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Parallel Minimum Cuts in O(m log2 n) Work and Low Depth

DANIEL ANDERSON and GUY E. BLELLOCH, Carnegie Mellon University, Pittsburgh, PA, USA

We present a randomized O (m log2 n) work, O (polylogn) depth parallel algorithm for minimum cut. This
algorithm matches the work bounds of a recent sequential algorithm by Gawrychowski, Mozes, and Weimann
[ICALP’20], and improves on the previously best parallel algorithm by Geissmann and Gianinazzi [SPAA’18],
which performs O (m log4 n) work in O (polylogn) depth.

Our algorithm makes use of three components that might be of independent interest. First, we design a
parallel data structure that efficiently supports batched mixed queries and updates on trees. It generalizes and
improves the work bounds of a previous data structure of Geissmann and Gianinazzi and is work efficient with
respect to the best sequential algorithm. Second, we design a parallel algorithm for approximate minimum
cut that improves on previous results by Karger and Motwani. We use this algorithm to give a work-efficient
procedure to produce a tree packing, as in Karger’s sequential algorithm for minimum cuts. Last, we design
an efficient parallel algorithm for solving the minimum 2-respecting cut problem.

CCS Concepts: • Theory of computation→ Graph algorithms analysis; Parallel algorithms;

Additional Key Words and Phrases: Minimum cut, parallel algorithms, graph algorithms, dynamic trees

ACM Reference format:

Daniel Anderson and Guy E. Blelloch. 2023. Parallel Minimum Cuts in O(m log2 n) Work and Low Depth.
ACM Trans. Parallel Comput. 10, 4, Article 18 (December 2023), 28 pages.
https://doi.org/10.1145/3565557

1 INTRODUCTION

Minimum cut is a classic problem in graph theory and algorithms. The problem is to find, given
an undirected weighted graphG = (V ,E), a nonempty subset of vertices S ⊂ V such that the total
weight of the edges crossing from S to V \ S is minimized. Early approaches to the problem were
based on reductions to maximum s-t flows [16, 17]. Several algorithms followed that were based
on edge contraction [21, 26, 31, 32]. Karger was the first to observe that tree packings [33] can
be used to find minimum cuts [23]. In particular, for a graph with n vertices and m edges, Karger
showed how to use random sampling and a tree packing algorithm of Gabow [10] to generate a set
of O (logn) spanning trees such that, with high probability, the minimum cut crosses at most two
edges of one of them. A cut that crosses at most k edges of a given tree is called a k-respecting cut.
Karger then gives an O (m log2 n)-time algorithm for finding minimum 2-respecting cuts, yielding
a randomizedO (m log3 n)-time algorithm for minimum cut. Karger also gives a parallel algorithm
for minimum 2-respecting cuts in O (n2) work and O (log3 n) depth.
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18:2 D. Anderson and G. E. Blelloch

Until very recently, these were the state-of-the-art sequential and parallel algorithms for the
weighted minimum cut problem. A new wave of interest in the problem has recently pushed these
frontiers. Geissmann and Gianinazzi [13] design a parallel algorithm for minimum 2-respecting
cuts that performs O (m log3 n) work in O (log2 n) depth. Their algorithm is based on parallelizing
Karger’s algorithm by replacing a sequential data structure for the so-called minimum path prob-
lem, based on dynamic trees, with a data structure that can evaluate a batch of updates and queries
in parallel. Their algorithm performs just a factor of O (logn) more work than Karger’s sequential
algorithm, but substantially improves on the work of Karger’s parallel algorithm.

Soon after, a breakthrough from Gawrychowski, Mozes, and Weimann [11] gave a randomized
O (m log2 n) algorithm for minimum cut. Their algorithm achieves theO (logn) speedup by design-
ing anO (m logn) algorithm for finding the minimum 2-respecting cuts, which was the bottleneck
of Karger’s algorithm. This is the first result to beat Karger’s seminal algorithm in over 20 years.

An open question posed by Karger was whether a deterministic algorithm can achieve an
O
(
m1+o (1)

)
runtime. This was recently resolved in the affirmative by Li [27] by derandomizing

the construction of the spanning trees.
In our work, we combine ideas from Gawrychowski et al. and Geissmann and Gianinazzi with

several new techniques to close the gap between the parallel and sequential algorithms. Our con-
tribution can be summarized by:

Theorem 1.1. The minimum cut of a weighted graph can be computed with high probability in

O (m log2 n) work and O (log3 n) depth.

We achieve this using a combination of results that may be of independent interest. First, we design
a framework for evaluating mixed batches of updates and queries on trees work efficiently in low
depth. This algorithm is based on parallel Rake-Compress Trees (RC trees) [1]. Roughly, we say
that a set of update and query operations implemented on an RC tree is simple (defined formally in
Section 3) if the updates maintain values at the leaves that are modified by an associative operation
and combined at the internal nodes, and the queries read only the nodes on a root-to-leaf path and
their children. Simple operation sets include updates and queries on path and subtree weights.

Theorem 1.2. Given a bounded-degree RC tree of sizen and a simple operation set, afterO (n) work

and O (logn) depth preprocessing, batches of k operations from the operation-set, can be processed in

O (k log(kn)) work and O (logn logk ) depth. The total space required is O (n + kmax ), where kmax is

the maximum size of a batch.

This result generalizes and improves on Geissmann and Gianinazzi [13] who give an algorithm for
evaluating a batch of k path-weight updates and queries in Ω(k log2 n) work.

Next, we design a faster parallel algorithm for approximating minimum cuts, which is used as
an ingredient in producing the tree packing used in Karger’s approach (Section 4). To achieve this,
we design a faster sampling scheme for producing graph skeletons, leveraging recent results on
sampling binomial random variables, and a transformation that reduces the maximum edge weight
of the graph to O (m logn) while approximately preserving cuts.

Last, we show how to solve the minimum 2-respecting cut problem efficiently in parallel, using a
combination of our new mixed batch tree operations algorithm and the use of RC trees to efficiently
perform a divide-and-conquer search over the edges of the 2-constraining trees (Section 5).

Theorem 1.3. The minimum 2-respecting cut of a weighted graph with respect to a given spanning

tree can be computed in O (m logn) work and O (log3 n) depth with high probability.

Application to the unweighted problem. The unweighted minimum cut problem, or edge con-
nectivity problem, was recently improved by Ghafarri, Nowicki, and Thorup [15] who give an
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Fig. 1. An overview of the components of the algorithm and their dependencies. Square boxes are existing

works, and rounded boxes are new results in this work.

O (m logn + n log4 n) work and O (polylogn) depth randomized algorithm that uses Geissmann
and Gianinazzi’s algorithm as a subroutine. By plugging our improved algorithm into Ghafarri,
Nowicki, and Thorup’s algorithm, we obtain an algorithm that runs in O (m logn + n log2 n) work
and O (polylogn) depth with high probability (w.h.p.).

Overview of components. Our results are built upon numerous components that are novel, pre-
existing, or combinations thereof. Figure 1 depicts the components of the algorithm as a flowchart.
The core component is RC trees [1], from which we derive the framework of simple RC operation
sets (Section 3) and batched-mixed operations on trees. This is used in multiple subsequent compo-
nents of the algorithm. Table 1 shows the work bound for each of these components and compares
them to existing work where relevant.

2 PRELIMINARIES

Model of computation. We analyze algorithms in the work-depth model using fork-join paral-
lelism. A procedure can fork another procedure call to run in parallel and then wait for forked
procedures to complete with a join. Work is defined as the total number of instructions performed
by the algorithm and depth (also called span) is the length of the longest chain of sequentially
dependent instructions [5]. The model can work-efficiently cross simulate the classic CRCW
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Table 1. Summary of the Work Bounds of the Various Components of the Algorithm and Comments

Comparing to Existing Work

Component Work Comments

Simple RC Operation Sets (Section 3) O (k log(kn)) A framework for evaluating queries on weighted trees

Minimum 2-respecting Cuts

Descendant edges case (Section 5.1) O (m logn) Improves on O (m log3 n) in Reference [11]

Independent edges case (Section 5.2) O (m logn) Improves on O (m log3 n) in Reference [11]

Generating the 2-constraining spanning trees

(logn)-approximate min cut (Section 4.2) O (m log2 n) Parallelizes ideas from Reference [21] using simple RC ops

Bounded edge weights (Section 4.3) O (m) Bounds weights by O (m logn) preserving an O (1)-min-cut

Subsampling the skeleton (Section 4.3) O (m log2 n) Samples logn skeleton graphs faster than O (m log3 n) [23]

Parallel k-certificate (Section 4.3) O (km) Extends the algorithm of Reference [7] for weighted graphs

Parallel Matula’s algorithm (Section 4.3) O (dm log(W /m)) Extends the algorithm of Reference [25] for weighted graphs

All components have O (polylog n) depth.

PRAM model [5], and the more recent Binary Forking model [6] with at most a logarithmic-factor
difference in the depth.

Randomness. We say that a statement happens w.h.p. in n if for any constant c , the constants
in the statement can be set such that the probability that the event fails to hold is O (n−c ). In
line with Karger’s work on random sampling [22], we assume that we can generate O (1) random
bits in O (1) time. Since some of the subroutines we use require random Θ(logn)-bit words, these
take O (logn) work to generate. The depth is unaffected, since we can always pre-generate the
anticipated number of random words in parallel at the beginning of our algorithms.

Our algorithms are Monte Carlo, i.e., correct w.h.p. but run in a deterministic amount of time.
We can use Las Vegas algorithms, which are fast w.h.p. but always correct, as subroutines, because
any Las Vegas algorithm can be converted into a Monte Carlo algorithm by halting and returning
an arbitrary answer after the desired time.

Tree contraction. Parallel tree contraction is a technique developed to efficiently apply various
operations over trees in logarithmic parallel depth [30], and was also later applied to dynamic
trees [2]. Tree contration consists of a set of rake and compress operations. The rake operation
removes a leaf vertex and merges it with its parent. The compress operation removes a vertex of
degree two and replaces its two incident edges with a single edge joining its neighbors. Miller
and Reif [30] observed that rakes and compresses can be applied in parallel as long as they are
applied to an independent set of vertices. They describe a random-mate technique that ensures
that any tree contracts to a single vertex in O (logn) rounds w.h.p., and using a total of O (n) work
in expectation. Gazit, Miller, and Teng [12] give a deterministic version with the same bounds,
and Blelloch et al. [6] give a version that works in the binary-forking model. Miller and Reif’s
algorithm applies to bounded-degree trees, but arbitrary-degree trees can typically be handled by
converting them into bounded-degree trees. For a rooted tree, the root is never removed, and is
the final surviving vertex.

Rake-compress trees. The RC tree [1, 2] of a tree T encodes a recursive clustering of T corre-
sponding to the result of tree contraction, where each cluster corresponds to a rake or compress
(see Figure 2). A cluster is defined to be a connected subset of vertices and edges of the original tree.
Importantly, a cluster can contain an edge without containing its endpoints. The boundary vertices

of a clusterC are the verticesv � C such that an edge e ∈ C hasv as one of its endpoints. All of the
clusters in an RC tree have at most two boundary vertices. A cluster with no boundary vertices is
called a nullary cluster (generated at the top-level root cluster), a cluster with one boundary is a
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Fig. 2. A tree, a clustering, and the corresponding RC tree [1].

unary cluster (generated by the rake operation) and a cluster with two boundaries is binary cluster

(generated by the compress operation). The cluster path of a binary cluster is the path inT between
its boundary vertices. Nodes in an RC tree correspond to clusters, such that a node is the disjoint
union of its children.

The leaf clusters of the RC tree are the vertices and edges of the original tree, which are nullary
and binary clusters, respectively. Note that all non-leaf clusters have exactly one vertex (leaf) clus-
ter as a child. This vertex is that cluster’s representative vertex. The recursive clustering is then
defined by the following simple rule: Each rake or compress operation corresponds to a cluster,
such that the operation that deletes vertex v from the tree defines a cluster with representative
vertexv whose non-leaf subclusters are all of the clusters that havev as a boundary vertex. Clusters
therefore have the useful property that the constituent clusters of a parent cluster C share a sin-
gle boundary vertex in common—the representative of C , and their remaining boundary vertices
become the boundary vertices of C .

In this article, we will be considering rooted trees. In this case the root of the tree is also the
representative of the top level nullary cluster of the RC-tree, e.g., vertex e in Figure 2. Non-leaf
binary clusters have a binary subcluster whose cluster path is above the representative vertex in
the input tree, which we will refer to as the top cluster, and a binary subcluster whose cluster
path is below the representative vertex, which we call the bottom cluster. We will also refer to
the binary subcluster of a unary cluster as the top cluster as its cluster path is also above the
representative vertex. In our pseudocode, we will use the following notation. For a cluster x : x .v
is the representative vertex, x .t is the top subcluster, x .b is the bottom subcluster, x .U is a list of
unary subclusters, and x .p is the parent cluster.
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18:6 D. Anderson and G. E. Blelloch

Compressed path trees. For a weighted (unrooted) treeT and a set of marked verticesV ⊂ V (T ),
the compressed path tree is a weighted tree Tc on some subset of the vertices of T including V
with the following property: for every pair of vertices (u,v ) ∈ V × V , the weight of the lightest
edge on the path from u to v is the same in T and Tc . The compressed path three Tc is defined
as the smallest such tree. Alternatively, the compressed path tree is the tree T with all unmarked
vertices of degree less than three spliced out, where each spliced-out path is replaced by an edge
whose weight is the lightest of the weights on the path it replaced. It is not hard to show that Tc

has size less than 2|V |. Compressed path trees are described in Reference [4], where it is shown
that given an RC tree for the treeT and a set of k marked vertices, the compressed path tree can be
produced in O (k log(1 + n/k )) work and O (log2 n) depth w.h.p. Gawrychowski et al. [11] define a
similar notion which they call “topologically induced trees,” but their algorithm is sequential and
requires O (k logn) work (time).

Karger’s minimum cut algorithm. Karger’s algorithm for minimum cuts [23] is based on the
notion of k-respecting cuts. Karger’s algorithm is the following two-step process.

(1) Find O (logn) spanning trees of G such that w.h.p., the minimum cut 2-respects at least one
of them

(2) Find, for each of the aforementioned spanning trees, the minimum 2-respecting cut in G

Karger solves the first step using a combination of random sampling and tree packing. Given a
weighted graph G, a tree packing of G is a set of weighted spanning trees of G such that for each
edge in G, its total weight across all of the spanning trees is no more than its weight in G. The
underlying tree packing algorithms used by Karger have running time proportional to the size
of the minimum cut, so random sampling is first used to produce a sparsified graph, or skeleton,
where the minimum cut has size Θ(logn) w.h.p. The sampling process is carefully crafted such
that the resulting tree packing still has the desired property w.h.p.

Given the skeleton graph, Karger gives two algorithms for producing tree packings such that
sampling Θ(logn) trees from them guarantees that, w.h.p., the minimum cut 2-respects one of
them. The first approach uses a tree packing algorithm of Gabow [10]. The second is based on the
packing algorithm of Plotkin et al. [34], and is much more amenable to parallelism. It works by
performingO (log2 n) minimum spanning tree computations. In total, Step 1 of the algorithm takes
O (m + n log3 n) time.

For the second step, Karger develops an algorithm to find, given a graph G and a spanning tree
T , the minimum cut ofG that 2-respectsT . The algorithm works by arbitrarily rooting the tree, and
considering two cases: when the two cut edges are on the same root-to-leaf path, and when they
are not. Both cases use a similar technique; they consider each edge e in the tree and try to find the
best matching e ′ to minimize the weight of the cut induced by the edges {e, e ′}. This is achieved
by using a dynamic tree data structure to maintain, for each candidate e ′, the value that the cut
would have if e ′ were selected as the second cutting edge, while iterating over the possibilities
of e and updating the dynamic tree. Karger shows that this step can be implemented sequentially
in O (m log2 n) time, which results in a total runtime of O (m log3 n) when applied to the O (logn)
spanning trees.

3 BATCHED MIXED OPERATIONS ON TREES

The batched mixed operation problem is to take an off-line sequence of mixed operations on a
data structure, usually a mix of queries and updates, and process them as a batch. The primary
reason for batch processing is to allow for parallelism on what would otherwise be a sequential
execution of the operations. We use the term operation-set to refer to the set of operations that can
be applied among the mixed operations. We are interested in operations on trees, and our results
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apply to operation-sets that can be implemented on an RC tree in a particular way, defined as
follows.

Definition 3.1. An implementation of an operation-set on trees is a simple RC implementation if
it uses an RC representation of the trees and satisfies the following conditions.

(1) The implementation maintains a value at every RC cluster that can be calculated in constant
time from the values of the children of the cluster,

(2) every query operation is implemented by traversing from a leaf to the root examining values
at the visited clusters and their children taking contant time per value examined, and using
constant space, and

(3) every update operation involves updating the value of a leaf using an associative constant-
time operation, and then reevaluating the values on each cluster on the path from the leaf
to the root.

Note that every operation has an associated leaf (either an edge or vertex). Also note that setting
(i.e., overwriting) a value is an associative operation (just return the second of the arguments).
For simple RC implementations, all operations take time (work) proportional to the depth of the
RC tree, since they only follow a path to the root taking constant time at each cluster. Although
the simple RC restriction may seem contrived, most operations on trees studied in previous
work [2, 3, 37] can be implemented in this form, including most path and subtree operations. This
is because of a useful property of RC trees, that all paths and subtrees in the source tree can be
decomposed into clusters that are children of a single path in the RC tree, and typically operations
need just update or collect a contribution from each such cluster.

Example. As an example, consider the following two operations on a rooted tree (the first an
update, and the second a query):

• addWeight(v,w ): adds weight w to a vertex v
• subtreeSum(v ): returns the sum of the weights of all of the vertices in the subtree rooted

at v

ALGORITHM 1: The subtreeSum query.

1: procedure subtreeSum(v : vertex)
2: w ← 0
3: x ← v ; p ← x .p
4: while p is a binary cluster do

5: if (x = p.t ) or (x = p.v ) then

6: w ← w + p.b .w + p.v .w +
∑

u ∈p .U u .w

7: x ← p; p ← x .p

8: return w + p.v .w +
∑

u ∈p .U u .w

These operations can use a simple RC implementation by keeping as the value of each cluster the
sum of values of all its children. This satisfies the first condition, since the sums take constant time.
Single-edge clusters in the RC tree start with the initial weight of the edge, while single-vertex
clusters start with zero weight. An addWeight(v,w ) adds weightw to the vertexv (which is a leaf
in the RC tree) and updates the sums up to the root cluster. This satisfies the third condition, since
addition is associative and takes constant time. The query can be implemented as in Algorithm 1,
where x .w is the weight stored on the cluster x . It starts at the leaf for v and goes up the RC tree
keeping track of the total weight underneath v . Note that x will never be a unary cluster, so if not
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18:8 D. Anderson and G. E. Blelloch

the representative or top subcluster of p, it is the bottom subcluster with nothing below it in this
cluster. Observe that subtreeSum only examines values on a path from the start vertex to the
root and the children along that path. Each step takes constant time and requires constant space,
satisfying the second condition. The operation-set therefore has a simple RC implementation.

3.1 Batched Mixed Operations Algorithm

We are interested in evaluating batches of operations from an operation-set on trees with a simple
RC implementation. In particular, we prove Theorem 1.2. Our algorithm is similar to that of Geiss-
mann and Gianinazzi [13], except we work with a cluster-based decomposition of trees based on
RC trees instead of their path-based decomposition based on heavy-light decomposition.

Proof sketch of Theorem 1.2. The preprocessing just builds an RC tree on the source tree, and
sets the values for each cluster based on the initial values on the leaves. This can be implemented
with the Miller-Reif algorithm [30], in the binary forking model [6], or deterministically [12]. All
take linear work and logarithmic depth (w.h.p. for the randomized versions). Our algorithm for
each batch is then implemented as follows:

(1) Timestamp the operations by their order in the sequence.
(2) Collect all operations by their associated leaf, and sort within each leaf by timestamp. This

can be implemented with a single sort on the leaf identifier and timestamp.
(3) For each leaf use a prefix sum on the update values to calculate the value of the leaf after

each operation, starting from the initial value on the leaf.
(4) Initialize each query using the value it received from the prefix sum. We now have a list of

operations on each leaf sorted by timestamp. For each update we have its value, and for each
query we also have its partial evaluation based on the value. We prepend the initial value to
the list, and call this the operation list. An operation list is non-trivial if it has more than just
the initial value.

(5) For each level of the RC tree starting one above the deepest, and in parallel for every cluster
on the level for which at least one child has a non-trivial operation list:

(a) Merge the operation lists from each child into a single list sorted by timestamp.
(b) Calculate for each element in the merged operations list, the latest value of each child at

or before the timestamp. This can be implemented by prefix sums.
(c) For each list element, calculate the value at that timestamp from the child values collected

in the previous step.
(d) For queries, use the values and/or child values to update the query.

This algorithm needs to have children with non-trivial operation lists identify parents that need
to be processed. This can be implemented by keeping a list of all the clusters at a level with non-
trivial operation lists left-to-right in level order. When moving up a level, clusters that share the
same parent can be combined. An illustration of the merging process is depicted in Figure 3 using
the operations from Algorithm 1.

We first consider why the algorithm is correct. We assume by structural induction (over subtrees)
that the operation lists contain the correct values for each timestamped operation in the list. This
is true at the leaves, since we apply a prefix sum across the associative operation to calculate
the value at each update. For internal clusters, assuming the child clusters have correct operation
lists (values for each timestamp valid until the next timestamp, and partial result of queries), we
properly determine the operation lists for the cluster. In particular for all timestamps that appear in
children we promote them to the parent, and for each we calculate the value based on the current
value, by timestamp, for each child.
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Fig. 3. Merging the operation lists for a binary cluster consisting of addWeight and subtreeSum operations.

Values in the operation sequence, denoted V :v , are computed by aggregating the latest values of the children

at the given timestamp. For example, at t6 in p, the algorithm adds 3 from p.t at t2, 10 from p.b at t6, and 2
from p.v at t1. Queries, denoted Q : q, are updated at each level by using the latest values of the children.

For example, to update the query at t3, it takes the current value of 1 from p.t at t3, then adds the weight of

5 from p.b at t0, and the weight of 2 from p.v at t1, as per Algorithm 1, since the conditional on Line 5 is true.

Similarly, to update the query at t5, the conditional is also true, and the most recent timestamps in p.b and

p.v are t4 and t1, so it accumulates those values.

We now consider the costs. The cost of the batch before processing the levels is dominated by
the sort that takes O (k logk ) work and O (logk ) depth. The cost at each level is then dominated
by the merging and prefix sums that take O (k ) work and O (logk ) depth accumulated across all
clusters that have a child with a non-trivial operation list. If the RC tree has depth O (logn), then
across all levels the cost is bounded by O (k logn) work and O (logn logk ) depth. The total work
and depth is therefore as stated. The space for each batch of size k is bounded by the size of the
RC tree, which is O (n), and the total space of the operation lists at any two adjacent levels, which
is O (k ). �

3.2 Path Updates and Path/Subtree Queries

We now consider implementing mixed operations consisting of updating paths, and querying both
paths and subtrees. We will use these in Sections 3.3 and 5. In particular we wish to maintain, given
a weighted rooted tree T = (V ,E), a data structure that supports the following operations.

• AddPath(u,v,w): For u,v ∈ V adds w to the weight of all edges on the u to v path.
• QuerySubtree(v): Returns the lightest weight of an edge in the subtree rooted at v ∈ V ,
• QueryPath(u,v): For u,v ∈ V , returns the lightest weight of an edge on the u to v path.
• QueryEdge(e): Returns w (e )

To implement these, we first implement the simpler operations AddPath’(v,w), which adds weight
w to the path fromv to the root; and QueryPath’(u,v), which requires thatv be the representative
vertex of an ancestor of u in the RC tree. The more general forms can be implemented in terms of
these with a constant number of calls given the lowest common ancestor (LCA) in the original
tree for AddPath and in the RC tree for QueryPath.

Lemma 3.2. The AddPath’, QuerySubtree, QueryPath’, and QueryEdge operations on bounded

degree trees can be supported with a simple RC implementation.

Proof sketch. Our simple RC implementation for combining values and AddPath’ is given in
Algorithm 2. The queries are given in Algorithm 3. The value of each vertex (leaf) in the cluster
is the total weight added to that vertex by AddPath’. The value for each unary cluster consists
of: m, the minimum weight edge in the cluster; and w , the total weight of AddPaths’ originating
in the cluster. For each binary cluster, we separate the minimum weights on and off the cluster
path. In particular, the value of each binary cluster consists of: m, the minimum weight edge not
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18:10 D. Anderson and G. E. Blelloch

ALGORITHM 2: A simple RC implementation of AddPath’.

1: using VertexV = int

2: using UnaryV = struct {m : edge, w : int }
3: using BinaryV = struct {m : edge, l : edge, w : int }

4: procedure funary(wv : VertexV, (mt , lt ,wt ) : BinaryV, U : UnaryV list)
5: w ′ ← wv +

∑
u ∈U u .w

6: mu ← minu ∈U u .m
7: return { min(mt , lt +w

′,mu ),wt +w
′ }

8: procedure fbinary(wv : VertexV, (mt , lt ,wt ) : BinaryV, (mb , lb ,wb ) : BinaryV, U : UnaryV list)
9: w ′ ← wv +wb +

∑
u ∈U u .w

10: mu ← minu ∈U u .m
11: return { min(mt ,mb ,mu ),min(lt +w

′, lb ),wt +w
′ }

12: procedure AddPath’(v : vertex, w : int)
13: v .value← v .value + w
14: Reevaluate the f (·) on path to root.

on the cluster path; l , the minimum edge on the cluster path due to all AddPath’ originating in
the cluster; andw , the total weight of AddPaths’ originating in the cluster. The fbinary and funary
calculate the values for unary and binary clusters from the values of their children. We initialize
each vertex with zero, and each edge e with (m = 0, l = w (e ),w = 0).

It is a simple RC implementation, since (1) the f (·) can be computed in constant time, (2) the
queries just traverse from a leaf on a path to the root (possibly ending early) only examining child
values, taking constant time per level and constant space, and (3) the update just sets a leaf using
an associative addition, and reevaluates the values to the root.

We argue the implementation is correct. First, we argue by structural induction on the RC tree
that the values as described in the previous paragraph are maintained correctly by fbinary and
funary. In particular, assuming the children are correct, we show the parent is correct. The values
are correct for leaves, since we increment the value on vertices with AddPath’, and initialize the
edges appropriately. To calculate the minimum edge weight of a unary cluster funary takes the
minimum of three quantities: the minimum off-path edge of the child binary cluster, the overall
minimum edge of any of the child unary clusters, and, importantly, the minimum edge on the
cluster path of the child binary cluster plus the AddPath’ weight contributed by the unary clusters
and the representative vertex (i.e., min(mt , lt +w

′,mu )). This is correct, since all paths from those
clusters to the root go through the cluster path, so it needs to be adjusted. The off-path edges and
child unary clusters do not need to be adjusted, since no path from the representative vertex goes
through them. The minimum weight is therefore correct. The total AddPath’ weight is correct,
since it just adds the contributions.

For binary clusters, we need to separately consider the minimum off- and on-path edges. For
the off-path edges the parts that are off the cluster path are the off-path edges from the two binary
children, plus all edges from the unary children (i.e., min(mt ,mb ,mu )). For the on-path edges
both the top and bottom binary clusters contribute their on-path edges. The on-path edges from
the bottom binary cluster do not need to be adjusted, because no vertices in the cluster are below
them. The on-path edges from the top binary cluster need to be adjusted by the AddPath’ weights
from all vertices in the bottom cluster, all vertices in unary child clusters, and the representative
vertex, since they are all below the path (this sum is given by w ′); see Figure 4. The minimum of
the resulted adjusted top edge and bottom edge is then returned, which is indeed the minimum
edge on the path accounting for AddPaths’ on vertices in the cluster.
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ALGORITHM 3: A simple RC implementation of QueryEdge, QueryPath’, and QuerySubtree.

1: procedure QuerySubtree(v : vertex) // Returns the lightest weight of an edge in the subtree rooted at v
2: m ← ∞; l ← ∞ //m: min edge not on the cluster path, l : min edge on the cluster path so far

3: x ← v ; p ← x .p
4: while p is a binary cluster do // Accumulate weights until we reach a unary cluster

5: if (x = p.t ) or (x = p.v ) then // If x is in the top half of the cluster, then all

6: w ′ ← p.b .w + p.v .w +
∑

u ∈p .U u .w // AddPaths originating below it will add to

7: l ← min(l +w ′,p.b .l ) // the weight of all edges on the cluster path

8: m ← min(m,p.b .m,minu ∈p .U u .m)

9: x ← p; p ← x .p

10: w ′ ← p.v .w +
∑

u ∈p .U u .w
11: return min(l +w ′,m,minu ∈p .U u .m) // The lightest weight edge is either on the cluster path or not

12: procedure QueryEdge(e : edge) // Returns the weight of the edge e
13: w ← w (e )
14: x ← e ; p ← x .p
15: while p is a binary cluster do

16: if x = p.t then // if e is on the cluster path of the top half of the

17: w ← w + p.b .w + p.v .w +
∑

u ∈p .U u .w // current cluster, then all AddPaths originating

18: x ← p; p ← x .p // below the top cluster will add to the weight of e

19: return w + p.v .w +
∑

u ∈p .U u .w

20: procedure QueryPath’(u : vertex, v : vertex) // Returns the lightest edge on the path from u to v
21: m ← ∞; t ← ∞; b ← ∞ // such that v is the representative of an ancestor of u in the RC tree

22: x ← u; p ← x .p
23: while not p.v = v do

24: w ′ ← p.v .w +
∑

u ∈p .U u .w
25: if p is a unary cluster then // When p is a unary cluster, and u originated in the

26: if x = p.t thenm ← min(t +w ′,m) // top subcluster, the weight of all AddPaths below

27: elsem ← min(p.t .l +w ′,m) // is added to the edges between u and the boundary,

28: t ← ∞; b ← ∞ // otherwise it is added to all edges on the top cluster path

29: else

30: w ′ ← w ′ + p.b .w // The weight of all AddPaths below is added to the top cluster path.

31: if x = p.t then t ← t +w ′; b ← min(b +w ′,p.b .l ) // If u originated in the top subcluster, then this

32: else if x = p.b then t ← min(p.t .l +w ′, t ) // affects both t and b. If u originated in the

33: else t ← p.t .l +w ′; b ← p.b .l // bottom subcluster, then it affects only t . Otherwise, u

34: x ← p; p ← x .p // originated in a unary subcluster so x is not in the cluster path.

35: if x = p.t then l ← b
36: else if x = p.b then l ← t // u either connects to v in the direction of the top boundary of p (a

37: else returnm // weight of t ), the bottom boundary of p (a weight of b) or neither (m)

38: while p is a binary cluster do

39: w ′ ← p.v .w + p.b .w +
∑

u ∈p .U u .w // There might still be more AddPath operations below, so we

40: if (x = p.t ) then l ← l +w ′ // continue up the RC tree to accumulate any that remain.

41: return min(m, l )

QuerySubtree(v ) accumulates the appropriate minimum weights within a subtree as it goes
up the RC tree. It starts at the node for whichv is its representative vertex. As with the calculation
of values it needs to separate the on-path and off-path minimum weight. Whenever coming as
the upper binary cluster to the parent, QuerySubtree needs to add all the contributing AddPath’
weights from vertices below it in the parent cluster (the representative vertex, the lower binary
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Fig. 4. When a binary cluster joins its children, all addPaths’ that originated in the vertex, bottom, or unary

subclusters will affect all of the edges in the top cluster path. Here, w ′ = wv +wb +wu = 6 weight is added

to edges on the top cluster path due to addPath operations from below. The minimum weight edge on the

cluster path is therefore min(lt +w
′, lb ) = min(3 + 6, 10) = 9, which is the edge from the top cluster path,

highlighted in red.

cluster, and the unary clusters, see Figure 4) to the current minimum on-path weight. A minimum
is then taken with the lower on-path minimum edge to calculate the new minimum on-path edge
weight (Line 7). The off-path minimum is the minimum of the current off-path minimum, the
minimum off-path edge of the bottom cluster and the minimums of the unary clusters (Line 8).
Once we reach a unary cluster, we are done, since for a unary cluster all subtrees of vertices
within the cluster are fully contained within the cluster. The final line therefore just determines
the overal minimum for the subtree rooted at v by considering the on-path edges adjusted by
AddPath’ contributions, the off-path edges, and all edges in child unary clusters.

QueryEdge(e ) simply adds the total weight of all AddPath’ operations that occurred beneath
e to the weight of e . Specifically, at each iteration of the loop, w contains the w (e ) plus the total
weight of all AddPath’ operations originating at any vertex below e that is contained in the current
cluster x . As the query moves up the RC tree, if the parent cluster is a binary cluster and x is its
top subcluster, then the vertices not yet accounted for are those in the bottom subcluster, the
representative vertex, and the unary subclusters. If x is the bottom subcluster of its binary parent,
or one of its unary subclusters, then no vertices in p but not x are below e . When the while loop
terminates, p is a unary cluster and x is its binary subcluster. At this point, the representative of p,
and all unary subclusters of p are below e , and hence their weight is added to the total. Since p is
a unary cluster, there exists no additional vertices below e in the tree, and hence the final weight
contains the contributions of all AddPath’ operations originating below e .

Last, QueryPath’ works by maintaining three values, m, t ,b. To make defining them easier,
consider, at each iteration of the main loop (Lines 23–34) in which the current cluster x is a binary
cluster, the vertex c , which is the closest vertex to u on the cluster path of x (if u is on the cluster
path of x , say c = u). Then, we can define m as the minimum weight edge on the path from u
to c (which will be ∞ if u is on the cluster path of x ), t as the minimum weight edge above c on
the cluster path of x , and b as the minimum weight edge below c on the cluster path of x . If x
is a unary cluster, then t and b are ∞ (undefined), and m is simply the minimum weight edge on
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the path from u to the boundary of x . Observe that it is important for the algorithm to maintain
both t and b, because it does not know in advance whether v is above or below the current cluster
path. It remains to argue that the implementation correctly maintains these values, and that the
postprocessing is correct.

Each time the algorithm moves up to the next highest cluster, it first computes w ′, the total
weight of all AddPath’ operations originating below the representative vertex. If the cluster is
a unary cluster, and u originated from the top (binary) subcluster, then the path from u to the
boundary of p consists of the previous path from u to c (the lightest edge on which is m), and the
path from c to the boundary of p (the lightest edge on which is t ). Sincew ′ weight has been added
to all edges on the path from c to the boundary of p, the lightest such edge is now t +w ′ and hence
the lightest edge on the path from u to the boundary of p is min(t +w ′,m). If u did not originate in
the top subcluster of p, then it came from one of the unary subclusters. In this case, the path from
u to the boundary of p consists of the path from u to the boundary of x , and the cluster path of the
top subcluster (which begins at the boundary of x and ends at the boundary of p), and hence the
lightest edge is min(p.t .l +w ′,m). Since the current cluster is a unary cluster, t and b are undefined
(Line 28).

If the next cluster is a binary cluster, then we reason as follows. If u originated in the top sub-
cluster, then the path from c to the top boundary remains the same, but w ′ weight is added to
every edge (including t ). The cluster path below c now consists of the edges previously below c
to the bottom boundary of x , and additionally those on the cluster path of the bottom subcluster
(the edges from the bottom boundary of x to the bottom boundary of p). The edges below c on
the cluster path of the top subcluster (including b) have had their weight increased by w ′, and
hence the lightest edge on the path from c to the bottom boundary of p is now min(b +w ′,p.b .l ).
Similarly, if u originated in the bottom subcluster, then the path from c to the bottom bound-
ary hasn’t changed, so b is unchanged, and no weight is added to the edge t . However, since the
path from c to the top boundary of p now includes the cluster path of the top subcluster, the
lightest edge from c to the top boundary is now min(p.t .l + w ′, t ). Otherwise, u must have orig-
inated from a unary subcluster of p, and hence the cluster path of p contains no edges from x ,
so t is simply the lightest edge in the top subcluster, and b is the lightest edge in the bottom
subcluster.

Once the main loop terminates (Lines 23–34), by the loop condition, it must be because the
current cluster x has v as a boundary. If u originated in the top subcluster of the latest p, then v
must be the bottom boundary of p, and hence the path from u to v consists of the path from u to
c and the path from c to v , which goes toward the bottom boundary of p and hence contains b.
Conversely, if u originated in the bottom subcluster of p, then the path from u to v goes toward
the top boundary of p and hence contains t . If u originated in a unary subcluster, then the path
from u to v just joins u to the boundary of x , hence the lightest edge ism. If not, then the lightest
edge is either m, or b or t , respectively. The weight of b or t might still be affected by AddPath’
operations from below, so the total weight of such operations is accumulated by continuing up the
RC tree and added to determine the final weight. �

Corollary 3.3. Given a bounded-degree tree of size n, any sequence of k AddPath, Query-

Subtree, QueryPath, and QueryEdge operations can be evaluated in O (n + k log(nk )) work,

O (logn logk ) depth and O (n + k ) space.

Proof. The LCAs required to convert AddPath to AddPath’ and QueryPath to QueryPath’
can be computed in O (n +m) work, O (logn) depth, and O (n) space [36]. The rest follows from
Theorem 1.2 and Lemma 3.2. �
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3.3 Improving Previous Results

Using our batched mixed operations on trees algorithm, we can improve previous results on
finding 2-respecting cuts. In particular, we can shave off a log factor in the work of Geissmann
and Gianinazzi’s parallel algorithm [13], and we can parallelise Lovett and Sandlund’s sequential
algorithm [28].

Geissmann and Gianinazzi find 2-respecting cuts by first finding an O (m) sequence of mixed
AddPath and QueryPath operations for each of O (logn) trees. They show how to find each
sequence inO (m logn) work andO (logn) depth. On each set they then use their own data structure
to evaluate the sequence in O (m log2 n) work and O (log2 n) depth, for a total of O (m log3 n) work
and O (log2 n) depth across the sets. Replacing their data structure with the result of Corollary 3.3
improves their results to O (m log2 n) work.

Lovett and Sandlund significantly simplify Karger’s algorithm by first finding a heavy-light
decomposition—i.e., a vertex disjoint set of paths in a tree such that every path in the tree is covered
by at mostO (logn) of them. It then reduces finding the 2-respecting cuts to a sequence of AddPath
and QueryPath operations on the decomposed paths induced by each non-tree edge, for a total
of O (m logn) operations. Using Geissmann and Gianinazzi’s O (n logn) work O (log2 n) algorithm
for finding a heavy-light decomposition [13, Lemma 7], and the result of Corollary 3.3 again gives
an O (m log2 n) work, O (log2 n) depth algorithm.

4 PRODUCING THE TREE PACKING

We follow the general approach used by Karger to produce a set of O (logn) spanning trees such
that w.h.p., the minimum cut 2 respects at least one of them. We have to make several improve-
ments to achieve our desired work and depth bounds. At a high level, Karger’s algorithm works
as follows.

(1) Compute an O (1)-approximate minimum cut c
(2) Sample edges from the unweighted multigraph corresponding to the weighted graph G,

where an edge with weightw is represented asw parallel edges, with probability Θ(logn/c )
(3) Use the tree packing algorithm of Plotkin [34] to generate a packing of O (logn) trees

In this section, we describe the tools required to parallelise this algorithm.

4.1 A Parallel Version

Step 2 is trivial to parallelize, as the sampling can be done independently in parallel. The sampling
procedure produces an unweighted multigraph withO (m logn) edges, and takesO (m log2 n) work
and O (logn) depth.

In Step 3, Plotkin’s algorithm consists of O (log2 n) minimum spanning tree (MST) computa-
tions on a weighting of the sampled graph, which hasO (m logn) edges. Naively this would require
O (m log3 n) work, but we can use a trick of Gawrychowski et al. [11]. Since the sampled graph is
a multigraph sampled from m edges, each invocation of the MST algorithm only cares about the
current lightest of each parallel edge, which can be maintained in O (1) time, since the weights of
the selected edges change by a constant each iteration. Using Cole, Klein, and Tarjan’s linear-work
MST algorithm [8] results in a total of O (m log2 n) work in O (log3 n) depth w.h.p.

The only nontrivial part of parallelizing the tree production is actually Step 1, computing an
O (1)-approximate minimum cut. In the sequential setting, Matula’s algorithm [29] can be used,
which runs in linear time on unweighted graphs, and on weighted graphs in O (m log2 n) time.
Karger and Motwani [25] give a parallel version of Matula’s algorithm, but it takesO (m2/n) work.
Ghaffari and Kuhn [14] present a distributed version of Matula’s algorithm in the CONGEST model
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that runs in Õ ((D +
√
n)/ϵ5) rounds. We show how to compute an approximate minimum cut in

O (m log2 n) work and O (log3 n) depth, which allows us to prove the following.

Theorem 4.1. Given a weighted graph, inO (m log2 n) work andO (log3 n) depth, a set ofO (logn)
spanning trees can be produced such that the minimum cut 2-respects at least one of them w.h.p.

We achieve our bounds by improving Karger’s algorithms and speeding up several of the compo-
nents. We use the following combination of ideas, new and old.

(1) We extend a k-approximation algorithm of Karger [21] to work in parallel, allowing us to
produce a logn-approximate minimum cut in low work and depth.

(2) We use a faster sampling technique for producing Karger’s skeletons for weighted graphs.
This is done by transforming the graph into a graph that maintains an approximate minimum
cut but has edge weights each bounded by O (m logn), and then using binomial random
variables to sample all of the multiedges of a particular edge at the same time, instead of
separately. Subsampling is then used to sample the same graph with decreasing probabilities.

(3) We show that the parallel sparsek-certificate algorithm of Cheriyan, Kao, and Thurimella [7]
for unweighted graphs can be modified to run on weighted graphs.

(4) We show that Karger and Motwani’s parallelization of Matula’s algorithm can be generalized
to weighted graphs.

(5) We use the logn-approximate minimum cut to allow the algorithm to make justO (log logn)
guesses of the minimum cut such that at least one of them is an O (1) approximation.

4.2 Parallel logn-approximate Minimum Cut

To compute an O (1)-approximate minimum cut, our first step is actually to compute a logn-
approximate minimum cut. We parallelize an algorithm of Karger for computing k-approximate
minimum cuts that is efficient when k = Ω(logn) [21].

Mixed incremental connectivity and component weight queries. The following ingredient
is useful in parallelizing Karger’s k-approximate minimum cut algorithm. We show that that
the following operations have a simple RC implementation, and hence can be efficiently imple-
mented. Given a vertex-weighted, undirected graph with given initial vertex weights, we wish to
support:

• SubtractWeight(v , w): Subtract weight w from vertex v
• JoinEdge(e): Mark the edge e as “joined”
• QueryWeight(v): Return the weight of the connected component containing the vertex v ,

where the components are induced by the joined edges

Lemma 4.2. The SubtractWeight, JoinEdge, and QueryWeight operations can be supported

with a simple RC implementation.

Proof sketch. The values stored in the RC clusters are as follows. Vertices store their weight,
and unary clusters store the weight of the component reachable via joined edges from the boundary
vertex. A binary cluster is either joined, meaning that its boundary vertices are connected by joined
edges, in which case it stores a single value—the weight of the component reachable via joined
edges from the boundaries; otherwise, it is split, in which case it stores a pair—the weight of the
component reachable via joined edges from the top boundary, and the weight of the component
reachable via joined edges from the bottom boundary. We provide pseudocode for the update
operations for Illustration in Algorithm 4.
The initial value of a vertex is its starting weight. The initial value of an edge is (0, 0), indicating
that it is split at the beginning. Note that funary and fbinary can be evaluated in constant time, and
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ALGORITHM 4: A simple RC implementation of SubtractWeight and JoinEdge.

1: procedure funary(vv , t ,U )
2: if t = (tv ,bv ) then return tv
3: else return vv + t +

∑
uv ∈U uv

4: procedure fbinary(vv , t ,b,U )
5: if t = tv and b = bv then

6: return tv + bv +vv +
∑

uv ∈U uv

7: else if t = (ttv
, tbv

) and b = bv then

8: return (ttv
, tbv

+vv + bv +
∑

uv ∈U uv )
9: else if t = tv and b = (btv

,bbv

) then

10: return (tv +vv + btv
+
∑

uv ∈U uv )
11: else if t = (ttv

, tbv

) and b = (btv
,bbv

) then

12: return (ttv
,bbv

)

13: procedure SubtractWeight(v,w)
14: v .value← v .value - w
15: Reevaluate the f (·) on path to root.

16: procedure JoinEdge(e)
17: e .value← 0
18: Reevaluate the f (·) on path to root.

the structure of the updates involves setting the value at a leaf using an associative operation and
re-evaluating the values of the ancestor clusters.

We can argue that the values are correctly maintained by structural induction. First consider
unary clusters. If the top subcluster is split, then the representative vertex and unary subclusters
are not reachable via joined edges, and hence the only reachable component is the component
reachable inside the top subcluster from its top boundary, whose weight is tv . If the top subcluster
is joined, then the representative vertex is reachable, which is by definition the boundary vertex
of the unary subclusters, and hence the reachable component is the union of the reachable com-
ponents of all of the subclusters, whose weight is as given.

For binary clusters, there are four possible cases, depending on whether the top and bottom
subclusters are joined or not. If both are joined, then the representative and hence the boundary of
all subclusters is reachable from both boundaries, and hence the cluster is joined and the reachable
component is the union of the reachable components of the subclusters. If either subcluster is split,
then the reachable component at the corresponding boundary is just the reachable component
of the subcluster, whose weight is as given. Last, if one of the subclusters is not split, then the
corresponding boundary can reach the representative vertex, and hence the reachable components
of the unary subclusters, whose weights are as given.

It remains to argue that we can implement QueryWeight with a simple RC implementation.
Consider a vertex v whose component weight is desired and consider the parent cluster P of v ,
i.e., the cluster of whichv is the representative. If P has no binary subclusters that are joined, then
observe that P must contain the entire component of v induced by joined edges, since the only
way for a component to exit a cluster is via a boundary that would have to be joined. Answering
the query in this situation is therefore easy; the result is the sum of the weights of v , the unary
subclusters of P , the bottom boundary weight of the top subcluster (if it exists), and the top bounary
weight of the bottom subcluster (if it exists). Suppose instead that P contains a binary subcluster
that is joined to some boundary vertex u � v . Since the subcluster is joined, u is in the same
induced component as v , and hence QueryWeight(v) has the same answer as QueryWeight(u).
By standard properties of RC trees, since u is a boundary of P , we also know that the leaf cluster
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u is the child of some ancestor of P . Since the root cluster has no binary subclusters, this process
of jumping to joined boundaries must eventually discover a vertex that falls into the easy case,
and since such a vertex u is always the child of some ancestor is P , the algorithm only examines
clusters that are on or are children of the root-to-v path in the RC tree, and hence the algorithm
is a simple RC implementation. �

Invoking Theorem 1.2, we obtain the following useful corollary.

Corollary 4.3. Given a vertex-weighted undirected graph, a batch of k SubtractWeight,

JoinEdge, and QueryWeight operations can be evaluated in O (k log(kn)) work and O (logn logk )
depth.

Parallel k-approximate minimum cut. Karger describes an O (mn2/k logn) time sequential al-
gorithm for finding a cut in a weighted graph within a factor of k of the optimal cut [21]. It works
by randomly selecting edges to contract with probability proportional to their weight until a single
vertex remains, and keeping track of the component with smallest incident weight (not including
internal edges) during the contraction.

His analysis shows that in a weighted graph with minimum cut c , with probability n−2/k , the
component with minimum incident weight encountered during a single trial of the contraction
algorithm corresponds to a cut of weight at most kc , and therefore, running O (n2/k logn) trials
yields a cut of size at most kc w.h.p.

Although Karger’s contraction algorithm is easy to parallelize using a parallel minimum span-
ning tree algorithm, keeping track of the incident component weights is trickier. To overcome this
problem, we show that we can use our batch component weight algorithm to simulate the sequen-
tial contraction process efficiently. With this tool, we can determine the minimum incident weight
of a component as follows:

(1) Compute an MST with respect to the weighted random edge ordering, where a heavier
weight indicates that an edge contracts later

(2) For each edge (u,v ) ∈ G, determine the heaviest edge in the MST on the unique (u,v ) path
(3) Construct a vertex-weighted tree from the MST, where the weights are the total incident

weight on each vertex in G. For each edge (u,v ) in the MST in contraction order:
• Determine the set of edges in G such that (u,v ) is the heaviest edge on its MST path. For

each such edge identified, SubtractWeight from each of its endpoints by the weight of
the edge
• Perform JoinEdge on the edge (u,v )
• Perform QueryWeight on the vertex u

Observe that the weight of a component at the point in time when it is queried is precisely the
total weight of incident edges (again, not including internal edges). Taking the minimum over the
initial degrees and all query results therefore yields the desired answer.

Karger shows how to parallelize picking the (weighted) random permutation of the edges with
O (m log2 n) work. It can easily slightly modified to improve the bounds by a logarithmic factor as
follows. The algorithm selects the edges by running a prefix sum over the edge weights. Assuming
a total weight of W , it then picks m random integers up to W , and for each uses binary search
on the result of the prefix sum to pick an edge. This process, however, might end up picking only
the heaviest edges. Karger shows that by removing those edges the total weight W decreases by
a constant factor, with high probability. To make this efficient, we must first preprocess the edge
weights to make them polynomial in n. Gawrychowski et al. [11] describe a transformation that
affects the value of the minimum cut by no more than a constant factor and bounds all edge weights
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byO (n5). Therefore, repeating for logn rounds the algorithm will select all edges in the appropriate
weighted random order. Each round takes O (m logn) work for a total of O (m log2 n) work.

Replacing the binary search in Karger’s algorithm with a sort of the random integers and merge
into the the result of the prefix sum yields anO (m logn) work randomized algorithm. In particular,
m random numbers uniformly distributed over a range can be sorted in O (m) work and O (logn)
depth by first determining for each number which ofm evenly distributed buckets within the range
it is in, then sorting by bucket using an integer sort [35] and finally sorting within buckets.

Step 1 therefore takes O (m logn) work and O (log2 n) depth to compute the random edge per-
mutation, and O (m) work and O (logn) depth to run a parallel MST algorithm [24]. Step 2 takes
O (m logn) work and O (logn) depth using RC trees [1, 2], and Step 3 takes O (m logn) work and
O (log2 n) depth by Corollary 4.3 and the fact that the algorithm performs a batch of O (n) opera-
tions. By Karger’s analysis, trying O (n2/k logn) random contractions yields the following lemma,
and setting k = logn gives our desired corollary.

Lemma 4.4. For a weighted graph, a cut within a factor of k of the minimum cut can be found

w.h.p. in O (mn2/k log2 n) work and O (log2 n) depth.

Corollary 4.5. For a weighted graph, a cut within a factor of logn of the minimum cut can be

found w.h.p. in O (m log2 n) work and O (log2 n) depth.

4.3 Additional Tools and Lemmas

Transformation to bounded edge weights. For our algorithm to be efficient, we require that
the input graph has small integer weights. Gawrychowski et al. [11] give a transformation that
ensures all edge weights of a graph are bounded by O (n5) without affecting the minimum cut by
more than a a constant factor. For our algorithm, O (n5) would be too big, so we design a different
transformation that guarantees all edge weights are bounded by O (m logn) and only affects the
weight of the minimum cut by a constant factor.

Lemma 4.6. There exists a transformation that, given an integer-weighted graph G, produces an

integer-weighted graph G ′ no larger than G, such that G ′ has edge weights bounded by O (m logn),
and the minimum cut of G ′ corresponds to an O (1)-approximate minimum cut in G.

Proof. Let G be the input graph and suppose that the true value of the minimum cut is c . First,
we use Corollary 4.5 to obtain a O (logn)-approximate minimum cut, whose value we denote by
c̃ (c ≤ c̃ ≤ c logn). We can contract all edges of the graph with weight greater than c̃ , since they
cannot appear in the minimum cut. Let s = c̃/(2m logn). We delete (not contract) all edges with
weight less than s . Since there are at most m edges in any cut, this at most affects the value of a
cut by sm = c̃/(2 logn) ≤ c/2. Therefore, the minimum cut in this graph is still a constant factor
approximation to the minimum cut in G.

Next, scale all remaining edge weights down by the factor s , rounding down. All edge weights
are now integers in the range [1, 2m logn]. This is the transformed graph G ′. It remains to argue
that the value of the minimum cut is a constant-factor approximation. First, note that the scaling
process preserves the order of cut values, and hence the true minimum cut inG has the same value
in G ′ as the minimum cut in G ′. Consider any cut in G ′, and scale the weights of the edges back
up by a factor s . This introduces a rounding error of at most s per edge. Since any cut has at most
m edges, the total rounding error is at most sm ≤ c/2. Therefore, the value of the minimum cut in
G ′ is a constant factor approximation to the value of the minimum cut in G. �

Last, observe that this transformation can easily be performed in parallel by using a work-efficient
connected components algorithm to perform the edge contractions, as is standard (see, e.g.,
Reference [26]).
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Sampling binomial random variables. It will be helpful in the next step to be able to efficiently
sample binomial random variables. We will use the following results due to Farach-Colton et al. [9].

Lemma 4.7 (Farach-Colton et al. [9], Theorem 1). Given a positive integer n, one can sample

a random variate from the binomial distribution B (n, 1/2) in O (1) time with probability 1 − 1/nΩ(1)

and in expectation afterO (n1/2+ε )-time preprocessing for any constant ε > 0, assuming thatO (logn)
bits can be operated on in O (1) time. The preprocessing can be reused for any n′ = O (n).

We can also use the following reduction to sample B (n,p) for arbitrary 0 ≤ p ≤ 1.

Lemma 4.8 (Farach-Colton et al. [9], Theorem 2). Given an algorithm that can draw a sample

from B (n′, 1/2) in O ( f (n)) time with probability 1 − 1/nΩ(1) and in expectation for any n′ ≤ n, then

drawing a sample from B (n′,p) for any real p can be done in O ( f (n) logn) time with probability

1 − 1/nΩ(n) and in expectation, assuming each bit of p can be obtained in O (1) time.

We note, importantly, that the model used by Farach-Colton et al. assumes that random Θ(logn)-
size words can be generated in constant time. Since we only assume that we can generate random
bits in constant time, we will have to account for this with an extra O (logn) factor in the work
where appropriate. Note that this does not negatively affect the depth, since we can pre-generate as
many random words as we anticipate needing, all in parallel at the beginning of our algorithm. Last,
we also remark that although it might not be clear in their definition, the constants in the algorithm
can be configured to control the constant in the Ω(1) term in the probability, and therefore their
algorithms take O (1) time and O (logn) time w.h.p.

To make use of these results, we need to show that the preprocessing of Lemma 4.9 can be
parallelized. Thankfully, it is easy. The preprocessing phase consists of generating nε alias tables of
size O (

√
n logn). Hübschle-Schneider and Sanders [19] give a linear work, O (logn) depth parallel

algorithm for building alias tables. Building all of them in parallel means we can perform the
alias table preprocessing in O (n1/2+ε ) work and O (logn) depth. The last piece of preprocessing
information that needs to be generated is a lookup table for decomposing any integer n′ = O (n)
into a sum of a constant number of square numbers. This table construction is trivial to parallelize,
and hence all preprocessing runs in O (n1/2+ε ) work and O (logn) depth.

Lemma 4.9. Given a positive integer n, afterO (n1/2+ε ) work andO (logn) depth preprocessing, one

can sample random variables from B (n, 1/2) in O (logn) work w.h.p., and from B (n,p) in O (log2 n)
work w.h.p. The preprocessing can be reused for any n′ = O (n).

Subsampling p-skeletons. Karger defines the p-skeleton G (p) of an unweighted graph G as a
copy ofG where each edge appears with probability p. A p-skeleton therefore has O (pm) edges in
expectation. For a weighted graph, the p-skeleton is defined as the p-skeleton of the corresponding
unweighted multigraph in which an edge of weight w is replaced by w parallel multiedges. The
p-skeleton of a weighted graph therefore has O (pW ) edges in expectation, where W is the total
weight in the graph. Karger gives an algorithm for generating a p-skeleton inO (pW log(m)) work,
which relies on performing O (pW ) independent random samples with probabilities proportional
to the weight of each edge, each of which takes O (log(m)) amortized time. In Karger’s algorithm,
given a guess of the minimum cut c , he computes p-skeletons for p = Θ(logn/c ). Since no edge
of weight greater than c can be contained in the minimum cut, all such edges can be contracted,
leaving us with W ≤ mc , so the skeleton has O (m logn) edges and takes O (m log2 n) work to
compute. Since our algorithm does not know the minimum cut c yet, it uses guessing and doubling
on p, and hence has to compute several p-skeletons, soO (m log2 n) work is too slow. We overcome
this problem using binomial random variables and subsampling.

ACM Transactions on Parallel Computing, Vol. 10, No. 4, Article 18. Publication date: December 2023.



18:20 D. Anderson and G. E. Blelloch

Lemma 4.10. Given a weighted graph G with edge weights bounded by m2−ε , an initial sampling

probability p and an integer k , there exists an algorithm that can produce the skeleton graphs

G (p),G (p/2), . . . ,G (p/2k ) in O (m log2 n + km logn) work w.h.p. and O (k logn) depth.

Proof. Begin by using Lemma 4.9 and performing the required preprocessing for sampling bino-
mial random variables from B (m2−ε , 1/2), which takesO (m) work andO (logn) depth. To construct
G (p), for each edge e in the graph, sample a binomial random variable x ∼ B (w (e ),p). The skele-
ton then contains the edge e with weight x (conceptually, x unweighted copies of the multiedge e).
This results in the same distribution of graphs as if sampled using Karger’s technique, and takes
O (m log2 n) work w.h.p. and O (logn) depth. For each additional skeleton G (p ′) requested, sub-
sample from the previous skeleton by drawing binomial random variables from B (wG (2p′) (e ), 1/2),
which takes O (m logn) work w.h.p. and O (logn) depth. In total, to perform k rounds of sampling,
this takes O (m log2 n + km logn) work w.h.p. and O (k logn) depth. �

Using subsampling here is important, since otherwise it would cost O (km log2 n) work to sample
all of the desired skeleton graphs. Additionally, note that Lemma 4.6 makes it easy to satisfy the
requirement that all edge weights be bounded by m2−ε .

Parallel weighted sparse certificates. A sparse k-connectivity certificate of an unweighted graph
G = (V ,E) is a graphG ′ = (V ,E ′ ⊂ E) with at mostO (kn) edges, such that every cut inG of weight
at most k has the same weight inG ′. Cheriyan, Kao, and Thurimella [7] introduce a parallel graph
search called scan-first search, which they show can be used to generate k-connectivity certificates
of unweighted graphs. Here, we briefly note that the algorithm can easily be extended to handle
weighted graphs. The scan-first search algorithm is implemented as follows.

ALGORITHM 5: Scan-first search [7]

1: procedure SFS(G = (V ,E) : Graph, r : Vertex)
2: Find a spanning tree T ′ rooted at r
3: Find a preorder numbering to the vertices in T ′

4: For each vertex v ∈ T ′ with v � r , let b (v ) denote the least neighbor of v in preorder
5: Let T be the tree formed by {v,b (v )} for all v � r

Note that the scan-first search tree of a connected graph is always a tree. If the graph is discon-
nected, then the result is a scan-first search tree of each component. Using a linear work, low depth
spanning tree algorithm, scan-first search can easily be implemented in O (m) work and O (logn)
depth. Cheriyan, Kao, and Thurimella show that if Ei are the edges in a scan-first search forest of
the graph Gi−1 = (V ,E \ (E1 ∪ . . . Ei−1)), then E1 ∪ . . . Ek is a sparse k-connectivity certificate. A
sparse k-connectivity certificate can therefore be found in O (km) work and O (k logn) depth by
running scan-first search k times.

In the weighted setting, we treat an edge of weight w as w parallel unweighted multiedges. As
always, this is only conceptual, the multigraph is never actually generated. To compute certificates
in weighted graphs, we therefore use the following simple modification. After computing each
scan-first search tree, instead of removing the edges present fromG, simply lower their weight by
one, and remove them only if their weight becomes zero. It is easy to see that this is equivalent to
running the ordinary algorithm on the unweighted multigraph. We therefore have the following.

Lemma 4.11. A sparse k-connectivity certificate for a weighted, undirected graph can be found in

O (km) work and O (k logn) depth.

Parallelizing Matula’s algorithm. Matula [29] gave a linear time sequential algorithm for
(2+ε )-approximate edge connectivity (unweighted minimum cut). It is easy to extend to weighted
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graphs so that it runs in O (m logn logW ) time, where W is the total weight of the graph. Using
standard transformations to obtain polynomially bounded edge weights, this gives an O (m log2 n)
algorithm. Karger and Motwani [25] gave a parallel version of Matula’s unweighted algorithm that
runs inO (m2/n) work. Essentially, their version of Matula’s algorithm does the following steps as
indicated in Algorithm 6.

ALGORITHM 6: Approximate minimum cut

1: procedure Matula(G = (V ,E) : Graph )
2: if |V | = 1 then return∞
3: local d ← minimum degree in G
4: local k ← d/(2 + ε )
5: local C ← Compute a sparse k-certificate of G
6: local G ′ ← Contract all non-certificate edges of E
7: return min(d,Matula(G ′))

It can be shown that at each iteration, the size of the graph is reduced by a constant factor, and
hence there are at most O (logn) iterations. Furthermore, the work performed at each step is geo-
metrically decreasing, so the total work, using the sparse certificate algorithm of Cheriyan, Kao,
and Thurimella [7] is O (dm) and the depth is O (d log2 n), where d is the minimum degree of G.

Here, we give a slight modification to this algorithm that makes it work on weighted graphs
in O (dm log(W /m)) work and O (d logn logW ) depth, where d is the minimum weighted degree
of the graph. To extend the algorithm to weighted graphs, we can replace the sparse certificate
routine with our modified version for weighted graphs, and replace the computation of d with
the equivalent weighted degree. By interpreting an edge-weighted graph as a multigraph where
each edge of weight w corresponds to w parallel multiedges, we can see that the algorithm is
equivalent. To argue the cost bounds, note that like in the original algorithm where the size of
the graph decreases by a constant factor each iteration, the total weight of the graph must de-
crease by a constant factor in each iteration. Because of this, it is no longer true that the work
of each iteration is geometrically decreasing. Naively, this gives a work bound of O (dm log(W )),
but we can tighten this slightly as follows. Observe that after performing log(W /m) iterations,
the total weight of the graph will have been reduced to O (m), and hence, like in the sequential
algorithm, the work must subsequently begin to decrease geometrically. Hence the total work
can actually be bounded by O (dm log(W /m) + dm) = O (dm log(W /m)). We therefore have the
following.

Lemma 4.12. Given a weighted graph with minimum weighted-degree d and total weight W ,

an O (1)-approximate minimum cut can be found in O (dm log(W /m)) work and O (d logn logW )
depth.

4.4 Parallel O (1)-approximate Minimum Cut

We have finally amassed the ingredients needed to produce a parallelO (1)-approximate minimum
cut algorithm. Well, we need one more trick, unsurprisingly due to Karger. To produce the sampled
skeleton graph, Karger’s algorithm chooses the sampling probability inversely proportional to the
weight of the minimum cut, which paradoxically is what we are trying to compute. This issue is
solved by using guessing and doubling. The algorithm guesses the minimum cut and computes the
resulting approximation. It can then use Karger’s sampling theorem (Theorem 6.3.1 and Lemma
6.3.2 of Reference [20]) to verify whether the guess was too high.
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Lemma 4.13 (Karger [20]). Let G be a graph with minimum cut c and let p = Θ((logn)/ε2c ).
Then w.h.p. the minimum cut in G (p) has value in (1 ± ε )pc .

Lemma 4.14 (Karger [20]). w.h.p., if G (p) is constructed and has minimum cut ĉ = Θ((logn)ε2)
for ε ≤ 1, then the minimum cut c in G has value in (1 ± ε )ĉ/p.

If the true minimum cut is c , then the correct sampling probability for Karger’s algorithm is p =
Θ((logn)ε2c ), which produces a skeleton cut of size ĉ = Θ((logn)/ε2) w.h.p. If the algorithm makes
a guessC > 2c with corresponding probability P = Θ((logn)/ε2C ), then Lemma 4.14 says that the
minimum cut in the skeleton graph is less than ĉ w.h.p. The algorithm can therefore double the
guess for P and try again, until the minimum cut in the skeleton is larger than ĉ , at which point
we know that the P-skeleton approximates the minimum cut within a factor ε . To perform these
steps efficiently, our algorithm does the following:

(1) Use Corollary 4.5 to compute a logn-approximate minimum cut value C in O (m log2 n)
work and O (log2 n) depth.

(2) Transform the graph using Lemma 4.6 to ensure that all weights are bounded by O (m logn)
while retaining anO (1)-approximate minimum cut inO (m log2 n) work andO (log2 n) depth.

(3) Sample the skeleton graphs G (log2 n/C ),G (log2 n/(2C )), . . . ,G (logn/C ) using Lemma 4.10.
This is log logn ≤ logn skeletons, and hence this takes O (m log2 n) work w.h.p. and
O (log2 n) depth.

(4) For each skeleton graph:
• Compute a sparse Θ(logn) certificate of the skeleton graph. This takes O (m logn) work

and O (log2 n) depth by Lemma 4.11.
• Compute an O (1)-approximate minimum cut in the Θ(logn) certificate using Matula’s

algorithm (Lemma 4.12). Since the certificate guarantees that the total weight is at most
O (n logn) and hence that the minimum weighted degree is at most O (logn), this takes
O (m logn log logn) work and O (log2 n log logn) depth.

Since there are O (log logn) skeleton graphs, the total work done by the final step is at most
O (m logn(log logn)2), which is at most O (m log2 n), and the depth is O (log3 n). The correctness
of the algorithm follows from the sampling theorem (Lemma 4.14) and Karger’s discussion [20].
Finally, we can conclude the following result.

Lemma 4.15. Given a weighted, undirected graph, the weight of an O (1)-approximate minimum

cut can be computed w.h.p. in O (m log2 n) work and O (log3 n) depth.

5 FINDING MINIMUM 2-RESPECTING CUTS

We are given a connected, weighted, undirected graph G = (V ,E) and a spanning tree T . In this
section, we will give an algorithm that finds the minimum 2-respecting cut of G with respect toT
in O (m logn) work and O (log3 n) depth.

Our algorithm, like those that came before it, finds the minimum 2-respecting cut by consider-
ing two cases. We assume that the treeT is rooted arbitrarily. In the first case, we assume that the
two tree edges of the cut occur along the same root-to-leaf path, i.e., one is a descendant of the
other. This is called the descendant edges case. In the second case, we assume that the two edges
do not occur along the same root-to-leaf path. This is the independent edges case.

Since we are going to use RC trees, we require that G have bounded degree. Note that any
arbitrary degree graph can easily be ternarized by replacing high-degree vertices with cycles of
infinite weight edges, resulting in a graph of maximum degree three with the same minimum cut,
and only a constant-factor larger size in terms of edges, which our bounds depend on.
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5.1 Descendant Edges

We present our minimum 2-respecting cut algorithm for the descendant edges case. Let T be a
spanning tree of a connected graph G = (V ,E) of degree at most three, and root T at an arbitrary
vertex of degree at most two. The rooted tree is therefore a binary tree.

We use the following fact. For any tree edge e ∈ T , let Fe denote the set of edges (u,v ) ∈ E
(tree and non-tree) such that the u to v path in T contains the edge e . Then the weight of the cut
induced by a pair of edges {e, e ′} in T is given by

w (Fe ΔFe ′ ) = w (Fe ) +w (Fe ′ ) − 2w (Fe ∩ Fe ′ ),

where Δ denotes the symmetric difference between the two sets. For each tree edge e , our algorithm
seeks the tree edge e ′ that minimizes w (Fe ΔFe ′ ), which is equivalent to minimizing

w (Fe ′ ) − 2w (Fe ∩ Fe ′ ).

To do so, it traverses T from the root while maintaining weights on a tree data structure that
satisfies the following invariant:

Invariant 1 (Current Subtree Invariant). When visiting e = (u,v ), for every edge e ′ ∈
Subtree(v ), the weight of e ′ in the dynamic tree is w (Fe ′ ) − 2w (Fe ∩ Fe ′ ).

The initial weight of each edge e is therefore w (Fe ). Maintaining this invariant as the algorithm
traverses the tree can then be achieved with the following observation. When the traversal de-
scends from an edge p = (w,u) to a neighboring child edge e = (u,v ), the following hold for all
e ′ ∈ Subtree(v ):

(1) (Fe ∩ Fe ′ ) ⊇ (Fp ∩ Fe ′ ), since any path that goes through p and e ′ must pass through e .
(2) (Fe ∩ Fe ′ ) \ (Fp ∩ Fe ′ ) are the edges (x ,y) ∈ Fe ′ such that e is a top edge of the path x − y in

T (i.e., e is on the path from x to y in T , but the parent edge of e is not).

Therefore, to maintain the current subtree invariant, when the algorithm visits the edge e , it need
only subtract twice the weight of all x–y paths that contain e as a top edge. This can be done
efficiently by precomputing the sets of top edges. There are at most two top edges for each path
x–y, and they can be found from the LCA of x and y in T . We need not consider tree edges, since
they will never appear in Fe ′ . By maintaining the aforementioned invariant, the solution follows
by taking the minimum value of w (Fe ) +QuerySubtree(v ) for all edges e = (u,v ) during the
traversal. As described, this algorithm is entirely sequential, but it can be parallelized using our
batched mixed operations on trees algorithm (Corollary 3.3).

The operation sequence can be generated as follows. First, the weights w (Fe ) for each edge can
be computed using the batched mixed operations algorithm (Corollary 3.3) where each edge (u,v )
of weight w creates an AddPath(u,v,w) operation, followed by a QueryEdge(e) for every edge
e ∈ T . This takes O (m logn) work and O (log2 n) depth. The LCAs required to compute the sets of
top edges can be computed using the parallel LCA algorithm of Schieber and Vishkin [36] inO (m)
work and O (logn) depth in total. By computing an Euler tour of the tree T (an ordered sequence
of visited edges) beginning at the root, the order in which to perform the tree operations can be
deduced in O (n) work and O (logn) depth. Each edge in the Euler tour generates an AddPath
operation for each of its top edges, followed by a QuerySubtree operation. Note that each edge
is visited twice during the Euler tour. The second visit corresponds to negating the AddPath
operations from the first visit. The solution is then the minimum result of all of the QuerySubtree
operations. Since there are a constant number of top edges per path, and O (m) paths in total, the
operation sequence has length O (m). Using Corollary 3.3, we arrive at the following.
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Theorem 5.1. Given a weighted, undirected graph G and a rooted spanning tree T , the minimum

2-respecting cut of G with respect to T such that one of the cut edges is a descendant of the other can

be computed in in O (m logn) work and O (log2 n) depth w.h.p.

5.2 Independent Edges

The independent edge case is where the two cutting edges do not fall on the same root-to-leaf
path. To solve the independent edges problem, we use the framework of Gawrychowski et al. [11],
which is to decompose the problem into a set of subproblems, which they call bipartite problems.
The key challenge in parallelizing the solution to the bipartite problem is dealing with the fact
that the resulting trees might not be balanced. The algorithm of Gawrychowski et al. relies on
performing a biased divide-and-conquer search guided by a heavy-light decomposition [18], and
then propagating results up the trees bottom up. Since the trees may be unbalanced, this cannot
be easily parallelized. Our solution is to use the recursive clustering of RC trees to guide a divide
and conquer search in which we can maintain all of the needed information on the clusters.

Definition 5.2 (The Bipartite Problem). Given two weighted rooted trees T1 and T2 and a set of
weighted edges that cross from one to the other, L = {(u,v ) : u ∈ T1,v ∈ T2}, the bipartite problem
is to select e1 ∈ T1 and e2 ∈ T2 with the goal of minimizing the sum of the weight of e1 and e2 plus
the weights of all edges (v1,v2) ∈ L such that v1 is in the subtree rooted at the bottom endpoint
of e1 and v2 is in the subtree rooted at the bottom endpoint of e2. The size of a bipartite problem
is the size of L plus the size of T1 and T2.

Gawrychowski et al. observe that if T1 and T2 are edge-disjoint subtrees of T , then, assigning
weights ofw (Fe ) to each tree edge and weights of −2w (e ) to each edge non-tree, the solution to the
bipartite problem is the minimum 2-respecting cut such that e1 ∈ T1 and e2 ∈ T2. The independent
edges problem is then solved by reducing it to several instances of the bipartite problem, and taking
the minimum answer among all of them. We will show how to generate the bipartite problems
efficiently, and how to solve them efficiently, both in parallel.

5.2.1 Generating the Bipartite Problems. The following parallel algorithm generates O (n) in-
stances of the bipartite problem with total size at most O (m). For each edge e in T , the algo-
rithm first assigns them a weight equal to w (Fe ). Now consider all non-tree edges, i.e., all edges
e ∈ E, e � T , group them by the LCA of their endpoints in T , and assign them a weight of −2w (e ).
This forms a partition of the O (m) edges of G, each group identified by a vertex. Each vertex in T
conversely has an associated (possibly empty) list of non-tree edges.

For each vertex v inT with a non-empty associated list of edges, create a compressed path tree
ofT with respect to the endpoints of the associated edges andv . Finally, for each such compressed
path tree, root it atv (the common LCA of the edge endpoints). The bipartite problems are now gen-
erated as follows. For each vertexv with a non-empty list of non-tree edges, and the corresponding
compressed path treeTv , consider the children x ,y ofv inTv . The bipartite problem consists ofT1,
which contains the edge (v,x ) and the subtree of Tv rooted at x , and likewise, T2, which contains
the edge (v,y) and the subtree of Tv rooted at y, and L, the associated list of non-tree edges. See
Figure 5 for an illustration.

Lemma 5.3. Given a tree and a set of non-tree edges, the corresponding bipartite problems can be

generated in O (m logn) work and O (log2 n) depth w.h.p.

Proof. The edge weight values can be computed in the same way as before using our batched
mixed operations on trees algorithm in O (m logn) work and O (log2 n) depth. LCAs can be com-
puted using the parallel LCA algorithm of Schieber and Vishkin [36] in O (m) work and O (logn)
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Fig. 5. The bipartite problems are generated by compressing the input tree with respect to the endpoints of

the edges whose endpoints share an LCA, then splitting the tree into the left and right halves.

depth. Grouping the edges by LCA can be achieved using a parallel sorting algorithm inO (m logn)
work andO (logn) depth. Together, these steps takeO (m logn) work andO (log2 n) depth. For each
group, computing the compressed path tree takes O (mi log(1 + n/mi )) ≤ O (mi logn) work and
O (log2 n) depth w.h.p., where mi is the number of edges in the group. Performing all compressed
path tree computations in parallel and observing that the edge lists of each vertex are a disjoint par-
tition of the edges of G, this takes at most O (m logn) work and O (log2 n) depth in total w.h.p. �

It remains only for us to show that the bipartite problems can be efficiently solved in parallel.

5.2.2 Solving the Bipartite Problems. Our solution is a recursive algorithm that utilizes the re-
cursive cluster structure of RC trees. Recall that RC trees consist of unary and binary clusters (and
the nullary cluster at the root, but this is not needed by our algorithm). Since the bipartite problems
are constructed such that treesT1 andT2 always have a root with a single child, the root cluster of
their RC trees consists of exactly one unary cluster.

High-level idea. Recall that the goal is to select an edge e1 ∈ T1 and an edge e2 ∈ T2 that minimizes
their costs plus the cost of all edges (u,v ) ∈ L such thatu is a descendant of e1 andv is a descendant
of e2. Our algorithm first constructs an RC tree of T1, and weights the edges in T1 and T2 by their
cost. At a high level, the algorithm then works as follows. Given a binary cluster c1 of T1, the
algorithm maintains weights on T2 such that for each edge e2 ∈ T2, its weight is the weight of e2

in the original tree plus the sum of the weights of all edges (u,v ) ∈ L such that u is a descendant
of the bottom boundary vertex of c1, and v is a descendant of e2. This implies that for a binary
cluster of T1 consisting of an isolated edge e1 ∈ T1, the weights of each e2 ∈ T2 are precisely such
thatw (e1) +w (e2) is the value of selecting {e1, e2} as the solution. This idea leads to a very natural
recursive algorithm. We start with the topmost unary cluster of T1 and proceed recursively down
the clusters ofT1, maintainingT2 with weights as described. When the algorithm recurses into the
top binary child of a cluster, it must add the weights of all (u,v ) ∈ L that are descendants of that
cluster to the corresponding paths in T2. If recursing on the bottom binary subcluster of a binary
cluster, then the weights on T2 are unchanged. When recursing on a unary cluster, since it has
no descendants, the algorithm uses the original weights of T2. Once the recursion hits a binary
cluster that consists of a single edge e1, it can return the solution w (e1) + w (e2), where e2 is the
lightest edge with respect to the current weights on T2. Last, to perform this process efficiently,
the algorithm compresses, using the compressed path tree algorithm [4], the tree T2 every time it
recurses, keeping only the vertices that are endpoints of the crossing edges that touch the current
cluster of T1.

Implementation. We provide pseudocode for our algorithm in Algorithm 7. Given a bipartite
problem (T1,T2,L), we use the notation L(C ) to denote the edges of L limited to those that are
incident on some vertex in the cluster C . Furthermore, we use VT2 (L(C )) to denote the set of
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vertices given by the endpoints of the edges in L(C ) that are inT2. The pseudocode does not make
the parallelism explicit, but all that is required is to run the recursive calls in parallel. The proce-
dure takes as input a cluster C of T1, a compressed version of T2 with its original weights, and T ′2 ,
the compressed version ofT2 with updated weights. At the top level, it takes the cluster represent-
ing all of T1 for the first argument, and the cluster for all of T2 for the second and third argument.
The Compress function compresses the given tree with respect to the given vertex set and its root,
and returns the compressed tree still rooted at the same root. AddPaths(S) takes a set S ⊂ L of
edges and for each one, adds w (u,v ) to the root-to-v path, where v ∈ T2, returning a new tree.

ALGORITHM 7: Parallel bipartite problem algorithm

1: procedure Bipartite(C , T2, T ′2 , L)
2: if C = {e} then

3: return w (e ) + LightestEdge(T ′2 )
4: else

5: Tcmp ← T2.Compress(VT2 (L(C .t )))
6: T ′′2 ← T ′2 .AddPaths(L(C ) \ L(C .t ))
7: T ′′cmp ← T ′′2 .Compress(VT2 (L(C .t )))
8: ans← Bipartite(C .t , Tcmp, T ′′cmp, L(C .t ))
9: for each cluster C ′ in C .U do

10: Tcmp ← T2.Compress(VT2 (L(C ′)))
11: ans← min(ans, Bipartite(C ′, Tcmp, Tcmp, L(C ′)))

12: if C is a binary cluster then

13: Tcmp ← T2.Compress(VT2 (L(C .b)))
14: T ′cmp ← T ′2 .Compress(VT2 (L(C .b)))
15: ans← min(ans, Bipartite(Tcmp, T ′cmp, L(C .b)))

16: return ans

Since this algorithm creates many copies of T2, we must ensure that we can still identify and
locate a desired vertex given its label. One simple way to achieve this is to build a static hashtable
alongside each copy of T2 that maps vertex labels to the instance of that vertex in that copy.

An ingredient that we need to achieve low depth is an efficient way to update the weights in
T2 when adding weights to a collection of paths. Although RC trees support batch-adding weights
to paths, the standard algorithm does not meet our cost requirements. This is easy to achieve in
linear work and O (logn) depth by propagating the total weight of all updates up the clusters, and
then propagating back down the tree, the weight of all updates that are descendants of the current
cluster. It remains to analyze the cost of the Bipartite procedure.

Theorem 5.4. A bipartite problem of sizem can be solved inO (m logm) work andO (log3m) depth

w.h.p.

Proof. First, since all recursive calls are made in parallel and the recursion is on the clusters of
T1, the number of levels of recursion is O (logm) w.h.p. We will show that the algorithm performs
O (m) work in total at each level, inO (log2m) depth w.h.p. Observe first that at each level of recur-
sion, the edges L for each call are a disjoint partition of the non-tree edges, since each recursive
call takes a disjoint subset. We will now argue that each call does work proportional to |L|. Since
T2 and T ′2 are both compressed with respect to L, their size is proportional to |L|. AddPaths takes
linear work in the size ofT2 andO (logm) depth, and hence takesO ( |L|) work andO (logm) depth.
Compress(K ) takesO ( |K | log(1+ |T2 |/|K |)) ≤ O ( |K |+ |T2 |) work andO (log2m) depth w.h.p. Since
compression is with respect to some subset of L, all of the compress operations take O ( |L|) work
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and O (log2m) depth w.h.p. In total, this is O ( |L|) work in O (log2m) depth w.h.p. at each level for
each call. Since the Ls at each level are a disjoint partition of the non-tree edges, the total work
per level is O (m) w.h.p., and hence the desired bounds follow. �

Since there are O (n) bipartite problems of total size O (m), solving them all in parallel yields the
following, which, when combined with Theorem 5.1, proves Theorem 1.3.

Theorem 5.5. Given a weighted, undirected graph G and a rooted spanning tree T , the minimum

2-respecting cut of G with respect to T such that the cut edges are independent can be computed in

O (m logn) work and O (log3 n) depth w.h.p.

Combining Theorem 4.1 with Theorem 1.3 on each of the O (logn) trees in parallel proves
Theorem 1.1.

6 CONCLUSION

We present a randomized O (m log2 n) work, O (log3 n) depth parallel algorithm for minimum cut.
It is the first parallel minimum cut algorithm to match the work bound of the best sequential
algorithm, making it work-efficient. Finding a faster parallel algorithm for minimum cut would
therefore entail finding a faster sequential algorithm. It remains an open problem to find a deter-
ministic algorithm for minimum cut, even a sequential one, that runs in O (m polylogn) time.
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