
Benchmarking Graph Neural Networks for Internet Routing
Data

Dimitrios P. Giakatos
dgiakatos@csd.auth.gr

Aristotle University of Thessaloniki
Greece

Sofia Kostoglou
sofikost@csd.auth.gr

Aristotle University of Thessaloniki
Greece

Pavlos Sermpezis
sermpezis@csd.auth.gr

Aristotle University of Thessaloniki
Greece

Athena Vakali
avakali@csd.auth.gr

Aristotle University of Thessaloniki
Greece

ABSTRACT
The Internet is composed of networks, called Autonomous Systems
(or, ASes), interconnected to each other, thus forming a large graph.
While both the AS-graph is known and there is a multitude of data
available for the ASes (i.e., node attributes), the research on applying
graph machine learning (ML) methods on Internet data has not
attracted a lot of attention. In this work, we provide a benchmarking
framework aiming to facilitate research on Internet data using
graph-ML and graph neural network (GNN) methods. Specifically,
we compile a dataset with heterogeneous node/AS attributes by
collecting data from multiple online sources, and preprocessing
them so that they can be easily used as input in GNN architectures.
Then, we create a framework/pipeline for applying GNNs on the
compiled data. For a set of tasks, we perform a benchmarking of
different GNN models (as well as, non-GNN ML models) to test
their efficiency; our results can serve as a common baseline for
future research and provide initial insights for the application of
GNNs on Internet data.

1 INTRODUCTION
The Internet is a network of networks, which are calledAutonomous
Systems (or, ASes). Today there exist more than 100k ASes originat-
ing IP prefixes in the Internet routing table, which are connected
to each other through private or public peering links. Representing
the ASes as nodes and their interconnections as edges, results in a
large and sparse (density < 0.01%) graph.

Since ASes and their interconnections play a significant role
for network operations, Internet policies, routing optimization,
etc., there has been many efforts to characterize these networks.
Hence, there exist rich datasets with information about ASes (open
datasets [4, 5, 17, 29], self-declared databases [21], data from custom
measurements, etc.).

These datasets with AS attributes have been used by several
works employing (traditional) ML methodologies for various appli-
cations [9, 10, 12, 16, 25, 31]. One would expect that with the advent
of Graph Neural Networks (GNNs) many works would exploit the
known AS-graph structure along the AS attributes to devise GNN-
based methodologies for problems related to Internet routing and
operations. However, there only exist a few efforts generating graph
embeddings [27, 28], and, in fact, they are not based on GNNs (but
on methods from the natural language processing field) and they

do not take into account the node attributes (but only the graph
structure).

While there can be many reasons behind this lack of GNN-based
works for Internet routing data (and it is out of our scope to inves-
tigate them), a main challenge for applying GNNs on Internet data
is that significant expertise is needed in both domains: namely, a
researcher needs (i) rich Internet data and (ii) a good understanding
of advanced deep learning techniques and graph theory concepts.
On one hand, it may be straightforward for Internet researchers
to access sources of Internet data (which are typically well known
within this community), but it may be a more tedious task for re-
searchers of other domains (e.g., more focused to GNNs) to compile
a rich dataset that would be needed by a GNN architecture. On
the other hand, while there are widely used and well documented
libraries (pytorch geometric [3], dgl [2], etc.) that have made access
to GNNs easy, there are many intricacies in the application of GNNs
to Internet data (e.g., imbalanced data, heavy tailed distributions,
etc.), which render their efficient application a non-trivial task for
an Internet-focused researcher.

Motivated by the aforementioned observation, in this paper we
aim to facilitate research with GNNs on Internet data through the
following contributions:
• Dataset:We compile a rich dataset of Internet data that can be
used as input to GNN models (Section 2). Specifically, we collect
from multiple online sources a set of 19 AS attributes, including
both numerical and categorical variables. We then preprocess
the data and transform them to a format that is readily available
to be used as input to GNNs (e.g., all values normalized in [0,1]).
The compiled dataset not only offers easy access to researchers,
but it also serves as a benchmark dataset. The lack of benchmark
datasets, has been identified as a key barrier that challenge ML re-
search in networking applications [8]. Having a common dataset,
on which different ML approaches are applied and compared
(e.g., similarly to the ImageNet [11] and CIFAR-10 [19] datasets
in computer vision), can further boost GNN research on Internet
data.

• GNN benchmarking & initial insights:We test several GNN,
graph-ML, and (non-graph) ML models on the compiled dataset,
for several downstream tasks (Section 3). Our goal is not to pro-
pose a specific GNN architecture, and thus we refrain from exten-
sive model optimization. Hence, we use a basic architecture and
hyperparameter tuning for all models, and we produce initial
results which can serve as a point of reference (e.g., baselines) for

1

ar
X

iv
:2

21
0.

14
18

9v
1

 [
cs

.N
I]

 2
5

O
ct

 2
02

2

D.P. Giakatos, S. Kostoglou, et al.

Figure 1: Overall methodology pipeline.

future research. Our experimental results (Section 4) provide ini-
tial insights about the efficiency of GNNs on Internet data related
tasks (e.g., the role of graph structure and/or node attributes for
different tasks), and reveal several challenges.

• Open data and code: We make publicly available the compiled
dataset and our code (using a popular GNN library [2, 33])1 in [1].

2 DATASET
In this section, we present the data sources (Section 2.1) and the
preprocessing (Section 2.2) we applied on the data to generate the
compiled dataset. The overall methodology is depicted in Fig. 1.

2.1 Data sources
Each network or Autonomous System (AS) can be characterized by
a multitude of features, such as, location, connectivity, traffic levels,
etc.. We collect data from multiple online (public) data sources to
compile a dataset, which contains multiple information for each
AS.

The first three data sources are widely used by Internet re-
searchers and operators for multiple purposes:
• CAIDA AS-rank [4]: various information about ASes, such as,
location, network size, topology, etc.

• CAIDA AS-relationship [5]: a list of AS links (i.e., edges), which
are used to build the AS-graph.

• PeeringDB [7, 21]: online database, where network operators reg-
ister information about the connectivity, network types, traffic,
etc., of their networks

We also use the following sources that provide data related to the
routing properties of ASes and their business types:
• AS hegemony [23]
• Country-level Transit Influence (CTI) [6]
• ASDB [29]

From the above sources, we collect the most relevant attributes
per AS, resulting to a dataset of 19 attributes/features (see Table 1
for the detailed list). For ease of analysis, in the online repository [1]
we also provide a visual exploratory data analysis with the detailed
distributions of all attributes.

2.2 Data preprocessing
The collected data are highly heterogeneous, including both numer-
ical and categorical attributes. Moreover, numerical attributes take
values in different ranges, and some of them span ranges several
orders of magnitude larger than others (see Table 1). Since, it is

1As well as, all the experimental results of the paper, for reproducibility purposes.

well known that non-homogeneous data values can impact the per-
formance of deep learning models, we need to preprocess the data.
In the following we describe the transformation we apply to each
type of attributes to generate a dataset with normalized attributes
taking values in the interval [0,1].
Categorical features. For every categorical feature, one-hot en-
coding is applied. In the one-hot encoding technique, a new feature
is created for every value of the categorical feature. For example,
the "Location-continent" feature contains 6 values (Africa, Asia,
Europe, N. America, S. America, Oceania), which means that after
the one-hot enconding 6 new numerical columns are created; hence,
an AS located in Europe will have a value of 1 in the respective new
feature for Europe, and a value of 0 in the other 5 new features that
correspond to the other continents.
Numerical features. As it can be seen in Table 1, some numerical
attributes take values in very large ranges (e.g., the customer cone
of ASes spans from 1 to more than 48k ASNs). Also, for many of
these attributes the values for different ASes are not distributed
uniformly, but they have a heavy tail distribution (e.g., almost 95%
of ASes have a customer cone of 1 ASN). To alleviate this large
heterogeneity and variability of the numerical features, we perform
the following transformations.

• First, for every numerical feature, except for the AS hegemony
and the CTI top features that only take values less than 1, we
apply a logarithmic transformation to decrease their variability,
as follows: 𝑥 → log(𝑥 + 1).

• Then, we normalize all numerical feature according to the Min-
Max scaling method: 𝑥 → 𝑥−𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥 (𝑥)−𝑚𝑖𝑛 (𝑥) . As a result, all the
resulting values are in the range of [0, 1].

Graph preprocessing. The AS graph contains a large number of
leaf nodes (i.e., edge networks with a single upstream). These nodes
are of limited interest in the ML downstream tasks we consider
(see Section 3.2), namely, for (i) link prediction: they only have a
single link, and (ii) node classification: the characteristics/classes
we consider can be easily inferred for edge networks. Moreover,
taking them into account would lead to a graph structure that is
more challenging to be captured by a GNN or graph-ML model.
Hence, we preprocess the graph and remove all nodes with degree
equal to one (and repeat two more times this process); the resulting
graph has around 46K nodes and 434K edges.

3 GNN BENCHMARKING METHODOLOGY
To benchmark GNNs on the compiled dataset, we use a set of GNN,
graph-ML, and traditional ML models (Section 3.1), and design the
downstream tasks on which the efficiency of the models will be
tested (Section 3.2).

3.1 Models
GNN models:We consider three widely used GNN models.

GraphSAGE [15] learns a function (neural network) that gen-
erates embeddings for a node by sampling and aggregating node
features from its local neighborhood. The embeddings capture both
the local graph structure of a node and the feature distribution of
its neighborhood.

2

Benchmarking Graph Neural Networks for Internet Routing Data

Table 1: Summary of AS attibutes/features in the compiled dataset.

Feature Description Data type Source
RIR region Regional Internet registry Categorical (6 categories) [4]
Customer cone (ASNs) Number of ASNs in the customer cone Numerical ∈ [1, 48790] [4]
Customer cone (prefixes) Number of IP prefixes in the customer cone Numerical ∈ [0, 737792] [4]
Customer cone (addresses) Number of IP addresses in the customer cone Numerical ∈ [0, 2090939967] [4]
#Neighbors Total number of neighbors (in # of ASNs) Numerical ∈ [0, 9547] [4]
#Customers Total number of customers (in # of ASNs) Numerical ∈ [0, 6505] [4]
#Peers Total number of peers (in # of ASNs) Numerical ∈ [0, 7516] [4]
#Providers Total number of providers (in # of ASNs) Numerical ∈ [0, 133] [4]
Location-continent Registered location of the headquarters of the ASN Categorical (6 categories) [4]
Traffic ratio (PDB) Type of traffic ratio (e.g., inbound, outbound, balanced) Categorical (6 categories) [7, 21]
Scope (PDB) Regional scope of the AS (e.g., regional, global, Europe) Categorical (10 categories) [7, 21]
Network type (PDB) Network type (e.g., ISP, content provider, enterprise) Categorical (11 categories) [7, 21]
Peering policy (PDB) Peering policy (e.g., open, selective, restrictive) Categorical (4 categories) [7, 21]
#IXPs (PDB) Number of IXPs where the AS is present Numerical ∈ [0, 288] [7, 21]
#facilities (PDB) Number of interconnection facilities where the AS is present Numerical ∈ [0, 768] [7, 21]
AS hegemony Metric measuring avg. fraction of routing paths crossing an AS Numerical ∈ [0, 0.2] [17]
CTI top "Country-level Transit Influence" metric of an AS Numerical ∈ [0, 0.95] [6]
CTI origin Percentage of addresses initiated by an AS in a country Numerical ∈ [0, 97.39] [6]
ASDB Industry type of the organization of the AS Categorical (17 categories) [29]

GCN [18] (Graph Convolutional Networks) is the graph analogy
to CNNs for images. It uses a spectral convolution of the graph,
which leverages the Laplacian matrix in a trainable function that
aggregates features from neighboring nodes.

GAT [32] (Graph Attention Networks), similarly to the above
models, aggregates node features from a node’s neighborhood. How-
ever, it can learn different weights for different nodes in a neigh-
borhood, thus capturing the different levels of importance that the
neighbors of a node may have.

For each model, we build a basic architecture that comprises two
GNN layers (with a 32-dimensional output), followed by an MLP
layer. We refrain for extensive tuning, and consider fully connected
layers (no dropout), a learning rate of 0.01 and a few hundreds
epochs per model.
Graph embedding models (non-GNNs): The goal of graph em-
beddings is to map the nodes of a graph to an embedding space
(i.e., a vector) of lower dimensions. In our experiments, we use
two methods that generate node embeddings based on the graph
structure, but without taking into account the node attributes.

Node2vec [14] is based on the popular word2vec [20] method
used in Natural Language Processing to represent words in a text
with vectors. Node2vec generates a collection of random walks on
the graph, starting each time from different nodes. Those random
walks are lists of nodes, which act similarly to sentences in a text
(where the nodes are the words). Those lists are used as input to
train a skip-gram model (shallow neural network) to predict the
probability of a certain word/node to be present in a sentence when
an input word/node is present.

Bgp2vec [28] is a method designed specifically to generate AS
embeddings. It is also based on word2vec, but rather than perform-
ing random walks, it uses BGP announcements collected by route

collectors [24], and in particular the AS-paths in them as the lists
of node sequences. The model is trained over a large corpus of
AS paths, and learns to characterize an AS by its context, i.e., its
neighboring ASes.

In bothmodels we generate embeddings of size 16. In the node2vec
model we use 20 random walks of a walk length equal to 4, which
is around the average AS path length in the Internet.2

Traditional ML model: Finally, we use a Random Forest (RF)
model with 100 trees as a baseline, which takes as input the node
features but neglects the graph structure.

3.2 Learning tasks
We selected two (sets of) tasks for the benchmarking:

Link prediction between the nodes of the graph, i.e., inference
of AS-AS links. It is well-known that our view of the AS-graph is
incomplete, and there is evidence that many links (in particular,
peer-to-peer links at Internet eXchange Points, or IXPs) cannot
be seen by the public measurements from which we construct the
known AS-graph. Therefore, being able to predict links could be
important for several Internet routing use cases.

Node classification: We predict attributes of ASes that are de-
clared in the PeeringDB database [21]. Network operators voluntar-
ily register the information of their ASes in PeeringDB, which leads
to incomplete knowledge; in our dataset, only around 25% of the
ASes have information about the PeeringDB attributes. Neverthe-
less, knowing the PeeringDB attributes can be helpful for a number

2The other detailed parameters for the models are
• node2vec: 𝑝 = 1, 𝑞 = 1, 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 4, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 = 5, 𝑒𝑝𝑜𝑐ℎ𝑠 = 1, 𝑙𝑟 =

0.05,𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 = 1.
• bgp2vec: 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 5, 𝑒𝑝𝑜𝑐ℎ𝑠 = 3, 𝑤𝑖𝑛𝑑𝑜𝑤 = 2, 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒

3

D.P. Giakatos, S. Kostoglou, et al.

of operational/policy/economic reasons, and has been identified as
a need by the network operators community.

Link prediction and node classification tasks have the same
pipeline: We get the node embeddings from GNN models (Graph-
SAGE, GCN, GAT) or the node2vec/bgp2vec models, and feed them
to an MLP network to get the predictions3. We use a binary cross
entropy as a loss function for the link prediction task and the cross
entropy loss (due to the many classes) for the node classification
tasks4.

Finally, since (i) the AS-graph is very sparse and (ii) for some
categorical features there are classes with very few samples, we
balance the train datasets by selecting equal number of existing/non-
existing links and class samples. In the case of classes with very few
samples (less than 500), we group these classes together, in order
to get enough samples to train the GNN models. The final classes
for each categorical features are given in Table 2.

Table 2: Classes and number of samples in each class for the cate-
gorical features used in the node classification tasks.

Feature Classes nb. of samples
Traffic ratio (PDB) Balanced 1546

Heavy Inbound 319
Heavy Outbound 202
Mostly Inbound 1403
Mostly Outbound 517
Not Disclosed 1769

Scope (PDB) Asia Pacific 530
Europe 869
Global 600
North America 388
Not Disclosed 1526
Regional 1515
Other 380

Network type (PDB) Cable/DSL/ISP 1910
Content 649
Enterprise 348
NSP 998
Not Disclosed 1315
Other 579

Peering policy (PDB) Open 4379
Selective 1018
Other 231

4 RESULTS
4.1 Link prediction
Table 3 presents the link prediction results, reported as the average
AUC score (over 10 different models, with the same hyperparame-
ters, and random weight initialization). The largest the AUC score
3In the case of the random forest, we directly get the predictions.
4Since labels are not known for all nodes, for the classification task, while we consider
all nodes in the generation of the embeddings (GNN), we train/test the MLP by using
only the values for the nodes with labels (i.e., by masking the nodes without labels).

(in the interval [0,1]) the more accurate the prediction; a score of 0.5
corresponds to a (dummy) random predictor. Since, the underlying
graph is very sparse, we also present the Recall (#𝑇𝑃#𝑃) and Precision
(#𝑇𝑃
#𝑇𝑃+#𝐹𝑃) metrics that focus on the "true positive" (TP) samples,
i.e., existing links that are predicted correctly, and their fractions
with respect to the number of all existing links (#𝑃) and all links
predicted correctly or incorrectly (#𝑇𝑃 + #𝐹𝑃).

We can see that the GraphSAGE and GCN models are very effi-
cient in predicting links between nodes, whereas the GAT model
has poor capacity. While the highest AUC score is achieved by
the random forest (RF), its Recall value is very low: this indicates
that while RF does not mispredict non-existing links (low false
positives, FP) it is only able to predict 1/4 of the actual links. The
graph-ML models (and, in particular, bgp2vec [28]) achieve also a
high performance. On one hand, this shows that only the structure
of the AS-graph (without node features) can help us to predict and
characterize links, as already shown in [28]. However, the fact that
the GCN model with very light tuning can outperform bgp2vec, in-
dicates that taking into account node features can be promising for
tasks related to link prediction and characterization (e.g., inference
of peering relationships).

Table 3: Results for the link prediction task: average AUC, Recall,
and Precision metrics over 10 runs per model.

Model AUC Recall (#𝑇𝑃#𝑃) Precision (#𝑇𝑃
#𝑇𝑃+#𝐹𝑃)

GraphSAGE 94.7% 82.7% 86.8%
GCN 95.3% 85.5% 95.9%
GAT 64.4% 24.2% 28.4%

node2vec 86.5% 82.7% 95.5%
bgp2vec 93.0% 85.5% 91.5%

Rnd. forest 96.2% 24.2% 96.3%

In Table 4 we do a deeper inspection, to understand what types
of links are easier to predict. We consider the GraphSAGE model
and group nodes in three categories based on the size of their
neighborhood: nodes with low (< 10), medium (∈ [10, 20)), and
large (≥ 20) number of neighbors; around 80% of nodes belong to
the first group and around 10% to each of the other groups. We
can see that predicting links between nodes of high degrees is
easy, whereas links between nodes with "low" number of neighbors
(i.e., the majority of nodes) are more difficult to be inferred. This
indicates a challenge and a need for efficient designs of GNNmodels
that focus on the sparse parts of the AS-graph.

Table 4: Detailed link prediction results (Recall / Precision) for node
pairs of different size of neighborhoods.

Low Medium High
Low 31.6% / 89.8% 80.7% / 98.2% 67.2% / 90.5%

Medium 94.4% / 98.1% 94.4% / 95.4%
High 99.5% / 99.0%

4

Benchmarking Graph Neural Networks for Internet Routing Data

Category labels
0-"Cable/DSL/ISP"
1-"Content"
2-"Enterprise"
3-"NSP"
4-"Not Disclosed"
5-"Other"

0 1 2 3 4 5

Predicted Values

0
1

2
3

4
5

Ac
tu

al
 V

al
ue

s

170 6 16 49 9 24

4 63 10 10 2 6

1 5 23 4 7 5

69 20 26 70 9 18

6 4 16 3 125 31

14 8 16 9 13 78
20

40

60

80

100

120

140

160

Figure 2: Heatmap of predicted vs. actual values of the GraphSAGE
model for the "Network type" attribute.

4.2 Node classification
Table 5 presents the results of the node classification, where we try
to infer different attributes of ASes related to the PeeringDB (see
column names). We present the average Accuracy (ACC) and the
F1 score metrics. We stress that for each attribute there are several
categories (cf. Table 1), i.e., the problems in hand are multi-class
classification problems.

We can see that the best performing model differs among at-
tributes. GraphSAGE performs consistently well, while GAT has
now a comparable performance to other GNNmodels. Nevertheless,
we believe that there may be significant room for improvement in
future work, e.g., through optimization of GNN architectures.

As an example, Fig. 2 depicts the detailed predictions of the
GraphSAGE model for the "Network type" attribute. In all cate-
gories (rows), the number of samples (cell values) that are predicted
correctly (diagonal) are higher than in any other category (columns)
in the same row. The most missclassifications are between ASes
that are characterized "Cable/DSL/ISP" and "NSP (Network Service
Providers)", which in practice can have several common character-
istics.

Compared to the RF model, GNNs predict better only the "Scope"
and "Network type" attributes. This indicates that not all node
attributes may be strongly related to the underlying graph structure;
in some cases the graph structure can help our predictions, whereas
in other cases using a simpler (i.e., easier to train) model may be
the best solution.

Finally, it is clear from the node2vec/bgp2vec performance that
using only graph information is not enough for the node classifica-
tion tasks. This further highlights the need for future research on
applying GNNs (i.e., both graph structure and node attributes) for
Internet routing related tasks.

5 RELATEDWORK
In the last few years, there have been several attempts for combining
Internet routing data with ML, with the majority of them focusing
on BGP anomaly detection. Ding et al. [12] and Dai et al. [10] try to
detect BGP anomalies using traditional MLmodels, various features,
and advanced feature selection methodologies, such as minimum

redundancy maximum relevance [12] or Fisher linear analysis and
Markov random fields [10]

Typically, for Internet routing tasks, features can be extracted
from BGP messages [9, 13, 16, 26, 31], for example, volume, AS
path features and BGP attributes [13, 16], network importance
metrics [9], network observations [26], or graph-level metrics [16].
Sanchez et al. [25] went a step further to consider more robust
graph features, such as node centrality, clique theory, etc. They
conclude in the fact that centrality metrics are more likely to detect
large-scale incidents.

The first work that proposed the use of graph embeddings on
ASN level is [27, 28], which uses BGP messages and the AS-paths
in them to propose the bgp2vec model. These embeddings can be
used to predict node and link properties [28] or classify BGP routes
as standard or hijacked [27].

Finally, some recent benchmarking efforts for GNNs in the do-
main of networking (but not for Internet routing data) are (i) the
IGNNITION [22] framework for prototyping GNNs for communi-
cation networks, which contains tools to design, train and evaluate
a GNN model, and (ii) the GNNet challenge [30] for designing GNN
models for predicting network performance.

6 CONCLUSION
In this paper we compiled a benchmark dataset with Internet data,
preprocessed in a way that is compatible to be used by GNN archi-
tectures. The benefits from the dataset are twofold: (i) it enables
researchers to focus on designing GNN architectures rather than
collecting and processing data, which can be a time consuming
task (or even prohibitive for non Internet experts), and (ii) it can
serve as a common dataset where different works can be compared
on (following the example of [30]), which is a key requirement for
progressing ML research for networking [8].

Using our dataset and pipeline, we performed various experi-
ments to test the performance of different GNN models. Our initial
results, not only can be used as a baseline in future work, but also
provide useful insights. We showed that capturing both node at-
tributes and graph structure can be beneficial for link prediction
and node classification tasks, however, the benefits of each factor
may vary depending on the problem. Given the lack of previous
works with GNNs on Internet data, and thus the lack of reported
insights, we believe these findings can be a useful starting point for
future research.

ACKNOWLEDGMENTS
This research is co-financed by Greece and European Union through
the Operational Program Competitiveness, Entrepreneurship and
Innovation under the call RESEARCH-CREATE-INNOVATE (projects
T2EDK-04937 and T2EDK-03898), the European High-Performance
Computing Joint Undertaking (GA No. 951732), and RIPE NCC
(AI4NetMon project).

REFERENCES
[1] 2022. Benchmarking GNNs for Internet routing data - Public repository. Available

at https://github.com/dpgiakatos/gnn-internet-data.
[2] 2022. Deep graph library (DGL). Available at https://www.dgl.ai/.
[3] 2022. PyTorch Geometric library (PyG). Available at https://pytorch-geometric.

readthedocs.io/en/latest/.
[4] CAIDA. 2022. AS-rank dataset. Available at https://asrank.caida.org/.

5

https://github.com/dpgiakatos/gnn-internet-data
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://asrank.caida.org/

D.P. Giakatos, S. Kostoglou, et al.

Table 5: Results for the node classification tasks: average accuracy (ACC) and F1 score metrics over 10 runs per model.

Traffic ratio (PDB) Scope (PDB) Network type (PDB) Peering policy (PDB)
Model ACC F1 ACC F1 ACC F1 ACC F1

GraphSAGE 44.8% 35.9% 49.2% 47.2% 54.7% 53.1% 34.9% 30.6%
GCN 38.7% 30.5% 40.1% 37.1% 46.6% 44.6% 37.0% 31.1%
GAT 38.0% 31.3% 41.8% 38.4% 49.9% 47.2% 32.2% 28.8%

node2vec 20.9% 19.4% 16.3% 15.7% 19.0% 18.6% 31.1% 27.0%
bgp2vec 14.8% 13.4% 14.8% 13.0% 19.9% 19.1% 29.4% 26.8%

Rnd. Forest 51.1% 35.8% 36.6% 33.7% 49.8% 42.9% 54.6% 34.8%

[5] CAIDA. 2022. AS-relationships dataset. Available at https://publicdata.caida.org/
datasets/as-relationships/.

[6] CAIDA. 2022. Country-level Transit Influence (CTI). Available at https://github.
com/CAIDA/mapkit-cti-code.

[7] CAIDA. 2022. PeeringDB Dataset. Available at https://publicdata.caida.org/
datasets/peeringdb/.

[8] Pedro Casas. 2020. Two decades of ai4nets-ai/ml for data networks: Challenges
and research directions. In IEEE NOMS.

[9] Shinyoung Cho, Romain Fontugne, Kenjiro Cho, Alberto Dainotti, and Phillipa
Gill. 2019. BGP hijacking classification. 2019 Network Traffic Measurement and
Analysis Conference (TMA) (2019).

[10] Xianbo Dai, NaWang, andWenjuanWang. 2019. Application of machine learning
in BGP anomaly detection. In Journal of Physics: Conference Series, Vol. 1176. IOP
Publishing, 032015.

[11] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In IEEE CVPR conference. 248–255.

[12] Qingye Ding, Zhida Li, Prerna Batta, and Ljiljana Trajković. 2016. Detecting BGP
anomalies using machine learning techniques. In IEEE International Conference
on Systems, Man, and Cybernetics (SMC).

[13] Paulo Fonseca, Edjard S Mota, Ricardo Bennesby, and Alexandre Passito. 2019.
Bgp dataset generation and feature extraction for anomaly detection. In IEEE
ISCC.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proc. ACM SIGKDD.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[16] Kevin Hoarau, Pierre Ugo Tournoux, and Tahiry Razafindralambo. 2021. Suitabil-
ity of graph representation for bgp anomaly detection. In Proc. IEEE LCN.

[17] IIJ. 2022. Internet Health Report. Available at https://ihr.iijlab.net/ihr/en-us/.
[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[19] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features

from tiny images. (2009).
[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[21] PeerinDB. 2022. The Interconnection Database. Available at https://www.
peeringdb.com/.

[22] David Pujol-Perich, José Suárez-Varela, Miquel Ferriol, Shihan Xiao, Bo Wu,
Albert Cabellos-Aparicio, and Pere Barlet-Ros. 2021. IGNNITION: Bridging the
Gap between Graph Neural Networks and Networking Systems. IEEE Network
35, 6 (2021), 171–177.

[23] Internet Health Report. 2022. AS hegemony. Available at https://ihr.iijlab.net/
ihr/hegemony/.

[24] RouteViews. 2022. RouteViews route collectors. Available at http://www.
routeviews.org/peers/peering-status.html.

[25] Odnan Ref Sanchez, Simone Ferlin, Cristel Pelsser, and Randy Bush. 2019. Com-
paring machine learning algorithms for BGP anomaly detection using graph
features. In Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine
Learning and Artificial Intelligence for Data Communication Networks. 35–41.

[26] Pavlos Sermpezis, Vasileios Kotronis, Konstantinos Arakadakis, and Athena
Vakali. 2021. Estimating the Impact of BGP Prefix Hijacking. In 2021 IFIP Net-
working Conference (IFIP Networking). IEEE, 1–10.

[27] Tal Shapira and Yuval Shavitt. 2020. A Deep Learning Approach for IP Hijack
Detection Based on ASN Embedding. In Proc. Workshop on Network Meets AI and
ML.

[28] Tal Shapira and Yuval Shavitt. 2022. BGP2Vec: Unveiling the Latent Charac-
teristics of Autonomous Systems. IEEE Transactions on Network and Service
Management (2022).

[29] Stanford. 2022. ASDB. Available at https://asdb.stanford.edu/.
[30] José Suárez-Varela et al. 2021. The graph neural networking challenge: a world-

wide competition for education in AI/ML for networks. ACM SIGCOMMComputer
Communication Review 51, 3 (2021), 9–16.

[31] Cecilia Testart, Philipp Richter, Alistair King, Alberto Dainotti, and David Clark.
2019. Profiling BGP serial hijackers: capturing persistent misbehavior in the
global routing table. In Proceedings of the Internet Measurement Conference. 420–
434.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[33] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

6

https://publicdata.caida.org/datasets/as-relationships/
https://publicdata.caida.org/datasets/as-relationships/
https://github.com/CAIDA/mapkit-cti-code
https://github.com/CAIDA/mapkit-cti-code
https://publicdata.caida.org/datasets/peeringdb/
https://publicdata.caida.org/datasets/peeringdb/
https://ihr.iijlab.net/ihr/en-us/
https://www.peeringdb.com/
https://www.peeringdb.com/
https://ihr.iijlab.net/ihr/hegemony/
https://ihr.iijlab.net/ihr/hegemony/
http://www.routeviews.org/peers/peering-status.html
http://www.routeviews.org/peers/peering-status.html
https://asdb.stanford.edu/

	Abstract
	1 Introduction
	2 Dataset
	2.1 Data sources
	2.2 Data preprocessing

	3 GNN Benchmarking Methodology
	3.1 Models
	3.2 Learning tasks

	4 Results
	4.1 Link prediction
	4.2 Node classification

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

