 instances whereas
the second dataset had 78,095 instances. For both datasets, we

dropped irrelevant and missing values, ignored irrelevant nodes
(e.g. feet, ankles, knees, etc.), and split the data into training and
testing groups.

3.2 Train and Test Classification Models
For the first dataset, we split the data frame-by-frame for each
gesture and organized it into training and testing sets, ensuring
effective model training and testing. With the second dataset, the
data was partitioned based on each user. To have a fair and effec-
tive split, we chose to include nine users in the training set and
the remaining five in the testing set. We trained several different
machine-learning models: KNN, SVM, Random Forest (RF), Naive
Bayes, and an Ensemble. Using the scikit-learn Python library, we
implemented, tested, and obtained metrics and confusion matrices
for each model.

3.3 Analyze Test Results
For each model, we generated a confusion matrix alongside a clas-
sification report of the precision, recall, and f1 score for each ges-
ture, and overall accuracy for the model. From these results, we
fine-tuned the parameters for each model. For KNN, we found the
optimal number of neighbors for each dataset. This value was eight
for the first dataset and four for the second dataset. For SVM, we
found the optimal kernel for each dataset to be the Radial Basis
Function. For Random Forest, we found the optimal number of trees
in the forest of each dataset to be 100. Finally, for Naive Bayes, we
found the optimal variant of the algorithm for each dataset to be
the Gaussian variant.

4 RESULTS
After separately applying each dataset to each of the classification
models, the model attempts to classify the gesture based on the
dataset’s labels. In this section, we will show our finalized confusion
matrices and metrics for each model of each dataset. For the first
dataset, Naive Bayes had the highest accuracy of 84% compared
to the other models. The f1 score for the Dab Right class in each
classification model was 0%, possibly indicating the model’s over-
fitting due to consistent confusion of Dab Right with Dab Left. Go
Forward and Land gestures occurred to be the most classified in
a majority of the classification models of the first dataset. For the
second dataset, the Ensemble model had the highest accuracy of
74% compared to the other models. The Up gesture occurred to be
the most classified in a majority of the classification models of the
second dataset. All results of the first dataset can be seen in Figure
1, and all results of the second dataset can be seen in Figure 2.

5 CONCLUSIONS
Drones, or UAS, have become an integral part of various indus-
tries, and finding intuitive ways to control them is essential for
their widespread adoption. Existing methods of humans controlling
drones include EEG, drone cameras, and wearable technologies.
However, each method comes with its limitations as discussed. To
address these limitations, we introduced a novel approach utilizing
machine learning classification algorithms with motion capture
data. Although we were not able to complete our objective, we have
provided the foundational work to approach the ongoing efforts
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Figure 1: Confusion matrices and metrics of the machine-learning models for the first dataset

Figure 2: Confusion matrices and metrics of the machine-learning models for the second dataset

to enhance human-drone interaction. By fine-tuning parameters
and evaluating the performance metrics of each model, we aimed
to find the most practical and accurate classification model. Our
results indicate the potential of our approach, as demonstrated by

the confusion matrices and metrics obtained for different models
and datasets. From the first dataset, Naive Bayes had the highest
accuracy of 84%. For the second dataset, the Ensemble model had
the highest accuracy of 74%. Because the first dataset was from only
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one person and is much smaller in size, it is likely that the models
overfit to the data. This suggests that the second dataset and its
models are more reliable and practical, despite their lower overall
accuracy. In conclusion, our study contributes to the ongoing efforts
to improve human-drone interaction by offering a method that is
intuitive, seamless, and accessible to a wide range of users.

6 FUTURE WORK
Future work should focus on incorporating more complex gestures
to achieve a higher level of control, expanding the datasets, and
refining the classification models.

Table 1: Commands and Corresponding Gestures

Command Gestures
Select individual drone(s) Point
Select all drones in a group Big circle motion
Split drones into two groups Chop down and to the left or right

Follow me Wave hand towards body
Go to this place Both hands point to destination

Takeoff Both hands raise up
Land Both hands raise down
Ascend Single arm raise up
Descend Single arm raise down
Rotate Single hand move with wrist left/right

Move left Single arm moves left entirely
Move Right Single arm moves right entirely

Stop Elbow bent, palm facing out
Forward Single arm jab/move outwards
Backward Single arm jab/move inward

We have compiled gesture-command pairs for future data col-
lection (Table 1), prioritizing an intuitive experience. To expand
the datasets, we will collect our own data, aiming to involve 10
individuals performing each gesture 50 times. Ensuring consistent
time intervals or frames during data collection will enable effective
machine-learning training through windowing techniques, pre-
venting overfitting. A real-time simulation in Gazebo would follow,
utilizing Motion Capture suit data for real-time processing by the
machine-learning model. Each model undergoes separate testing
within the simulation. Accuracy, precision, recall, f1 score, and ges-
ture recognition time will be calculated per model, supported by
confusion matrices. These metrics will assist us in determining the
practicality of each model for real-world application.
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