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ABSTRACT
Recently image denoiser networks have made a number of advances
to go beyond additive Gaussian white noise and deal with real noise,
such as produced by digital cameras. We note that some of the
performance gains reported in the state of the art could potentially
be explained by an increase of network sizes. In this paper we
propose to revisit some of these advances, including the synthetic
noise generator and noise maps proposed in CBDNet, and re-assess
them using a simple DnCNN baseline network and thus attempt at
measuring howmuch gains can be attributed to using more modern
architectures. In this work, we observe an increase of over +2 dB in
denoising performance over our baseline network on the DND real
world benchmark. Through this observation, we demonstrate that
a smaller networks can offer competitive denoising results when
correctly optimised for real world denoising.
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• Computing methodologies → Image processing; Neural
networks.
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1 INTRODUCTION
Image denoising is one of the longest-standing application of image
processing and remains, to this date, a key part in many application
pipelines, including the in-camera post-processing pipeline, the
VFX post-production pipeline, and even the transcoding pipeline
of global bandwidth usage.

If early works on Deep Neural Network image denoisers have fo-
cused on generic synthetic additive white Gaussian noise (AWGN),
it is only since 2019 and the work of Guo et al. [Guo et al. 2019] that
the idea of a blind denoising for real images was introduced. Unlike
former standards such as Wiener and Wavelet filters, where an esti-
mation of the noise profile needs to be supplied, Guo et al. proposed

This work is licensed under a Creative Commons Attribution International
4.0 License.

CVMP ’22, December 1–2, 2022, London, United Kingdom
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9939-5/22/12.
https://doi.org/10.1145/3565516.3565524

with CBDNet to train a network for a range of realistic synthetic
noise instances and let the network blindly denoise images. Most re-
cent denoising papers have since adopted this approach to achieve
near 39-40dB PSNR on popular real-noise online benchmark tables
such as DND [Plotz and Roth 2017] and SIDD [Abdelhamed et al.
2018].

Another innovation introduced by CBDNet is the use of a noise
map, which provides the networkwith a tensor of the noise standard
deviation at each pixel location. CBDNet trains an ancillary network
to predict this noise map tensor. We note that this ancillary network
also increases the overall network size, and it becomes then difficult
to precisely assess the benefit of this innovation. It may be that the
performance increase can be attributed to the networks larger size,
rather than the feature being proposed. This is a standard problem
with most network innovations and we note that recent networks,
such as the transformer-based Restormer network [Zamir et al.
2021a] (26.12 Million parameters) are now over 40 times larger,
in terms of number of parameters, than earlier networks, such as
DnCNN [Zhang et al. 2017] (0.64 Million parameters). Therefore, in
this paper, we propose to carefully investigate the effectiveness of
network size and key popular solutions for dealing with real noise,
including, the use of noise maps.

For this study, we consider one of the most simple and popu-
lar denoising networks, DnCNN [Zhang et al. 2017], as a baseline.
This network was originally trained for Gaussian denoising tasks.
This will give us an opportunity to observe the effect of combin-
ing training data from synthetic, real and Gaussian sources. Our
second study analyses the effect of increasing the network size,
while maintaining its depth. Following this, we experiment with
the effects of including a noise map generation module. Lastly, we
compare the DnCNN backbone architecture against more modern
solutions, including two novel architectures: resUNext and U2Net.

2 RELATEDWORK
2.1 Network Backbones
Neural networks have approached image denoising as an end-to-
end problem, directly predicting the denoised image from the input
image. The earliest effort usingmulti-layer perceptron (MLP) [Burger
et al. 2012] already came close to surpassing BM3D [Dabov et al.
2007], the reference denoiser that set the benchmark from the late
2000s to early 2010s.

With the advent of larger datasets and more powerful consumer
graphic cards, fixed resolution networks such as DnCNN, [Zhang
et al. 2017], eventually surpassed BM3D performance in Gaussian
denoising tasks. DnCNN also put forward the idea of predicting
the residual noise rather than the clean image by adding the input
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noisy image to the output of the network, which speeds up training
and increases denoising performance.

Following this, denoisers have adopted backbone architectures
from emerging modern networks such as Resnet (see [Anwar and
Barnes 2019; Kim et al. 2019; Maharjan et al. 2019; Ren et al. 2018]),
and U-Net style encoder/decoder networks (see [Heinrich et al.
2018; Kim et al. 2020; Zamir et al. 2021b; Zhang et al. 2021]). More
recent works have also adopted concepts including attention mod-
ules (see RIDNET [Anwar and Barnes 2019; Li et al. 2020]) and
subsequently, transformer networks (see U-former [Wang et al.
2022], SWIN [Liang et al. 2021], Restormer [Zamir et al. 2021a]).

The progress made by these networks is notable. On the popular
DND benchmark, the performance went from a PSNR of 34.51dB
for BM3D, to 38.06dB for RIDNet and up to 39.98dB for U-former.

2.2 Dealing with Real Noise
If it is reasonable in general to assume an additive white Gaussian
noise, the precise nature of the noise at hand can be quite differ-
ent in practice. For instance, camera sensor noise is a mixture of
photon noise, dark noise and read noise and is typically approx-
imated as a Poissonian-Gaussian noise, with a signal dependent
component (multiplicative) and a signal independent (additive) com-
ponent [Kokaram et al. 2012; Reibel et al. 2003]. This, combined
with the post-processing involved in the in-camera image process-
ing pipeline (ISP) means that the noise is not necessarily additive
nor spatially decorrelated.

Thus, at the core of the traditional Wiener and Wavelets denois-
ers is the concept of noise profile. The idea is tomeasure the expected
value of the transform coefficients on patches of real noise, and
substract them to real image transform coefficients. For instance,
in Wiener, we would measure the noise PSD over a patch of pure
noise (eg. over a uniform region of the image).

This noise profile idea turned out not to be directly adapted to
the deep learning approach but has still been a source of inspiration
in neural methods. For instance, it has been common for AWGN-
trained networks to also include the noise standard deviation as
an additional channel to the input tensor (see FFDnet [Zhang et al.
2018], DVDNet [Tassano et al. 2019]).

In a traditional machine learning way, it was then shown that the
noise profile could be avoided altogether by training a denoising
network on enough examples of noise [Guo et al. 2019]. Such a
blind denoising approach can in theory predict the noise-free image
for any kind of noise degradation.

The key is then to design a noise model that can realistically be
used to synthesise any noise type. In CBDNet [Guo et al. 2019], Guo
et al. proposed a camera noise generation method, where a clean
sRGB image is taken back to a pseudo-raw format by reversing
the in-camera functions before adding noise to the image. Signal
dependent noise is then added to the pseudo-raw image and the
ISP functions are reapplied to obtain the final noisy image. The
ISP functions simulated by the synthetic noise generator include
Bayer demosaicing, white balancing, colour space conversion and
camera response functions. These noisy images are used to train
the denoising network (in the case of CBDNet it is a UNet-style
network). This approach has been borrowed in many subsequent
works [Anwar and Barnes 2019; Liu et al. 2018; Yue et al. 2020].

Another innovation from CBDNet [Guo et al. 2019] was to realise
that they could derive from their noise synthesis a per-pixel ground
truth value for the noise standard deviation. They refer to this
2D field of the noise intensity as a noise map (not to be confused
with the noise profile). An ancillary network could then be trained
on their synthetic noise to estimate the noise map. Similarly to
Multi-Task learning, the idea is that the additional information
provided by the ground truth noise statistics could be learned and
then exploited by the main denoising network. Noise maps have
been used in [Jin et al. 2019; Tian et al. 2020; Yue et al. 2019].

2.3 Remarks
We first note that the blind approach makes a number of interesting
assumptions. It presupposes that the training set matches the type
of noise for the considered application. There is thus a reliance
on the noise generator. We also notice that works tend to simply
report the make up of their training set, some of them using the
CBDNet noise generator, but none of them discuss or analyse the
content of their training set. We found, however, that the CBDNet
noise generator suffers from some bias, and that it was possible for
denoisers to overfit the CBDNet noise generator. In particular, we
observed that the generator tends to suppress the noise for high
valued pixels.

Second, noise maps have been adopted in a few papers, however,
ablation studies are not presented to clearly demonstrate their bene-
fits in real image denoising. FFDNet reports marginal improvements
over DnCNN in Gaussian colour denoising tasks at low to medium
levels of noise, with the largest improvements showing for noise
of standard deviations of 𝜎 = 75. This level of degradation is much
greater than that typically encountered in real photography. CBD-
Net is assessed only using noise maps, making it difficult to assess
whether the networks performance is due to the addition of syn-
thetic noise data in training or the noise prediction sub-network, or
both. The ancillary network used to predict the noisemap also bring
additional weights to the network which may directly contribute
to the denoising process.

3 EVALUATION SETUP
In this paper we propose thus to analyse the impact of the training
set used in the literature and to study the effectiveness of train-
ing and using a noise map ancillary network as in CDBNet. To
make controlled experiments, we will evaluate the methods using
a common baseline network. We propose here to work with the
DnCNN backbone, as it is a well-known, lightweight network that
has shown some success in Gaussian denoising.

3.1 Baseline DnCNN Architecture
We configure the DnCNN network (see Figure 1), to be 20 blocks
deep, with each block being made up of a 2D 3 × 3 convolution, a
2D batch normalisation and a ReLU activation function. The input
layer is the only layer to not use a batch normalisation operation,
and the output layer does not include an activation function. A
skip-connection links the first and final layer of the network via a
pixel-wise summation operation. As a result, the network outputs
a residual noise image which is added to the original image to
produce a clean output.
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Figure 1: Our DnCNN implementation. The green network
is the ancillary noise map prediction network, whose out-
put is concatenated with the input noisy image to form a
6-channels input tensor to the twenty layer DnCNN network
(in blue). The output of DnCNN is the residual noise image
which, added to the input image, produces the output de-
noised image.

3.2 Training Regime
Each network is trained for 5000 epochs from sets of real, user
generated, and Gaussian datasets. The types of noise used is further
explained in Section (4.1). Every epoch, a random 96 × 96 crop is
taken from each image in the training set. An Adam optimiser was
used with an initial learning rate of 1 × 10−3 which decayed to
1 × 10−6 using a cosine annealing learning rate function.

3.3 Evaluation Benchmarks
Performances are evaluated using online SIDD and DND bench-
marks. This is motivated by the lack of real world-data and the
difficulty in comparing real-world denoisers to one another. Unlike
Gaussian noise, where a user can generate their own benchmarks
with different quantities of noise, the noise here is signal-dependent
and cannot be measured using a single value. The use of online
benchmarks has become widespread since real-noise denoising has
become the primary focus in the literature. This removes the task of
creating a sufficiently diverse real noise dataset which can be labour
intensive to produce manually. It also allows for using all available
real noise datasets for training rather than splitting datasets.

The Smartphone Image Denoising Dataset (SIDD) [Abdelhamed
et al. 2018] consists of 1280 noisy image blocks, taken from 40
images, with 32 non-overlapping crops taken from each image.
This benchmark is hosted by York University, Ontario Canada.

The Darmstadt Noise Dataset (DND) [Plotz and Roth 2017], con-
sists of 1000 image blocks, taken from 50 images, with 20 non-
overlapping crops taken from each image. This benchmark is hosted
by the Technical University of Darmstadt, Germany.

4 CHOICE OF TRAINING DATA
Our first set of experiments concerns the choice of training data and
the balance between the different noise types. In our experiments,
we have three types of noisy data: real noise images, synthetic noise
images and Gaussian (AWGN) noise images. We propose to study
the effect of training for each of these noise types on the SIDD and
DND benchmarks.

Figure 2: Noise samples using CBDNet [Guo et al. 2019] noise
generator. Left: original, Right: synthetic camera noise.

Current real world denoisers use a combination of real image
datasets in training and synthesised noise. However, little discus-
sion is made on the topic of dataset balance. In [Guo et al. 2019]
the authors of CBDNet discuss how training with different types of
synthetic noise affects denoising performance. Despite this, there
is no consensus on how many real noise images should be in-
cluded in training sets versus synthesised noisy images. Current
networks that use different combinations of real-synthetic training
data include GRDN [Kim et al. 2019], RIDNet [Anwar and Barnes
2019], DANet [Yue et al. 2020], AINDNet [Kim et al. 2020] and
PT-MWRN [Peng et al. 2020].

4.1 Noise Types
Synthetic Camera Noise. Using images from the DIV2K (800 im-

ages) and the MIT-Adobe FiveK [Bychkovsky et al. 2011] (5000
images) datasets, we have generated a training dataset of 3000 im-
ages with synthetic noise by adopting the noise generation scheme
of CBDNet [Guo et al. 2019]. The images are converted from sRGB
to a pseudo-RAW format using randomly selected inverse cam-
era response functions and bayer filters. Signal-dependent noise
is applied to the raw images and they are then converted back to
sRGB by reversing the initial process. Samples images from this
model-based noisy image generation are shown in Figure 2.

Real-Noise. There are only few real-noise datasets available. These
are typically obtained by capturing the same scene at different ISO
levels, where low ISO levels create the ground truth data and high
ISO images create the noisy images. In our experiments we included
images from the SIDD dataset [Abdelhamed et al. 2018]. The dataset
consists of 320 image pairs taken using smartphones. Ten scenes
are recorded under different brightness conditions and illumination
temperatures.

Gaussian Noise. Additive white Gaussian noise was also consid-
ered so as to assess the possible benefits of including a subset of
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Table 1: Impact of training a network on different mixtures
of additive white Gaussian noise, synthetic camera noise or
real noise. Results are shown for a DnCNN denoiser on the
DND Benchmark.

Gaussian/Synthetic/Real Mix
100/0/0 0/0/100 0/100/0 0/91/9 10/83/7

PSNR 34.31 36.97 38.67 39.09 39.02
SSIM 0.8649 0.9248 0.9503 0.9514 0.9519

Gaussian noise to a larger training set and also establish a baseline
for a training purely based on Gaussian noise. For this dataset, 1000
unused images from the MITfiveK dataset were used, with Gaussian
noise of standard deviation of 𝜎 ∈ [0, 30] randomly chosen for each
image during the dataloading process.

4.2 Results
We compare the same DnCNN network trained from scratch on the
following scenarios: (1) Gaussian noise only, (2) Real noise only, (3)
Synthetic noise only, (4) Synthetic and Real noise in a 91/9 split, (5)
synthetic, Gaussian and real noise in a 83/10/7 split.

These results for the DND benchmark are shown in Table 1.
For each network, an average PSNR and SSIM score is returned.
We see that the AWGN trained network (1) performs the worst,
with a PSNR of 34.41 dB, while a combination of synthetic and
real noise training (4) performs the best in terms of PSNR, at 39.09
dB. Interestingly, the denoiser trained with synthetic noise only
(3) significantly outperforms the real-noise trained denoiser, with
a difference of 1.7 dB between them. This may be explained by
the smaller size of the real noise dataset, as well as the variety of
subject matter in the synthetic noise dataset. Another observation
we make, is that, although the AWGN dataset contains more than
twice the number of images in the real noise dataset, its performance
was 2.66 dB worse. This illustrates the ineffectiveness of AWGN
training for real photography. Lastly, the incorporation of AWGN
into the synthetic-real dataset dropped the final PSNR by 0.07 dB
but increased the SSIM result by 0.0005. This suggests that adding
Gaussian noise to a dataset may rank the denoisers performance
higher in subjective metrics, but note that the margin is too small
to definitively make this conclusion.

It is however clear that training on purely synthetic noise yields
some overfitting, and that mixing this noise with Gaussian or, better,
real noise, improves the overall performance.

5 IMPACT OF THE NETWORK SIZE
As new architectures vary wildly in size and number of parameters,
we propose to assess the impact of the network size on the perfor-
mance of our DnCNN. In the following experiment, we increase
the size of our DnCNN denoiser by increasing the number of chan-
nels per convolution. Note that doubling the number of channels
increases the number of trainable parameters by a factor of four.

Six DnCNN networks are created with 32, 64, 96, 128, 256 and
512 channels per convolution block, with sizes ranging from 0.17
million parameters (DnCNN-32) to 42.51 million (DnCNN-256).

Table 2: Impact of network width on the DnCNN denoising
performance on the SIDD Benchmark.

Network Width PSNR SSIM Parameters
(Millions)

32 Channels 37.41 0.936 0.17
64 Channels 38.02 0.943 0.67
96 Channels 38.25 0.945 1.53
128 Channels 38.35 0.946 2.67
256 Channels 38.44 0.945 10.36
512 Channels 38.35 0.945 42.51

Each network is trained on the same mixture of synthetic and real
dataset with 91/9 split for 5000 epochs.

5.1 Results
The denoising results for this experiments are presented in the
Table 2 on the SIDD benchmark.

Overall, the highest performing network, in terms of PSNR, was
our 256 channel network, with a PSNR of 38.44 dB. The 512 channel
network, performed worse, despite having over 32 million addi-
tional parameters. This is most likely due to overfitting in training.
The 512 channel network equalled the result of the 128 channel
network at 38.35 dB for the second best performing network. As ex-
pected, the 32 channel network, with only 0.17 million parameters
gave the lowest PSNR score of 37.41. Despite the smaller size of the
network, this score outperforms BM3D, a method once considered
to be state-of-the-art.

In terms of SSIM, the 128 channel network scored the highest
with a score of 0.946. The 512, 256 and 96 channel networks gave
the same, second highest SSIM score of 0.945. The SIDD bench-
marking service reports SSIM to three significant figures making
it impossible to seperate these scores. Again here, the 32 channel
network scores the lowest with a SSIM of 0.936.

From this experiment, we learn that increasing the network size
has indeed the effect of increasing the overall performance, with
overfitting causing diminishing returns after some point. For com-
parison, MWCNN [Liu et al. 2018] obtains 39.31dB on SIDD for
only 16.14 million parameters, compared to 38.44dB/10.36 millions
parameters for DnCNN with 256 channels. Thus, if increasing the
network size does indeed have an impact, it is not sufficient to ex-
plain the gains obtained with more modern network architectures.

6 EFFECTIVENESS OF A NOISE MAP
ESTIMATION ANCILLARY NETWORK

In CBDNet, [Guo et al. 2019] popularised the idea of noise maps,
which represent a map of the per-pixel noise standard deviation.
Modelling the noise produced by photon sensing as Poissonian and
the remaining stationary disturbances as Gaussian, we can indeed
model the image noise as a signal dependent process:

𝐽 = 𝐼 + 𝜎 (𝐼 )𝜈, (1)

where 𝜎 (𝐼 ) represents the noise map, 𝐼 the original clean image and
𝜈 is Gaussian noise. The noise map 𝜎 (𝐼 ) depends on the original
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clean signal 𝐼 as follows:

𝜎 (𝐼 ) =
√︁
𝜎𝑠 𝐼 + 𝜎𝑐 , (2)

Where 𝜎𝑠 and 𝜎𝑐 represent the standard deviations of the signal
dependent and Gaussian independent noise respectively. Unlike
typical noise profiles, which use a single value to cover the entire
image, this kind of noise map represents the noise intensity per
pixel and per channel.

A few works [Guo et al. 2019; Jin et al. 2019; Tian et al. 2020;
Yue et al. 2019] have tried to exploit these noise maps by including
a small ancillary network that can predict a noise map, which is
then fed into the main denoising network, along with the target
noisy image. The main idea here is that the additional information
provided to the main denoising network will make for a more
efficient denoising network. However, no ablation studies have
been published to measure the efficacy of using such noise maps,
other than showing improvements over existing networks. It may
be that the additional parameters provided by the ancillary network
assist in denoising directly, instead of providing the main network
with information on the noise quality.

To study this, we implement a lightweight ancillary noise es-
timation network (see Figure 1), composed of ReLU activations
and 3 × 3 convolutions with 32 feature maps in each layer. The
noise-estimation network is trained using the noise created when
generating our synthetic noisy image dataset, which was saved
separately from the final noisy images. As the ancillary network
is trained alongside the main denoising network, our custom loss
function incorporates four inputs: the ground truth and denoised
input image, as well as the ground truth and predicted noise profile.
Once the noise map is generated, it is concatenated with the noisy
input image to form a 6-channel image-noise map tensor which is
subsequently fed into our modified DnCNN network. Other than
the larger input, the main model remains the same as our previous
DnCNN model.

6.1 Results
In our first experiment, we firstly evaluate whether the use of an
ancillary noise map networks yields an added performance boost
that is greater than just that of having a bigger network. We train
four different networks for this purpose. First we train a 96 channels
DnCNN network with noise map ancillary network that is trained
on synthetic data to match ground-truth noise map (referred to as
’Trained Noise Map’ on Table 3). Secondly, we use the same network
but we do not target the ancillary network in training (’Untrained
Noise Map’). We achieve this by simply removing the noise map loss
function. Thirdly, we train a 97 channel DnCNN network, without
an ancillary network (’97 Channel, No Noise Map’). This network
corresponds to the same number of parameters as the models with
ancillary networks. Lastly, as a final control, we include the 96
channel network without noise maps (’Channel, No Noise Map.).

PSNR and SSIM values for all three scenarios on SIDD benchmark
are recorded in Table 3. It is clear from these results that training
the network with noise map estimator against ground-truth noise
maps provides a significant performance boost in terms of PSNR,
with a +0.4dB against similarly sized networks that do not exploit
the ground-truth noise maps, i.e. ’Untrained Noise Map’ and ’97
Channel, No Noise Map’. Note that the increased network size still

Table 3: Evaluation of using a noise map for three scenarios
on SIDD benchmark. ‘Trained Noise Map’: the noise map is
inferred using an ancillary network and associated to a dedi-
cated noisemap loss function as in CDBNet. ‘Untrained noise
map’: the ancillary network is added but without a dedicated
loss function. ‘No noise map’: the size of the original DnCNN
is simply increased from 96 channels to 97 channels so as to
match the size of the ancillary module.

Network PSNR SSIM

96 Channel, Trained Noise Map 38.67 0.949
96 Channel, Untrained Noise Map 38.26 0.945
97 Channel, No Noise Map 38.25 0.945
96 Channel, No Noise Map. 38.09 0.945

Table 4: Impact of Network Size. PSNR results of our DnCNN
trained with different channel widths on the SIDD Bench-
mark.

32
channel

64
channel

96
channel

128
channel

256
channel

W/o Noisemap 37.41 38.02 38.25 38.35 38.44
W/ Noisemap 38.09 38.13 38.67 38.38 38.36

accounts for a gain of about 0.16dB to 0.17dB. Thus the benefits of
using a noise map does not stem from the additional parameters
brought by the ancillary network but indeed by exploiting the
ground-truth noise-profiles. The differences in terms of SSIM are
however not significant.

We continue the experiment by evaluating noise maps for net-
works with 32, 64, 128 and 256 channels (see Table 4). It is observed
that performance gains are reported over the non-noisemap net-
works for the 32-channel, 64-channel, 96-channel and 128-channel
networks. The most significant performance improvement is noted
with the 32-channel network (+0.68dB). This suggest that the noise
map can be useful in further improving the performance of smaller
denoisers, at low cost. The gains obtained for very large networks
are not so clear, with only +0.03 dB at 128 channels and even -0.08dB
at 256 channels.

7 CHOICE OF BACKBONE ARCHITECTURE
Following our DnCNN backbone experiments, we also wanted to
train larger networks to compare their performance using the same
training sets and training regime. The idea here is to explore how
much gains can be made by using more modern architectures.

7.1 Proposed New Architectures
We propose two new denoising architectures, based on existing
UNet style backbones: ResUnext, which includes a ResNeXt encoder,
and U2Net [Qin et al. 2020]. These architectures have shown to be
superior to DnCNN in other contexts, and we would like to see
how they perform for denoising.
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ResUnext. Our proposed ResUnext architecture takes inspiration
from existing residual UNet models which incorporate residual con-
nections within CNN blocks, as well as skip-connections between
encoder-decoder sections. We have replaced the typical Resnet en-
coder with a ResNeXt style decoder. ResNeXt [Xie et al. 2017] is a
newer implementation of the Resnet architecture which splits con-
volutional blocks into smaller parallel blocks by equally dividing
features between the new blocks. The number of blocks chosen is
known as the cardinality of the network. The complexity of the
new network is the same as the previous network, but has yielded
better performance in ImageNet classification tasks. Our ResNeXt
encoder was modelled after a ResNeXt-50 encoder, the smallest
model available. Despite this, the size of U-Net based networks
are exceedingly large when compared to smaller networks such as
DnCNN.

U2Net. Our second proposed network is based on U2Net [Qin
et al. 2020], a UNet based network originally designed for image
segmentation. In this more complex network, every stage of the en-
coder and decoder is a small UNet in itself, as shown in Figure 3. The
deepest encoder and decoder stages are the exception as the image
resolution becomes too small for downsampling. In this case, dilated
convolutions are used instead. Unlike typical UNet architectures,
each decoder stage produces an output image which is upsampled
and subsequently concatenated with every other decoder output.
The output images are passed through a final convolution layer to
produce the output image. Each upsampled decoder output con-
tributes to the loss function, ensuring that the network is optimised
at every level.

7.2 Results
Our results are presented in Table 5 and Table 6 for the DND and
SIDD benchmarks respectively. In both cases we include the perfor-
mance of U2Net and ResUnext in terms of PSNR (dB) and SSIM, as
well as some of our previously evaluated DnCNN networks. We also
include current state-of-the-art networks, MWCNN and U-former,
taken directly from the original author’s submissions. Network
size is included in terms of millions of parameters. The number
of parameters directly affects the RAM used by the network in
deployment as well as the model file size.

For the DND benchmark, ResUnext outperforms DnCNN-96 by
0.2 dB/0.0025 SSIM. U2Net outperforms the same network by 0.14
dB/0.0037 SSIM. Although ResUnext (88.6 M parameters) is almost
twice as large as U2Net (44 M parameters) in terms of number of
parameters, we see only a 0.06 dB difference between them. Fur-
thermore, U2Net outperforms ResUnext in the SSIM benchmark,
despite being the smaller network. As all our networks were trained
for the same amount of time on the same datasets, this tells us that
the size of the network is not always the most pertinent factor in
achieving higher performance, although it can help, as shown in
our DnCNN size ablation study. The importance of architecture
design and optimisation is further underlined by the fact that our
best scoring DnCNN network is 59 times smaller than ResUnext
and 29 times smaller than U2net, but is only 0.2 dB behind in per-
formance. For both SIDD and DND, our DnCNN implementation
outperforms all other submissions with the same backbone (not
listed in tables below). In the case of the DND benchmark, our

Figure 3: The U2Net Architecture is a UNet styled architec-
ture, where every stage of the encoder and decoder are UNets
themselves. The output of each decoder stage is also further
reduced to a 3 channel ouput and used in the final image
reconstruction, as well as the loss function. [Qin et al. 2020].

DnCNN-64 network trained on mixed noise using the noise map
module outperforms CBDNet, UNet (original) and RIDNet. These
network are all significantly larger than ours and were recently
considered state of the art in the literature.

U-former’s denoising performance (39.98 dB/0.9554 SSIM) shows
greater performance than we have been able to achieve thus far.
This may be attributed to its transformer backbone or its training
material. Like U2-Net and ResUnext, U-former is a large network
(50.88 M parameters). This indicates that there are still gains to be
made from our larger networks.

Lastly, the network we trained tend to rank lower on the SIDD
benchmark. We believe that this may be attributed to the fact that
the provided SIDD training set is very similar to the SIDD test
set. As such, our training scheme suffers against networks that are
purely trained on SIDD data. We feel that this is a problem with the
SIDD benchmark and that the DND benchmark is probably fairer
in that regard.

8 CONCLUSIONS
In this paper, we have investigated a number of aspects related to
targeting real noise in neural networks. First, we have highlighted
the importance of training from a combination of real and synthetic
noise. Second, we have shown that, a simple DnCNN backbone,
with only 0.64 million parameters, when properly trained and op-
timised, can outperform the denoising performance networks of
more complicated recent networks. This includes the original UNet
denoiser (30 M parameters) and CBDNet (4.36 M parameters). We
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Figure 4: 128x128 crops of denoising results. From Left to Right: Original Noisy, U2Net, ResUnext, DnCNN-96.
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Table 5: Popular denoisers evaluated on the DND benchmark.
The networks in italic have been trained by us.

Method PSNR SSIM Size (M)

Original Noisy Image 29.84 0.7018 n/a
BM3D 34.51 0.9308 n/a
FFD-NET+ 37.61 0.9415 0.85
DNCNN-64 on Gaussian 34.31 0.8649 0.64
DNCNN-64 on mixed 36.97 0.9248 0.64
UNet 38.58 0.9467 30.0
CBDNet 38.06 0.9421 4.36
RIDNET 39.25 0.9528 1.50
DNCNN-64 on mixed + noise map 39.26 0.9530 0.64
DnCNN-96 on mixed + noise map 39.35 0.9530 1.51
ResUnext 39.55 0.9555 88.6
U2NET 39.49 0.9567 44.0
MWCNN 39.51 0.9526 16.14
U-former 39.98 0.9554 50.88

Table 6: Popular denoisers evaluated on the SIDD benchmark.
The networks in italic have been trained by us.

Method PSNR SSIM Size (M)

Noisy Image 23.70 0.480 n/a
BM3D 34.34 0.911 n/a
FFD-NET+ 38.27 0.948 0.85
DnCNN-64 on Gaussian 35.32 0.877 0.64
DnCNN-64 on mixed 37.59 0.938 0.64
UNet 38.88 0.952 30.0
CBDNet 34.00 0.868 4.36
RIDNET 38.71 0.952 1.50
DnCNN-64 on mixed + noise map 38.13 0.944 0.64
DnCNN-96 on mixed + noise map 38.67 0.949 1.51
Rexunet 38.06 0.942 88.6
U2NET 38.68 0.951 44.0
MWCNN 39.31 0.956 16.14
U-former 39.89 0.958 50.88

have also shown that DnCNN-96 is only within 0.63 dB of state of
the art network Uformer on the DND benchmark and within 1.2
dB on the SIDD benchmark.

Third, we studied the benefits of estimating noise maps. We
found that adding an ancillary noise map estimation network did
improve performance (by up to +0.6db). We also established that
this was not due to the increased network size. We also observed
that the benefits of using noise maps become less noticeable as the
network gets larger.

Fourth, we trained two novel larger networks, Resunext and
U2Net, of similar size to the highest performing denoising net-
works available today and found further increases in denoising
performance, with U2Net SSIM results being currently within the
top 20 DND scores. A comparison with the top-scoring denoisers
also shows that there is still a small margin of performance to be
gained, which cannot be simply explained by the network size alone.

The backbone architecture has therefore still an impact (of about
+1 dB).

Last, one issue we face is that the currently available benchmarks
are specific to a particular noise profiles. This means that it is quite
easy to optimise for a particular benchmark. This is especially
true for SIDD as the closeness between its training and testing set
probably skews some of the official rankings.We propose that future
work should include rethinking the nature of these benchmarks.

ACKNOWLEDGMENTS
This research is supported by Science Foundation Ireland in the
ADAPT Centre (Grant 13/RC/2106) (www. adaptcentre.ie) at Trinity
College Dublin.

REFERENCES
Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. 2018. A High-Quality

Denoising Dataset for Smartphone Cameras. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Saeed Anwar and Nick Barnes. 2019. Real image denoising with feature attention. In
Proceedings of the IEEE/CVF international conference on computer vision. 3155–3164.

H. C. Burger, C. J. Schuler, and S. Harmeling. 2012. Image denoising: Can plain neural
networks compete with BM3D?. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, Providence, RI, 2392–2399. https://doi.org/10.1109/CVPR.
2012.6247952

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learning Pho-
tographic Global Tonal Adjustment with a Database of Input / Output Image Pairs.
In The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2007.
Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE
Transactions on image processing 16, 8 (2007), 2080–2095.

Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2019. Toward convolu-
tional blind denoising of real photographs. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 1712–1722.

Mattias P. Heinrich, Maik Stille, and Thorsten M. Buzug. 2018. Residual U-Net Convolu-
tional Neural Network Architecture for Low-Dose CT Denoising. Current Directions
in Biomedical Engineering 4, 1 (Sept. 2018), 297–300. https://doi.org/10.1515/cdbme-
2018-0072

Yu Jin, Jiayi Zhang, Bo Ai, and Xiaodan Zhang. 2019. Channel estimation for mmWave
massive MIMO with convolutional blind denoising network. IEEE Communications
Letters 24, 1 (2019), 95–98.

Dong-Wook Kim, Jae Ryun Chung, and Seung-Won Jung. 2019. Grdn: Grouped residual
dense network for real image denoising and gan-based real-world noisemodeling. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 0–0.

Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik Cho. 2020. Transfer learning
from synthetic to real-noise denoising with adaptive instance normalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3482–3492.

Anil Kokaram, Damien Kelly, Hugh Denman, and Andrew Crawford. 2012. Measuring
noise correlation for improved video denoising. In 2012 19th IEEE International
Conference on Image Processing. IEEE, 1201–1204.

Meng Li, William Hsu, Xiaodong Xie, Jason Cong, and Wen Gao. 2020. SACNN:
Self-attention convolutional neural network for low-dose CT denoising with self-
supervised perceptual loss network. IEEE transactions on medical imaging 39, 7
(2020), 2289–2301.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte.
2021. Swinir: Image restoration using swin transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 1833–1844.

Pengju Liu, Hongzhi Zhang, Kai Zhang, Liang Lin, and Wangmeng Zuo. 2018. Multi-
level Wavelet-CNN for Image Restoration. arXiv:1805.07071 [cs] (May 2018). http:
//arxiv.org/abs/1805.07071 arXiv: 1805.07071 version: 2.

Paras Maharjan, Li Li, Zhu Li, Ning Xu, Chongyang Ma, and Yue Li. 2019. Improving
extreme low-light image denoising via residual learning. In 2019 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 916–921.

Yali Peng, Yue Cao, Shigang Liu, Jian Yang, and Wangmeng Zuo. 2020. Progressive
training of multi-level wavelet residual networks for image denoising. arXiv preprint
arXiv:2010.12422 (2020).

Tobias Plotz and Stefan Roth. 2017. Benchmarking denoising algorithms with real
photographs. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1586–1595.

Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar R Zaiane, and
Martin Jagersand. 2020. U2-Net: Going deeper with nested U-structure for salient

https://doi.org/10.1109/CVPR.2012.6247952
https://doi.org/10.1109/CVPR.2012.6247952
https://doi.org/10.1515/cdbme-2018-0072
https://doi.org/10.1515/cdbme-2018-0072
http://arxiv.org/abs/1805.07071
http://arxiv.org/abs/1805.07071


Assessing Advances in Real Noise Image Denoisers CVMP ’22, December 1–2, 2022, London, United Kingdom

object detection. Pattern recognition 106 (2020), 107404.
Y Reibel, M Jung, M Bouhifd, B Cunin, and C Draman. 2003. CCD or CMOS camera

noise characterisation. The European Physical Journal-Applied Physics 21, 1 (2003),
75–80.

Haoyu Ren, Mostafa El-Khamy, and Jungwon Lee. 2018. Dn-resnet: Efficient deep
residual network for image denoising. In Asian Conference on Computer Vision.
Springer, 215–230.

Matias Tassano, Julie Delon, and Thomas Veit. 2019. Dvdnet: A fast network for deep
video denoising. In 2019 IEEE International Conference on Image Processing (ICIP).
IEEE, 1805–1809.

Chunwei Tian, Yong Xu, Zuoyong Li, Wangmeng Zuo, Lunke Fei, and Hong Liu. 2020.
Attention-guided CNN for image denoising. Neural Networks 124 (2020), 117–129.
https://doi.org/10.1016/j.neunet.2019.12.024

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and
Houqiang Li. 2022. Uformer: A general u-shaped transformer for image restora-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 17683–17693.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggre-
gated residual transformations for deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1492–1500.

Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng, and Lei Zhang. 2019. Varia-
tional denoising network: Toward blind noise modeling and removal. Advances in

neural information processing systems 32 (2019).
Zongsheng Yue, Qian Zhao, Lei Zhang, andDeyuMeng. 2020. Dual adversarial network:

Toward real-world noise removal and noise generation. In European Conference on
Computer Vision. Springer, 41–58.

SyedWaqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
andMing-Hsuan Yang. 2021a. Restormer: Efficient Transformer for High-Resolution
Image Restoration. arXiv preprint arXiv:2111.09881 (2021).

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz
Khan, Ming-Hsuan Yang, and Ling Shao. 2021b. Multi-stage progressive image
restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 14821–14831.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte.
2021. Plug-and-play image restoration with deep denoiser prior. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2021).

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017. Beyond
a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE
Transactions on Image Processing 26, 7 (July 2017), 3142–3155. https://doi.org/10.
1109/TIP.2017.2662206 arXiv: 1608.03981 version: 1.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual
Dense Network for Image Restoration. arXiv:1812.10477 [cs] (Dec. 2018). http:
//arxiv.org/abs/1812.10477 arXiv: 1812.10477.

https://doi.org/10.1016/j.neunet.2019.12.024
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TIP.2017.2662206
http://arxiv.org/abs/1812.10477
http://arxiv.org/abs/1812.10477

	Abstract
	1 Introduction
	2 Related Work
	2.1 Network Backbones
	2.2 Dealing with Real Noise
	2.3 Remarks

	3 Evaluation Setup
	3.1 Baseline DnCNN Architecture
	3.2 Training Regime
	3.3 Evaluation Benchmarks

	4 Choice of Training Data
	4.1 Noise Types
	4.2 Results

	5 Impact of the Network Size
	5.1 Results

	6 Effectiveness of a Noise Map Estimation Ancillary Network
	6.1 Results

	7 Choice of Backbone Architecture
	7.1 Proposed New Architectures
	7.2 Results

	8 Conclusions
	Acknowledgments
	References

