
T h e G r o w t h of In te res t in M i c r o p r o g r a m m i n g :
A L i te ra tu re Su rvey

M. V. WILKES

University Mathemat,cal Laboratory, Cambmdge, England

The literature is surveyed beginning with the first paper published in 1951. At
that time microprogrammmg was proposed primarily as a means for designing the
control umt of an otherwme conventmnal digital computer, although the possible
use of a read/write control memory was noted. The survey reveals the way in
which interest has successively developed in the following aspects of the subject:
stored logic, the apphcatmn of m]croprogrammmg to the design of a range of
computers, emulatmn, m]croprogrammmg m support of software, and read/write
control memories. The bibliography includes 55 papers.

Key words and phrases: mlcroprogramming, mmroprogram, literature survey,
control unit, control memory, read-only control memory, stored logic, emulation,
firmware

CRcategorzes: 1.3, 4.9, 6.1

I believe that I was responsible for the
introduction of the term microprogram-
ming with its present meaning [1]. My ob-
ject was to provide a systematic alterna-
tive to the usual somewhat ad hoc
procedure used for designing the control
system of a digital computer. The execu-
tion of an instruction revolves a sequence
of transfers of information from one reg-
ister in the processor to another; some of
these transfers take place directly and some
through an adder or other logical circuit. I
likened the execution of these individual
steps in a machine instruction to the execu-
tion of the individual instructions in a
program. Hence the term mzcroprogram-
mmg. Each step is called for by a micro-
instruction and the complete set of micro-
instructions constitutes the microprogram.
The analogy is made more complete by the
fact that some of the microinstructions are
conditional.

Figure 1 is taken from [1]. The micro-

This paper was originally prepared for the ACM
Workshop on Mlcroprogramming held at the
Mitre Corporation in October 1968.

program is held m a read-only memory
here shown as consisting of two diode
matrices, matrix A and matrix B. These
are to be regarded as corresponding to two
fields in the microinstruction. The outputs
from matrix A are connected to gates in
the ar]thmetic unit and elsewhere in the
computer. The access circmts of the mem-
ory consist of a decoding tree with an as-
sociated address register. A timing pulse
enters the decoding tree and the resulting
output from matrix A brings about the ap-
propriate microoperation. The output from
matrix B Is fed, via a delay circuit, to the
address register and thus controls the selec-
tmn of the next mieroinstruction. One of
the wires from matrix A is shown as
branching before it enters matrix B. The
direction taken by the pulse at this branch
depends on the setting of the sign flip-flop
of the accumulator; the choice of the next
microinstruction to be executed thus de-
pends on whether that number is positive
or negative. In a similar way the sequence
of control can be made to depend on the
setting of other flip-flops in the processor or

Computing Surveys, Voi. 1, No. 3, September 1969

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356551.356553&domain=pdf&date_stamp=1969-09-01

140 • M. V. Wilkes

DECOOING T R e e , _ _ ~ A _ ~ _ A _ _ _ MAZ~X_ B '

~ t t t t t t t i l i J] i l ; i
[i I l l l l l l l l 1 1 1 1 1 1

I T I I I I I l l l T I I
I I I I l i i I I 1 1 1 1 ,

r I l l i i i t T l l ; ~ , ' i i i l ~ i i ;

' I I
-' LW~,-V

TO GATES IN
ARITHMETICAL

UNIT ETC

DELAY

FROM SIGN FLIP-FLOP
OF ACCUMULATOR

FIG 1

elsewhere. If desired, the branch can be
between the decoding tree and matrix A;
m this case the microoperation itself, as
well as the sequence of control, can be
made to depend on the setting of the flip-
flop m question.

The Whirlwind computer at MIT made
use of a diode matrix in its sequencing
circuits, although the analogy with pro-
grammmg was absent; this use of the
diode matrix may, however, be regarded
as an antecedent to the scheme shown in
Figure 1.

The term microprogramming has also
been used, notably at the Lincoln Labora-
tory, to describe a system in which individ-
ual bits in an instruction control directly
certain gates in the processor. Work by van
der Poel [11, 22] falls into this category.
Such schemes give the programmer a
larger repertoire of instructions than he
would normally have. There is not very
much in common, however, between this
type of programming and the type with
which I am primarily concerned in this
paper. Comments on the two types of
microprogramming were made by Beck-
man, et al [15].

The ideas outlined in [1] were elaborated
in other papers by myself and my col-
leagues [2, 3, 7, 8] I was personally at
pains to specify from the outset that I re-
garded microprogramming as a method of
designing the control unit of an otherwise
conventional digital computer, that is, one
with a fixed instruction set. Besides being
less "ad hoc" than conventional methods, a

design based on microprogramming would
enable decisions about details of the in-
struction set to be postponed until a late
stage m the construction of the computer,
and to be less influenced by exigencies of
implementation. I t would even be possible
to change, or add to, the instruction set
after the machine was completed.

The use of a read-write memory instead
of a read-only memory to hold the micro-
program so that the programmer could set
up his own mlcroprogram was mentioned
as an intriguing possibility, but I doubted
whether a computer designed in that way
was really needed. Such computers have,
however, been built and much interest is
now being shown in then].

Reference [7] describes the control system
of a computer built at the University of
Cambridge and known as EDSAC 2. The
read-only memory was composed of a
matrix of fernte cores through which wires
were threaded. The same microprogram
matrix controlled all operations of the
computer, including fixed-point and float-
ing-point arithmetic operations, the action
of the peripheral devices, including mag-
netic tape, and the internal sequencing of
the core memory

Billing and Hopmann published a paper
in 1955 in which they discussed general
principles of microprogramming and their
practical application [4]. Glantz [5] and
Mercer [6], who published in the two
following years, were mainly interested in
microprograms that could be readily al-
tered by the programmer. In 1958 Blank-
enbaker [9, 12] was interested m a very
simple, almost skeleton, digital computer
intended to be of theoretical rather than
practical interest. In 1958 Dinneen [10]
described a computer with a diode read-
only memory for the microprogram.

In 1960 Kampe [13] described a micro-
programmed computer based, as he put it,
on "Wilkes's model in its purest form." He
was enthusiastic about the ease and reli-
ability of design using the microprogram-
ming method, although given a simple
instruction set, a computer with a conven-
tional control might be somewhat cheaper
to build once it had been designed. In 1961

Computing Surveys, Vol 1, No. 3, September 1909

The Growth of Interest in Microprogramming • 141

Pinkerton [16] (see also [35]) described an
early commercml microprogrammed com-
puter.

The years 1961 to 1964 were peak years
as far as international interest in micro-
programming was concerned. Not only
were there further papers from the Umted
States and one, just mentioned, from the
United Kingdom, but papers originating in
I taly, Japan, Russia, Australia, and France
appeared. There were two Italian papers.
Gerace [27] described the CEP computer
constructed at Pisa wh:ch was based on
the use of a ferrite core read-only mem-
ory; Grasselli [23] was concerned with the
problem of how to construct a stored logic
(see below) computer without using a very
fast read-write memory. The Japanese
paper (Hag:wara, et al [26]) described the
use of an original form of read-only mem-
ory for holding the microprogram. Th:s
consisted of a d:ode matnx w:th a diode at
each intersection instead of only at se-
lected intersections. Each diode was con-
nected in series w:th a photo-transistor and
could be switched in or out of circu:t by
illuminating or darkening the transistor.
Light was allowed to fall, through a per-
forated card, on only those transistors that
were requ:red to be conducting. Thus the
microprogram :n use could be replaced by
another one by changing the perforated
card. The Russmn paper (Emelyanov-
Yaroslavsky, et al [28]) was a recapitula-
tion of the prine:ples of m:croprogram-
mmg and its possibihtles. From Australia
came a description of CIRRUS, a micro-
programmed computer w:th quite an elab-
orate instruction set including floating-
point operatmns and interrupts (Allen, et
al [29], see also Allen [14]). The French
paper (Harrand [24]) was on the evolu-
tion of microprogramming concepts.

During the same permd there was a re-
markable burst of interest in the Umted
States in stored logic computers, in which
the des:gners attempted, within the severe
hm:tations imposed by the technology then
available, to give the programmer some
control over the choice of the micropro-
gram. The February 1964 issue of Datama-
tion contained an introductory article on

this subject [30] and no fewer than four
articles descr:bmg computers with stored
log:c facilities of various kinds [31-34].
Information about two of these had al-
ready appeared in 1961 [17, 18, 25]. I t can-
not be said that these computers had the
success that their designers hoped for; one
reason for this may have been that they
were seeking to obtain efficiency at the
assembly-language level, whereas users
were becoming more interested in the use
of higher-level languages. However, the
interest m stored logic was not confined to
des:gners of small computers. Several pa-
pers were presented at the 1961 ACM Na-
tmnal Conference on microprogrammmg
aspects of the IBM 7950 [19-21]. Th:s
system consisted of a Stretch computer
together with a high speed file-processing
complex; the latter consisted of three com-
puters relat:vely independent of the
Stretch computer but coupled to it. Vari-
ous uses were made throughout the system
of the stored logic prme:ple; for example,
the programmer could set up complex file
processing operations which were then
called for by a single machine instruction.
Essentially the idea was to make use of
stored logic m support of a conventional
mstructmn set.

McGee and Petersen [40] drew attentmn
to the advantage of using an elementary
m~croprogrammed computer, or controller,
as an interface between computers and
peripheral devices. They discussed in de-
taft how a lmcroprogram for controlhng a
film scanner could be written. A much later
contr:butlon by Rose [49] discusses a
graphical interface system.

By 1964 there began to appear the first
s:gns of the modern interest in m:cro-
programming as a means of designing a
range of computers of differing power with
compatible instruction sets. These develop-
ments reflected the improved performance
of capaclt:ve and transformer-type read-
only memories that the use of transistors
(instead of vacuum tubes) had made pos-
sible In the IBM System 360 series [36]
all but the largest computer then an-
nounced (model 70) had microprogram-
mmg based on a read-only memory. In the

Computing Sulveys, Vo[. 1, No. 3, September 1969

142 • M.'V. Wilkes

following year, a paper appeared de-
scribing the RCA Spectra 70 series of
computers [37] and of these one of the in-
termediate models (model 45) was micro-
programmed.

1965 and 1966 saw papers on an entirely
new subject, namely the emulation of one
computer by another [42-44]. Tucker [38]
defined an emulator as a package that in-
cludes special hardware and a complemen-
tary set of software routines. An emulator
runs five or even ten times as fast as a
purely software simulator. Tucker goes on
to discuss the design of emulators for large
systems. I t is only in very unusual cir-
cumstances that it is practicable to write a
microprogram that implements directly on
the object machine the instruction set of
the subject machine; this is because of dif-
ferences in word length, processor struc-
ture, and so on. Tucker recommends that
in order to design an emulator one should
first study a simulator and see in what
areas it spends most of its time. This
analysis will generally lead to the identifi-
cation, as candidates for microprogram-
ming, of a group of special instructions
which are related not to specific instruc-
tions of the subject machine but rather to
problems common to many such instruc-
tions. The most important of these special
instructions is likely to be one that per-
forms a similar function to the main loop
in an interpreter and sends control to an
appropriate software simulator for each
instruction interpreted. Another will prob-
ably be an instruction that performs a
conditional test in the way that it is per-
formed on the subject machine. I t may also
be worthwhile adding special instructions
to deal with such instructions of the sub-
ject machine as are difficult to simulate. If
this procedure is carried to the extreme,
the software simulation disappears alto-
gether and we have a lull hardware fea-
ture. Full hardware features are economi-
cally practicable only for small machines
(McCormack, et al [41]).

Sometimes the design of an emulator can
be much simplified if a small change or
addition is made to the register intercon-
nection logic of the object machine; an ex-

ample, cited by Tucker, is the addition of
a small amount of logic to the IBM System
360/65 processor in order to facilitate the
emulation of overflow detection on IBM
7090 shifts. Such additions (if made) can
enable the efficiency of the emulator as a
whole to be improved to a useful extent.
Sometimes more substantial additions are
worthwhile, such as hardware registers in-
tended to correspond to particular regis-
ters on the subject machine. By careful
design of an emulator it is even possible to
handle correctly certain types of function
that are time-dependent on the subject
machine. McCormack, et al [41] gives an
example of a case in which hardware addi-
tions to the object machine were necessary
in order to enable it, when running under
the emulator, to handle data at the rates
required by certain peripheral devices. I t
is generally found that, in order to ac-
commodate an emulator, it is necessary to
provide a second section to the read-only
memory approximately equal in size to the
section that holds the mieroprogram for the
basic instruction set. There as no doubt
that emulators will be of great economic
importance to the computer industry in the
future, and the fact that they can be pro-
vided relatively easily on a micropro-
grammed computer is an argument in
favor of microprogramming as a design
method.

In 1967 a complete discussion by Tucker
of the microprogramming techniques
adopted in the design of the IBM System
360 was published [48]. The reasons mmro-
programming appeals to designers at the
present time may be summarized as
follows:

1. It provides economical means
whereby the smaller machines of a series
can have large instruction sets compatible
with those on the larger ones.

2. Maintenance aids can be provided;
for example, the read-only memory can
have a parity bit, and special diagnostic
microroutines can be provided for the use
of the maintenance engineers.

3. Emulation is possible.
4. Flexibility exists to provide new fea-

tures in the future.

Computing Surveys, Vol. 1, No. 3, September 1969

The Growth of Interest in Microprogramming • 143

Since many computers now have micro-
programming capacity over and above
that required for the basic instruction set,
means exist to experiment with micropro-
grams designed to support software in
various areas. Opler [45] has suggested the
term firmware for such microprograms,
and he suggests that firmware may take its
place along with software and hardware as
one of the main commodities of the com-
puter field.

Several papers have already appeared on
microprogrammed support for the compil-
ing or interpretation of higher level pro-
gramming languages [39, 46, 47], and this
subject is likely to become very Important.
Some of the additional or special features
that have been provided are designed to
complement the basic instruction set by pro-
viding additional instructions whose lack
the compiler-writer particularly feels. An
example is the provision in one of the
versions of CPS [46] (which is an inter-
preter rather than a compiler) of instruc-
tions for floating-point decimal arithmetic;
the basic instruction-set provides only for
floating-point binary. More significant,
however, is the provision of instructions
for searching lists, manipulating stacks,
and evaluating Polish strings. Some of
these instructions are quite elaborate and
run through many machine cycles. They
terminate either when the job is complete,
when a count has run out, or when an ex-
ceptional situation which can only b'e dealt
with by software is encountered.

Hawryszkiewycz [50] has written on the
use of microprogramming support for
problem-oriented languages and has ex-
perimented with a set of special instruc-
tions for the simulation of an analog com-
puter. He reports a three-to-one speeding
up of the simulation as a result of provid-
ing this support.

In a paper assessing the status of micro-
programming in the light of developments
in integrated circuits, Flynn and MacLaren
[51] point out that the so-called stored
logic computers failed to achieve in any
general sense the great promise of enabling
the programmer to alter the "structure" of
the computer. This was because read-write

memories of adequate speed and capacity
were not available, and the designers had
to resort to various expedients that did
not really achieve their objectives. Large
scale integration should change this situa-
tion by making suitable read-write mem-
ories available at no very great cost. Flynn
and MacLaren propose that such a mem-
ory should be used not only to hold the
microprogram but also for scratch pad
purposes, so that the processor would not
need any specialized arithmetic registers.
The processor would in fact be a stored
(micro)program computer in its own right.
They go on to discuss the effects that this
would have on the design of assemblers,
compilers, and software in general. An
important development in this general di-
rection has very recently been described by
Rakoczl [55].

Already, computers with read-write con-
trol memories to hold the microprogram
are beginning to appear. The future of such
systems raises issues which it is hard to
determine at the present time. It once
seemed that they would fill no established
need and would lead to major problems in
the areas of compatibility and debugging.
The situation is perhaps different, however,
now that the value of microprogramming
support for software has been demon-
strated, at least in some cases. In the
future, the need for such support may be
felt in so many areas--compilation, inter-
pretatmn, emulation, s~mulation, operating
systems--that very large read-only mem-
ories will be necessary to hold the micro-
programs. If this happens, it will, perhaps,
be more economical to provide a relatively
small read-write memory into which mi-
croprograms can be transferred from core
storage when they are needed. If read-write
control memories become common, it will,
I feel, be on these economic grounds,
rather than from a desire on the part of
the designers to please the user. The com-
patibility problem has taken on a different
aspect now that we have become accus-
tomed to the idea of a privileged mode in
which only programs written by systems
programmers can run. Loading of the con-
trol memory would, presumably, be possi-

Computing Surveys, VoL 1~ No, 3, Soptembor 1969

144 * M . V. Wilkes

ble only in this mode, and this would
perhaps relieve the anxiety of those who
feel that giving the ordinary users access
to the control memory would lead to
chaos.

ACKNOWLEDGMENT

I would like to thank Mrs. M. O. Mutch for the
valuable contnbuhon she made to the work of
preparing the blbhography.

BIBLIOGRAPHY

1. WILKES, M. V. The best way to design an
automatic calculating machine Manchester U
Computer Inaugural Conf, 1951, p. 16.

2. WILKES, M. V., AND STRINGER, J. B Micro-
programming and the design of the control
c~rcmts m an electromc digital computer. Proc
Camb PAd Soc ~9 (1953), 230.

3. STRINGER, J Microprogrammmg and the
choice of an order code. Automatic Digital
Computation, Proc Symposmm held Oct.
1953, NPL, London, p 71, H.M.S O., London,
1954

4 BILLING, H., AND HOPMANN, W. Mlkropro-
gramm-Steuerwerk. Electron Rundschau 9
(1955), p. 349.

5. GL~NTZ, H. T. A note on mlcroprogram-
mmg J ACM 3, 1 (Jan. 1956), 77-84.

6 MERCER, R. J Micro-Programming. J. ACM
~, 2 (Apr. 1957), 157-171

7 WILKES, M. V, RENWICK, W, AND WHEELER,
D. J. The design of a control unit of an
electronic digital computer. Proc IEE 105
(1958), 121.

8. WILKES, M. V Mlcroprogrammmg. Proc.
Eastern Joint Comput. Conf., Dec. 1958,
Spartan Books, New York, p. 18.

9. BLANKENBAKER, J V. Logically mmropro-
grammed computers. 1RE Trans EC-7 (1958),
103.

10 DINNEEN, G. P., LEBOW, I. L., AND REED, I
S. The logical design of CG24. Proc. Eastern
Joint Comput. Conf., Dec. 1958, Spartan Books,
New York, p 91

11. VAN DER POEL, W. L. Zebra, a simple binary
computer. Informatmn Processing, Proc. Int.
Conf on Information Processing, UNESCO,
1959, Butterworths, London, p 361

12 BLANKENBAKER, J. V. Logically mlcropro-
grammed computers--examples of small com-
puters Informatmn Processing, Proc Int. Conf.
on Informatmn Processing, UNESCO, 1959,
Butterworths, London, 1960.

13 KAMPE, T W The design of a general-purpose
mlcroprogram-controlled computer with ele-
mentary structure. IRE Trans EC-9 (1960),
208.

14 ALLEN, M W. System design of CIRRUS
Australian Comput. Conf., Sec. C52, 1960.

15 BECKMAN, F. S., BROOKS, F P , AND LAWLESS,

W . J . Developments an the logical orgamza-
tlon of computer arithmetic and control umts.
Proc IRE 49 (1961), 53.

16 PINKEaTON, J. M. M The evoluho~, of design
m a series of computers, LEO I-I l I . Comput.
J. 4 (1961), 42.

17. SEMARNE, H. M., AND PORTER, R E A stored
logic computer. Datamalwn 2, 5 (1961), 33.

18. SEMARNE, H. M., A~D McGEE, W. C. Stored
logic computing. Preprmts ACM 16th Nat.
Conf., 6C-4, 1961.

19. MEADE, R. M. A discussion of machine-inter-
preted macrolnstructlons. Proc. 16th ACM
Nat. Cont., 6C-1, 1961.

20. CO~RO~', E D., AND MEADE, R. M. A micro-
instruction system. Preprmts ACM 16th Nat
Conf, 6C-2, 1961.

21. CONROY, E. D. Mlcroprogrammmg. Preprmts
16th ACM Nat. Conf., 6C-;~, 1961

22 VAN DER POEL, W. L. Mlcroprogrammmg and
tnckology. In Dzg~tal ln]ormatwn Processing,
W. HotImann (Ed.), Interscmnce, New York,
1962, p. 269.

23. GRASSELLI, A. The design of program-modifi-
able mlcroprogrammed control units 1RE
Trans EC-11 (1962), p. 336.

24. HARRAND, Y. Evolution des concepts de micro-
programmatmn. Proc. 3rd AFCALTI Cong.
on Computing and Information Processing,
Toulouse, France, 1963, p. 187.

25. BOUTWELL, E. O., JR, AND HOSKINSON, E. A.
The logical organization of the PB440 m~cro-
programmable computer. AFIPS 1963 Fall
Jomt Comput Coni., Vol 24, Spartan Books.
New York, p. 201.

26. HAGIWARA, H., AMO, K , MATSUSHITA, S., AND
YAMAUCHI, H. The KT pilot computer--A
m~croprogrammed computer with a phototran-
s~stor fixed memory. Proc. IFIP Cong. 62,
North-Holland, Amsterdam, 1963, p. 684

27. GERACE, C B. Mlcroprogrammed control for
computing systems IEEE Trans EC-12
(1963), 733

28. EMELYANOV-YAROSLAVSKY, L. B., AND TIMOFEEV,
A. A Mlcroprogram control ior digital com-
puters. Proc. 1962 IFIP Cong., North-Holland.
Amsterdam, p. 567

29 ALLEN, M. W., PEARCEY, T , PENNY, J. P , ROSE,
G A, AND SANDERSON, J G CIRRUS, an
economical mult~program computer with m~cro-
program control. IEEE Trans. EC-12 (1963),
663.

30. AMDAHL, L. D Mlcroprogrammmg and stored
logic. Datamatzon 10, 2 (1964), 24.

31. McGEE, W. C. The TRW-133 computer.
Datamatwu 10, 2 (1964), 27.

32. HILL, R H. Stored logm programming and
apphcaUons Datamatwn 10, 2 (1964). 36.

33 BECK, L., AND KEELER, F The C-8401 data
processor. Datamatzon 10, 2 (1964), 33.

34 BOUTWELL, E. O., JR The PB440 computer.
Datamatzon 10, 2 (1964), 30

35 LEO 326 and LEO 360. Data Proc. Mag.
(Mar.-Apr. 1964), 2.

36. STEVENS, W. Y. The structure of SYSTEM
360, Pt. II System Implementatmns IBM Sysl
J 3 (1964), 136

Computing Surveys, Vol 1, No 3, September 1969

The Growth

37 BECED, A. D. Spectra-70, basic design and
philosophy of operation. WESCON/65, Pt. 4,
1965, p. 12 1.

38. TUCKEE, S G. Emulation of large systems
Comm ACM 8, 12 (Dec 1965), 753-761.

39. MELBOURNE, A. J., AND PUGMIRE, J. M A small
computer for the direct processing of FOR-
TRAN statements Comput. J 8 (1965), 24.

40 McGEE, W. C, AND PE~EaSEN, H. E. Micro-
program control for the experimental sciences
Proc. AFIPS 1965 Fall Joint Comput. Conf.,
Vol. 27, p 77.

41 McCORMACK, M A, SCHANSMAN, T T., AND
WOMACK, K K. 1401 compatibility feature on
the IBM system/360 model 30 Comm. ACM 8,
12 (Dec. 1965), 773-776.

42 BENJAMIN, R. I The Spectra 70/45 emulator
for the RCA 301 Comm. ACM 8, 12 (Dec.
1965), 748-752

43 GREEN, J. Mlcroprogrammmg, emulators and
programming languages Comm ACM 9, 3
(Mar 1966), 230-232

44 CAMPBELL, C. R , AND NEILSON, D A Micro-
programming the Spectra 70/35. Datamatwn
12, 9 (1966),64.

45. OPLER, A. Fourth generation software Data-
mcitzon 13, 1 (1967), 22

of Interest in Microprogramming • 145

46. BLEIWEISS, L S., ET AL. Conversational pro-
grammmg system (CPS), IBM Contributed
Program Library 360D 03.4.016, 1967.

47. WEBER, H A mlcroprogrammed implementa-
tion of EULER oil IBM System/360 Model 30.
Comm ACM 10, 9 (Sept 1967), 549-558

48 TUCKER, S G Mlcroprogram control for
System/360. IBM Syst. J. 6 (1967), 222.

49. RosE, G.A. Intergraphle A microprogrammed
graphical-rater face computer. IEEE Trans
EC-16 (1967), 773.

50 HAWRYSZKIEWYCZ, IGOR T Mlcroprogrammed
control in problem-oriented languages IEEE
Tr(ins EC-16 (1967), 652.

51 FLYNN, M J , AND MAcLAEEN, M D. Micro-
programming revisited Proc ACM 22nd Nat.
Conf, 1967, p. 457.

52. HussoN, S S Mlcroprogrammmg manual for
the IBM/360 mod 50. Tech Rep. TR00 1479-1,
IBM Corp, 1967

53 DREYEa, L Principles of a two-level memory
computer Comput Autom. 17 (1968), 40.

54 LAWSON, H W. Programming-language-ori-
ented instruction streams, 1EEE Trans. C-17
(1968), 476

55 RAKOCZI, L. L. The computer-within-a-com-
puter, a fourth generation concept. IEEE
Computer Group News 3, 2 (1969). 14

Computing Surveys, Vol I, No. 3, September 1969

