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ABSTRACT
1
The evolution of smart objects towards the Internet of Softwarized

Things (IoST) in 6G networks will provide the society with dynamic

and programmable systems of interconnected smart devices inter-

acting with little to no human intervention. One pivotal aspect

of this evolution is represented by edge learning, which brings

machine-learning algorithms at the network edge to achieve mas-

sive connectivity, ultra-low latency, energy efficiency, security and

privacy. Unfortunately, in many application scenarios commonly

envisioned for 6G, edge learning is not feasible neither locally in the

smart objects, due to their computation and energy limitations, nor

by servers at the edge of the cabled network, because not connected

with adequate powerful links. To this purpose, this paper proposes

ODEL, an On-Demand Edge-Learning framework that uses a Fly-

ing Ad-hoc NETwork (FANET) to bring computing and networking

facilities on-site for edge learning. ODEL is based on a marketplace

employing a non-cooperative game theoretic approach: UAVs are

provided by different third-party providers in exchange of some

economic gain. A non-linear optimization problem is formulated

in order to determine the optimal distribution of flows that max-

imizes revenue for each UAV provider, and is solved by means of

the Variational Inequality (VI) theory.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; •
Networks → Network economics; • Computer systems orga-
nization → Cloud computing.
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1 INTRODUCTION
As we approach the third decade of the 21st century, the evolution

of wireless communication technologies has empowered with huge

connectivity and data capabilities. At the forefront of this progress

lies the vision for the sixth generation (6G) of wireless networks,

bringing a technological leap that promises to transcend the bound-

aries of its predecessors and usher in groundbreaking advancements

[1]. 6G is foreseen to transform the conventional communication-

centric paradigm into a communication-computing data-centric

system, empowering a significant shift towards network intelli-

gence. With a visionary approach, 6G will move intelligence from

centralized cloud and edge infrastructure to user devices, granting

users seamless access to a variety of services, anytime and any-

where [2]. The rise of smart objects, commonly known as Internet

of Things (IoT) devices, represents a remarkable technological ad-

vancement that will be enabled by 6G systems, facilitated by the

network softwarization paradigm that leads to the evolution to-

wards the Internet of Softwarized Things (IoST) [3]. In the context of

6G, zero-touch approach will allow these devices to autonomously

collect, process, and exchange data, unlocking endless possibilities

for innovative applications and services [4]. However, to fully em-

brace the potential of IoST in 6G, certain challenges must be met,

including massive connectivity, ultra-low latency, energy efficiency,

enhanced sensing and perception, security and privacy [5].

One pivotal aspect of this evolution is to train machine learn-

ing algorithms at the network edge. This mechanism is typically

denoted as edge learning [6, 7]. By diverging from traditional cen-

tralized machine learning, edge learning distributes the training

and inference processes to geographically distributed edge devices

and servers.

Unfortunately, in many application scenarios commonly envi-

sioned for 6G [8], smart objects are neither connected to the net-

work infrastructure nor connected to the power grid. This way,

edge learning is not feasible neither locally in the smart objects,

due to their computation and energy limitations, nor in servers at

the edge of the cabled network, because not connected with ade-

quate powerful links. To this purpose, this paper proposes ODEL,

an On-Demand Edge-Learning framework relying on use of Flying

Ad-hoc NETworks (FANETs) to bring computing and networking

facilities where needed, on-site, to implement edge learning [9–

11]. The FANET is composed by a certain number of UAVs, each

equipped with a computing element (CE), so being able to process

data flows coming from smart objects for model training. Given the
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time variability of the need for UAVs, this paper proposes to model

ODEL as a marketplace employing a non-cooperative game theo-

retic approach: UAVs are provided by different third-party providers

in exchange of some economic gain. A challenging aspect associ-

ated with the use of UAVs is their limited computational and energy

resources. The problem of UAV battery charge duration is even

exacerbated by the presence of the CE that represents one of the

main causes of energy consumption which, when CE has to per-

form model training, can be comparable with what is required by

engines.

In recent years there has been a growing interest in proposing co-

operative and non-cooperative game theoretic approaches to model

networking problems in the perspective of FANETs [12, 13]. In this

paper, we formulate a nonlinear optimization problem in order to

determine the optimal distribution of flows that, for each provider,

maximizes its revenue while satisfying some constraints. The for-

mulated optimization problem for the above market is described

by means of the Variational Inequality (VI) theory. [14, 15].

The rest of the paper is organized as follows. In Section 2 we

present the proposed ODEL framework. Then, in Section 3, we

illustrate the ODEL management policy that allows UAV providers

to decide the amount of flow coming from IoST to accept for learn-

ing. Section 4 formulates the problem by means of the VI theory,

while Section 5 presents and analyzes some illustrative numerical

examples. Finally, Section 6 draws some conclusions and discusses

future work.

2 THE ODEL FRAMEWORK
The ODEL framework that is proposed in this paper is sketched in

Fig. 1. Its objective is to provide edge learning service on demand to

smart objects that are not able to perform machine learning locally

for computing and energy limitations. To this purpose, for privacy

reasons and considering that in many relevant scenarios, the smart

objects are badly connected or not connected at all to the cabled

network, a FANET is in charge of performing model training from

the data flows coming from those smart objects, so avoiding to send

big or private data streams to remote servers. More specifically, the

FANET maintains one model for each aggregated data stream, i.e.,

for each set of homogeneous smart objects.

In order to characterize the edge learning service requested

to the FANET, for each set 𝑘 of smart objects, let us define the

amount of computation, 𝑠𝑘 , needed to process a single data unit

(DU) for learning (for example, a DU can be an image or a video

clip). The terms 𝑠𝑘 is defined as the mean number of FLoating point

OPerations (FLOP) required to process each DU.

Let ODEL be managed by an entity called the ODEL Manager.
When it receives a request for edge learning, it creates a FANET

with a number 𝑄 of Learning Server UAVs (LS-UAV). The goal of
each LS-UAV is to participate in the learning process by training

local models from the DUs coming from some sets of homogeneous

smart objects. We denote as 𝐶𝑞 the computational capacity of the

computing element mounted onboard of the LS-UAV 𝑞.

LS-UAVs are owned by third-party UAV providers that participate

in the FANET in exchange of some economic revenue. Specifically,

the provider of each LS-UAV applies a price to the amount of learn-

ing operations it performs. Since model training is a heavy task

Figure 1: ODEL Reference Model

in terms of computing complexity and energy consumption, each

stream of DUs coming from a set of homogeneous smart objects is

distributed among different LS-UAVs of the FANET.

Besides the LS-UAVs, another UAV is included in the FANET,

named the FANET Orchestrator and FL Model Aggregator (FOMA-

UAV). It is owned by the ODEL Manager. The FOMA-UAV is in

charge to orchestrate the FANET and assigning data streams coming

from the smart objects to the LS-UAVs according to themanagement

policy described in Section 3. In addition, it is in charge of updating

the global models (one for each set of homogeneous smart objects)

according to a Federated Learning (FL) approach, by using the local

models received by the LS-UAVs. Each time the FOMA-UAV updates

a model, it sends this not only to the relevant set of smart objects to

perform the required smart functions, but also to both the LS-UAVs

in the FANET to be used for future learning, and to an external

model aggregator for a higher level of FL with other FANETs.

Let 𝐾 be the number of sets of homogeneous smart objects. For

example, in Fig. 1, 𝐾 = 4 sets of smart objects are served by a

FANET consisting of 𝑄 = 3 LS-UAVs. We denote as 𝑘 = 1, . . . , 𝐾 a

specific learning service required for the set 𝑘 of smart objects, and

as 𝑞 = 1, . . . , 𝑄 the generic LS-UAV in the FANET. Each LS-UAV,

for each learning service, can decide the portion of data rate that it

intends to process. In addition, once a LS-UAV has accepted a given

portion of data rate to be processed, it can delegate the execution of

part of it to other LS-UAVs, so acting as Delegating Server. Moreover,

we refer to Delegated Servers as the LS-UAVs that receive this load.

3 ODEL MANAGEMENT POLICY
Let us now present in detail the management policy of the ODEL

framework. First we define the most relevant variables needed to

represent ODEL, i.e. 𝑦𝑘𝑞 and 𝑥𝑘𝑞𝑞̃ . The variable 𝑦𝑘𝑞 describes the

amount of data rate of the flow generated by the set 𝑘 of smart

objects and accepted to be processed for learning by the LS-UAV 𝑞.

Instead, 𝑥𝑘𝑞𝑞̃ is the amount of the flow data rate coming from the

set 𝑘 of smart objects, accepted for training by the LS-UAV 𝑞, and

delegated to the LS-UAV 𝑞, with 𝑞 ≠ 𝑞.

In order to simplify the notation, let us introduce the index sets

I (Q) = {1, . . . , 𝑞, . . . , 𝑄} and I (K) = {1, . . . , 𝑘, . . . , 𝐾}. Moreover,
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we define the compact arrays and matrices of the above variables.

More specifically, for the variable 𝑦𝑘𝑞 , we define:

𝑌
(𝐾 )
𝑘

= (𝑦𝑘𝑞)𝑞∈I (Q) ; 𝑌
(𝑄 )
𝑞 = (𝑦𝑘𝑞)𝑘∈I (K) ;𝑌 = (𝑦𝑘𝑞) 𝑘∈I(K)

𝑞∈I(Q)
(1)

that represent, respectively, the portions of flows managed by all

the LS-UAVs for the set 𝑘 of smart objects, the ones managed by

the LS-UAV 𝑞 for all the sets of smart objects, and all the portions

of flows for all the sets of smart objects and for all the LS-UAVs.

Likewise, for the variables 𝑥𝑘𝑞𝑞̃ , we define:

𝑋𝑞𝑞̃ = (𝑥𝑘𝑞𝑞̃)𝑘∈I (K) ; 𝑋𝑞 = (𝑥𝑘𝑞𝑞̃) 𝑘∈I(K)
𝑞̃∈I(Q)

;

𝑋̃𝑞 = (𝑥𝑘𝑞̃𝑞) ∈I(K)
𝑞̃∈I(Q)

; 𝑋 = (𝑥𝑘𝑞𝑞̃) 𝑘∈I(K)
𝑞,𝑞̃∈I(Q)

(2)

that represent the portions of flows generated by all sets of smart

objects and accepted for management, respectively, by the LS-UAV

𝑞 and delegated to 𝑞, by LS-UAV 𝑞 and delegated to any other LS-

UAV, by any LS-UAV and delegated to the LS-UAV 𝑞, and by any

LS-UAV and delegated to any other LS-UAV.

If we denote the cumulative data rate coming from the set 𝑘 of

smart objects as 𝐷𝑘 , it is evident that the following conservation

law must be satisfied:

𝑄∑︁
𝑞=1

𝑦𝑘𝑞 = 𝐷𝑘 , ∀𝑘 ∈ I (K) . (3)

Moreover, let us define𝑊𝑘𝑞 as the amount of flow 𝑘 actually

served by the LS-UAV 𝑞. Hence,𝑊𝑘𝑞 is given by the amount of the

flow 𝑘 initially accepted for service by 𝑞, and added of a term that

considers both the flow delegated by 𝑞 to other LS-UAVs and the

one that 𝑞 is delegated by other LS-UAVs on its turn:

𝑊𝑘𝑞 = 𝑦𝑘𝑞 +
𝑄∑̃︁
𝑞=1

𝑞̃≠𝑞

(𝑥𝑘𝑞̃𝑞 − 𝑥𝑘𝑞𝑞̃) . (4)

An important element to be considered in the ODEL framework

is the fligth duration of each LS-UAV, that is limited by the UAV en-

ergy constraints. In fact, when the battery of a LS-UAV is exhausted,

it is forced to temporarily leave the FANET to charge or substitute

its battery, so loosing some economic gains. For this reason, each

LS-UAV provider 𝑞 sets a lower bound, Δ𝑞 , for the flight duration
𝛿𝑞 of its UAV. More specifically, 𝛿𝑞 depends not only on its battery

capacity, but also on the consumed power. This is given by the sum

of the power used by the engines, 𝑃
(𝐸𝑛)
𝑞 , the power used by the CE

in the idle state, i.e. when it is not performing any computation,

𝑃
(𝐶𝐸 )
𝑞 , and the power consumed to provide learning services, 𝑃

(𝑆 )
𝑞 .

This is the term that influences the management policy since it

depends on the computational load the LS-UAV 𝑞 is performing.

It can be calculated as the sum, for each learning service 𝑘 , of its

complexity, expressed in FLOPs, multiplied by the total DU rate

processed for that service:

𝑃
(𝑆 )
𝑞 = 𝑒 (𝐸 )

∑︁
𝑘∈I (K)

𝑠𝑘𝑊𝑘𝑞, (5)

where 𝑒 (𝐸 ) is the elementary energy consumption, defined as the

energy needed to process one FLOP.

Therefore, we have that 𝛿𝑞 is given by:

𝛿𝑞 =
𝐵

𝑃
(𝐸𝑛)
𝑞 + 𝑃 (𝐶𝐸 )𝑞 + 𝑒 (𝐸 )

∑︁
𝑘∈I (K)

𝑠𝑘𝑊𝑘𝑞

. (6)

Concerning prices and costs, let us characterize them as follows:

• 𝜌𝑘𝑞 is the price applied by the LS-UAV provider 𝑞 for man-

aging a unit of flow data rate coming from the set 𝑘 of smart

objects. As usual in market models [16], it depends on the

overall data rate of the executed flows for that learning ser-

vice 𝑌
(𝐾 )
𝑘

, that is:

𝜌𝑘𝑞 = 𝜌𝑘𝑞

(
𝑌
(𝐾 )
𝑘

)
, ∀𝑘 ∈ I (K) , ∀𝑞 ∈ I (Q) , (7)

and it is assumed to be continuous, continuously differen-

tiable, and decreasing with 𝑦𝑘𝑞 ;

• 𝑐 (𝐸 )𝑞 is the total execution cost that the LS-UAV provider 𝑞

pays for processing. It depends on the net flow data rate,

𝜙𝑞 , executed by the LS-UAV 𝑞. The term 𝜙𝑞 is given by the

sum, for each learning service 𝑘 , of the amount of flow data

rates managed by the LS-UAV 𝑞 but not delegated to other

LS-UAVs and the amount of flow data rate that this LS-UAV

has received as delegated for execution by other LS-UAVs,

subtracted of the amount of data rate that this LS-UAV has

delegated to other LS-UAVs. Therefore, we have:

𝜙𝑞 =
∑︁

𝑘∈I (K)

(
𝑦𝑘𝑞 +

∑︁
𝑞̃∈I(Q)
𝑞̃≠𝑞

(𝑥𝑘𝑞̃𝑞 − 𝑥𝑘𝑞𝑞̃)
)
. (8)

Accordingly, 𝑐
(𝐸 )
𝑞 = 𝑐

(𝐸 )
𝑞 (𝜙𝑞) = 𝑐 (𝐸 )𝑞

(
𝑌
(𝑄 )
𝑞 , 𝑋̃𝑞, 𝑋𝑞

)
;

• 𝑐 (𝑆 )
𝑘𝑞̃

is the total delegation cost that any LS-UAV provider has

to pay to provider 𝑞 for the execution of the learning service

𝑘 . It is associated with the flows sent by all the LS-UAVs to 𝑞

for all the requested learning services: 𝑐
(𝑆 )
𝑘𝑞̃

= 𝑐
(𝑆 )
𝑘𝑞̃

(𝑋̃𝑞̃);

• 𝑐 (𝑀 )
𝑘𝑞

is the management cost that the LS-UAV provider 𝑞 has

to pay for managing the amount of flow data rate for the

learning service 𝑘 . It depends on the flow data rate accepted

for that learning service: 𝑐
(𝑀 )
𝑘𝑞

= 𝑐
(𝑀 )
𝑘𝑞

(
𝑦𝑘𝑞

)
;

• 𝑐 (𝑇 )
𝑞𝑞̃

is the transmission cost from the LS-UAV 𝑞 to the LS-

UAV 𝑞, and depends on the amount of delegated flows, for all

the learning services, by 𝑞 to 𝑞: 𝑐
(𝑇 )
𝑞𝑞̃

= 𝑐
(𝑇 )
𝑞𝑞̃

(
𝑋𝑞𝑞̃

)
. Instead,

when 𝑞 is delegated by any other LS-UAV, we assume that

the transmission cost is negligible for 𝑞.

In order to optimize the ODEL management policy, for each LS-

UAV provider 𝑞 we introduce a utility function, which is given by

the difference between the revenue and the overall cost incurred by

that LS-UAV provider. More specifically, the revenue is obtained as

the sum of unit demand prices of each learning service multiplied

by the value of the flow data rate associated with the provision

of each service managed by 𝑞, and the cost that all the other LS-

UAV providers have to pay to 𝑞 when it executes services managed

by them. The overall cost is instead defined by the sum of all the

execution costs for the provided services and for the ones addi-

tionally delegated by other LS-UAVs, the management cost and the
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transmission cost. Hence, the total utility function for the LS-UAV

provider 𝑞 is defined as:

𝑈𝑞 (𝑋,𝑌 ) =
𝐾∑︁
𝑘=1

𝜌𝑘𝑞

(
𝑌
(𝐾 )
𝑘

)
𝑦𝑘𝑞 − 𝑐

(𝐸 )
𝑞

(
𝑌
(𝑄 )
𝑞 , 𝑋̃𝑞, 𝑋𝑞

)
+

+
𝑄∑̃︁
𝑞=1

𝑞̃≠𝑞

(
𝑐
(𝑆 )
𝑞

(
𝑋̃𝑞

)
·
(
𝐾∑︁
𝑘=1

𝑥𝑘𝑞̃𝑞

)
− 𝑐 (𝑆 )

𝑞̃

(
𝑋̃𝑞̃

)
·
(
𝐾∑︁
𝑘=1

𝑥𝑘𝑞𝑞̃

))
+

−

𝐾∑︁
𝑘=1

𝑐
(𝑀 )
𝑘𝑞

(
𝑦𝑘𝑞

)
+

𝑄∑̃︁
𝑞=1

𝑞̃≠𝑞

𝑐
(𝑇 )
𝑞𝑞̃

(
𝑋𝑞𝑞̃

) . (9)

Therefore, the ODEL management optimization problem for the

LS-UAV provider 𝑞 can be formalized as follows.

Determine the amount of data rate, 𝑦𝑘𝑞 , to accept for learning, the
portion of 𝑦𝑘𝑞 to delegate to other LS-UAVs, 𝑥𝑘𝑞𝑞̃ , and the portion
of data rate associated to the learning service 𝑘 , delegated by other
LS-UAVs to it, 𝑥𝑘𝑞̃𝑞 , in order to:

maximize 𝑈𝑞 (𝑋,𝑌 ) (10)

subject to the following constraints:

• the conservation law regarding the demand 𝐷𝑘 must be

satisfied (without excesses or lacks):∑︁
𝑞̃∈I (Q)

𝑦𝑘𝑞̃ = 𝐷𝑘 , ∀𝑘 ∈ I (K)
; (11)

• each LS-UAV cannot delegate to other LS-UAVs a portion of

flow data rate that is higher than the one it is managing:∑︁
𝑞̃∈I(Q)
𝑞̃≠𝑞

𝑥𝑘𝑞𝑞̃ ≤ 𝑦𝑘𝑞, ∀𝑘 ∈ I (K)
; (12)

• the computational resources required to manage all the flows

accepted by the LS-UAV 𝑞 must not exceed its maximum

computational capacity:

𝐾∑︁
𝑘=1

𝑠𝑘 ·𝑊𝑘𝑞 ≤ 𝐶𝑞 ; (13)

• the flight duration of each LS-UAV 𝑞 must be higher than

a given threshold Δ𝑞 imposed by the mission, i.e. 𝛿𝑞 > Δ𝑞 .
Therefore, according to the definition of 𝛿𝑞 in (6), we have:

∑︁
𝑘∈I (K)

𝑠𝑘 ·𝑊𝑘𝑞 ≤
𝐵 − Δ𝑞 ·

(
𝑃
(𝐸𝑛)
𝑞 + 𝑃 (𝐶𝐸 )𝑞

)
𝑒 (𝐸 ) · Δ𝑞

; (14)

• all the variables must be non-negative:

𝑦𝑘𝑞, 𝑥𝑘𝑞𝑞̃, 𝑥𝑘𝑞̃𝑞 ≥ 0, ∀𝑘 ∈ I (K) , ∀𝑞 ∈ I (Q) . (15)

In addition, a general constraint in our system is represented by

the hypothesis that a sufficient capacity is provided by the FANET

as a whole, in order to satisfy all the service provisioning requests.

Accordingly, we assume that:∑︁
𝑘∈I (K)

𝑠𝑘𝐷𝑘 ≤
∑︁

𝑞∈I (Q)

𝐶𝑞 . (16)

4 THE VARIATIONAL INEQUALITY
FORMULATION

In this section, we provide the characterization of the optimiza-

tion problem (10), subject to (11)-(15), by means of a variational

inequality.

Let us assume that the demand price terms are continuously dif-

ferentiable and concave, while all the cost terms are continuously

differentiable and convex. Hence, the utility function is continu-

ously differentiable and concave, and the feasible set is closed and

convex. Therefore, the optimality conditions for all providers simul-

taneously are characterized by a variational inequality, as expressed

by the following Theorem (for the proof, see [17]).

Theorem 1 (Variational Formulation). A vector (𝑌 ∗, 𝑋 ∗) ∈ K
is an optimal solution to the problem (10)-(15) if and only if there
exist the Lagrange multiplier vectors 𝜇 (1)∗ ∈ R𝐾 , 𝜆 (1)∗ ∈ R𝐾𝑄+ and
𝜆 (2)∗ ∈ R𝑄+ such that the vector (𝑌 ∗, 𝑋 ∗, 𝜇 (1)∗, 𝜆 (1)∗, 𝜆 (2)∗) is a so-
lution to the following variational inequality:

𝑄∑︁
𝑞=1

𝐾∑︁
𝑘=1

[ 𝜕𝑐 (𝐸)𝑞

(
𝑌 ∗
𝑞 , 𝑋̃

∗
𝑞, 𝑋

∗
𝑞

)
𝜕𝑦𝑘𝑞

+
𝜕𝑐

(𝑀 )
𝑘𝑞

(
𝑦∗
𝑘𝑞

)
𝜕𝑦𝑘𝑞

− 𝜌𝑘𝑞
(
𝑌 ∗
𝑘

)
−

+
𝜕𝜌𝑘𝑞

(
𝑌 ∗
𝑘

)
𝜕𝑦𝑘𝑞

𝑦∗
𝑘𝑞

+ 𝜇 (1)∗
𝑘

− 𝜆 (1)∗
𝑘𝑞

+ 𝑠𝑘𝜆 (2)∗𝑞

]
× (𝑦𝑘𝑞 − 𝑦∗

𝑘𝑞
) +

+
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞,𝑞̃=1

𝑞̃≠𝑞

[ 𝜕𝑐 (𝐸)𝑞

(
𝑌 ∗
𝑞 , 𝑋̃

∗
𝑞, 𝑋

∗
𝑞

)
𝜕𝑥𝑘𝑞𝑞̃

+
𝜕𝑐

(𝑇 )
𝑞𝑞̃

(
𝑋 ∗
𝑞𝑞̃

)
𝜕𝑥𝑘𝑞𝑞̃

+

+𝜆 (1)∗
𝑘𝑞

− 𝑠𝑘𝜆 (2)∗𝑞

]
× (𝑥𝑘𝑞𝑞̃ − 𝑥∗

𝑘𝑞𝑞̃
) +

+
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞,𝑞̃=1

𝑞̃≠𝑞

[ 𝜕𝑐 (𝐸)𝑞

(
𝑌 ∗
𝑞 , 𝑋̃

∗
𝑞, 𝑋

∗
𝑞

)
𝜕𝑥𝑘𝑞̃𝑞

+ 𝑠𝑘𝜆 (2)∗𝑞

]
× (𝑥𝑘𝑞̃𝑞 − 𝑥∗

𝑘𝑞̃𝑞
) +

−
𝐾∑︁
𝑘=1

[ 𝑄∑︁
𝑞=1

𝑦∗
𝑘𝑞

− 𝐷𝑘
]
× (𝜇 (1)

𝑘
− 𝜇 (1)∗

𝑘
) +

−
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

[ 𝑄∑︁
𝑞̃=1

𝑥∗
𝑘𝑞𝑞̃

− 𝑦∗
𝑘𝑞

]
× (𝜆 (1)

𝑘𝑞
− 𝜆 (1)∗

𝑘𝑞
)+

−
𝑄∑︁
𝑞=1

[ 𝐾∑︁
𝑘=1

𝑠𝑘

𝑦
∗
𝑘𝑞

+
𝑄∑̃︁
𝑞=1

𝑞̃≠𝑞

(𝑥∗
𝑘𝑞̃𝑞

− 𝑥∗
𝑘𝑞𝑞̃

)

 − 𝐶𝑞
]
×

×(𝜆 (2)𝑞 − 𝜆 (2)∗𝑞 ) ≥ 0,

∀ (𝑌,𝑋, 𝜇 (1) , 𝜆 (1) , 𝜆 (2) ) ∈ K × R𝐾 × R𝐾𝑄+ × R𝑄+ , (17)

where

K = {(𝑌,𝑋 ) ∈ R𝐾𝑄
2

+ | (11) − (14) hold ∀𝑞}. (18)

Observe that VI (17) could easily be put in the following standard

form (see [17]):

Find 𝑍 ∗ ∈ K ⊆ R𝑁 such that:

⟨𝐹 (𝑍 ∗), 𝑍 − 𝑍 ∗⟩ ≥ 0, ∀𝑍 ∈ K ⊆ R𝑁 , (19)

where ⟨·, ·⟩ denotes the inner product in 𝑁 -dimensional Euclidean

space. Therefore, we now present an important result that concerns
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the existence and uniqueness of VI solution in eq. (17), based on

the theory of variational inequalities (see [18]).

Theorem 2 (Existence and Uniqeness of VI solution). A so-
lution𝑍 ∗ ≡ (𝑌 ∗, 𝑋 ∗, 𝜇 (1)∗, 𝜆 (1)∗, 𝜆 (2)∗) to variational inequality (17)
exists. Moreover, if the function 𝐹 (𝑍 ) as in (19), is strictly monotone,
that is:

⟨(𝐹 (𝑍 ) − 𝐹 (𝑍 )), 𝑍 − 𝑍 ⟩ > 0,

∀𝑍, 𝑍 ∈ R𝐾𝑄
2

+ × R𝐾 × R𝐾𝑄+ × R𝑄+ , 𝑍 ≠ 𝑍, (20)

then, the solution 𝑍 ∗ is also unique.

5 NUMERICAL ANALYSIS
In this section, we present a numerical analysis of the ODEL frame-

work applied to some relevant use cases. More specifically, we first

describe the system setup and then, thanks to the VI approach

introduced in Section 4 we derive the optimum configuration and

system performance in the considered scenarios.

Let ODEL FANET be composed by 𝑄 = 3 LS-UAVs. The mean

cumulative data rate coming from each set of smart objects are

𝐷1 = 35, 𝐷2 = 40, 𝐷3 = 20 and 𝐷4 = 45 DU/s, respectively. The

amount of computation needed for learning to process a single DU

is different for each service, specifically, we assume 𝑠1 = 2, 𝑠2 = 10,

𝑠3 = 3 and 𝑠4 = 5 kFLOPs [19].

The unit demand price functions, 𝜌𝑘𝑞 (𝑌
(𝐾 )
𝑘

), which are listed

in Table 1, highlight the dependence of the price choice by each

provider on the choices taken by the other providers. The other pa-

rameters, i.e. the execution, the transmission and the management

cost functions are listed in Table 2. As concerns the characteriza-

tion of UAV power consumption, we assume its engines absorb

𝑃
(𝐸𝑛)
𝑞 = 66 W and the computing element 𝑃

(𝐶𝐸 )
𝑞 = 5.4 W. More-

over, we consider an elementary energy consumption to provide

the service, 𝑒 (𝐸 ) = 59.1 · 10
−3

J/FLOP, and a battery capacity 𝐵 = 50

Wh.

As previously mentioned, in our analysis, we consider the two

following scenarios:

(1) Resource-Constrained (RC) scenario, characterized by LS-

UAVs each with a CE capacity of 264 kFLOP/s; therefore,

the overall FANET capacity is of 792 kFLOP/s;

(2) Over-Provisioned (OP) scenario, characterized by LS-UAVs

eachwith a CE capacity of 352 kFLOP/s; therefore, the overall

FANET capacity is of 1056 kFLOP/s.

In both scenarios, as imposed in (16), the total FANET capacity,

that is the sum of the maximum capacities for all the LS-UAVs, is

greater than the total request of services, given by

∑𝐾
𝑘=1

𝑠𝑘𝐷𝑘 . The

name assigned to the above scenarios is given by the comparison

of the total computation capacity provided by the FANET in each

scenario and the overall load provided by the input flows, that is∑
𝑘 𝐷𝑘 · 𝑠𝑘 = 755 kFLOPs.

By solving the Variational Inequality in (17), we obtain the op-

timal solutions, that is the 𝑘-service request that each provider 𝑞

satisfies, the portion of service requests to delegate to and delegated

by other LS-UAVs, at the equilibrium. Hence, we could determine

𝑈𝑞 (𝑋 ∗, 𝑌 ∗), the total utility for each provider, calculated in the opti-

mal solutions and the flight duration actually used by each LS-UAV.

We analyze each of these aspects by varying 𝐶1, 𝐶2 and 𝐶3, i.e.

Table 1: Unit demand prices.

𝜌11 = −0.3𝑦11 + 2.2𝑦12 + 2.3𝑦13; 𝜌12 = −0.1𝑦12 + 1.5𝑦11 + 1.5𝑦13;

𝜌13 = −0.2𝑦13 + 1.1𝑦11 + 1.2𝑦13 𝜌21 = −0.1𝑦21 + 1.1𝑦22 + 2.3𝑦23;

𝜌22 = −0.3𝑦22 + 1.3𝑦21 + 1.1𝑦23; 𝜌23 = −0.1𝑦23 + 1.3𝑦21 + 1.1𝑦22;

𝜌31 = −0.5𝑦31 + 1.1𝑦32 + 1.2𝑦33; 𝜌32 = 1.7𝑦31 − 0.5𝑦32 + 2.0𝑦33;

𝜌33 = 1.1𝑦31 + 1.2𝑦32 − 0.5𝑦33; 𝜌41 = −0.2𝑦41 + 1.3𝑦42 + 1.5𝑦43;

𝜌42 = 1.2𝑦41 − 0.1𝑦42 + 1.3𝑦43; 𝜌43 = 1.1𝑦41 + 1.3𝑦42 − 0.3𝑦43;

Table 2: Execution, transmission and management costs

Execution cost
𝑐
(𝐸)
1

= 0.3 · 𝜙2

1
+ 2 · 𝜙1 ; 𝑐

(𝐸)
2

= 0.4 · 𝜙2

2
+ 3 · 𝜙2 ; 𝑐

(𝐸)
3

= 0.25 · 𝜙2

3
+ 4 · 𝜙3 ;

Transmission cost
𝑐
(𝑇 )
12

= 0.5(∑𝐾
𝑘=1

𝑥𝑘12
)2 + (∑𝐾

𝑘=1
𝑥𝑘12

) ; 𝑐
(𝑇 )
13

= 0.2(∑𝐾
𝑘=1

𝑥𝑘13
)2 + (∑𝐾

𝑘=1
𝑥𝑘13

) ;
𝑐
(𝑇 )
21

= 0.09(∑𝐾
𝑘=1

𝑥𝑘21
)2 + (∑𝐾

𝑘=1
𝑥𝑘21

) ; 𝑐
(𝑇 )
23

= 0.35(∑𝐾
𝑘=1

𝑥𝑘23
)2 + (∑𝐾

𝑘=1
𝑥𝑘23

) ;
𝑐
(𝑇 )
31

= 0.4(∑𝐾
𝑘=1

𝑥𝑘31
)2 + (∑𝐾

𝑘=1
𝑥𝑘31

) ; 𝑐 (𝑇 )
32

= 0.45(∑𝐾
𝑘=1

𝑥𝑘32
)2 + (∑𝐾

𝑘=1
𝑥𝑘32

) ;
Management cost

𝑐
(𝑀 )
11

= 0.2𝑦2

11
+ 0.1𝑦11 ; 𝑐

(𝑀 )
12

= 0.1𝑦2

11
+ 0.5𝑦11 ; 𝑐

(𝑀 )
13

= 0.3𝑦2

13
+ 0.1𝑦13 ;

𝑐
(𝑀 )
21

= 0.2𝑦2

21
+ 0.2𝑦11 ; 𝑐

(𝑀 )
22

= 0.5𝑦2

22
+ 0.1𝑦22 ; 𝑐

(𝑀 )
23

= 0.25𝑦2

22
+ 0.2𝑦23 ;

𝑐
(𝑀 )
31

= 0.2𝑦2

31
+ 0.2𝑦31 ; 𝑐

(𝑀 )
32

= 0.4𝑦2

32
+ 0.1𝑦32 ; 𝑐

(𝑀 )
33

= 0.35𝑦2

33
+ 𝑦33 ;

𝑐
(𝑀 )
41

= 0.25𝑦2

41
+ 0.5𝑦41 ; 𝑐

(𝑀 )
42

= 0.25𝑦2

42
+ 𝑦42 ; 𝑐

(𝑀 )
43

= 0.35𝑦2

43
+ 2𝑦43

the available computational resource of LS-UAVs 𝑞 = 1, 𝑞 = 2 and

𝑞 = 3, respectively. We change 𝐶𝑞 in a range between 228 kFLOP/s

and 300 kFLOP/s in the RC scenario, while we change it in a range

between 316 kFLOP/s and 400 kFLOP/s in the OP scenario.

Figs. 2a, 2b and 2c show the utility functions of each provider.

Each colour represents a provider (blue, green and red for provider

𝑞 = 1, 𝑞 = 2 and 𝑞 = 3, respectively), while the dashed and the

solid lines refer to the RC and the OP scenarios, respectively. For

all the simulations, and in both the RC and OP scenarios, provider

𝑞 = 1 has the highest utility, instead, the other two providers are

switched in the two scenarios (𝑞 = 2 has the higher utility in RC

scenario, and 𝑞 = 3 in OP scenario). Except for provider 𝑞 = 2,

providers obtain a higher utility in OP scenario than in RC.

For both scenarios, Figs. 3a, 3b and 3c show the results related to

the flight duration of the LS-UAVs. From the figures, we can appre-

ciate that, thanks to the application of our optimization framework,

they result to be almost comparable. An exception is, as expected,

for provider 𝑞 = 2 in scenario OP that does execute few services,

and consequently it has the greatest flight duration. As shown by

Fig. 3a, when the LS-UAV provider 𝑞 = 1 increases computational

resources, it has a decreasing flight duration. Similarly, when the

computational resources of LS-UAV 𝑞 = 3 are increasing (in both

scenarios), it has a decreasing flight duration (see Fig. 3c). Instead,

by varying𝐶2 (see Fig. 3b), except for very small amounts of compu-

tational resources, the flight duration, as well as the utility function,

remains almost constant. Clearly, when the values of the computa-

tional resources of all LS-UAVs are equivalent (i.e., 264 kFLOP/s for

the RC scenario and 352 kFLOP/s for the OP scenario), the points

of the three graphs coincide (both for the utility function and the

flight duration). Furthermore, the used computational resources

have an opposite trend as compared to the flight duration.
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(a)𝑈𝑞 vs.𝐶1 (b)𝑈𝑞 vs.𝐶2 (c)𝑈𝑞 vs.𝐶3

Figure 2: Utility function (𝑈𝑞) of each provider

(a) Flight duration vs𝐶1 (b) Flight duration vs𝐶2 (c) Flight duration vs𝐶3

Figure 3: Flight duration of each provider

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we propose ODEL, an On-Demand Edge-Learning

framework that uses a Flying Ad-hoc NETwork (FANET) to bring

computing and networking facilities on-site for edge learning. The

ODEL Manager creates the FANET with a number of LS-UAV that

are provided by different providers according to a marketplace ap-

proach, with the objective of maximizing their profits. The goal of

each LS-UAV is to participate in the learning process by training

local models from the DUs coming from some sets of homogeneous

smart objects. A non-linear optimization problem is formulated

in order to determine the optimal distribution of flows that max-

imizes revenue for each UAV provider, and is solved by means of

the VI theory. As future work, we are working on extending the

present non-cooperative game to a scenario of coalitions among

LS-UAV providers, and analyzing the system in a long-term horizon,

considering dynamic changes in the number of LS-UAVs.
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