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Ranking Models for the Temporal Dimension of Text
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Temporal features of text have been shown to improve clustering and organization of documents, text classification, visualization,

and ranking. Temporal ranking models consider the temporal expressions found in text (e.g., “in 2021” or “last year”) as time units,

rather than as keywords, to define a temporal relevance and improve ranking. This paper introduces a new class of ranking models

called Temporal Metric Space Models (TMSM), based on a new domain for representing temporal information found in documents and

queries, where each temporal expression is represented as a time interval. Furthermore, we introduce a new frequency-based baseline

called Temporal BM25 (TBM25). We evaluate the effectiveness of each proposed metric against a purely textual baseline, as well as

several variations of the metrics themselves, where we change the aggregate function, the time granularity and the combination

weight. Our extensive experiments on five test collections show statistically significant improvements of TMSM and TBM25 over

state-of-the-art temporal ranking models. Combining the temporal similarity scores with the text similarity scores always improves

the results, when the combination weight is between 2% and 6% for the temporal scores. This is true also for test collections where

only 5% of queries contain explicit temporal expressions.

ACM Reference Format:

Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi. 2022. Ranking Models for the Temporal Dimension of Text. 1, 1

(September 2022), 34 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Text is very rich with various kinds of lexical items, ranging from part-of-speech entities, to spatial and temporal refer-

ences. As, on one hand, research in Natural Language Processing (NLP) advances, becoming more able to automatically

recognize and accurately interpret these elements in text, on the other hand, Information Retrieval (IR) systems can

greatly benefit from the richer understanding and structuring of text
1
provided by new NLP tools. For example, a

traditional vector space model can be augmented to work differently with terms that refer to specific part-of-speech

entities, such as nouns, verbs, subjects, and objects, or with terms referring to locations, persons or dates [18].

An important class of lexical items that has received a lot of attention by the IR community in recent years is the

class of temporal expressions, often referred to as timexes in the NLP literature [41]. A temporal expression is a part

of text (often a sequence of words) that collectively identifies one or more time periods. For example, the expressions

1
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2 Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi

“last year2” and “in 2020” are temporal expressions, both referring (considering the time of writing this article)

to the year 2020. Similarly, “every weekend in the past two years” is also a temporal expression, as it refers to

several weekends during a specific time frame. The definition of a temporal expression can also include more vague

utterances, such as “every so often” or “not long ago”, or the so-called named temporal expressions [8], such as

“Independence Day”, which refer to time through the use of common names.

Temporal expressions whose meaning can be correctly interpreted, with or without a degree of ambiguity or

uncertainty, and either automatically or manually, can augment the capabilities of a search engine in discovering

relevant documents for queries that display some temporal sensitiveness. A relevant document for temporally sensitive

queries not only has to satisfy the “content” requirement of the query (i.e., what the document is about), but also

its “time” requirement (i.e., what period of time the document is about). As an example, consider the query obama
election results. Clearly, a relevant document should be about the results of the presidential campaigns in which

Obama participated. However, it is not clear whether the query is requiring documents about the results of the 2008 or

2012 election. If the user intent is to search for the 2008 election results, the engine can ignore documents that are only

about the 2012 results, consequently improving its effectiveness. Understanding whether the user intent is to obtain the

2008 or 2012 results also requires a notion of temporal “context” in which the query is issued. The notion of context also

extends to documents, if we analyze the period of time when the document was written. The context plays a crucial

role especially in the correct interpretation of the relative temporal expressions found in queries and documents (e.g.,

“yesterday” or “this morning”). Current state-of-the-art NLP tools are able to exploit the context to provide a correct

interpretation of the temporal content, which our models utilize to improve the effectiveness of the final ranking.

Despite the important role of timexes in Information Retrieval, traditional IR systems continue to treat these

expressions as normal text terms instead of time intervals. Using timexes to improve search engines poses several

challenging opportunities, many of which are still unsolved [11, 15]. In this work, we address three challenges. The first

one pertains the identification and proper interpretation of the temporal expressions from the text. Some temporal

expressions follow regular patters, such as formatted dates (e.g. “November 4th, 2008”), and are easier to recognize

and interpret than others. Some other expressions are easy to find but harder to interpret, such as relative expressions

(e.g., “today”, “last year”), as they require a context time to be resolved (yesterday with respect to which day?). Other

expressions are hard even to identify, as they require specific domain knowledge, such as holiday names [34]. The task

of recognizing and interpreting temporal expressions has been a focus of NLP research, with noticeable success over

the last decade [53]. For instance, HeidelTime [51] scored 85% accuracy in identifying timexes and normalizing to their

exact value in the annotation challenge TempEval 2 [55], while in TempEval 3 best precision obtained was 99.05% and

best recall 91.30% [53]. Our work does not further address these NLP challenges, but rather builds on state-of-the-art

NLP tools that perform successful identification and interpretation of temporal expressions. Instead, we present a

overview of the process needed to take advantage of the interpreted temporal expressions to improve the retrieval.

The second challenge is that most queries do not expose their temporal sensitiveness explicitly. In particular, it is

hard to decide when a query is temporally sensitive, to what degree, and what exactly its temporal intent is [13, 23, 27].

This is especially hard when temporal queries do not explicitly contain temporal expressions, but their temporal

sensitiveness is implicit. For example, the query fifa world cup brazil does not contain explicit dates. However,

supposing the query is issued around 2014, it is easy to guess that it is most likely referring to the FIFA World Cup

held in Brazil in 2014, rather than the cup that took place in 1950. In prior work, it has been argued that most queries

2
Throughout the paper, we will use this font and format to indicate a timex.
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are not temporal (i.e., considering time information cannot improve the ranking) just because queries contain explicit

time expressions very rarely (about 1.5%, according to [37]). However, as the previous example shows, the absence of

temporal expressions in a query does not always imply null temporal sensitiveness. Another argument made in prior

work is that queries without time expressions, if they are temporal, then they simply focus on current events (i.e., they

implicitly ask for the most recent information on a topic). In this paper, we provide evidence that most queries are

indeed temporal and not necessarily focused on current information. We show that even in test collections with no

explicitly constructed temporal queries (i.e., the TREC collections), the temporal components of the documents (i.e.,

their temporal expressions) play a fundamental role in their relevance. In fact, we show that by carefully identifying

temporal features for a supposedly non-temporal query, a temporal model can improve the ranking over a purely textual

model.

Finally, even if we knew exactly the temporal sensitiveness of the query, and how to properly recognise and interpret

the temporal expressions in documents and queries, search engines still face another major challenge: how to use this

information to correctly rank the documents not only according to their content, but also to the temporality of their

content with respect to the temporal sensitiveness of the query. Despite the widespread presence of time in documents

and queries, this third challenge has not been sufficiently addressed by the research community. Temporal Information

Retrieval (TIR) has emerged in recent years with the goal of improving the effectiveness of retrieval systems along

the temporal dimension [3]. Early work in this area has studied how to exploit the creation date of documents and

the issue time of queries [33]. Only more recent work has addressed the extraction and interpretation of temporal

expressions [4, 9, 30]. In this paper, we build on and extend these results with more sophisticated ranking models

that exploit the temporal information found in text. Our models use distances (in metric, hemi-metric, or quasi-metric

spaces) between time intervals (dates and periods of time) found in text to capture their containment, overlapping, and

matching properties.

In this paper, we make the following contributions:

• We define a formal temporal domain for representing temporal information in both documents and queries. The

core of our approach consists on: (1) Using existing NLP tools to extract and interpret temporal expressions; (2)

Mapping the interpreted expressions into temporal intervals, which constitute the temporal representation of

documents and queries in the ranking model.

• As a first, simple step, we show how this information can be used to enhance the effectiveness of existing textual

ranking models, such as BM25 [43].

• We introduce new,more sophisticated rankingmodels that exploit the peculiarities of the temporal representations

of documents and queries. These models are based on standard and generalized distances (hemi-metric and

quasi-metric) between temporal intervals.

• We discuss how to derive effective ranking models by combining temporal and textual scores, and how score

normalization can impact the final ranking.

• We conduct extensive experiments on different collections that show that: (1) The temporal information found

in text is plenty and informative enough for substantially and consistently improving the effectiveness of both

traditional time-agnostic retrieval models and our novel temporal models, for a typical ad hoc search task;

(2) Treating temporal expressions differently from textual terms largely improves the effectiveness of traditional

textual ranking models (BM25); (3) Traditional ranking models are, however, insufficient for modeling the

relevance in the temporal domain, and our metric space models prove more effective in all cases; (4) The choice
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4 Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi

of the granularity for the discretization of time and the specific distance function used to rank documents have

different effects depending on the collection. While there is no single choice that is better for all collections, our

models are robust to imperfect settings since the results are always at least as good as the baseline and better in

most cases.

This paper focuses on defining and evaluating the effectiveness of our newly introduced temporal ranking models.

While there are performance aspects such as how to efficiently access the temporal similarity scores, these systems

aspects are orthogonal to the scope of this work and part of future work (Section 9). This work extends the conference

paper that presented the first metric model for TIR [9], in several ways: (1) it introduces a new temporal model, TBM25,

based on the Okapi BM25 scoring function, which considers the frequency of the intervals in the document and in the

corpus; (2) it introduces five new temporal distances to consider both temporal coverage and distance between the

intervals ends; (3) it addresses the problem of normalizing the temporal scores prior to combination with textual scores;

(4) it introduces a novel method to extract time intent from queries that do not contain explicit temporal expressions;

(5) it provides a qualitative analysis and intuitive explanation of all the temporal distances being introduced; (6) it

extends the experimental evaluation to a total of five different collections for a total of 7 million documents, with the

temporal annotation of 42 million timexes; (7) it adds a comparison of our metric models with the state-of-the-art

model, LMTU [4], across all the five collections; (8) it extends the evaluation to variations of the aggregation functions,

granularities for the representation of the time intervals (day, month, year).

The remainder of this paper is organized as follows. In Section 2, we give a summary of the related work and

outline the advantages of our novel approach. In Section 3, we describe how time is found, implicitly and explicitly,

in document and queries, and how it can be tagged and interpreted to form what we call the “temporal scope” of a

document or a query. In Section 4, we present two temporal similarities: frequency-based a metric-based temporal

similarities. In Section 5, we define several versions of the metric-based temporal similarity, each capturing different

temporal relationships between a query and a document. In Section 6, we describe and evaluate different methods

for normalizing and combining temporal and non-temporal similarity scores. In Section 7, we provide a qualitative

comparison of proposed and state-of-the-art temporal similarities. In Section 8, we evaluate the improvements in the

effectiveness of the proposed models in relation to state-of-the-art models. In Section 9, we conclude by outlining our

contributions and future work.

2 RELATEDWORK

Work in Temporal Information Retrieval addresses a variety of tasks. Early work focuses on indexing and retrieval of

the “freshest” versions of web documents that change over time [45]. The concept of freshness is the focus of several

ranking tasks proposed in the literature [24, 33, 39]. Close to this area are popularity measures of web pages, such as

PageRank [38], specialized to take into account the creation time of each “backlink” (i.e., the link pointing to a page):

work in this area proposes to penalize pages with stale backlinks (i.e., links coming from old pages), while favoring

recently linked pages [5, 61].

The notion of temporal relevance is the subject of substantial work. Perkiö et al. postulates that ranking should

promote documents whose topics are most active at the time of the query [40]. Authors typically agree on the fact that

temporal similarity should be combined with traditional text similarity for better performance. In [25], time is extracted

from the content of the web documents, but also from the document creation time and the time of page crawling, and

ranking is obtained with the linear combination of keywords similarity, temporal similarity, and PageRank. In [29], the
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implicit time of the query is determined from the query’s keywords and the textual similarity is combined with the

similarity between the time of the query and the creation time of documents. In [1], terms relevance is boosted based on

its frequency on the revision history of documents. Berberich et al. define a combination of temporal similarity with text

similarity, where the temporal similarity is based on a language model with the requirements of specificity, coverage

and maximality, in order to capture the probability of generating the temporal expressions in the query from those of a

document [4]. This work is the closest to ours for its intent and applicability, and therefore we fully compare it with our

proposed methods in later sections of the paper (Section 7 and Section 8). A later work [30] proposes a time-aware

ranking approach based on learning-to-rank techniques for temporal queries and tested using the same collection of [4].

A similar approach is presented by Khodaei et al. [31], in which the temporal similarity between two timespan depends

on how many individual time components they share, and the temporal and non-temporal similarities are combined

through a weighted sum. While learning-to-rank solutions can provide further improvements in the effectiveness of

TIR models, they require (1) labeled data and (2) several temporal similarity models to form the learning features (e.g.,

the temporal language model in [4] is one of the features used in [30]). Our similarity models presented in this paper

can also be used in conjunction with any learning-to-rank method. However, given that we do not use any labeled data

in our evaluation, exploring learning-to-rank solution is orthogonal to the scope of our work.

The model proposed in our work follows more recent approaches to TIR, which rely on the use of automatic taggers,

such as TARSQI [54], to extract temporal expressions from the document’s text. The intuition behind this approach was

originally introduced by Alonso et al. [2, 3]. As Alonso et al. stated: “The central idea in temporal information retrieval

is to utilize the temporal expressions that have been determined for each document in a given document collection

in order to rank search results.” Berberich et al. [4] extract time expressions from queries and documents using the

TARSQI temporal tagger, before applying a temporal language model to the interpreted intervals. Related work by

Campos et al. [10, 12], instead of extracting temporal expressions of all document content, extracts those from the web

snippet, using an ad hoc rule-based tool for explicit year temporal expressions.

Because explicit temporal expressions in queries are generally very rare, an orthogonal problem that encompasses all

aspects of TIR is identifying the temporal intent of a query. Jones and Diaz [27], define the temporal profile of a query as

the difference between the temporal distribution of top-𝑘 documents and the collection. Another approach for temporal

query intent classification is to use queries logs to extract the time of the keywords popularity peaks [32]. More recent

research applies machine learning approaches to temporal query intent classification [19, 23], using different kinds of

features, such as part of speech tags, pseudo-relevant documents and ontologies, to train a classifier. Campos et al. [13]

use word-year co-occurence in a corpus to identify the set of dates most relevant to a query.

3 MODELING THE TEMPORAL DIMENSION OF TEXT

We identify two main classes of temporal features that can be associated with a document or query: meta temporal

features, and content temporal features. Meta temporal features are dates or times associated with a document or query

that are not necessarily found in their text. The document creation time (DCT) [36] and the query issue time (QIT) [16]

are examples of meta temporal features. Other examples are the revision time [1] and deletion time of a document, and

reissue time of a query [52]. These features provide the temporal context of documents and queries.

Differently from the meta features, the content temporal features consist on dates or times that are contained within,

extracted, or inferred from, the text of documents and queries. Temporal expressions fall within this category. While

the meta features inform about when a document was created, modified, deleted, and so forth, the content features

carry information about the content and meaning of the document: what periods of time does the document refer to?
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6 Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi

Similarly, while the meta features can identify when a query was issued, the content features tell about what periods of

time the user who issued the query is mostly interested in finding information about.

The meta temporal information has been extensively studied to improve the ranking in time-sensitive queries [14,

27, 29]. The focus of this paper is on the content features. In particular, we show how temporal expressions can be

used to successfully model the temporal content of documents and queries to improve the retrieval effectiveness on

traditional ad hoc queries.

Exploiting content temporal information poses three key challenges:

(1) First, it is hard to identify and correctly interpret the content temporal information in text. While a domain expert

is able to understand what exact periods of times a document is about by simply reading the text, a computer

finds this task extremely complicated. This is particularly true for relative expressions for which a reference time

is needed, for example “last June” or “earlier this year” [51].

(2) Second, the content temporal information found in text need to be correctly represented as precise mathematical

objects. The representation is crucial for the success of the ranking process. To understand this, consider

two simple options for representing time in documents and queries. One consists of representing a temporal

expression, such as “December 2020”, as a textual token (e.g., 2020-12). Another option is to represent the same

expression as an interval, with a beginning and an end (e.g., 2020-12-01..2020-12-31). The first representation

can easily be used to find all documents referring to the same month, using fast methods such as inverted indexes.

However, it may fail to identify documents referring to dates that are close to December 2020, or to give higher

scores to documents that have references to specific days inside of that month. Representing a time expression

as an interval would offer more flexibility in devising better scoring functions for such cases.

(3) Third, even with a complete and accurate semantic understanding of the temporal information, we still need a

ranking model that can effectively exploit the temporal aspects of queries and documents. For example, suppose

a query is asking for information about “yesterday”, and there are two documents, one about “two days ago”

and one about “last week”. Deciding which document is preferable for this query is nontrivial and requires a

precise notion of distance between temporal intervals.

We address the first challenge by focusing our attention on temporal expressions. This is a somewhat simplifying

approach, as the temporal information of documents and queries does not necessarily need to exist in the form of

dates and time references, but could potentially be inferred by a deeper semantic understanding of the text. However,

this approach is motivated by the fact that there exist a number of NLP tools that are able to identify and interpret

temporal expressions with very high precision [53]. A search engine can thus easily and readily incorporate these tools

to augment its capabilities and improve its ranking models. Nonetheless, the solutions that we provide for the second

and third challenges are independent of whether we use timexes or extract temporal information in more sophisticated

ways.

The second and third challenges are the main focus of this work. In this section, we describe how to represent the

temporal expressions found in documents and queries (Section 3.1). Using this representation, we define two temporal

similarities in Section 4: a temporal similarity modeled after the BM25 [43] textual similarity, and a purely-temporal

similarity model based on distances between temporal intervals. The latter requires the definition of metric spaces

in order to capture different time relations, which we introduce in Section 5. Finally, in Section 6 we discuss how

a purely-temporal ranking model should be combined with a purely-textual (or term-based) model to improve the

effectiveness of either of the models.
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3.1 Modeling the temporal information in text

We now introduce the definitions and notation used in this paper to model temporal information in text. In Section 3.2,

we discuss how this information can be automatically extracted from the text using modern NLP tools.

Given a a set of time instants T ⊆ IR, the smallest piece of information that we attribute to an excerpt of text,

regardless of whether it is a document or a query text, is a temporal or time interval:

Definition 3.1 (Temporal Interval). A temporal interval [𝑡𝑠 , 𝑡𝑒 ] is a closed interval identified by an ordered pair of time

instants 𝑡𝑠 , 𝑡𝑒 ∈ T, 𝑡𝑠 ≤ 𝑡𝑒 .

The first component of the pair, 𝑡𝑠 , indicates the starting time of the time interval, while the second component, 𝑡𝑒 ,

indicates its end time. The meaning of a temporal interval [𝑡𝑠 , 𝑡𝑒 ] is, therefore, “the period of time starting from time 𝑡𝑠 ,

until, and including, time 𝑡𝑒 ”. The time instances, 𝑡𝑠 and 𝑡𝑒 , have an associated meaning as well. For instance, 𝑡𝑠 can be

interpreted as “January 1st, 2017”, and 𝑡𝑒 as “December 31st, 2017”, in which case the interval would indicate the whole

year 2017.

For practical reasons, it is common to discretize T, i.e., T ⊆ Z, and fix a minimum time, 𝑡min ∈ Z, and a maximum

time, 𝑡max ∈ Z, for the minimum and maximum time instants that the system can handle, such that T = [𝑡min ..𝑡max].

Definition 3.2 (Temporal Domain). Given a discretized T = [𝑡min ..𝑡max], the temporal domain is the finite set of all

possible time intervals: ΔT = {[𝑡𝑠 , 𝑡𝑒 ] | 𝑡𝑠 , 𝑡𝑒 ∈ T, 𝑡𝑠 ≤ 𝑡𝑒 }.

A discretized temporal domain is then grounded to reality by setting a time granularity. This is commonly referred

to as the “chronon”, and it represents the smallest discrete unit of time that the system can refer to. Typical examples of

chronons are: a day, a week, a month, or a year. Once a chronon is set, all time instances adhere to it (i.e., they all refer

to days, or they all refer to months, etc.).

Table 1. Time intervals of temporal domain with year chronon, and T = [0, 2], where time instant 0 indicates year 2014.

𝑡𝑠 𝑡𝑒 Corresponding time period Time period length

0 0 2014 1 year

0 1 2014–2015 2 years

0 2 2014–2016 3 years

1 1 2015 1 year

1 2 2015–2016 2 years

2 2 2016 1 year

Example 3.3. With a year chronon, 𝑡𝑚𝑖𝑛 = 0 corresponding to 2014, 𝑡𝑚𝑎𝑥 = 2, Table 1 depicts the full discretized

temporal domain ΔT, i.e., all the time intervals that the system can internally represent. Notice that, in this example,

the longest time interval is [0, 2], corresponding to the three-year-long time period 2014–2016, and there are three

shortest time intervals, [0, 0], [1, 1], and [2, 2], corresponding to the years 2014, 2015, and 2016, respectively.

Making a parallel with traditional term-based retrieval, ΔT is analogous to a temporal dictionary, that is, the set of all

possible temporal tokens that we are interested in capturing from the text. Like in term-based retrieval, the entire text

of a document or a query can have several time intervals associated with it. We now define the temporal scope of a

document (or query), i.e., its representation in the temporal domain.

Definition 3.4 (Temporal Scope). The set of all time intervals of a document 𝐷 (or query 𝑄 , respectively) is called its

temporal scope, and it is denoted by 𝑇𝐷 (or 𝑇𝑄 , respectively).
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8 Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi

3.2 Automatic construction of temporal scopes

Our model does not make any assumption regarding how 𝑇𝐷 and 𝑇𝑄 are constructed. In principle, temporal intervals

could be either manually or automatically identified, without changes to the underlining model. In this paper, we

consider their automatic identification through the use of existing, off-the-shelf NLP tools [51, 53] specifically tailored

for temporal information. Using NLP is common even in traditional “atemporal” bag-of-words systems, where terms are

expanded with synonyms using ontologies [20]. We add temporal support to the ranking model by extending the set of

NLP tools to those able to recognize temporal information in text. The schematic process of transforming temporal

expressions into the proposed interval representation is summarized in Figure 1.

Fig. 1. The process involved in the automatic construction of temporal scopes. First, we use an NLP tagger to identify a timex (e.g.,
“25th of December 2021”) from a text. Second, an NLP interpreter converts it to a standard date format (e.g., 2021-12-25). Finally,
we transform the latter into a time interval in the temporal domain ΔT. In this example, we obtain the interval by using a day
granularity and counting the number of days starting from 𝑡𝑚𝑖𝑛 = 0001-01-01 (the first day of January of Year 1).

3.2.1 Timexes. Temporal information can be found in text in the form of temporal expressions, often refer to as timexes

in the NLP literature. A timex is a (often contiguous) sequence of words found in the raw text of a document or query, to

which we can associate a “temporal meaning”. For instance, the timex “two days after Christmas” means December,

the 27
th
. Notice that this timex does not specify a particular year. Thus, an NLP tool would correctly interpret this timex

not as a single temporal interval, but as a set of single-day intervals, one for each year that fall within the temporal

domain ΔT. For example, if ΔT spans years 2014, 2015 and 2016, and the chronon is at least as small as a day, then this

timex would indicate three single-day intervals: “2014-12-27”, “2015-12-27”, and “2016-12-27”.

Timexes are not restricted to only search terms: They can consist of any part of the text, including stop words, as

long as they constitute together an expression with temporal meaning (e.g., “the 3rd of January”). In this paper, we

consider timexes that can be automatically recognized and interpreted by existing NLP libraries. However, this is not a

restriction to the ranking models, as they only utilize the temporal representations, 𝑇𝐷 and 𝑇𝑄 , regardless of how they

are constructed.

3.2.2 Timex identification and interpretation with NLP tools. Temporal NLP tools for timexes typically work in two

steps. First, they recognize timexes in the text, and annotate them. The annotation is usually performed by adding XML

tags to the original text. An example of this is the TimeML specification language [41], which provides a standardized

format for timex annotation. Second, they “normalize” (or “interpret”) the annotated timexes. In the rest of the paper,

we will refer to timex normalization as “interpretation”, to avoid confusion with score normalization (Section 6). Timex

interpretation involves the transformation of a previously recognized timex into a standard format for representing

dates and times, e.g., ISO 8601 [60], that can be easily parsed by a computer program.

Following the classification found in earlier work [2, 46], explicit timexes appear in two different kinds: absolute

timexes (e.g., “12 February 2010”) and relative timexes (e.g., “last week”). Absolute timexes, once recognized, can be

easily interpreted without the need of any contextual knowledge. Conversely, relative timexes need extra knowledge in

order to be resolved (e.g., a DCT or QIT), since they relate to some other (implicit or explicit) date. NLP tools are indeed
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Table 2. Examples of real timexes recognized (first column), interpreted with NLP tools (second column), and represented as time
intervals (third column). Timexes are extracted and interpreted from Robust 2004 TREC collection using HeidelTime. Relative timexes
are resolved using the date creation time. Transformation from ISO 8601 to intervals of time instants is applied using 1-day granularity
and starting time 0001-01-01T00:00:00.

Recognized Timex ISO 8601 Interpretation Time Intervals with 1-day Chronon

“Today” 1994-03-01 [727989 , 727989]

“next January” 1995-01 [728295 , 728325]

“28 Feb” 1994-2-28 [727988 , 727988]

“the second half of 1993” 1993-H2 [727571 , 727929]

“autumn 1893” 1893-FA [691306 , 691397]

“last week” 1993-W06 [727602 , 727608]

“Saturday night” 1977-01-01TNI [721721 , 721721]

“28 July 1914 to 11 November 1918” 1914-07-28, 1918-11-11 [698918 , 700485]

able to successfully recognize both absolute and relative expressions, and to interpret them into a standard format, such

as ISO 8601.

We refer to the relevant NLP literature for the details on the interpretation [51, 53].

3.2.3 Transforming timexes to temporal scopes. After the NLP-based timex interpretation, we transform the resulting

ISO 8601 strings into temporal intervals (ordered pairs of time instants, cfr. Definition 3.1). We represent a time instant

as the number of chronons elapsed from the starting time 00:00:00 of the first of January of the year 1 AD in the

Gregorian calendar, or more shortly 0001-01-01T00:00:00 in ISO 8601 format. For example, with a year chronon, this is

equivalent to extracting the Gregorian calendar’s year (e.g., the discrete time instant of the ISO 8601 timex “2015-03-20”

is represented with the ordinal 2015). This transformation is exact and, thus, it does not lose any information contained

in the ISO 8601 strings that the NLP tools produces.

Table 2 shows a few examples of timexes recognized from Robust 2004 [56] using HeidelTime [51] (first column), their

ISO 8601 interpretation (second column), and their final transformation as temporal intervals of the temporal domain

ΔT (third column). In the last column of Table 2, we show examples of the intervals created with a day granularity and

starting time 0001-01-01T00:00:00. It must be noted that the choice of starting time is arbitrary and does not affect

the results of the similarity models, as long as the temporal domain fully contains the intervals mentioned in the text.

In the last row of Table 2 we also show a case that expresses a period of time, “28 July 1914 to 11 November

1918”, that has two timexes and is also converted to a single interval [698918 , 700485], from the starting to the end of

the expressed period.

4 TEMPORAL SIMILARITIES

Having a homogeneous representation of temporal expressions in text in the form of temporal intervals allows us to

compare different temporal scopes. More interestingly, it is possible to define similarities between the temporal scope

of a query and the temporal scope of a document, thus estimating a purely-temporal relevance for retrieval purposes.

We present two purely-temporal similarity models:

(1) Temporal BM25 (TBM25): A frequency-weighting scheme, specialized for temporal scopes, as a simple

adaptation of the well-known Okapi BM25 similarity [43] to the temporal domain.

(2) Temporal Metric Space Model (TMSM): A class of novel similarity models based on generalized metrics over

the temporal scopes of documents and queries. Some of these models were originally introduces in [9].
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We show, in Section 6, how these purely-temporal models can be combined with traditional (purely-textual) models

to generate the final ranking of documents.

4.1 TMB25: Temporal BM25

The Okapi BM25 [43] is a well-known text similarity based on a weighting scheme that uses term frequencies, the

inverse document frequency, and the length of the document. The scheme gives higher weight to query terms that are

rare in the document collection (inverse document frequency), and it favors documents where the query term is more

frequent, while penalizing documents with too many terms.

TBM25 works exactly like BM25, with the only difference that it can only use the time intervals extracted from

documents and queries, rather than their original text. This can be easily achieved in practice in the following way:

• Create 𝑇𝐷 , the temporal scope of document 𝐷 ;

• Create a new textual document 𝐷̂ , by including each interval 𝑡 ∈ 𝑇𝐷 , repeated as many times as there are timexes

in 𝐷 whose interpretation is 𝑡 ;

• Add document 𝐷̂ to the document collection (disabling stop word or number elimination).

By doing so, we specialize the BM25 weighting scheme to estimate the temporal similarity between document and

query: Instead of constructing a bag-of-words using the text terms of the document, we use the temporal intervals to

construct a bag-of-intervals.

Definition 4.1 (TBM25). Given a query 𝑄 and a document 𝐷 , let 𝑇𝑄 ⊆ ΔT and 𝑇𝐷 ⊆ ΔT be their respective temporal

scopes. The temporal similarity between 𝑄 and 𝐷 is

sim

Tbm25
(𝑄,𝐷) =

∑︁
𝑡𝑄 ∈𝑇𝑄

𝐼𝐷𝐹 (𝑡𝑄 ) ∗
𝑓 (𝑡𝑄 ,𝑇𝐷 ) ∗ (𝑘1 + 1)

𝑓 (𝑡𝑄 ,𝑇𝐷 ) + 𝑘1 ∗ (1 − 𝑏 + 𝑏 ∗ |𝑇𝐷 |
𝑎𝑣𝑔 ( |𝑇𝐷 | ) )

,

where 𝑓 (𝑡𝑄 ,𝑇𝐷 ) is the frequency count of the interval 𝑡𝑄 from the query in the temporal scope of document 𝐷 , |𝑇𝐷 |
is the number of intervals in document 𝐷 , 𝑎𝑣𝑔( |𝑇𝐷 |) is the average number of intervals per document, 𝐼𝐷𝐹 (𝑡𝑄 ) is
the inverse document frequency of 𝑡𝑄 (i.e., an inverse function of the number of documents in which it occurs, as a

measure of its specificity), 𝑘1 and 𝑏 are parameters to control, respectively, the term-frequency saturation and the effect

of temporal scope size interpretation.

Similarly to BM25, TBM25 captures the temporal similarity because it favors documents where the query interval

is more frequent and the number of intervals is lower, while weighting the query intervals depending on their rarity

in the document collection. TBM25 is appealing because of its simplicity and its renowned effectiveness for textual

retrieval. It is also straightforward to incorporate into an existing search engine that already provides a standard BM25

implementation: a new index can be generated using, as dictionary, the set of all temporal intervals extracted from the

document collection; then, the standard BM25 would work out-of-the-box as a TBM25 model.

However, the model has a major drawback: If a document interval is not identical to at least one of the query intervals,

then it is not considered for frequency counting. This means that intervals in the document that are temporally close

to the query intervals may not contribute to the document’s similarity score. This is even true with very close and

related intervals such as “31 December 2018” and “1st of January 2019” (because their interval representations are

different), and with overlapping intervals like “25 December 2018” and “December 2018” (because with a granularity

smaller than a month these are still two separate intervals). This problem is analogous to the well-known problem of

vocabulary mismatch in traditional IR [22]. In this paper, we refer to a model like TBM25 as a unigram model. Unigram
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models treat time intervals as atomic dictionary terms. Another example of a unigram model is the baseline language

model used in [4].

In order to capture the temporal similarity of non-identical intervals, depending on how close or overlapped these

intervals are on the timeline, like Berberich et al. [4], we replace the representation of a temporal expression with the

set of time instants it refers to. Differently from their work, we model their similarity with Temporal Metric Space

Models (TMSM), capturing a more fine-grained notion of distance between time intervals. In Section 7, we fully describe

and analyze the differences between the models introduced by Berberich et al., and our TMSM models. In Section 8, we

also compare the two classes of models on large test collections.

4.2 TMSM: Temporal Metric Space Models

The TBM25 model is not able to take advantage of the richer numerical representation we provided in Section 3.1

because it considers each temporal interval as a single term, and the match between intervals has to be exact. The

TMSM model, instead, uses a distance function 𝛿∗ between document and query intervals.

Definition 4.2 (Temporal distance, 𝛿∗). Given a query 𝑄 and a document 𝐷 , let 𝑇𝑄 ⊆ ΔT and 𝑇𝐷 ⊆ ΔT be their

respective temporal scopes. The temporal distance function 𝛿∗, 𝛿∗ : P(ΔT) × P(ΔT) → IR, is a real-valued distance

function between the temporal scopes 𝑇𝑄 and 𝑇𝐷 .

In Section 5, we introduce several instances of 𝛿∗, each of which captures different properties of the distance between

documents and queries in the temporal domain. We discuss the differences of each distance function in great detail

in Section 7. In the experimental section (Section 8), we show how the choice of distance is collection-dependent, while,

at the same time, all distances exhibit a significant improvement in effectiveness against the simpler TBM25 model.

Because the temporal distance 𝛿∗ is a measure of the dissimilarity between a document and a query in the temporal

domain, we need to transform it into a similarity score, in oder to embed its contribution into a ranking system.

Although any strictly decreasing function is suitable for transforming a dissimilarity score into a similarity score, we

use exponential decay, as used in prior works (e.g., New Event Detection [21], and Web Documents Clustering [50]) to

estimate a similarity score given a distance value.

Definition 4.3 (TMSM). Given a temporal distance function 𝛿∗ : P(ΔT) × P(ΔT) → IR, the temporal similarity

between a query 𝑄 and a document 𝐷 via 𝛿∗ is

sim

Tmsm
(𝑄, 𝐷, 𝛿∗) = 𝑒−𝛿

∗ (𝑇𝑄 ,𝑇𝐷 ) .

This transformation is also well known in psychology to estimate the similarity of entities and situations experienced

by individuals, given the metric distances between their characteristics [47]. While there may be other dissimilarity-to-

similarity transformation functions, exploring them is orthogonal to the scope of this paper.

5 TEMPORAL METRIC SPACES

The TMSM model introduced in the previous section uses a distance function 𝛿∗ (𝑇𝑄 ,𝑇𝐷 ) (Definition 4.2) to model the

temporal distance between a query and a document. This function defines a distance between the temporal scopes of a

query, 𝑇𝑄 , and a document, 𝑇𝐷 , thus it is a distance between sets of intervals. We define 𝛿∗ as an aggregate temporal

distance 𝛿𝑎𝑔𝑔 of interval-to-interval distances 𝛿 , computed between all pairs of intervals from 𝑇𝑄 and 𝑇𝐷 .

Definition 5.1 (Aggregate temporal distance, 𝛿𝑎𝑔𝑔). Given an interval-to-interval distance function 𝛿 : Δ × Δ → IR,

and an aggregate function 𝑎𝑔𝑔 : P(IR) → IR, 𝛿𝑎𝑔𝑔 is the aggregate temporal distance between all pairs of query and
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document intervals:

𝛿𝑎𝑔𝑔 (𝑇𝑄 ,𝑇𝐷 ) = 𝑎𝑔𝑔({𝛿 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) | [𝑎𝑄 , 𝑏𝑄 ] ∈ 𝑇𝑄 , [𝑎𝐷 , 𝑏𝐷 ] ∈ 𝑇𝐷 })

The aggregation function 𝑎𝑔𝑔 can be any aggregation that maps a set of distances into a single distance. Although

this can be an arbitrary complex function, we consider three simple and efficient options for which the underlying

intuition is straightforward and relevant for the task: minimum, maximum, and average of the distances. We now

proceed to explain the intuition behind each of these options.

The minimum distance 𝛿𝑚𝑖𝑛
takes into account only the closest pair of intervals, which leads to the minimum distance

and thus the highest similarity between the two temporal scopes. For example, it is common to have one interval in the

query temporal scope 𝑇𝑄 and many in the document temporal scope 𝑇𝐷 . By using 𝛿𝑚𝑖𝑛
, we are considering only the

most favorable interval in the document, disregarding the ones that are further away from the query. Otherwise stated,

the minimum distance favors high temporal recall, at the expense of a lower temporal precision.

Conversely, the maximum distance 𝛿𝑚𝑎𝑥
ensures that only the worst pair is taken into account: it is the distance

between the farthest intervals. For example, in order to have 𝛿𝑚𝑎𝑥 (𝑇𝑄 ,𝑇𝐷 ) = 0, all intervals in the document should

have a zero distance from all the intervals in the query. Because 𝛿𝑚𝑎𝑥 ≥ 𝛿𝑚𝑖𝑛
for any temporal scope, this aggregation

results in a lower similarity score, thus lowering the recall, with possibly higher precision.

Finally, the average distance 𝛿𝑎𝑣𝑔 takes into account all the pairs, by averaging the distance between each interval in

the document and each interval in the query, in an attempt to balance between recall and precision.

When combined with a text similarity, the minimum aggregation function 𝛿𝑚𝑖𝑛
consistently produced the best

results in our evaluation, as we show in Section 8. This suggests that the temporal similarity has a role of promoting

documents loosely similar in time, while precision is mainly handled by its textual counterpart.

5.1 Interval-to-interval distances

In this section, we introduce several instances of 𝛿 , each of which captures different properties of the temporal relevance

of a document for a given temporal query. In the experiments, we show that a specific distance may be more suitable

than others depending on the specific collection of documents and queries.

Definition 5.2 (Metric space). A metric space is an ordered pair (𝑀,𝑑) where𝑀 is a set and 𝑑 is a metric distance on

𝑀 , i.e., a function 𝑑 : 𝑀 ×𝑀 → R such that for any 𝑥,𝑦, 𝑧 ∈ 𝑀 the following metric properties hold:

(1) Non-negativity 𝑑 (𝑥,𝑦) ≥ 0

(2a) Identity of indiscernibles (⇒) 𝑑 (𝑥,𝑦) = 0 ⇒ 𝑥 = 𝑦

(2b) Identity of indiscernibles (⇐) 𝑥 = 𝑦 ⇒ 𝑑 (𝑥,𝑦) = 0

(3) Symmetry 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥)
(4) Triangle inequality 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧)

In addition to metric distances we consider two relaxed metric definitions (also known as generalized metrics):

quasi-metric distances and hemi-metric distances.

Definition 5.3. [Quasi-metric space] In a quasi-metric space, only axioms (1), (2) and (4) from Definition 5.2 hold.

Dropping the symmetry axiom is useful in our context: queries and documents are inherently different and so are

the temporal intervals found in them. We define query-to-document quasi-metric distances to reflect this asymmetry.
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Definition 5.4. [Hemi-metric space] A hemi-metric space further relaxes the metric conditions, only satisfying axioms

(1), (2b) but not (2a) (i.e., 𝑑 (𝑥,𝑦) = 0 does not imply that 𝑥 = 𝑦), and (4).

For instance, in comparison with quasi-metrics, hemi-metrics allow the existence of several 𝑦 elements for which

𝑑 (𝑥,𝑦) = 0. Clearly, this is a desirable property if we want a set of document time intervals with some common features

(e.g., being all contained in the query interval) to have all the same distance with respect to the query interval.

The following distance definitions focus on different aspects of temporal intervals and relations between them. Each

distance defines a different metric space (or generalized metric space) and can be suitable under certain conditions.

However, as we will show through several experiments, some distances generally performs better then others, in both

precision and recall measures.

5.1.1 Metric distances. In the 2-dimensional space, the Manhattan distance (also known as 𝐿1 Mikowski distance) is a

metric distance defined as follows [7]:

𝑑1 (𝑝, 𝑞) = |𝑝1 − 𝑞1 | + |𝑝2 − 𝑞2 |

where 𝑝 = (𝑝1, 𝑝2) and 𝑞 = (𝑞1, 𝑞2) are pairs, i.e., members of R × R. Our first distance between temporal intervals

applies the Manhattan distance by assuming that the two dimensions refer to the begin and the end of an interval,

respectively.

Definition 5.5 (Manhattan distance). Given a time interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of a query 𝑄 , and a

time interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope𝑇𝐷 of a document 𝐷 , the Manhattan distance between the two intervals

is defined as:

𝛿𝑚𝑎𝑛 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) = |𝑎𝑄 − 𝑎𝐷 | + |𝑏𝑄 − 𝑏𝐷 |

The Euclidean distance (also known as 𝐿2 Mikowski distance) is the straight line distance between two points:

𝑑2 (𝑝, 𝑞) =
√︃
(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2

We apply the Euclidean distance to our interval definition so that 𝑝 and 𝑞 are the two intervals in comparison.

Definition 5.6 (Euclidean distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of a query 𝑄 and an

interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Euclidean distance between these intervals is

defined as:

𝛿𝑒𝑢𝑐𝑙 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) =
√︃
(𝑎𝑄 − 𝑎𝐷 )2 + (𝑏𝑄 − 𝑏𝐷 )2

The Manhattan distance and the Euclidean distance are metrics, since they satisfy all the four metric properties. This

does not hold for the next generalized metric distance definitions.

5.1.2 Hemi-metric distances. The coverage of an interval by another interval (how much of the first one is covered

by the second one) is an important temporal relation that cannot be captured by the previously defined distances.

To capture the coverage, we introduce two generalized metrics for which the distance of two intervals is zero if one

interval is totally contained in (or covered by) the other: a query-biased coverage distance to maximize the similarity if

the document interval completely covers the query interval, and a document-biased coverage distance to maximize the

similarity if the query interval completely covers the document interval.
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Definition 5.7 (Query-Coverage distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of a query 𝑄 , and

an interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Query-Coverage distance is defined as:

𝛿𝑐𝑜𝑣𝑄 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) = (𝑏𝑄 − 𝑎𝑄 ) − (min{𝑏𝑄 , 𝑏𝐷 } −max{𝑎𝑄 , 𝑎𝐷 })

The intuitive meaning of this distance is that if the interval of the query is fully covered by the interval from the

document, then the distance is zero. Otherwise, it is equal to the length of the “uncovered” section of the query interval.

The Query-Coverage distance is suitable when, in referring to the same event, the temporal intervals mentioned in

the query are narrower than the temporal intervals in the relevant documents. This is because when the document

intervals cover the query intervals, the Query-Coverage distance is lower, resulting in a higher similarity.

In the same way as we defined the Query-Coverage distance, we define a Document-Coverage distance to boost the

similarity if the document interval is covered by the query interval.

Definition 5.8 (Document-Coverage distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of a query 𝑄 ,

and an interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Document-Coverage distance is defined as:

𝛿𝑐𝑜𝑣𝐷 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) = (𝑏𝐷 − 𝑎𝐷 ) − (min{𝑏𝑄 , 𝑏𝐷 } −max{𝑎𝑄 , 𝑎𝐷 })

The Document-Coverage distance is the appropriate distance when relevant documents have their time interval

covered by the interval in the query, i.e., for temporally vague query and precise dates in documents. The intuition

is that the users, while searching for information, have less precise knowledge on the dates of the events than the

document describing them. For example, they may be looking for information about the Indian Ocean earthquake and

tsunami of 2004 using the query 2004 tsunami, while the document describing the event contains only the exact timex

“12/26/2004 00:58:49”.

5.1.3 Quasi-metric distances. While the coverage distances capture overlapping and inclusion of two intervals, they are

not able to discern between two intervals that are identical and two intervals that are just included in one another but

very dissimilar, such as “3 August 1992” and “the nineties”. A quasi-metric is a function that satisfies all the metric

distance properties except symmetry. Unlike hemi-metrics, the identity of indiscernibles satisfies both the axioms (2b)

and (2a) of Definition 5.2.

A quasi-metric can be obtained by averaging, or linearly combining with positive weights, a metric distance with a

hemi-metric distance. To show this, let a metric distance be 𝑑𝑀 (𝑥,𝑦), a hemi-metric distance 𝑑𝐻 (𝑥,𝑦), and its weighted

sum 𝑑𝑄 = 𝛼𝑑𝑀 (𝑥,𝑦) + 𝛽𝑑𝐻 (𝑥,𝑦), with 𝛼 and 𝛽 positive non-zero values:

(1) Given that 𝛼𝑑𝑀 (𝑥,𝑦) ≥ 0 and 𝛽𝑑𝐻 (𝑥,𝑦) ≥ 0, their sum 𝑑𝑄 (𝑥,𝑦) = 𝛼𝑑𝑀 (𝑥,𝑦) + 𝛽𝑑𝑀 (𝑥,𝑦) is also non-negative.

(2a) Suppose 𝛼𝑑𝑀 (𝑥,𝑦) + 𝛽𝑑𝐻 (𝑥,𝑦) = 0. This is only possible if 𝑑𝑀 (𝑥,𝑦) = 0, being 𝛼 and 𝛽 positive and non-zero, and

𝑑𝑀 and 𝑑𝐻 non-negative. Thus, 𝛼𝑑𝑀 (𝑥,𝑦) = 0. Because 𝑑𝑀 (𝑥,𝑦) is a metric, 𝛼𝑑𝑀 (𝑥,𝑦) = 0 ⇒ 𝑥 = 𝑦.

(2b) If 𝑥 = 𝑦 than 𝑑𝑀 (𝑥,𝑦) = 0 and 𝑑𝐻 (𝑥,𝑦) = 0, as both satisfy the (⇐) implication of the property. It follows that for

𝑥 = 𝑦, 𝛼𝑑𝑀 (𝑥,𝑦) + 𝛽𝑑𝐻 (𝑥,𝑦) = 𝛼 · 0 + 𝛽 · 0 = 0.

(4) We know that this property holds for both 𝑑𝑀 and 𝑑𝐻 , that is 𝑑𝑀 (𝑥, 𝑧) ≤ 𝑑𝑀 (𝑥,𝑦) + 𝑑𝑀 (𝑦, 𝑧) and 𝑑𝐻 (𝑥, 𝑧) ≤
𝑑𝐻 (𝑥,𝑦) +𝑑𝐻 (𝑦, 𝑧). We can rewrite the inequalities as 𝑑𝑀 (𝑥, 𝑧) −𝑑𝑀 (𝑥,𝑦) −𝑑𝑀 (𝑦, 𝑧) ≤ 0 and 𝑑𝐻 (𝑥, 𝑧) −𝑑𝐻 (𝑥,𝑦) −
𝑑𝐻 (𝑦, 𝑧) ≤ 0. Replacing, for simplicity, the left-hand side of the two inequalities respectively with 𝑎 and 𝑏, we have

that 𝑎 ≤ 0 ∧ 𝑏 ≤ 0 =⇒ 𝑎 + 𝑏 ≤ 0. Therefore, for all 𝛼, 𝛽 > 0, 𝛼𝑎 + 𝛽𝑏 ≤ 0.

We define the Manhattan-Query-Coverage distance as the average of the Manhattan distance and the Query-Coverage

distance.
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Definition 5.9 (Manhattan-Query-Coverage distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of

a query 𝑄 and an interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Manhattan-Query-Coverage

distance is defined as:

𝛿𝑚𝑐𝑜𝑣𝑄 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) =
𝛿𝑚𝑎𝑛 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) + 𝛿𝑐𝑜𝑣𝑄 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ])

2

By averaging a metric distance with a coverage distance, we obtained a distance that satisfies the identity of

indiscernibles while taking into account the asymmetric coverage. More specifically, the document intervals that cover

the query interval have lower distance, while only the exactly matching intervals have zero distance.

Similarly to the Manhattan-Query-Coverage distance, the Manhattan-Document-Coverage distance is a quasi-metric

obtained by averaging the Manhattan distance with the Document-Coverage distance.

Definition 5.10 (Manhattan-Document-Coverage distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of

a query 𝑄 and an interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Manhattan-Document-Coverage

distance is defined as:

𝛿𝑚𝑐𝑜𝑣𝐷 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) =
𝛿𝑚𝑎𝑛 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) + 𝛿𝑐𝑜𝑣𝐷 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ])

2

The 𝛿𝑚𝑐𝑜𝑣𝐷 distance is low for document intervals which are covered by the query interval, however, conversely to

the Document-Coverage distance, only the exactly matching interval has zero distance.

In a similar fashion, we define the the quasi-metrics combining the Euclidean distance and the coverage distances.

Definition 5.11 (Euclidean-Query-Coverage distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of a

query 𝑄 and an interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Euclidean-Document-Coverage

distance is defined as:

𝛿𝑒𝑐𝑜𝑣𝐷 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) =
𝛿𝑒𝑢𝑐𝑙 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) + 𝛿𝑐𝑜𝑣𝑄 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ])

2

Definition 5.12 (Euclidean-Document-Coverage distance). Given an interval [𝑎𝑄 , 𝑏𝑄 ] from the temporal scope 𝑇𝑄 of a

query 𝑄 and an interval [𝑎𝐷 , 𝑏𝐷 ] from the temporal scope 𝑇𝐷 of a document 𝐷 , the Euclidean-Document-Coverage

distance is defined as:

𝛿𝑒𝑐𝑜𝑣𝐷 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) =
𝛿𝑒𝑢𝑐𝑙 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ]) + 𝛿𝑐𝑜𝑣𝐷 ( [𝑎𝑄 , 𝑏𝑄 ], [𝑎𝐷 , 𝑏𝐷 ])

2

In Table 2, we show examples of the 8 distances we defined. Each distance is computed for the query interval

𝑞 = [2012, 2015] with respect to 5 different document intervals 𝑑1, . . . , 𝑑5. When the document interval is exactly the

same as the query (𝑑1 = 𝑞), the distance is zero for all the four distances, as a consequence of the right-to-left identity of

indiscernibles (Definition 5.2, (2b)). However the converse is not true for the two coverage distances: for 𝑑3 and 𝑑4,

the distance is 0 even if the two are not equal to 𝑞. It follows that, for coverage distances, the implication of identity

of indiscernibles is true only in one direction. It is worth noting that the sum of these two complementary coverage

distances always results in the Manhattan distance.

The quasi-metric distances (i.e., 𝛿𝑚𝑐𝑜𝑣𝑄 , 𝛿𝑚𝑐𝑜𝑣𝐷 , 𝛿𝑒𝑐𝑜𝑣𝑄 and 𝛿𝑒𝑐𝑜𝑣𝐷 ) offer a balance between coverage and mere

distance, mitigating the effects that the hemi-metrics have on full coverage. In the last column of Table 2, 𝛿𝑒𝑐𝑜𝑣𝐷 (𝑑1, 𝑞) = 0

only for the exact same interval. When the document interval is completely covered, but not the same as the query

interval, then 𝛿𝑒𝑐𝑜𝑣𝐷 (𝑑4, 𝑞) = 0.705, which is higher than 0 but still less then the case of a partially covered interval,

such as 𝛿𝑒𝑐𝑜𝑣𝐷 (𝑑2, 𝑞) = 1.205.
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𝛿 (𝑑𝑖 , 𝑞)

Intervals 𝛿𝑚𝑎𝑛 𝛿𝑒𝑢𝑐𝑙 𝛿𝑐𝑜𝑣𝑄 𝛿𝑐𝑜𝑣𝐷 𝛿𝑚𝑐𝑜𝑣𝑄 𝛿𝑚𝑐𝑜𝑣𝐷 𝛿𝑒𝑐𝑜𝑣𝑄 𝛿𝑒𝑐𝑜𝑣𝐷

𝑑1

20
11

20
12

20
13

20
14

20
15

20
16

a b

a b

a b

a b

a b

20
17

a b

0 0 0 0 0 0 0 0

𝑑2 2 1.41 1 1 1.5 1.5 1.205 1.205

𝑑3 2 1.41 0 2 1 2 0.705 1.705

𝑑4 2 1.41 2 0 2 1 1.705 0.705

𝑑5 6 4.47 4 2 5 4 4.235 3.235

𝑞

Fig. 2. Examples of the eight distance functions on five different document intervals 𝑑1, . . . , 𝑑5, for a fixed query interval 𝑞. Each
document interval shows a different case of containment or overlap with the query interval. The distances only agree when the
document and query intervals exactly match (𝑑1 = 𝑞).

6 COMBINING TEMPORAL AND TEXTUAL SIMILARITIES

In Section 4, we introduced our purely-temporal similarities,
sim

Tbm25
and

sim

Tmsm
. For the final ranking, it is important to

combine a temporal similarity score with a non-temporal (purely-textual) similarity score. The choice of the non-

temporal similarity function is orthogonal to the scope of this work. In this paper, we consider the Okapi BM25 [43]

and the Language Model Jelinek-Mercer (LMJM) text similarities as non-temporal similarity functions.

Given a temporal similarity
sim

Time
and a text similarity

sim

Text
, a simple yet effective technique to combine the two

similarity scores is a convex combination:

sim(𝑄, 𝐷, 𝛿∗) = 𝛼
sim

Time
(𝑄,𝐷, 𝛿∗) + (1 − 𝛼)sim

Text
(𝑄, 𝐷)

The parameter 𝛼 , 𝛼 ∈ [0, 1], denotes the weight of the temporal similarity with respect to the text similarity. For

example, setting 𝛼 = 1 only ranks documents according to their temporal similarity to the query; 𝛼 = 0.5 corresponds

to averaging the temporal and non-temporal similarities; 𝛼 = 0 is the equivalent of only taking the text relevance into

consideration.

Even a simple linear combination like this hides nontrivial subtleties that, if not carefully considered, can possibly

render the resulting scores poor, ultimately hurting the ranking’s effectiveness [35]. The main issue is that combining

scores from different models requires a proper score normalization before combination can happen. This is especially

necessary if the distributions of the two scores being combined vary substantially between the two systems [42]. Cases

like this are often true when the features considered (e.g., in our case, text terms vs. time intervals) and the similarity

schemes (e.g., terms frequency vs. metric distances) are very different, which is clearly the case in our setting.

To further explain the effects of different score distributions when we combine them with or without prior normal-

ization, we show an example in Figure 3. The figure depicts the similarity scores distribution for
sim

Time
(diamond markers)

and
sim

Text
(square markers) of a top-5 retrieval. While the scores are synthetically generated to fit a small example, the

shape of the scores distribution for text and time reflects the actual one. Also for simplicity, text retrieval and time

retrieval documents are two disjoint sets in this example. The black markers represents the original, unnormalized
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Fig. 3. This example shows the original and normalized scores of the top-5 results for temporal and text similarity. The two similarities
produce different score distributions. In combined ranking, normalization of scores affects the ranking position of the 10 documents.

scores, showing two different distributions for time and text scores. The white markers represents the scores of the same

documents after a distribution-based normalization [17] is performed. On the left hand-side, we show all these scores

before combination. Note that any proper normalization do not change the ranking of the documents. On the right

hand-side instead, we show the impact on the ranking in combining the scores with and without prior normalization. As

it is clear from the figure, combining unnormalized and normalized scores results in different rankings of the documents.

In this example, keeping the scores unnormalized (black markers) has the effect of ranking all the top-5 results for

sim

Text
close together and higher up in the ranking, leaving most of the top-5 documents for

sim

Time
at the bottom of the

ranking. This in an effect of the fact that the original scores for
sim

Text
are generally higher than those of

sim

Time
. On the other

hand, normalized scores (white markers) are more similar to each other and thus their combination results in a more

alternating ranking of top-textual and top-temporal results.

We now proceed to discuss and experimentally evaluate some of the existing methods to normalize the scores prior to

their combination. The simplest normalization method is a linear transformation, in which all the scores are multiplied

by the same constant to fit in a range, such as [0, 1]. We then consider normalization methods that take into account not

only the score range, but also the inner distribution of scores for the two similarities. We apply the method presented

in [17] to map scores to a common target distribution. The choice of an appropriate target distribution is critical to

this method. We instantiate the method using 3 different target distributions: the text scores distribution, the temporal

scores distribution, and the average distribution of the previous two.

In summary, we consider and evaluate 4 different normalization methods:

• Linear transformation (𝑛𝑜𝑟𝑚𝑙𝑖𝑛): the scores are linearly scaled within the same range.

• Textual score distribution (𝑛𝑜𝑟𝑚𝑡𝑒𝑥𝑡 ): a distribution-based method where the target distribution is the average

distribution of text similarities
sim

Text
.

• Time score distribution (𝑛𝑜𝑟𝑚𝑡𝑖𝑚𝑒 ): a distribution-based method where the target distribution is the average

distribution of the time similarities
sim

Time
.
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• Average score distribution (𝑛𝑜𝑟𝑚𝑎𝑣𝑔): a distribution-based method where the target distribution is the average

distribution of time and text similarities.

We evaluate the normalization methods over top-𝑘 precision and recall, with a fixed 𝛼 = 0.5 for the linear combination,

that is, the arithmetic mean of the two similarities. We conducted these experiments on the Novelty 2004 collection [49].

Precision Recall

P@5 P@10 P@20 R@5 R@10 R@20

𝑛𝑜𝑟𝑚𝑙𝑖𝑛 0.846 0.854 0.827 0.183 0.372 0.721

𝑛𝑜𝑟𝑚𝑡𝑒𝑥𝑡 0.846 0.839 0.785 0.183 0.366 0.687

𝑛𝑜𝑟𝑚𝑡𝑖𝑚𝑒 0.815 0.823 0.808 0.178 0.357 0.704

𝑛𝑜𝑟𝑚𝑎𝑣𝑔 0.877 0.846 0.808 0.191 0.367 0.704

Table 3. Top-𝑘 precision and recall for the considered normalization methods with 𝛼 = 0.5 on the Novelty 2004 collection. Compared
to linear transformation, average score distribution shows better results only for top-5 documents.

Table 3 shows that, while the average score distribution normalization yields better precision and recall for the top-5

results, linear transformations provides higher precision and recall for greater values of 𝑘 . Textual score distribution

and time score distribution do not yield any improvement.

Given that the linear transformation is overall more effective and more efficient—it is a rather simpler computation—

we apply this method for all the experiments presented in Section 8.

7 QUALITATIVE ANALYSIS

Before proceeding with our experimental evaluation (Section 8), in this section, we analyze the fundamental differences

between the temporal similarities introduced in this paper, and the relevant ones from the literature. This section

provides an easy-to-understand visual insight into the effects of each similarity measure.

Unigram. As we discussed in Section 4.1, our TBM25 similarity (Definition 4.1) and the baseline model used in [4] are

examples of unigram models, where each temporal interval is treated like a single dictionary term. A unigram model

is able to capture the similarity between “Christmas day last year” and “the 25th of December 2020”: given

that their NLP annotation is the same, they are represented with the same dictionary term. For example they could

both be represented by the string 20201225_20201225, that will be indexed as a unique, atomic token like any other

dictionary term. However, with this model, even the slightest difference between the document interval and the query

interval would result in zero similarity score. For example, the two timexes “This December” and “From Dec. 1 to

Christmas day” will result in two different tokens, 20211201_20211231 and 20211201_20211225.

We depict this binary notion of similarity of the left-hand side of Figure 4, using a 10-year time span from 2006 to

2016, and a fixed query interval [2009, 2012], marked in the figure as a red cross. The figure uses a heatmap to indicate

the temporal similarity score for every possible time interval from a document—the darker the color, the lower the

similarity to the query interval, and a gray color indicates zero or undefined similarity. For a unigram model, there are

only two possible scenarios: either the document interval “matches” the query interval, or it does not. And if it does,

the similarity is 1—the maximum possible.
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Fig. 4. Given the same query [2009, 2012], each cell represents the document similarity score for each document interval in the range
2006–2016, with yearly granularity. The similarity score is displayed using a color map in the range [0,1], with maximum similarity
equal to one; gray spots have zero or undefined similarity.

LMT with Uncertainty. Prior to this paper, the state of the art for temporal similarity was the Language Model

with Temporal Uncertainty (LMTU) [4], and the models derived from it using learning to rank [30]. The main idea

behind Temporal Uncertainty is that a user, while expressing their temporal intent, is not completely certain about the

precise temporal scope of its search. For instance, a user can remember that the last Obama election was in the year

2012, without knowing the exact date, therefore issuing the query Obama election 2012 instead of Obama election
November 6, 2012. While this model is still based on a text similarity, the temporal expression is represented as the set

of time units instead of as a unique token. LMTU captures not only the exact match between intervals, but also the

similarity of intervals that have a non-zero intersection with the query interval. In this language model, the document

interval 𝑡𝐷 can refer to any interval of any size, contained in 𝑇𝐷 . The same is true for the query interval 𝑡𝑄 , so |𝑇𝐷 | and
|𝑇𝑄 | are the number of possible intervals that the document interval and the query interval can refer to, respectively.

The probability of generating 𝑡𝑄 from the language model of 𝑡𝐷 is defined as:

|𝑡𝐷 ∩ 𝑡𝑄 |
|𝑡𝐷 | · |𝑡𝑄 |

that is, the ratio between the intersection of the two sets of possible intervals in 𝑡𝑄 and in 𝑡𝐷 and all the pairs of possible

intervals in 𝑡𝑄 and 𝑡𝐷 .

The similarity score of the LMTU model and its relation with overlapping intervals is visualized on the right-hand

side of Figure 4. The triangle representing smaller intervals than the query interval (i.e., contained in the query interval

[2009, 2012]) exhibit the highest scores; the bigger intervals that contain [2009, 2012] show a slightly lower value; all

the other intervals without any overlap have zero score.

Differently from unigram models (left-hand side of Figure 4), this model is able to capture the similarity between

two intervals even if these two intervals do not perfectly match. LMTU results in higher similarity if the time in the

document is contained in the time of the query. As we will show later, this behavior is similar to the document-coverage
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similarities we introduce in this paper (𝛿𝑐𝑜𝑣𝐷 , 𝛿𝑚𝑐𝑜𝑣𝐷 , and 𝛿𝑒𝑐𝑜𝑣𝐷 ). However, LMTU only gives a positive score if there

is some overlap between the two intervals; if there is no overlap, the similarity score is zero, as shown in the top-right

and bottom-left corners of the LMTU plot in Figure 4.

This last property, however, is a limitation for this model. For instance, consider the query timex 𝑡𝑄 “7 December

2019” and two documents, 𝐷1 with the timex 𝑡𝐷1
“8 December 2019” and 𝐷2 with the timex 𝑡𝐷2

“11 November 1918”.

The interval in 𝐷1, being the day after 𝑡𝑄 , is clearly more related to the query than 𝑡𝐷2
, being the latter interval the

beginning of World War I. However, because both 𝑡𝐷1
and 𝑡𝐷2

have no overlap with 𝑡𝑄 , their LMTU similarity scores

are both zero. The model can capture the uncertainty of the user when expressing their temporal needs only if the

relevant documents overlap with the query. If relevant documents do not overlap with the query interval, this model

will fail in retrieving them (unless their textual scores are high enough). Users, in order to retrieve relevant documents,

would be forced to provide larger query intervals, which would result in too many documents receiving high temporal

scores, defeating the purpose of assigning temporal scores in the first place.
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Fig. 5. Similarity scores of metric distances for the query [2009, 2012] and all the document intervals in the range 2006–2016. Gray
cells have zero or undefined similarity.

Metric similarities. We now discuss our metric-based TMSM similarities. Like unigram models, the Manhattan and

Euclidean similarities have their maximum score only when query interval and document interval are the same (identity

of indiscernibles). However, the similarity score is not binary, but proportional to the distance between the two intervals.

Moreover, not being based on set operations, like the LMTU similarity, they are able to give different and meaningful

scores to the two previous examples, 𝑡𝐷1
and 𝑡𝐷2

. The similarity between “7 December 2019” and “8 December 2019”

is 𝑒−1 = 0.368, while the similarity between “7 December 2019” and “from 28 July 1914 to 11 November 1918” is

a negligible 𝑒−72493. Figure 5 highlights the differences between the two similarity models. In Manhattan, the diagonal

cells are doubly penalized with respect to the other adjacent cells. This is due to the nature of Manhattan distance: it

is the distance between two points in a grid, based on a strictly horizontal/vertical paths, much like the grid street

topography of Manhattan. Conversely, the Euclidean distance shows a smoother decay of similarity score with a circular

pattern around the query.
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A shortcoming of the similarities based on metric distances is that they are not able to capture the containment of

intervals. Because of their symmetry, they make no distinction between query intervals and document intervals, despite

queries and documents serve different purposes, with queries often acting like “filters” for the relevant documents the

user is looking for.
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Fig. 6. Similarity scores of hemi-metric distances for the query [2009, 2012] and all the document intervals in the range 2006–2016.
Gray cells have zero or undefined similarity.

Hemi-metric similarities. The coverage-based similarities share properties of all the similarities so far discussed: their

maximum score occurs with a perfect match of the two intervals, and they are able to differentiate between very distant

and close intervals without these intervals having any overlap. Moreover, like LMTU, both the document coverage and

the query coverage are asymmetric, and take into consideration the containment of the interval of the document in the

interval of the query, or vice versa. As shown in Figure 6, the triangle of the intervals contained in [2009, 2012] has the
highest document-coverage score, just like the LMTU model. However, in LMTU the maximum score is penalized by

the query interval size, while in document-coverage the highest score coincides with the maximum score of one. The

figure also clearly shows the opposite coverage notion generated by the query-coverage distance. None of the other

existing similarity measures can model query-coverage, including LMTU. Interestingly, in some of the experiments

we ran, query-coverage performed better that the other models, showing that some of the temporal query intents are

indeed based on query-coverage, rather than document-coverage or symmetrical distances.

One shortcoming of coverage-based scores is that they cannot differentiate between a perfectly matching document

interval and a document interval contained in the query interval (or vice versa). For example, in document-coverage,

if the query interval is “from 28 July 1914 to 11 November 1918”, the document intervals “28 July 1914 - 11

November 1918” and “2 February 1916” will both have equal maximum score of one. This is exacerbated in the

extreme case of very large query intervals. For example, for a query spanning two millenia, all the documents would

have the same score under the document-coverage distance.
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Fig. 7. Similarity scores of quasi-metric distances for the query [2009, 2012] and all the document intervals in the range 2006–2016.
Gray cells have zero or undefined similarity.

Quasi-metric similarities. When dealing with queries for which it is important to make this distinction, we can make

a coverage-based score act like a metric score by combining a coverage distance with a metric, obtaining quasi-metric

scores. The similarities built upon the two quasi-metric models, shown in Figure 7, take into consideration both the

distance between the ends of intervals and the coverage of one interval over the other, thus including all the temporal

relations considered so far in one single score. The quasi-metric distances share features with all the previous distances:

their similarity scores are maximum when the intervals exactly match one another; their scores decrease gradually

with distance; and they are boosted in the coverage area.

8 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our temporal ranking models aimed at answering the following

research questions:
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Q1 Previous studies hypothesized that queries without timexes have no temporal intent. Is this true or do most

queries, even if devoid of explicit timexes, hide a temporal intent that favors information of particular dates

and periods of time? By somehow identifying temporal intent for queries without timexes, can our proposed

models improve the retrieval? In Section 8.1.3, we show a simple method to identify implicit temporal scopes

from queries devoid of any timex. We use these implicit features in all our experiments, showing that queries

without timexes still have a temporal intent, and that a temporal model does not need explicit timexes to improve

the effectiveness of a purely textual ranking model.

Q2 Do the proposed temporal similarities improve the precision and recall of the retrieval results when combined

with a text similarity, in comparison with using the text similarity alone (see Section 8.2.1)?

Q3 How much weight should we assign to the text similarity component in the text-time combination, to gain the

highest improvement (see Section 8.2.1)?

Q4 Are the proposed temporal similarities more effective than state of the art TIR models, in the same text-time

combination setting (see Section 8.2.2)?

Q5 How does the granularity of time interval representation affect the effectiveness of the temporal models (see Sec-

tion 8.2.3)?

Q6 Which of the considered distance aggregations is on average the most effective (see Section 8.2.4)?

Q7 Which of all the proposed metric distances is on average the most effective (see Section 8.2.5)?

Before presenting the results that answer these questions, we proceed by describing our experimental setup.

8.1 Experimental setup

The experimental settings that follow describes the tools, the choices and the assumptions involved in evaluating the

proposed models on IR standard test collections.

8.1.1 Implementation. We annotated and extracted temporal expressions from documents and queries using Heidel-

Time [51], a state-of-the-art NLP tool for temporal expressions.

The NLP tool requires the date creation time in order to resolve relative timexes. For this, we built custom Python

modules that parse each document collection and their queries, extracting the text body of documents and the metadata

containing the date creation time. We used Apache Lucene [6] to compute the text similarity scores using its imple-

mentations of the Okapi BM25 [43] similarity and Language Model with Jelinek-Mercer smoothing [62] similarity.

We precomputed the textual similarity scores for all queries and documents using Lucene, as well as the measure-

ments for all the systems evaluated, and stored them into a MySQL database. Temporal similarity scores are instead

computed on-the-fly. We implemented
3
all the models defined in this paper in Python, including: transformation of

interpreted timexes in discrete intervals; generalized metric distances; transformation of granularity on extracted

intervals; normalization functions for temporal and text scores; aggregation of distances 𝛿∗; transformations from

distance to similarity.

8.1.2 Test Collections. Table 4 shows the five text collections used in our experiments. We use three collections from

NIST TREC information retrieval tracks: Novelty 2004 [49], Robust 2004 [56], Robust 2005 [57]. These collections

were not specifically constructed for time sentitive queries. We also include two temporal-aware test collections:

Temporalia [26], released for the international conference NTCIR-11, and, lastly, the collection, which we henceforth

3
We provide the main components of the code on the github repository https://github.com/Strizzo/tmsm
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refer to as LMT-NYT, constructed by Berberich et al. from the New York Times Annotated Corpus [44] to evaluate their

Language Model with Temporal Uncertainty [4]. The collections have an average number of timexes per document

between 4 and 9. The table also shows the ratio between the number of timexes per document and the number of

words per document, showing that a timex appears every 52 to 123 words, and the percentage of timexes for each time

granularity (D=day, M=month, Y=year), showing a prevalence of day-wise timexes in all the collections.

Timex occurrences Timex granularities

Documents Tmx/Doc Wrd/Doc Tmx:Wrd % D %M % Y % Other

Novelty 2004 [49] 1,808 6.46 500 1:77 46.22 12.48 32.18 9.12

Robust 2004 [56] 528,155 6.90 516 1:74 47.67 11.64 33.57 7.12

Robust 2005 [57] 1,033,461 9.14 476 1:52 44.09 7.43 26.16 22.32

Temporalia [26] 3,648,716 3.92 482 1:123 53.47 16.05 30.48 0

LMT-NYT [4, 44] 1,855,140 8.17 574 1:70 49.07 9.40 34 .60 6.93

Table 4. For each collection: total number of documents, statistics on timex and word occurrences (average number of timexes per
document as Tmx/Doc, average number of words per document as Wrd/Doc, ratio between timexes and words as Tmx:Wrd) and
statistics on the granularities of found timexes (granularity of one day as D, one month as M, one Year as Y and other intervals
different from the previous).

8.1.3 Temporal scope of queries. For each query from the five test collections, we construct its temporal scope looking

for time intervals from one of four different sources of temporal information. The first three of them are directly

available in the query description: the title, description, and narrative of the topic.

(1) Topic title: a brief keyword-based description of the query intent.

(2) Topic description: a one-sentence description of the query.

(3) Topic narrative: one or more sentences that concisely describes the documents relevant to the query.

We run the NLP tools to identify temporal references from any of those, in that order. If the topic title contains time

intervals, those intervals will constitute the temporal intervals of the query. Otherwise, we look for intervals in the

topic description or, lastly, in the topic narrative. If we can identify temporal intervals from any of these three sources,

we refer to the query as being explicitly temporal. Examples of explicitly temporal queries found in the considered

collections are:

• China’s first spaceflight "Shenzhou" successful launch and retrieval on 20/21 Nov 1999.

• East Timor vote for independence from Indonesia in August 1999.

• OIC Balkans 1990s

If no temporal intervals can be found in the title, description, or narrative, the query is implicitly temporal. Examples

of implicitly temporal queries found in the considered collections are:

• What are the negative impacts of Argentina’s policy of pegging their peso to the U.S. dollar?

• Czechoslovakia breakup

• What was the impact of the Exxon Valdez oil spill on the marine life and wildlife of the area?

In this case, we extract time intervals from a fourth source: the top-3 pseudo-relevant documents of the collection,

obtained using BM25 similarity. For all the above queries, we were able to find at least one timex in the top-3 retrieved
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documents. On average, between 4 and 9 timexes (depending on the collection) can be found in the top-3 similar

documents. We select the most occurring interval to form the query’s temporal scope. We choose to only take one

interval since all explicitly temporal queries across the test collections have a singleton temporal scope. Our focus is

not on devising the best method to extract time features for implicitly temporal queries, but to show that even a simple

method works well and that these implicit time features help our retrieval models improve the effectiveness of a purely

textual ranking (see research question Q1). More sophisticated approaches, such as [13, 59], are orthogonal to the scope

of this paper. Table 5 summarizes the number of explicitly and implicitly temporal queries in the five test collections.

Temporal queries

Total queries Explicitly temporal queries Implicitly temporal queries

Novelty 2004 50 13 (26%) 37 (74%)

Robust 2004 250 13 (5%) 237 (95%)

Robust 2005 50 3 (6%) 47 (94%)

Temporalia 200 79 (40%) 121 (60%)

LMT-NYT 50 50 (100%) –

Table 5. Number of explicitly and implicitly temporal queries in the five test collections.

8.1.4 Evaluation metrics. We evaluate each system via the following effectiveness metrics:

• Precision at position 𝑘 (Precision@𝑘): For each query, the fraction of relevant documents among the top-𝑘

documents returned by the system.

• Mean Average Precision (MAP): The mean of the average precisions among all queries in a test collection, where

the average precision of a single query is the average of all precisions at each returned relevant document in the

ranked list.

8.2 Results

8.2.1 Effects of the combination parameter 𝛼 . Recall from Section 6 that all ranking models use a linear combination

parameter, 𝛼 , to balance purely textual and purely temporal scores into a final ranking score, where a higher 𝛼 indicates

a higher importance of the temporal component. In Figure 8, we illustrate the effects on Mean Average Precision of

various choices of 𝛼 (similar trends happen with Precision@𝑘 . From the figure, it is clear that the 𝛼 maximizing the MAP

is always greater than zero across all collections, meaning that combining a purely textual ranking with our temporal

ranking is always better than using the textual ranking alone (see our research question Q2). It is also noteworthy that

MAP is a concave function of 𝛼 . This indicates that it is possible to use simple numerical optimizations, such as the

golden section search, for identifying the best value for 𝛼 (see our research question Q3). Note that the value for 𝛼 can

be tuned on a subset of the test collection, in our experiment 10% of the queries, and still be effective on unseen new

queries, as shown in all of the presented experiments.

In the remainder of the experiments, we first identify the best 𝛼 in the range [0, 1], using the golden section search

method, with tolerance set to 0.005, on a subset of the documents. We then report the evaluation measures (Precision@𝑘

and MAP) on a different subset of documents, and average the results obtained with 10-fold cross-validation.
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Fig. 8. Mean Average Precision as a function of the temporal weight 𝛼 . The function is concave, maximum MAP is obtained with
temporal weight always > 0. The results are shown using the distance 𝛿𝑚𝑖𝑛

𝑐𝑜𝑣𝐷
, with monthly granularity.

8.2.2 Comparison with the state of the art. In Sections 2 and 5, we presented related work on Temporal Information

Retrieval and showed how those differ from the defined metric similarity. In this section, we empirically compare our

temporal model with the state of the art temporal models, Language Model with Temporal Uncertainty (LMTU) [4]. We

run the original LMTU code provided by its authors, combined with the Language Model Jelinek-Mercer (LMJM) [62]

for the text similarity, on the same test collections we used for the evaluation of our model and on the test collection

used in the original LMTU work. We compare the results with our model using the same text similarity (LMJM) linearly

combined with the document coverage similarity, with cross-validated weights. In addition, we also provide the results

of an experiment in which we replace our temporal similarity in their combination model to further demonstrate the

capabilities of the metric models.

We evaluate the LMTU temporal baseline in comparison with the metric model on the three TREC collections.

Moreover, we evaluate the models on the test collection used in the LMTU work [4], we named it LMT-NYT. We take

into account the LMT-NYT collection with some reservations due to its pooling bias, because it does not satisfy the

requirements of depth-k pooling [28]. Specifically, while TREC collections provide relevance judgement on a pool of

results obtained from 100 and more different systems, taking the first 100 results (k=100) [58], the pooling in the LMTU

test collection is made of only 4 very similar systems of which only the first 10 results (k=10) are taken for judgement.

Despite the experimental framework in [4] is robust for evaluation of those models, the pooling design make this

collection not suitable for comparison with other models.

To make a compared evaluation with the LMTU system, we replicate the settings used in the original LMTU work

[4]. We use the same text similarity, the Language Model with Jelinek-Mercer smoothing, with the same smoothing

parameter (𝜆 = 0.75). We use granularity day for all the temporal similarities and the same temporal intervals for all the

temporal models in comparison.

The provided results are obtained from the following models:

(1) The LMJM text-only baseline with smoothing parameter 𝜆 = 0.75.

(2) The LMTU system [4] using the most effective smoothing parameters (𝜆 = 0.75, 𝛾 = 0.5).

(3) Our metric model combined with LMJM using a multiplicative combination, instead of the linear combination

discussed in Section 6 (LMJM · 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

).

(4) Our metric model combined with LMJM using a linear combination, as described in Section 6, with 10-fold

cross-validation for the tuning of 𝛼 (LMJM + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

).
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We include model (3) in the experiment to provide a fairer comparison with LMTU [4], and to better explain its

performance compared to our model (4). In fact, model (3) replaces our linear combination with a multiplicative

combination, effectively imitating the combination model of LMTU, which is also multiplicative albeit in a probabilistic

setting. Notice that a fifth model, where we instantiate LMTU using a linear combination instead of a multiplicative

combination is not viable due to LMTU being a probabilistic model.

In Table 6 we show the evaluation of these four models, on the three test collection from TREC (Novelty 2004, Robust

2004, Robust 2005) and also on the test collection LMT-NYT, that has been created in [4] to specifically evaluate the

LMTU system. Effectiveness is measured by precision of the top 10 results of each system, in order to replicate and

compare the results in [4].

Table 6. Overall comparison Precision@10 between LMTU and Document Coverage distance on the 4 test collections. The parameters
𝜆 and 𝛾 are the smoothing parameters used in the LMTU system.

Precision@10

Model Settings Novelty 2004 Robust 2004 Robust 2005 Temporalia LMT-NYT

LMJM (Text only) 𝜆=0.75 0.7760 0.4072 0.312 0.2716 0.36

LMJM · LMTU-EX 𝜆=0.75,𝛾=0.5 0.6740 0.1067 0.128 0.0261 0.48

LMJM · 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

G=Day 0.6979 0.1331 0.232 0.0009 0.3375

LMJM + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

G=Day 0.8159 0.4353 0.354 0.2716 0.14

The results show several insights. First, our temporal similarities, both linear and multiplicative, give better results

than LMTU across all TREC collections and Temporalia. The outcomes flip only on the LMT-NYT collection, which

was constructed to originally evaluate LMTU in [4], with LMTU obtaining the best scores. Second, our model using

a linear combination (LMJM + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

) is always better than the text-only model (LMJM) across all collections except

LMT-NYT. Third, our model using a multiplicative combination (LMJM · 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

) always obtains worse results compared

to the linear combination (LMJM + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

) across all collections, except for LMT-NYT, where it is better than linear.

This shows that: (1) the LMT-NYT collection has an inherent bias in favor of multiplicative models (such as LMTU and

the version of our model that uses a multiplicative combination); (2) in all other collections that do not have that bias, a

linear model is always substantially better than a multiplicative model (see our research question Q4).

All the differences in results between Document Coverage and LMTU have been positively tested for statistical

significance using the bootstrap method and t-test [48], taking into account the variability across queries. In other

words, given any two similarities, we first produce the average precision for each query, then pairing for the paired

significance tests is performed on this evaluation metric. We obtained a p-value < 0.01, although it is not possible

to provide unbiased observations on the LMT-NYT collection because of the particularly small pooling of relevance

assessments.

8.2.3 Metric distances and granularities. In Section 5 we presented different metric distances able to estimate the

dissimilarity between two time intervals: Manhattan distance, Euclidean distance, Document Coverage distance and

Query Coverage distance.

Moreover, thinner or coarser granularities of time can be used to represent intervals, a choice that clearly affects

the similarity between two intervals. Consider, for example, the dates “2018-01-01” and “2019-01-01”: they have a

Manuscript submitted to ACM



28 Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi

distance of 1 year, 12 months, or 365 days, depending on the granularity applied to represent them (year, month, or day,

respectively).

Using the 10-fold cross validation to select a fitting alpha parameter, we run all the distance-based similarities on

four test collection: Novelty 2004, Robust 2004, Robust 2005 and Temporalia. In Table 7 and 8 we show how each

distance-based similarity performs in terms of Mean Average Precision (MAP) and precision at the top 10 results (P@10),

in the different collections and for the granularities day, month and year.

Table 7. Comparison between distance-based temporal similarities on day, month and year granularities using day, month or year
granularity. In bold, the best score for each granularity column, bold and underlined is the best score for the whole collection. For all
the collections and granularity choices, all the proposed models show higher values of Mean Average Precision.

MAP

Novelty 2004 Robust 2004 Robust 2005 Temporalia

Metric G=D G=M G=Y G=D G=M G=Y G=D G=M G=Y G=D G=M G=Y

BM25 (Text only) 0.8131 0.2433 0.1866 0.2696

BM25 + 𝛿𝑚𝑖𝑛
𝑚𝑎𝑛 0.8465 0.8423 0.8262 0.2448 0.2459 0.245 0.1875 0.1893 0.1884 0.2704 0.2704 0.2701

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

0.8454 0.8426 0.8251 0.2448 0.2462 0.2452 0.1877 0.1898 0.1888 0.2704 0.2703 0.2702

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝑄

0.8349 0.8319 0.8238 0.2453 0.2462 0.2451 0.1879 0.1898 0.1891 0.2707 0.2706 0.2702

BM25 + 𝛿𝑚𝑖𝑛
𝑒𝑢𝑐𝑙

0.8481 0.8413 0.8251 0.2451 0.2465 0.2452 0.1877 0.1894 0.1889 0.2703 0.2704 0.2702

BM25 + 𝛿𝑚𝑖𝑛
𝑚𝑐𝑜𝑣𝐷

0.8474 0.8428 0.8261 0.2448 0.2459 0.245 0.1875 0.1895 0.1886 0.2704 0.2703 0.2701

BM25 + 𝛿𝑚𝑖𝑛
𝑚𝑐𝑜𝑣𝑄

0.8472 0.8422 0.826 0.2448 0.2459 0.245 0.1875 0.1894 0.1886 0.2704 0.2704 0.2701

BM25 + 𝛿𝑚𝑖𝑛
𝑒𝑐𝑜𝑣𝐷

0.8479 0.8427 0.8251 0.2448 0.2463 0.2452 0.1876 0.1902 0.1889 0.2703 0.2704 0.2702

BM25 + 𝛿𝑚𝑖𝑛
𝑒𝑐𝑜𝑣𝑄

0.8476 0.841 0.825 0.245 0.2465 0.2452 0.188 0.1888 0.1889 0.2704 0.2704 0.2702

Given the variance in the results, we cannot identify a single better distance. The different results for different

collections suggests that a specific distance can be more suitable for a specific collection. While the Euclidean distance

shows a majority of highest scores in different collections, the coverage distances carry slightly better results in Robust

2005 and, depending on the setting, in Novelty 2004 and Temporalia (see our research questions Q5 and Q7).

Looking at MAP and P@10 scores for each granularity, thinner granularities of one day and one month generally

have the best scores in all the collections.

While the best choice of granularity and distance function varies across collections, all models are always at least as

good as the textual baseline, and better in most cases, showing that our models are robust to imperfect settings.

In order to evaluate the significance of the improvements we run paired significance tests (Bootstrap and t-test) on

the average precision obtained from the different models on each query, to take into account the variability across

different queries [48]. The improvement obtained from all the proposed distance-based similarities with respect to the

text baseline is always significant (p-value < 0.05).

8.2.4 Aggregations. In Section 5, we presented three different strategies to aggregate the temporal distances of a

document: minimum, average and maximum of distances. In Figure 9, we show the results obtained on the four test

collections using different aggregations. We measure the results as improvement percentage of the MAP and P@10

over the text baseline.
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Table 8. Comparison between distance-based temporal similarities on day, month and year granularities using day, month or year
granularity. Underlined are the best score for each granularity column, bold and underlined is the best score for the given collection.
Precision results confirm that the proposed models in combination with the textual baseline always improve the retrieval effectiveness,
although it is not possible to identify a clear winner for all collections.

P@10

Novelty 2004 Robust 2004 Robust 2005 Temporalia

Metric G=D G=M G=Y G=D G=M G=Y G=D G=M G=Y G=D G=M G=Y

BM25 (Text only) 0.816 0.4337 0.4 0.517

BM25 + 𝛿𝑚𝑖𝑛
𝑚𝑎𝑛 0.85 0.854 0.838 0.4386 0.4373 0.4349 0.404 0.416 0.412 0.5215 0.5235 0.5195

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

0.852 0.856 0.836 0.4369 0.4357 0.4337 0.406 0.416 0.408 0.5185 0.52 0.521

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝑄

0.844 0.838 0.83 0.4365 0.4361 0.4325 0.42 0.412 0.418 0.5215 0.524 0.521

BM25 + 𝛿𝑚𝑖𝑛
𝑒𝑢𝑐𝑙

0.854 0.854 0.836 0.4418 0.4386 0.4337 0.402 0.418 0.41 0.521 0.5245 0.521

BM25 + 𝛿𝑚𝑖𝑛
𝑚𝑐𝑜𝑣𝐷

0.85 0.852 0.836 0.4382 0.4378 0.4337 0.404 0.414 0.408 0.5215 0.521 0.5195

BM25 + 𝛿𝑚𝑖𝑛
𝑚𝑐𝑜𝑣𝑄

0.85 0.854 0.834 0.4382 0.4382 0.4337 0.404 0.414 0.408 0.5215 0.5235 0.5195

BM25 + 𝛿𝑚𝑖𝑛
𝑒𝑐𝑜𝑣𝐷

0.852 0.854 0.836 0.4378 0.439 0.4337 0.402 0.416 0.41 0.5215 0.5245 0.521

BM25 + 𝛿𝑚𝑖𝑛
𝑒𝑐𝑜𝑣𝑄

0.854 0.852 0.836 0.4402 0.4382 0.4337 0.406 0.42 0.41 0.5205 0.523 0.521

N
ov

el
ty
 2

00
4

R
ob

us
t 2

00
4

R
ob

us
t 2

00
5

Tem
po

ra
lia

0%

1%

2%

3%

4%

M
A

P
 im

p
ro

v
e

m
e

n
t  

o
n

 T
e

x
t

MIN

MAX

AVG

N
ov

el
ty
 2

00
4

R
ob

us
t 2

00
4

R
ob

us
t 2

00
5

Tem
po

ra
lia

0%

1%

2%

3%

4%

5%

P
@

1
0

 im
p

ro
v
e

m
e

n
t  

o
n

 T
e

x
t

MIN

MAX

AVG

Fig. 9. MAP improvement on text baseline by distance aggregation. (Distance=𝛿𝑎𝑔𝑔
𝑐𝑜𝑣𝐷

,Granularity=Month).

Figure 9 shows that aggregating the distances by taking the minimum (MIN in the figure) distance produces the

best results for all collection, both for MAP and P@10 measures. The minimum aggregation is by far the most relaxed

aggregation because it ignores all the dissimilar intervals in a document and takes into consideration only the interval

closest to the query. The average aggregation (AVG in the figure) is stricter because it considers all the intervals in

the document. However, together with the maximum aggregation (MAX in the figure), which takes only the farther

interval into consideration, AVG always performs worse than MIN. Moreover, maximum and average do not improve

over text baselines in Temporalia, by MAP measure, and in Robust 2004, by P@10 (see our research question Q6).
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8.2.5 Metrics and TBM25 Unigram model. In order to implement the TBM25 similarity that we defined in Section 5, we

build a temporal representation of documents as sets of unigram intervals: every document is represented as the set of

unique intervals that it contains, weighted with the frequency the intervals occur, following the Okapi BM25 weighting

scheme [43]. In Table 9 and 10, we compare our unigram model, TBM25, against the two coverage distances that we

defined. Both the coverage distances and the TBM25 similarity are combined with the BM25 similarity score. We show

the results for month granularity as this is on average the most effective granularity.

Table 9. MAP comparison between Temporal BM25 (Unigram) and the coverage distances on the four test collections.

MAP

Model Settings Novelty 2004 Robust 2004 Robust 2005 Temporalia

BM25 (Text only) 0.8131 0.2433 0.1866 0.2696

BM25 + TBM25 G=Month 0.8529 0.2448 0.1897 0.2696

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

G=Month 0.8426 0.2462 0.1898 0.2703

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝑄

G=Month 0.8319 0.2462 0.1898 0.2706

Table 10. Precision of the first 10 results, comparison between Temporal BM25 (Unigram) and the coverage distances on the four test
collections.

P@10

Model Settings Novelty 2004 Robust 2004 Robust 2005 Temporalia

BM25 (Text only) 0.836 0.4337 0.4 0.517

BM25 + TBM25 G=Month 0.874 0.4341 0.41 0.5195

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝐷

G=Month 0.856 0.4357 0.416 0.52

BM25 + 𝛿𝑚𝑖𝑛
𝑐𝑜𝑣𝑄

G=Month 0.838 0.4361 0.412 0.524

Results in Table 9 show that the TBM25 similarity that we defined is indeed a very good temporal similarity with a

remarkable advantage over the MAP of the text baseline. Moreover, in the single case of the Novelty 2004 collection, the

TBM25 similarity exhibit the best result among all the proposed similarities. However in bigger collections the coverage

distances are still slightly above the effectiveness of TBM25. The same result can be observed in Table 10, with the

precision of the top 10 documents of TBM25 being better in the TREC Novelty 2004 collection. These results suggests

that considering features such as the cardinality of temporal scopes and the frequency of time intervals in documents

and collection improves the effectiveness even with units different than keywords (see our research question Q7).

Summary of results. In summary, to answer our initial research questions, our results show that:

(1) Despite previous belief, most queries exhibit some temporal intent, even though they do not explicitly contain

temporal expressions or they were not generated with explicit temporal intent.

(2) The proposed temporal similarities, when combined with a textual similarity, significantly improve the retrieval

effectiveness in comparison to only using the textual similarity alone.
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(3) On collections of medium size (more than 500,000 documents), the best combination weight for temporal and

textual similarities (𝛼) is between 2% and 6%. All the presented results use a weight tuned on a separate 10% of

queries through numerical optimization, showing that it is possible to learn this parameter on a small training

set while being effective also on unseen queries.

(4) The proposed distance-based similarities provide significant improvement over state-of-the-art temporal similar-

ities for standard IR test collections.

(5) Results shows that a monthly or finer granularity is needed to obtain the highest improvement from temporal

similarities, independently of the choice of alpha.

(6) The minimum (i.e., most conservative) distance between temporal scopes always provides the best results.

(7) Among the proposed temporal similarities, the most effective model varies across different test collections.

However, our models are always at least as good as the textual baseline, and better in most cases, showing that

our models are robust to imperfect settings.

9 CONCLUSION AND FUTUREWORK

In this paper, we considered the temporal dimension of documents and queries in order to improve the effectiveness of

retrieval tasks. After defining the temporal scope of documents and queries as sets of time intervals, we proposed a

variety of ad hoc distances for time intervals that model the temporal similarity between documents and queries for

different scenarios. From a qualitative perspective, we showed how the proposed distance-based similarities capture

more temporal relations, such as containment and distance, than other approaches in literature. We also proposed

a simpler model by specialising the well-known BM25 similarity on the time intervals extracted from text, treating

each time interval as a single text token. We addressed the problem of combining the temporal similarity score with

the traditional text similarity score. Finally, we provided extensive experimental results on five different collection,

showing that combining the text similarity with the proposed temporal similarities yields a significant improvement in

effectiveness. The experimental evaluation showed also better results on general-purpose retrieval collections when

compared with the state-of-the-art time-aware retrieval model.

This study confirms the importance of taking into account the temporal dimension of documents and queries,

obtaining improved effectiveness even when there is no explicit time mentioned in the query. In particular, it highlights

how representing time intervals and modelling temporal similarity within a proper space, instead of relying on keyword-

oriented representations and models, allows to capture temporal relations such as distance and containment. We also

found out that, while the proposed time distances perform better than text-only similarities and time-aware models,

there is no clear winner among the proposed similarities for all the test collections, confirming that a temporal distance

can be more suitable than others depending on the specific query and underlying document corpus.

This work paves the way for many important future research directions. First, future work needs to address how to

best tune the model, selecting the best distance, aggregate function, and granularity on a query-by-query basis and

by analyzing the collection of documents. For example, further study is needed to find how to associate the query’s

properties, such as the width of the query’s temporal interval, with the selection of the right metric distance. Second, the

speed performance of the proposed model needs to be addressed as well. The metric representation of time in documents

and queries cannot not rely on bag-of-words evaluation strategies or data structures such as inverted indices and joins

of posting lists. We carried out our extensive offline evaluations using a document at a time strategy, but this strategy is

not efficient for large collections that include a large amount of temporal information. Building an interactive system

needs new efficient query evaluation methods specifically tailored for our TMSM models. We plan to investigate index
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and nearest-neighbours techniques for our models, as well as 2-step re-ranking strategies that can exploit fast text

retrieval and then compute temporal similarity only on a subset of retrieved documents.
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