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ABSTRACT
The research area of recommender systems (RS) in e-commerce has
become extremely popular in recent years. However, traditional RSs
tend to recommend popular items, while niche (long-tail) items are
often neglected, which is known as the long-tail problem. However,
recent studies found that tail items are one of the key success
factors in the e-commerce world. The availability of such items
encompasses relatively high marginal profits and boosts the sales of
popular short-head items. We suggest promoting long-tail items by
leveraging the short-head items’ advantages and exposing the user
to a tail item that may have not been considered otherwise. We use
a classification model and statistical tools to generate personalized
recommendations of a long-tail item considering a short-head item
that has already been clicked. The uniqueness of our method lies
in the combination of tail and head items to uplift the exposure
of the latter and in using an applicable solution to deal with the
extreme volume of tail items. We demonstrate the effectiveness of
our method on real-world data from eBay and provide an analysis
of the long-tail phenomenon and consumption behavior.
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1 INTRODUCTION
Recommender systems (RS) are a class of information filtering appli-
cations whose main goal is to provide predictions to users based on
their preferences, [4, 11, 27]. However, traditional RSs tend to focus
on recommended items, rather than uncovering niche (long-tail)
items and showcasing them to potential users, which is well known
as the long tail problem [3]. Long-tail is the phenomenon in which
niche items gain a significant share of demand among all items,
while the “short-head” refers to a small number of popular items
that account for the highest relative share of the demand [15]. Tradi-
tionally, most retailers manage sales by using the Pareto principle,
which states that roughly 80% of the outcome results from 20%
of the causes. However, this principle is weak in e-commerce [6].
The success of “infinite-inventory” retailers, such as Amazon, eBay,
and Netflix has been largely attributed to the long-tail phenom-
enon. Although the majority of the tail item inventory is in low
demand, these hard-to-find items, unavailable at limited-inventory
competitors, embrace relatively large marginal profit compared to
the short-head items [6]. Furthermore, niche items can boost head
sales by providing users with a “one-stop shopping” convenience,
which can entice customers to purchase both short-head items and
long-tail items in one step, increasing the total sales [40]. Most
RSs are evaluated based on accuracy-oriented metrics, which is not
necessarily reflective of user needs, as RSs may provide accurate but
likely obvious suggestions [10, 21]. In addition, accuracy-driven RSs
are prone to popularity bias, which is the tendency of popular items
to be recommended more often [1]. Long-tail recommendations
can enhance the user’s experience with the recommender system,
as recommending popular (short-head) items only may bore the
users [2, 24].

In this work,We introduce a novel method to handle the long-tail
challenge by combining tail items with head items. Our approach
personally recommends a tail itemmost likely to be clicked together
with the head item that has already been clicked, while considering
context information, such as historical user behavior and time. Our
method is expected to significantly improve the visibility of the tail
items in the recommendation systems [40]. The head and tail pair
could also be offered for sale as a package to enhance the exposure
of the latter and expand customers’ buying scope.

Recommending a personalized long-tail item considering a clicked
short-head item is a challenging task, due to the high volume of
the long-tail items and their niche characteristics. The latter makes
the multi-class task sparse as well. Moreover, a straightforward
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solution model that utilizes a feature set to predict a long-tail item
often requires adaptations and powerful computing resources, so it
may not be a scalable solution for real-world scenarios. To tackle
these challenges, we suggest a two-stage approach: First, a tree-
based model that predicts the short-head category to combine with
a given tail item. Following, Bayes’ theorem is used on the predicted
categories from the first phase to estimate the personal probability
for a user to click a tail item together with the short-head cate-
gory already clicked. We use these probabilities to measure the
improvement in the exposure of the tail items, in order to reduce
popularity bias. Similar to [22], we utilize head categories instead
of head items due to the dynamics of the large-scale e-commerce
websites as well as the sparsity and fine-grained granularity of
the head items’ data. Through our two-step method, we address
the aforementioned challenges by leveraging the denser and much
smaller number of short-head categories, which serves to decrease
the learned parameters and the training resources required. We
demonstrate the effectiveness of our method on a real-world dataset
provided by eBay, which includes co-clicked transactions of tail
and head items. Figure 1 presents an example of a user’s clicks on
tail and head items in one day.

Figure 1: Example of co-clicked short-head (top) and long-tail
(bottom) items from eBay.com

The main contribution of this work is twofold:
(1) We introduce a novel approach leveraging short-head items

for promoting long-tail items, which is a unique strategy for
addressing the well-known long-tail challenge in RSs. The strat-
egy is shown to be effective on a real-world dataset, demon-
strating success in exposure lift of long-tail items in a recom-
mendation list.

(2) We analyze the long-tail phenomenon on a real-world dataset
from eBay. Our analysis provides insights about long-tail con-
sumption behavior and users’ preferences over the categories.

2 RELATEDWORK
2.1 Long Tail Recommendation
Traditional RSs are accuracy-driven and tend to recommend the
most popular items that have many ratings or clicks, since it is
difficult to predict the relevance of long-tail items with a small
number of transactions. Consequently, these items are less likely to
appear in the recommendation lists, do not gain more predictions,

and may be discarded [27]. This problem is known as the long-
tail problem. Recent studies on long-tail recommendation methods
mainly focus on graph-based methods, multi-objective-function-
optimization-based methods, and clustering-based methods.

In the realm of graph-based methods, Yin et al. [40] represented
user-item information with an undirected edge-weighted graph
and applied the hitting time algorithm for long-tail item recommen-
dation. Shi [35] aimed to find a trade-off among multiple criteria of
measurements, such as long-tail, accuracy, similarity, and diversity.
Yet, while we utilize time and item properties, those works do not
consider any context information when recommending.

Other studies adopted multi-objective optimization to address
the long-tail challenge.Wang et al. [39] introduced amulti-objective
system with a new evolutionary algorithm for long-tail recommen-
dations. Two contradictory objective functions were designed to
recommend unpopular items while minimizing accuracy loss. Then,
a multi-objective evolutionary algorithm was proposed to find a set
of trade-off solutions by optimizing the two objectives simultane-
ously. Nevertheless, evolutionary algorithms usually have high run-
time, so they are not optimized for the rapid rhythm of e-commerce.
Hamedani and Kaedi [27] used multi-objective simulated annealing
with three objectives: increasing accuracy, personalizing diversity,
and reducing the popularity of recommendation lists. Using sim-
ulated annealing, however, is not guaranteed to find an optimal
solution. In the long-tail item recommendation method proposed by
Pang et al. [30], a non-dominated sorting genetic algorithm (NSGA-
II) was used. To achieve the recommendation of long-tail items,
both accuracy and coverage were taken as the objective functions
simultaneously. All of these methods, however, do not distinguish
between the user’s long-term preferences and short-term prefer-
ences, while we model the user behavior and preferences over time.

Finally, clustering methods are used to alleviate the issue of data
sparsity and improve the accuracy of recommendations. Park [31]
proposed an adaptive clustering method that groups items accord-
ing to their popularity, so that the recommendations for tail items
are based on the ratings in more intensively clustered groups, and
for the head items are based on the ratings of individual items or
groups, clustered to a lesser extent. Unfortunately, the challenge of
this method is finding an appropriate clustering standard. Huang
and Fu [17] suggested a long-tail item recommendation method
that combines topic model-based methods with clustering tech-
niques. The proposed model incorporates the hidden experience
information discovered through online customer reviews with nu-
meric information from product/service providers. However, those
methods are based on ratings and do not take into account the
item’s attributes or user preferences.

2.2 Head and Tail Recommendations
Similar to our work, some researchers rely on the head and tail
distribution to improve recommendations. Park et al. [32] split the
whole item set into head and tail and clustered only the tail items.
For the tail items, recommendations were made based on ratings
within these clusters, and for the head items, they were based on
individual ratings. Li et al. [23] simultaneously handled both cold-
start and long-tail recommendations in multiple objectives. For the
cold-start problem, they used side information; and for the long-tail
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recommendation, they decomposed the overall set of interesting
items into two parts: short-head items and long-tail items. The
two parts were independently revealed in the training stage and
transferred into the final recommendation for new users. While
these works split the item set into head and tail items as we do, these
two sets are independent during the training process. Therefore,
relations between them are neglected.

In [41], the authors presented a model that transferred knowl-
edge from head items to tail items, leveraging the rich information
of head items and the semantic connections between head and
tail items. The framework proposed by Liu and Zheng [24] was
designed based on neural networks and attention mechanism to
identify long-tail items from session data. The proposed method
aimed to determine user preference between short-head and long-
tail items, based on click frequency, while we propose a method to
personally recommend a long-tail item considering a short-head
item that has already been clicked.

In summary, our work differs from the above-mentioned long-
tail recommender systems in various aspects. First, several works
[27, 31, 32, 35, 39–41] retrieve the long-tail items through analysis of
rating, whereas we focus on e-commerce recommendations and use
the click distributions. Second, some methods [17, 27, 30–32, 35, 39,
40] do not take into account the user’s preferences or any context
information. Finally, most of the presented methods [23, 27, 31, 32,
35, 39, 41] aim to optimize the recommendation list and suggest
a long-tail item alongside other items. In our novel approach to
boosting long-tail recommendations, we combine long-tail items
most likely to be clicked with short-head items already clicked. This
method suggests a unique solution to the high volume of long-tail
items by leveraging the popularity of head items.

3 DATASET
Our dataset was provided by eBay, an e-commerce platform that
offers people and businesses the option to buy and sell various goods
and services worldwide. The dataset consists of “click” transactions
that occurred during February 2020 within the United States version
of the eBay site. Each record in our dataset represents a co-click of
two items clicked by the same user on the same day. We define two
sets of items: 𝐻 and 𝑇 , corresponding to the short-head and long-
tail items, and label each item accordingly. In this work, we aim
to boost the long-tail items recommendations by leveraging short-
head items, thus we focus on the transactions that include clicks on
pairs of 𝐻 and 𝑇 items. To determine the partitioning between 𝐻
and 𝑇 , we utilized a “views” dataset provided to us by eBay. A view
refers to the appearance of an item in search results. The views
dataset includes transactions that occurred during November 2019.
Similarly to [14, 32], we experienced various view values along the
x-axis (depicted in Figure 2) to determine the optimal thresholds for
𝐻 and𝑇 . The impact of selecting different thresholds on the results
is depicted in subsection 6.2. Our final selected thresholds for short-
head and long-tail are 1000 and 10 monthly views, respectively.
Table 1 and Table 2 provide a summary of the clicks dataset used
in this study and statistics of the transactions respectively.
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Figure 2: The long-tail of item popularity by the number of
views on November 2019 at eBay dataset.

eBay Dataset
# Records 3,532,938
# Long-tail
items

1,044,051

# Users 665,608
Long-tail
MCs

Books (5%), Business & Industrial (8%), Cell
Phones & Accessories (10%), Clothing &
Shoes (27%), Collectibles (4%), Consumer Elec-
tronic (3%), Health & Beauty (10%), Home &
Garden (19%), Jewelry & Watches (12%)

Head labels Fashion, Beauty, Home & Garden, Electronics,
Others

Table 1: Dataset summary, including the distribution of MCs
over long-tail items.

Long-tail item User

Mean 3.38 5.38
Median 2 2
Std 9.29 13.77
Min 1 1
Max 3,933 3,884

Table 2: Transaction statistics per long-tail item and user.

3.1 Item Meta-Categories
eBay spans a variety of shopping domains. Each item on eBay is
associated with one out of 43meta-categories (MCs) [9] (e.g., Jewelry
& Watches, Cameras & Photo, DVDs & Movies). For the long-tail
items, we focused on nine major MCs as depicted in Table 1. We
selected these MCs based on the richness of the long-tail items,
as well as on balance in the number of pairs over the MCs given
the threshold values mentioned previously. We used short-head
items from all 43 MCs without any filtering. Nevertheless, for the
head label, we grouped the MCs into the following five different
labels: Fashion, Beauty, Home & Garden, Electronics, and Others.
The head labels within the dataset are balanced as the interactions
are distributed approximately evenly over the head labels. Each
of the five labels accounted for approximately a fifth of the total
transactions, specifically ranging from 17% (Electronics) to 24%
(Fashion).

In an effort to better understand the MCs on eBay, we explored
the monthly click-through rate (CTR) and purchase rate over the
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MCs CTR Ratio Purchase Rate Ratio

Books 2.71 1.11
Business & Industrial 1.90 0.98
Cell Phones & Accessories 1.89 1.07
Clothing & Shoes 1.81 0.38
Collectibles 2.06 0.48
Consumer Electronics 1.87 0.44
Health & Beauty 1.59 0.60
Home & Garden 2.05 0.86
Jewelry & Watches 2.35 0.92

Table 3: CTR and purchase rate ratios by MC.

categories by short-head and long-tail items. The values are pre-
sented as a ratio between the short-head to long-tail items (Table 3).
We used the following signals:

• 𝐶𝑇𝑅 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑖𝑐𝑘𝑠
𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑒𝑤𝑠

• 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑒𝑤𝑠

We gained two important insights regarding user click behavior pat-
terns. First, user behavior often varies across MCs. Second, there is a
difference between short-head and long-tail consumption patterns.
Specifically, short-head items receive higher CTR than long-tail
items over the different MCs (𝑟𝑎𝑡𝑖𝑜 > 1). Nevertheless, the purchase
rate for the long-tail items is higher than the short-head for most
MCs (𝑟𝑎𝑡𝑖𝑜 < 1). This latter finding emphasizes the important role
tail items play in driving e-commerce platforms’ revenue.

3.2 Features
The dataset includes four major families of features: item’s charac-
teristics (e.g., price, category), time-related features (e.g., hour/day
the short-head item was clicked), cumulative transactions (e.g., the
user’s total clicks until the current transaction, days since the last
record for the user, user behavior: most clicked category, popular
search keys, etc.), and cumulative class transactions (e.g., the total
number of times that the user has clicked the head label Fashion).

4 METHOD
In this section, we describe ourmethod to handle product-to-product
recommendations, especially for short-head and long-tail items. We
aimed to increase the visibility of long-tail items by leveraging
head item’s popularity. Thus, we recommend a long-tail item that
is most likely to be clicked together with the short-head item that
has already been clicked.

The proposed method consists of two stages. The first stage
is responsible for predicting the head label that should be paired
with a long-tail item for a specific user at a specific time. The
second stage uses the estimated probabilities obtained from the
first stage to recommend the long-tail item that is most likely to be
clicked with the given clicked head label by user and time. Figure 3
demonstrates the difference between predicting the long-tail item
end-to-end (Figure 3a) vs. our two-stages method (Figure 3b), which
utilizes the probability of clicking on a small number of head labels
to recommend a personalized long-tail item.

Using a two-stage approach introduces multiple benefits:

• On large e-commerce platforms, inventory long-tail items are
huge in numbers and dynamic in nature. Therefore, personally
recommending a long-tail item considering a clicked short-head
item is a sparse task. A straightforward solution model that
utilizes a feature set to predict a long-tail item often requires
adaptations and might not be a scalable solution for real-world
scenarios. Our two-step method handles the sparsity problem
by leveraging the denser and dramatically smaller short-head
categories amount, which decreases both the learned parameters
and the required resources for training.

• To reduce latency and resource budget, the first stage can be
performed offline or pre-computed.

• Predicting the short-head categories at the first step, which are
almost static, allows flexibility in adding new items to the mar-
ketplace. Newly seen items do not require a new model to be
trained since the labels are not changed. Instead, incremental
training can be conducted.

• The proposed approach is modular, where each of the two stages
can be separately optimized.
The input for the first stage is a set 𝐷 composed of 𝑁 records.

Each record (𝑢, 𝑡, 𝑓 , ℎ) ∈ 𝐷 denotes an interaction event where user
𝑢 clicked on a long-tail item 𝑡 together with short-head item associ-
ated with head label ℎ, while considering a feature set 𝑓 regarding
this interaction. 𝑓 may include categorical features (e.g., the item’s
MC) represented as a one-hot encoding vector and continuous fea-
tures (e.g., age). The task is building a multi-class classification
model to estimate the personalized probability 𝑝 (𝑥) for user 𝑢
clicking a specific head label ℎ while considering already clicked
long-tail item 𝑡 and given features 𝑓 .

𝑝 (𝑥) = 𝑝 (ℎ | (𝑢, 𝑡, 𝑓 )) (1)
During the second stage, we use the probabilities 𝑝 (𝑥) from the

first stage (Equation 1) to estimate the personalized probability that
user 𝑢 will click on a specific long-tail item 𝑡 while considering the
set of features 𝑓 given that the user has already clicked on head
label (ℎ). Using Bayes’ theorem:

𝑝 (𝑡 | (𝑢, 𝑓 , ℎ)) = 𝑝 (𝑡,𝑢, 𝑓 , ℎ)
𝑝 (𝑢, 𝑓 , ℎ) =

𝑝 (𝑡,𝑢, 𝑓 |ℎ) × 𝑝 (ℎ)
𝑝 (𝑢, 𝑓 |ℎ) × 𝑝 (ℎ)

=

𝑝 (ℎ |𝑡,𝑢,𝑓 )×𝑝 (𝑡,𝑢,𝑓 )
𝑝 (ℎ)

𝑝 (ℎ |𝑢,𝑓 )×𝑝 (𝑢,𝑓 )
𝑝 (ℎ)

=
𝑝 (ℎ |𝑡,𝑢, 𝑓 ) × 𝑝 (𝑡,𝑢, 𝑓 )
𝑝 (ℎ |𝑢, 𝑓 ) × 𝑝 (𝑢, 𝑓 )

= 𝑝 (𝑥) ×
(

𝑝 (𝑡,𝑢, 𝑓 )
𝑝 (ℎ |𝑢, 𝑓 ) × 𝑝 (𝑢, 𝑓 )

)
=

𝑝 (𝑥) ×
(
𝑝 (𝑡 |𝑢, 𝑓 ) × 𝑝 (𝑢, 𝑓 )
𝑝 (ℎ |𝑢, 𝑓 ) × 𝑝 (𝑢, 𝑓 )

)
= 𝑝 (𝑥) ×

(
𝑝 (𝑡 |𝑢, 𝑓 )
𝑝 (ℎ |𝑢, 𝑓 )

)
It is worth noting that tail item 𝑡 in the dataset is associated

with only a few records (Table 2), in particular when considering
features 𝑓 and user 𝑢. Thus, to address the sparsity of the data, we
used the Laplace smoothing as follows:

𝑝 (𝑡 |𝑢, 𝑓 ) = 𝑝 (𝑡,𝑢, 𝑓 )
𝑝 (𝑢, 𝑓 ) ≈ 𝑝 (𝑡,𝑢, 𝑓 ) + 1

𝑝 (𝑢, 𝑓 ) + |𝑇 |
where |𝑇 | stands for the number of tail items in our training set.
Accordingly, the probability that a tail item 𝑡 will be recommended
with a head category ℎ given a user 𝑢 and features 𝑓 is:

𝑝 (𝑡 | (𝑢, 𝑓 , ℎ)) ≈ 𝑝 (𝑥) × ©­«
𝑝 (𝑡,𝑢,𝑓 )+1
𝑝 (𝑢,𝑓 )+|𝑇 | )
𝑝 (ℎ |𝑢, 𝑓 )

ª®¬ (2)
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(a) Baselines- end to end. (b) Our two steps method

Figure 3: Our two-stage method generates a personalized long-tail item recommendation. The method utilizes Bayes Law on
the probability of recommending already clicked head label to recommend the long-tail item. The baselines are recommending
the long-tail item on one step, end-to-end

Finally, the proposed method can be used to generate recommenda-
tions that are valuable both to the user and the web store. Whenever
a user clicks a head item, we recommend a long-tail item with the
maximum probability of 𝑝 (𝑡 | (𝑢, 𝑓 , ℎ)).

5 EXPERIMENTS
In this section, we describe our extensive experiments for evaluating
our method’s effectiveness for uplifting tail items. Specifically, the
following elements (research goals) were investigated:
(1) For Stage I

• (G1): Different classifiers for the task of predicting the head
label for long-tail item.

• (G2): Identify the most important features to consider when
predicting the head label to pair with a long-tail item.

• (G3): Explore the long-tail consumption patterns by eBay
over MCs. Analyze the effect of the item’s MC on short-head
and long-tail pairs generation.

(2) Finally, for Stage II
• (G4) Demonstrate that our method is effective for uplifting
the exposure to the proper long-tail items.

5.1 First Stage
5.1.1 Experimental Settings. First, we aimed at predicting the head
label to pair with a tail item given a user and time (G1). To this end,
we experimented with popular tree-based classification models and
deep learning models as follows:
(1) Tree-based algorithms:

• XGBoost [8], an open source library1 that implements gra-
dient boosted trees, designed for efficiency.

• LightGBM (LGBM) [18], an open source library 2 that im-
plements gradient-boosted trees, designed for speed and
scalability. It splits the tree leaf-wise with the best fit to
reduce more loss than the level-wise algorithms.

• CatBoost [34], an open source library3 that provides a gra-
dient boosting model and supports categorical features.

• RandomForest [5], an ensemble learning method that op-
erates by combining a multitude of decision trees.

(2) Deep learning algorithms 4:

1XGBoost: https://xgboost.readthedocs.io/en/latest/
2https://lightgbm.readthedocs.io/en/latest/
3CatBoost: https://catboost.ai/
4deepctr: https://github.com/shenweichen/DeepCTR

• DeepFM[12], integrates the architectures of FM and DNNs
by modeling low-order feature interactions as FMs and mod-
eling high-order feature interactions as DNNs.

• FiBiNET [16], a DNN model that calculates feature interac-
tions using a bilinear function.

5.1.2 Evaluation Metrics.

• Accuracy: the proportion of samples that were correctly classi-
fied.

• Recall [36]: the sum of true positives across all classes divided
by the sum of TPs and FNs across all classes.

• Precision [36]: an average per-class agreement of the data class
labels with those of a classifier.

Since the labels in the dataset are uniformly distributed ( 20%), we
used a macro-average to calculate the overall precision and recall,
which computes the metric independently for each class and then
averages it.

5.1.3 Train-Test Split. Our dataset is chronologically ordered. To
avoid data leakage, we split the data based on timestamps. This split
simulates the real-world scenario, as real systems train on available
data up to a certain timestamp and predict for the following days.
We split the dataset as follows: the 30% most recent records are
considered as the test set and the rest are used for training (the
10% most recent records used for validation and hyper parameters
tuning).

5.1.4 Hyper Parameter tuning. For the tree-based model, we used
grid search to tune the following hyper-parameters: ”n_estimators”
(100,150,200), ”max_depth” (from 5 to 15, in two steps jumps), and
”learning rate” (0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1). The best
results were achieved by 100 estimators with a maximum depth of
10 and a learning rate of 0.1. The objective task is determined to
be ‘multiclass’. In XGBoost, we also tuned the ”min_child_weight”
parameter to 5. For the deep models, we used the Adam optimizer
[20]. We tried varying values of learning rate from 0.0001 to 0.1
and mini-batch sizes (32, 64, 256, 512, 1,024, 2,048) resulting in
an optimal value of 0.001 and 1,024 respectively. For multi-class
classification, we changed the last layer to a fully connected layer
with Softmax activation over five neurons, equal to the number of
head labels in our classification task.

5.1.5 Baseline. Statistic-Based Baseline As part of our dataset
analysis, we recognized that there is a connection between the
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Long-tail Item MC Head labels

Books Other
Business & Industrial Other
Cell Phones & Accessories Electronics
Clothing, Shoes & Accessories Fashion
Collectibles Other
Consumer Electronics Electronics
Health & Beauty Beauty
Home & Garden Home & Garden
Jewelry & Watches Beauty

Table 4: Head label mapping by the statistic-based baseline.
We select the head label that has been most co-clicked with
each tail MC.

long-tail item MC and the head label (61% of the pairs included
items from one MC). As a baseline we choose the most frequent
head label by long-tail MC for the head label prediction task (G1),
to demonstrate that our method captures MCs-heterogeneous pairs
as well. Table 4 presents the label per each long-tail item MC.

5.2 Second Stage
5.2.1 Experimental Settings. Based on the short-head item clicked
by the user, we set out to recommend the long-tail item with the
highest probability to be clicked out of 736, 530 unique long-tail
items.

5.2.2 Baselines. The goal of this paper is to recommend a specific
tail item in combination with a head item. Therefore, our method
is evaluated by scalable baselines from the product-to-product do-
main and classification in recommendation systems. Studies in the
field of long-tail recommendations have multiple objectives: to
improve tail item recommendations without negatively affecting
overall performance. Specifically, they provide a recommendation
list that includes both head and tail items. However, we recommend
a personalized long-tail item given a short-head item that has al-
ready been clicked. Therefore, we use the following algorithms as
baselines:

• Ranking based on item popularity (RBIP), this method,
broadly used in previous long-tail studies [7, 28, 29, 33, 37], ranks
all the available items based on their popularity from highest to
lowest. The popularity measure is based on the item’s number
of views, calculated in the same way as described in Section 3,
for identifying the short-head and long-tail thresholds. Equally-
popular items (same number of views) were randomly ordered.

• Item-NN, a neighborhood-based method [13, 19, 24]. It recom-
mends a set of items with the highest similarity. The similarity
is calculated by dividing the number of pairs in which two items
are clicked together by the square root of the product of the
number of pairs in which the individual items occur.

• Deep learning algorithms For the multi-class classification,
we changed the last layer to a fully connected layer with Softmax
activation over 736, 530 neurons, which equals the number of
tail items: DeepFM[12], FiBiNET [16].

5.2.3 Evaluation Metrics.

• AUC- Lift Chart A lift chart presents the added gain of applying
the proposed recommendation model over a null model that
assumes all items are equal. We create a separate lift chart for
each user. The X-axis represents the cumulative proportion of
the ranked items out of 736, 530 long-tail items and the Y-axis
represents the cumulative proportion of the actual clicks by that
user. The rank of the items was determined according to the
probability estimated by our model. Similar to AUC, the area
under the lift chart is a summary measure that is often used to
estimate the usefulness of a model (the null model has an area
of 0.5) [38].

To emphasize our contribution to increasing the click likelihood
and visibility of the long-tail item (G4), we also follow a test method-
ology applied in previous works, using “negative sampling” [40, 41].
For each record in the test set, we randomly select 99 additional
“negative” items out of 736, 530 unique long-tail items. Negative
items are those that are not clicked together with the head label on
the same day. Then, we compute predicted scores for the test item
𝑖 as well as the additional 99 items and form a ranked list of these
100 items. We use the following metrics to evaluate the quality of
the list:

• Mean Reciprocal Rank (MRR): An average of the reciprocal
ranks of results for a sample of queries Q.

• Mean Rank: The average of the true tail item ranks.
• Median Rank: The median of the true tail items ranks.
• Recall@K : 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =

∑
ℎ𝑖𝑡@𝐾
|𝑁 | . Where hit@K stands for a

single test case, as either the value 1 if the test item i appears in
the top-K results, otherwise 0. |N| is the number of test records.

6 RESULTS
6.1 First Stage Results
Table 5 presents the performance results of the different classifiers
described earlier (G1). The best results are highlighted in bold. It
can be seen that the Statistic-Based baseline reaches an accuracy
of about 75%. The deep learning classifiers achieve substantial im-
provement compared to the baseline’s performance. The tree-based
classifiers yield the highest performance, with XGBoost achieving
the highest result with a high 91.51% accuracy, and both preci-
sion and recall above 90%. The differences between the various
tree-based classifiers’ performances are not significant (Table 5).

We conjecture that the tree-based classifiers substantially out-
perform the deep classifiers due to task compliance and the training
data size. Deep learning algorithms usually rely on vast training
data and may not perform as well when using a relatively small
amount of data [25]. Overall, it is shown that the clicked head label
can be predicted at high accuracy, given long-tail item, time, and
user (G1).

Table 6 presents the performance of XGBoost over the different
labels. As explained earlier, the labels are the head labels that are
recommended alongside long-tail item. It can be observed that the
Electronics MC achieved the highest precision with 95.90%, while
Fashion reached the highest recall with 94.82%. The “Other” MC
had the lowest performance. We can assume that this finding lies
in the fact that this is an eclectic group of meta-categories.
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Classifier Accuracy Recall Precision

Statistic-Based Baseline 75.04% 73.93% 75.05%
XGBoost 91.51% 91.14% 91.43%
LGBM 91.47% 91.11% 91.38%
CatBoost 91.42% 91.03% 91.33%
RandomForest 91.40% 91.01% 91.32%
DeepFM 84.75% 84.36% 86.38%
FiBiNET 84.39% 83.94% 86.67%

Table 5: Performance results of different algorithms for the
head label classification task.

Recall Precision

Beauty 94.04% 94.24%
Electronics 90.51% 95.90%
Fashion 94.82% 91.84%
Home & Garden 89.29% 90.18%
Other 87.08% 85.02%

Table 6: XGBoost performance analysis for each head label.

In order to address our second and third research questions (G2,
G3), we used two different analyses:

(1) we studied the impact of each feature family by training XG-
Boost on subsets of features; and (2) we used a common explainable
AI tool, Shapley Additive Explanations (SHAP). SHAP is a method
to explain individual predictions, based on the game’s theoretically
optimal Shapley values [26].

First, we conducted a series of experiments to examine the im-
pact of feature families on XGBoost performance. Specifically, we
trained XGBoost with different subsets of feature families. In each
experiment, we excluded one feature family when training XG-
Boost.

We can observe (Figure 4) that excluding the “cumulative class
transactions” features decreases the model performance substan-
tially, followed by the ”Item characteristics” features family (which
includes the “tail MC” feature). We also compare the impact of user
history against items within the “cumulative class transactions” fea-
tures. The historical transactions of the user (i.e., "user-Cumulative
class transactions") have a greater impact on the results than the his-
tory of the tail item. It emphasizes the importance of user behavior
on long-tail recommendation.

Figure 4: The impact of excluding different feature families
on the performance of XGBoost.

Second, we also used SHAP to determine the impact of a feature
on each class (Figure 5).

Train Size Accuracy Recall Precision

10% 91.03% 90.80% 90.71%
30% 91.30% 91.10% 90.81%
50% 91.42% 91.11% 91.35%
70% 91.46% 91.13% 91.42%
90% 91.51% 91.14% 91.43%

Table 7: XGBoost results over varied training set sizes.

It can be seen that the user’s clicking behavior has a high contri-
bution to predictions (e.g., cumulative class transactions features:
user_Beauty_cum, user_Fashion_cum, etc.). The importance lies
in whether the user has already clicked a head label along with a
specific long-tail item or not. It could be the result of the user’s
consumption habits in e-commerce or it may be another search
attempt for products from a specific MC. Furthermore, our data
analysis revealed a connection between the tail MC and the head
label. It seems that users often click on items within the same MC.

Figure 5: SHAP summary plot - The impact of a feature on
the classes is stacked to create the feature importance plot.
Features are sorted by the sum of the SHAP valuemagnitudes
across all samples.

Finally, to better understand the contribution of the features
when the user clicked on items from different MCs, we use the
SHAP Force plot (Figure 6). The plot presents the contribution of
each feature to pushing the model output from the base value to the
model output. We looked at an observation where a user clicked on
a tail item belonging to the Home & Garden MC together with a
head item from the Electronics BV. When observing the plot for the
Home & Garden class (Figure 6a), it appears that the tail MC pushed
the model score higher (red). However, the cumulative features (e.g.
user_Electronic_cum, item_id_1_Electronic_cum) reduced (blue)
the property value. In Figure 6b, we can see that the Electronics
cumulative features increase (depicted in red) the likelihood of
Electronics as the true label.

We also set out to examine the impact of the training set size
on the model performance. Similarly to [25], we trained XGBoost
using only a portion of the available training set, while reserving
a chronologically constant test set (30% as described in 5.1.3). We
experimented with varying sizes of the training set, ranging from
10% to 90% of the original training set, always considering the most
recent portion. 100% represents the original training set. Table 7
presents the performance results. It can be seen that even a rela-
tively small training set leads to high performance, which gives an
indication of the robustness of the model in this task.
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(a) SHAP force plot for class Home & Garden

(b) SHAP force plot for class Electronic

Figure 6: SHAP force plot for individual prediction from the test set

Tail \Head 1000 3000 5000
2 90.28 90.76 90.03
5 90.52 91.08 90.44
10 91.51 91.35 91.11

Table 8: XGBoost Performance based on varied Head and Tail
views thresholds.

In summary, the results indicate the effectiveness of our method.
We found that tree-based models yield the best performance on pre-
dicting the head label task. Moreover, the cumulative class features
have a high contribution to the model prediction, which empha-
sizes the importance of user preferences on long-tail consumption.
We also recognize that head and tail items from the same MC are
frequently clicked together. Finally, we found that our model can
be trained on a relatively small amount of data and still yield high
performances.

6.2 Head and Tail Thresholds Analysis
In this section, we examine the sensitivity of our first-stage method
to the selected head and tail thresholds. To this end, we create dif-
ferent short-head and long-tail item sets based on varied threshold
values. Then, we trained XGBoost, the best performing algorithm in
Section 6.1, on those datasets. Specifically, we experienced different
values of thresholds as follows: for short-head items, we considered
items with at least 1000, 3000, or 5000 views, and for long-tail items,
we considered items with up to 2, 5, or 10 views. We examined all
possible combinations of these thresholds. The results are presented
in Table 8.

6.3 Second Stage Results
Table 9 provides the results of the second stage experiments de-
scribed in Section 5.2. Our method yields the highest Lift score
0.897, which indicates the ability to promote the appearance of
long-tail items in the recommendation list. Among the baselines,
Item-NN achieves the highest lift, while RBIP yields the lowest.
As for the “Negative Sampling” experiments, the RBIP algorithm
achieves an MRR of 0.057, with the mean and median rank having
a similar value of 47. FiBiNET obtains higher results with 0.063
MRR and mean and median rank of ≈ 44. DeepFM performs 0.088
MRR and mean and median rank of ≈ 43. Item-NN shows a sig-
nificant improvement with 0.122 MRR, ≈ 41 mean rank, and 39
median rank. Our method yields the best performances with 0.185
MRR. The median and mean ranks are 18 and 35 respectively. Re-
call@K performance is reported by Figure 7. The performance is

MRR Mean Rank Median Rank Lift

RBIP 0.057 48.42 47 0.763
Item-NN 0.122 40.96 39 0.808
FiBiNET 0.063 44.23 45 0.790
DeepFM 0.088 42.51 43 0.782
Our Method 0.185 35.11 18 0.897

Table 9: Stage 2 results of predicting the long-tail item based
on the head label already clicked. MRR, mean and median
ranks were calculated using "Negative Sampling" with 99
negative items. The Lift was calculated on a test set consisting
of 736,530 long-tail items

only shown for 𝐾 = [5, 10, 20, 30, 40], as a larger value of K can
be ignored in a typical top-N recommendation task. We can see
that the performances improve as 𝐾 increases as expected. RBIP,
FiBiNET and DeepFM achieve similar performance, while Item-NN
yields an improvement. Clearly, our method performs better than
all other competitors.

In summary, our method outperforms the baselines in terms of
MRR, mean rank, median rank, and recall@K. These results attest
to the ability of our approach to enhance the visibility of long-
tail items in RS. Our method enables further integration of the
proper long-tail items into the recommendation list by exploiting
the presence of short-head items in previous interactions between
the users and the recommender.

Figure 7: Recall@K over the baselines using "Negative Sam-
pling" with 99 negative items.

7 DISCUSSION
Our results show that the tree-based models have the highest per-
formance in the task of predicting the head label for a tail item (G1).
The gaps between those classifiers are insignificant. Therefore, the
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method is generic and the model can be replaced by any tree-based
model depending on the task constraints.

The feature importance analysis (G2, G3) revealed several key
features in the head label classification task. We observed that the
cumulative features demonstrate the highest impact on the model
performances. It means that the historical behavior of a user and
item is a key component in generating personalized head label
recommendations considering clicked long-tail item. Moreover, our
method’s strength lies in its ability to succeed in the classification
task with a relatively small amount of data, as observed in Table 7.
In the second stage, we compared our method with varied baselines
on the tail item classification task (G4). Our method significantly
outperformed the other algorithms with substantially increased
MRR compared to the best baseline. The uniqueness of our method
lies in the combination of tail and head items to enhance the vis-
ibility of long-tail items and the use of an applicable solution to
deal with such a high volume of long-tail items. Using our method
to include long-tail item in the personalized recommendation list
alleviates the popularity bias and helps users find their favorite
long-tail item.

Finally, we gain two valuable insights about long-tail consump-
tion patterns. First, the MC factor on head label and long-tail item
co-occurrence: although head and tail are defined according to the
granularity level of the item, we realized that users often click on
two items from the same MC. Second, The consumption patterns of
head and tail items differ. It seems that short-head items are more
clickable, while long-tail items are more purchased.

8 CONCLUSIONS
Recent studies found that long-tail items are one of the keys to suc-
cess in the e-commerce world. In this paper, we addressed the long-
tail recommendation problem alongside encouraging consumers to
buy a long-tail item that they may not have considered in isolation.
Our experiments demonstrated the effectiveness of our method in
predicting the long-tail item that a user will click with a head label.
The inclusion of long-tail items in recommendation lists has the
additional benefit of reducing popularity bias. This user experience,
in which a recommendation of a personalized long-tail item is pro-
vided, is currently uncommon on e-commerce platforms. We utilize
the time context and historical information to produce more ac-
curate recommendations. Moreover, We gained insights regarding
the long-tail phenomenon at eBay and user consumption habits
over long-tail items. This work gives rise to additional research
directions in the field of long-tail recommendations. First, our ex-
periments involve nine main tail MCs. Future research directions
may include the study of long-tail items from other e-commerce
domains. Second, our research focused on classification into one
label. In the future, we intend to investigate the multi-label task,
wherein a tail item may be purchased alongside more than one
head category. In addition, conducting online experiments to eval-
uate the proposed approach in vivo, can also naturally extend the
contributions suggested in this work.
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