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ABSTRACT
Point cloud data gathered through wireless sensors has garnered
increasing attention for its critical applications, including automo-
tive radars, security systems, and notably, gesture recognition. It
provides a non-intrusive and robust approach towards human-
computer interactions. However, its reliance on real-time data
makes resilience of paramount concern and attacks on or imper-
fections with these sensors can have catastrophic effects. From
real-time spoofing to data poisoning attacks or even just faulty
data, systems based on 2D and 3D point cloud machine learning
models can be extremely vulnerable. Despite this, there exist few
studies prioritizing evaluations on the robustness of these systems
over noisy time-sensitive point clouds. This study presents an in-
depth examination on the effects of noisy data being used in training
various millimeter wave based gesture recognition systems. Noisy
point clouds can be introduced during the training stage where
imperfect data is fed to a model, causing the model to misclassify
test-time samples and lowering its overall accuracy. We stage and
evaluate the impact of four different, simple data noising scenar-
ios to observe potential vulnerabilities within these systems. Our
findings reveal the respective susceptibilities and resiliencies of
transformer, long-short term memory, and convolutional models,
highlighting the importance to not only dedicate time and research
towards innovations in wireless gesture recognition, but also to-
wards optimizing these systems in order to proactively prevent
undesirable effects.

CCS CONCEPTS
• Human-centered computing → Field studies; Mixed / aug-
mented reality; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
In recent years, the deployment of millimeter wave (mmWave)
and similar technologies in combination with exponential advance-
ments in deep learning has brought a new wave of wireless com-
munication and sensing systems [9]. These systems leverage the
unique characteristics of specific frequencies to achieve high data
rates and enhanced spatial resolution, making them useful for a
wide range of applications, including 5G networks, autonomous
vehicles, and advanced radar systems [2].

One developing application of wireless technology is in gesture
recognition using time-sensitive point clouds [7]. Point clouds,
comprising three-dimensional data points, serve as fundamental
representations for object detection, localization, and mapping in
various real-world scenarios. However, the accuracy and reliability
of these applications heavily depend on the quality and integrity of
the underlying point cloud data.

As these point clouds become increasingly prevalent in critical
domains such as autonomous vehicles and advanced radar systems,
ensuring robustness of these systems is of the utmost importance.
This research focuses specifically on the vulnerabilities of time-
sensitive and frame based gesture recognition systems under three
distinct neural networks (long short-term memory, convolutional,
and transformer) as despite the numerous benefits offered by wire-
less point clouds, their susceptibility to adversarial attacks and
noisy databases is a growing concern. In contrast to highly targeted
data poisoning attacks, noisy data can be far more common and
equally as impactful. These scenarios involve the introduction of
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noise or perturbations into the raw point cloud data, be it delib-
erate or accidental, which can distort the geometry of the point
clouds, mislead detection algorithms, and compromise localization
accuracy. Imperfect data labeling is a large issue since typical data
labeling for large data sets is outsourced and can be subject to errors.
Due to the scale of prospective data sets and their dynamic nature
(in the case of our research), the annotation process is inherently
complex and subsequent labeling is often conjoined with noise. In
addition, general oversights and errors in data collection can also
lead to noisy data. For example, in gesture recognition, different
postures of the person articulating each gesture and different envi-
ronments can contribute to noisy point clouds. Furthermore, faulty
or even misaligned equipment can similarly result in flawed data.
While there exist many studies examining the utilities of these
technologies, numerous data poisoning attacks [5][8], and even
explorations into adapting frameworks to be robust against pertur-
bations [12][13], we are unaware of any investigating the baseline
resilience of dynamic and time-sensitive systems, particularly in
regards gesture recognition under various models and noise.

In this study, we induce four types of noisy data scenarios within
an mmWave point cloud data set: mislabeling, rotated point clouds,
missing frames, and misordered frames. To represent mislabeling,
we apply simple label flipping to invert the labels of a percentage of
samples to induce misclassification. In order to simulate misalign-
ments and variations in the creation of training data, we introduce
rotated point clouds: a rotation of coordinates within point cloud
frames by a parameterized angle. To replicate missing data scenar-
ios and faulty equipment, we script the random removal of frames
from critical gestures within the training data. Finally, to explore
the effects of disruptions in temporal flow and structure of data
samples, we use seeded randomization to shuffle the order of frames
and affect gesture recognition.

This research specifically uses millimeter wave technology and
focuses on the impact of noisy point clouds on time-sensitive, wire-
less mid-air gesture classification systems. We induce data noising
and subsequently review the classification accuracy of various ma-
chine learning architectures as understanding these realistic sce-
narios is paramount to optimizing development on robust defenses
against them.

2 BACKGROUND
2.1 mmWave
Millimeter waves are a portion of the electromagnetic spectrum
that falls within the microwave frequency range. Their wavelengths
typically range from 1 to 10 millimeters (frequencies between 30
and 300 gigahertz). Applications of mmWaves include wireless
communication, radar systems, imaging, and sensing. For example,
mmWave sensing can be used for occupancy sensing, through-wall
sensing, and gesture recognition [9] as referenced in this study.

2.2 Point Clouds
2D and 3D point clouds are a representation of two to three dimen-
sional data composed of individual points in a coordinate system.
Each point in the point cloud is primarily defined by its X, Y, and
sometimes Z coordinates, representing its position in space. Point
clouds capture the geometric information of objects and scenes,

making them valuable for various applications in computer vision,
augmented reality, and autonomous vehicles [3]. One can more
easily leverage spatial information through point clouds which can
aid in the classification of gestures such as biannual and circular
motions.

2.3 Models
The three most common model options for wireless gesture based
recognition systems are convolutional neural networks (CNN or
ConvNet), long short-term memory networks (LSTM), and trans-
former neural networks (Trans). Convolutional neural networks
are a class of deep learning models specifically designed for process-
ing and analyzing visual data. The key components of CNNs are
convolutional layers, pooling layers, activation functions, fully con-
nected layers, training, and backpropagation [1]. Long short-term
memory networks are a type of recurrent neural network designed
to handle sequential data (particularly applicable to time-sensitive
point cloud data). LSTM networks consist of specialized memory
cells and gates that control the flow of information [4]. Transformer
neural networks are a type of deep learning architecture. The trans-
former model aids in natural language processing and various other
sequence-to-sequence tasks by using a self-attention mechanism
without using recurrent or convolutional layers. Transformer net-
works consist of an encoder and a decoder, which both use layers of
self-attention and feed-forward neural networks. The encoder pro-
cesses the input sequence while the decoder generates the output
sequence in sequence to sequence tasks [11]. In this research we
study the accuracy of gesture classification associated with these
three different models and investigate the robustness of each model
to noisy data sets.

3 RELATEDWORKS
3.1 Pantomime
Mid-Air Gesture Recognition with Sparse Millimeter-Wave Radar
Point Clouds lays the framework for more robust mid-air gesture
recognition systems. Pantomime uses a hybrid model architecture
for optimized spatio-temporal feature extraction which is designed
to recognize sparse motion gestures [5]. In the classification sys-
tem, local features are first extracted. This process is iterative until
features of the whole point cloud are computed. Multiple set ab-
straction levels are used to mimic the multiple convolution levels
in convolutional neural networks. Pantomime uses 21 types of mid-
air gestures including bi-manual, linear, and circular gestures. It
provides real-time recognition and achieves 95% accuracy of clas-
sification for the 21 gestures. This work creates a foundation for
various paths in creating more reliable, hybrid architectures and in
combination with the results of our study, can be an indispensable
resource for future works.

3.2 Additional Studies
Many other strategies have also been proposed in mitigating the
impact of noisy data on model accuracy. A recent work introduces
the Point Noise-Adaptive Learning (PNAL) framework, tailoring
its strategies to the nuances of point cloud data, such as spatially
variant noise rates. PNAL incorporates novel methodologies, such
as point-wise confidence selection and cluster-wise label correction
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to enhance the accuracy of model training with noisy labels, even
in scenarios where a significant portion of the labels is inaccurately
annotated. [12].

Numerous studies have also delved into vulnerabilities and poten-
tial impacts of targeted data poisoning attacks on mmWave-based
point clouds, yielding valuable insights and defense mechanisms.
One such study, "Defending against 3D Adversarial Point Clouds via
Adaptive Diffusion," outlines a defense strategy against simple data
noising attacks on non time-sensitive mmWave point clouds [13].
Through adversarial training, the authors equipped point cloud
processing models with augmented data sets containing adversari-
ally noised samples, demonstrating resilience against data noising
attacks.

This research highlights the growing concern over simple data-
based attacks on time-sensitive mmWave point clouds. Researchers
have been actively exploring defense strategies, detection methods,
and robust algorithms to ensure the resilience of mmWave-based
applications in the face of such attacks. It is important to note,
however, that despite these studies, there still remains an evident
absence in bench-marking the effects of noisy data on distinct model
architectures in order to optimize and further benefit these efforts.

4 PROBLEM SETTING
Gesture recognition plays a critical role in human-computer interac-
tion, enabling natural and intuitive control of various applications.
However, real-world scenarios often introduce various forms of
noise during training time that can degrade the performance of
gesture recognition systems. We focus on the following common
variations of noisy data:

(1) Rotational Noise: Variations in device orientation or gesture
execution may lead to slight rotations in point clouds, affect-
ing the system’s ability to accurately recognize gestures.

(2) Mislabeled Data: Noise introduced by incorrect gesture labels
in the training data set can result in confusion during recog-
nition, impacting the system’s reliability. This can occur at
various stages during the annotation process.

(3) Frame Loss: Missing or incomplete frames in the input point
cloud sequence could disrupt the temporal context and chal-
lenge the system’s ability to maintain accurate recognition
over time; it can often be introduced through faulty equip-
ment.

(4) Misordered Frames: Disordered frames in the input sequence
may disrupt the temporal sequence, requiring the system to
handle out-of-order data.

5 METHODOLOGY
To comprehensively assess the robustness of time-sensitive ges-
ture recognition systems, we conduct extensive experimentation
using a vast data set comprising of 7402 point cloud sequences en-
compassing nine distinct gestures: up, down, left, right, clockwise,
counterclockwise, s, x, z – the last three gestures formed by tracing
each respective letter through the air [6]. Each sequence consists of
between 10 to 20 point cloud "frames" in order to induce temporal
structure. The training set is formed from 70% of this data set while
the test set, the remaining 30%.

Model
Baseline
Validation
Accuracy (%)

LSTM 97.21
Conv 95.5
Trans 93.2

Table 1: Accuracy on clean training set

In order to mimic real-world noisy scenarios, we employ data
augmentation during training, introducing four distinct types of
noise (rotation, mislabeling, frame loss, and unordered frames) to
the clean data set. In each case, we introduce controlled, seeded
variations into the data, and employ equal testing on LSTM, Con-
vNet, and transformer models for our evaluations on robustness.
We train each model over 10 epochs, subsequently testing them
on clean data to obtain our accuracy for each trial. Training and
testing on an entirely clean data set with these specifications results
in between 93 - 97 percent accuracy across all models.

In the case of mislabeled data, we conduct isolated experiments,
systematically incrementing the amount of noise in the data set
by 10%, eventually reaching a scenario with 100% mislabeled data.
To deliberately induce mislabeling, we employ an algorithmic ap-
proach to interchange each gesture with its opposing label. For
the letter gestures, we implement a circular swapping strategy to
further augment the mislabeling process.

For rotational noise assessment, we systematically apply rota-
tions ranging from 15 to 90 degrees in intervals of 15 degrees, repli-
cating conceivable perturbations in practical applications. These
modifications are evaluated under two scenarios: one with an en-
tirely noisy data set and another with 50% of the data seeded ran-
domly to be afflicted by noise.

To assess the impact of frame loss, we simulate the seeded ran-
dom removal of frames at intervals of 25%, 50%, and 75% frame loss
across noise levels of 25%, 50%, 75%, and 100% in order to ensure a
wide array of measurements.

Lastly, in the context of misordered frames, we introduce the
random seeded shuffling of frames to disrupt the temporal sequence
of frames within data set subsets. We, similar to mislabeling, con-
duct experiments at 10 intervals, progressively increasing the noise
levels from 10% to 100%.

The primary evaluation metric employed was accuracy (divid-
ing the number of correct predictions by the total number of pre-
dictions) quantifying the system’s correct recognition of gestures
amidst noisy conditions. To ensure results, each experiment was
repeated five times, and average accuracy was computed.

6 EVALUATION
Surveying the performance of the three model architectures over a
clean data set, a review of Table 1 indicates that LSTM achieves the
highest average for baseline validation accuracy at 97.21%, trans-
former exhibits the lowest with 93.20%, and ConvNets perform
between the two at 95.50%.

6.1 Mislabeled Data
We can see in Figure 1 that LSTM and CNN models retain robust-
ness and performance until more than 30% of the data has been
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Figure 1: Accuracy with mislabeled gestures

Figure 2: Accuracy with rotation on 50% of data

compromised. In contrast, the transformer displays an immediate
reduction in accuracy when even only 10% of the data has been
mislabeled. The former two architectures, however, display an ex-
ponential decrease in efficacy past this 30% threshold, whereas the
latter shows a more linear decline. All three of the models drop an
additional 20% to 30% accuracy when 50% of the data had been tam-
pered with. After 60% of data and beyond, the accuracies plummet
to less than 20% of gestures correctly classified for all three models.
Looking at this, LSTM and CNNs hold up significantly better than
transformers for lower percentages of noisy data with the former
of the two slightly outperforming the latter. Public data sets tend
to average between 8% to 38% [10] in label noise, showing that
the LSTM model demonstrates robustness under most practical
situations. Convolutional models also hold up well for the majority
of this range, although in our studies, it displays a non-trivial drop
in accuracy (10%) as noise levels approach the end of this spec-
trum. Transformers, on the other hand, display a significant decline
throughout, dropping over 30% on the same interval that LSTM
retains efficacy.

6.2 Rotational Noise
Figures 2 and 3 show the effect that coordinate rotations have on
accuracy over various percentages of noise. With 50% of the data
rotated, all three models perform well with no model having an ac-
curacy below 90% for all the rotations. The LSTM and CNN models
continue to outperform the transformer model throughout these

Figure 3: Accuracy with rotation on 100% of data

Figure 4: Accuracy with 25% frame loss

angles, however, all three did remain robust and consistent with
their benchmark measurements throughout. With 100% of the data
rotated we can see that the LSTM model performs similarly well
until 75-degree rotations. In contrast, while CNN and transformer
models see noticeable drops in performance until 60-degree ro-
tations (remaining near 90% accuracy). They fail once the angle
exceeds that threshold as opposed to the LSTM’s 75-degree limit,
past which all three models cease in effectiveness. In this context, it
can be inferred that all models are at minimum, robust to data sets
that carry under 50% rotational noise and can perform unhindered
under normal conditions. The LSTM model stands out amongst the
three, showing strength even when all data is compromised, the
exception being extreme rotations of minimal likelihood.

6.3 Frame Loss
From Figures 4 to 6, we can observe the impact of random frame loss
on validation accuracy. With a 25% frame loss, all models exhibit
stable performance even when 100% of the data is affected. They
maintain baseline accuracies, remaining well above 90% throughout.
With 50% frame loss, the LSTM retains the highest accuracy, fol-
lowing its baseline trends until 75% of the data experiences missing
frames; the CNN model closely follows. However, the transformer
experiences a slight dip in accuracy, decreasing by 8% to 85% over
the same period. Beyond this threshold, all three models once again
falter, although the CNN experiences a steeper decline compared
to the transformer and LSTM models. At a 75% frame loss, all three
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Figure 5: Accuracy with 50% frame loss

Figure 6: Accuracy with 75% frame loss

Figure 7: Accuracy with misordered frames

models exhibit a slightly more pronounced but similar trend as
when 50% of frames are lost. The transformer model experiences a
further 3% drop, reaching 82% accuracy with 75% noisy data, while
the other two models still manage to maintain over 90% accuracy. In
both scenarios, the LSTM performs the best, while the transformer
performs the worst. The CNN model keeps pace with the LSTM
model, it too displaying overall resilience until 75% noise, beyond
which it experiences the sharpest decline in accuracy, surpassing
even that of the transformer.

6.4 Misordered Frames
Finally, when examining the impact of misordered frames on vali-
dation accuracy in Figure 7, we can observe that all three models
perform well and maintain baseline trends up until 90% of the data
is affected. At 100% noisy data, both the LSTM and CNN exhibit
approximately a 20% decrease in accuracy, while the transformer
model remains stable within an accuracy range of 91% to 93%, show-
casing resilience against temporal disruptions. All models demon-
strate proficiency in handling sequential data even without strict
adherence to sequential order, effectively deciphering relationships
even when elements are jumbled. However, the LSTM and CNNs
exhibit a slightly stronger reliance on time-sequence compared
to the transformer when the entirety of the data is compromised.
Overall, all three models exhibit robustness and competence in
utilizing spatial properties to identify gestures even without tem-
poral structure, except when dealing with an entirely noisy data
set, where the transformer proves to be the most suitable choice.

6.5 Discussion
Through these four simulations, we gain insightful observations
regarding the robustness of each model under noisy conditions.
Among the three, LSTM stands out by effectively capturing tempo-
ral dependencies and displaying resilience against all four scenarios.
It appears to learn effectively from the majority of clean data, dis-
regarding potential noise up to varying thresholds. In the case of
rotations, frame loss, and temporal disruptions, there only appear
to be noticeable drops in accuracy as it approaches the entirety
of its data being compromised. CNNs follow a slightly worse but
similar trend, their versatility in adept spatial feature extraction
likely a leading enabler for them to maintain accuracy in the face
of prospective noise. With the exception of 100% rotations, they
too remain robust exempting extreme scenarios.

On the other hand, Transformers demonstrate significantly less
resilience in situations involving label noise, rotations, and frame
loss. They, however, do exhibit a unique capability to handle un-
ordered frames and complex spatial relationships, rendering them
robust to disruptions in the temporal sequence. This resilience may
be attributed to the attention mechanisms inherent in transformers,
which enables them to capture long-range dependencies.

Overall, all three models exhibit significant success in maintain-
ing performance under various noisy conditions. In general, LSTM
and ConvNet architectures prove to be more robust (the former
more so than the latter) than their transformer counterpart, al-
though all three still fail with sufficient or intense variations of
noise – a sole exception being the apparent in-susceptibility of
transformers to frame scrambling.

7 LIMITATIONS AND FUTUREWORKS
While this study provides valuable insights into the robustness
of time-sensitive gesture recognition systems utilizing mmWave-
based point clouds, it is important to recognize certain limitations
that shape the scope of our findings.

Firstly, our methodology to examine noisy data scenarios was
intentionally simplified to facilitate controlled and equal experi-
mentation under computing limitations. The larger intervals, lesser
trials, and lower epochs in which we collected data, trained data
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and examined accuracy may have resulted in a lowered precision
in our findings. For example, a large percentage of noticeable drops
in accuracy for LSTM models are shown to appear between 75%
and 100% of noisy data (misordered frames and frame loss). This is
a wide range, over which we are unsure exactly when this network
fails and more specific, further testing is required to overcome this
limitation.

Additionally, in real-world scenarios, noise can also exhibit intri-
cate and unpredictable patterns, potentially even merging various
types of noise and yielding distinct effects on a system’s behavior.
As we consider only simple settings, future endeavors should focus
on these more complex variations of noise. By extension, hybrid[5]
approaches that leverage the strengths of multiple architectures
to counteract these complicated scenarios and yield more robust
results may also warrant further research.

Secondly, the focus of our investigation centered on a specific set
of architectures and gestures. While these simple gestures serve as
foundational examples, the applicability of our findings to a broader
array of gestures and more intricate interactions necessitates fur-
ther exploration. The noise susceptibility of more complex gestures
is uncertain and examining robustness across a more diverse range
of data sets could provide a richer context for understanding the
generalizability of our conclusions. Our study also employed a
specific selection of model architectures – CNNs, LSTMs, and trans-
formers – to assess robustness. Other architectures, which were not
explored in this study, could potentially offer different perspectives
on the impact of noisy data; further investigations could encompass
a broader spectrum and attain a more holistic understanding.

Finally, we were unable to research methods in which to im-
prove model robustness utilizing our findings. While this is already
a prominent field, in the future we believe there should be an even
greater focus on researching techniques applicable to making ges-
ture recognition amongst other machine learning applications more
impervious to perturbations. Potential avenues of exploration could
include data integration or reduction. We have found that the time
sequences of frames may not be as important as previously thought
for classification accuracy over a transformer neural network. This
means that the dimensionality of the gesture point clouds could
be reduced and developing classification systems using the above
technique may warrant experimentation.

While our study contributes valuable insights to the challenges
of noise-induced robustness in wireless gesture recognition, the out-
lined limitations underscore the need for the careful interpretation
of our results. Acknowledging these limitations creates the path for
future research endeavors to delve deeper into the complexities of
robustness and to cultivate a more comprehensive comprehension
of the practical implications of noisy data on time-sensitive point
cloud systems.

8 CONCLUSION
In our research, we underscore the critical importance of robust-
ness in time-sensitive gesture recognition systems using point cloud
data and through controlled experiments, we explore the effects of
four distinct noise types – label flipping, rotation, frame loss, and
misordered frames – on gesture recognition accuracy. The three
models we examine, especially LSTMs, prove robust under certain

quantities or variations of noise. However, our findings also reveal
that in sufficient abundance, even simple noisy scenarios can sig-
nificantly impact accuracy, highlighting the vulnerability of these
systems. We only look at basic and isolated examples and recog-
nizing our study’s limitations, advocate for a more comprehensive
investigation into complex noise patterns with further diversity in
time-sensitive data sets.

As gesture recognition continues shaping various domains, ad-
dressing noisy data implications remains paramount. By fortify-
ing systems against noise, we pave the way for seamless human-
computer interactions and heightened safety across critical appli-
cations.
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