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ABSTRACT
As a decentralized training approach, federated learning enables
multiple organizations to jointly train a model without exposing
their private data. This work investigates vertical federated learn-
ing (VFL) to address scenarios where collaborating organizations
have the same set of users but with different features, and only one
party holds the labels. While VFL shows good performance, prac-
titioners often face uncertainty when preparing non-transparent,
internal/external features and samples for the VFL training phase.
Moreover, to balance the prediction accuracy and the resource con-
sumption of model inference, practitioners require to know which
subset of prediction instances is genuinely needed to invoke the VFL
model for inference. To this end, we co-design the VFL modeling
process by proposing an interactive real-time visualization system,
VFLens, to help practitioners with feature engineering, sample se-
lection, and inference. A usage scenario, a quantitative experiment,
and expert feedback suggest that VFLens helps practitioners boost
VFL efficiency at a lower cost with sufficient confidence.

CCS CONCEPTS
• Human-centered computing → Visualization; Human com-
puter interaction (HCI); Interaction design.
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1 INTRODUCTION
There is hope that all industries will benefit from big data-driven
artificial intelligence (AI), especially after the huge success of Al-
phaGo. However, with the exception of a few industries, most fields
lack sufficient data or have data quality issues to support the con-
struction of a reliable and robust machine learning (ML) model. At
the same time, companies are reluctant to share or aggregate their
valuable data in a centralized manner due to industry competition
and privacy and security concerns, leaving the data often existing
as a set of isolated data silos. As a viable decentralized solution that
can potentially break down barriers between data sources while
preserving privacy and security, federated learning (FL) enables
users to collaboratively learn an ML model while keeping all data
that may contain private information on their local device [5, 52].
Depending on how the data is partitioned between parties and
application scenarios, FL can be divided into two main categories,
namely horizontal FL (HFL) and vertical FL (VFL) [52]. The focus
of this study is VFL, also known as feature-based FL. VFL can be
applied to situations where two datasets have considerable overlap
in sample IDs but differ in feature space [11]. A typical example
of VFL is a collaboration between an e-commerce retail company
and a financial institution in the same city. Their customer set
may contain the majority of residents in the area; therefore, the
intersection of their customer spaces is huge. However, since the
financial institution records its customers’ income, spending be-
havior, and credit rating, while the e-commerce retailer retains its
customers’ browsing and purchasing history, their feature spaces
are quite different. In this case, VFL allows both parties to train
a joint ML model for product purchase prediction based on cus-
tomer and product information under privacy-preserving security
conditions (Figure 1).
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Figure 1: Suppose two parties, i.e., a local financial institution (a) and an e-commerce retail company (b) want to co-build a ML
model for product purchase prediction. Only the financial institution has the label Y: loan or not and neither party wants to
expose their features X. The two parties has an overlapping sample IDs, i.e., user id:1 – 4. The target is to establish a jointmodel
under the condition of protecting privacy and the effect of the joint model is better than that of unilateral data modeling.

Although VFL has shown good performance in scenarios such
as financial risk management [13, 51, 60], healthcare [44], and e-
commerce ad recommendation [50], real world practitioners have
encountered the following challenges when trying to use VFL for
their application domains [24]: 1) Uncertainty in sample selec-
tion for training. Traditional VFL practitioners mainly utilize two
methods to prepare for the VFL training phase. First, when there is
not much available data with labels, they may utilize all the overlap-
ping samples with labels to train a joint VFL model for convenience.
However, it is well known that the training speed of FL is much
slower than that of the local model due to the design of data en-
cryption and communication mechanisms. In some cases, utilizing
all overlapping samples with labels for VFL model training can
lead to much longer training time. Second, when the amount of
data available for training is large, they may select some labeled
data samples for training and evaluate the model based on gen-
eral metrics such as accuracy, loss, and mAP. As a slang expression
in classical ML terminology, ‘ ‘garbage in, garbage out” [20] indi-
cates the samples used for prediction should have a high-quality
match with their specific jointly trained VFL models. Although the
role of interactive data iteration in ML is emphasized and domain
experts acknowledge that “data samples need to have appropriate
signals for the model to be useful” [20], there is little support for
their fine-tuning of training data samples in VFL scenarios. Both
practices rely heavily on feedback from VFL model performance for
further evaluation, which is sometimes too time-consuming and
expensive. In particular, things get worse when the communica-
tion of the VFL training process is not so stable, as domain experts
have to repeatedly re-upgrade the model training phase by trial
and error. Therefore, an intuitive sample data evolution interaction
mechanism that allows domain experts to compare the data char-
acteristics and performance of different sample training datasets
in a VFL scenario is necessary. 2) Non-transparent feature se-
lection and assessment. Successful ML applications require an

iterative process to create models that provide the desired per-
formance. One of the key processes involves feature engineering
and in this study, we focus on feature selection and assessment.
However, unlike traditional centralized ML modeling or HFL in
which all data features are available and easy to assess, in VFL,
participants update only their internal feature parameters during
training, and external features from other parties are not visible to
them due to the design of privacy-preserving mechanisms, which
poses unique challenges for internal/external feature selection and
assessment. That is, in addition to selecting the necessary internal
features or transforming the original internal features into other
powerful alternatives, practitioners are exploring how to assess
external features from other parties [39, 45]. However, the lack of
comprehensive consideration of the contribution of internal and
external features while protecting privacy still undermines the use
of VFL in production. 3) Costly and time-consuming inference.
The inference phase of VFL modeling requires online coordination
between two (or more) parties to accomplish the inference task,
which inevitably poses a challenge to computational resources and
raises costs. According to our collaborating domain experts, the
cost and deployment efficiency of federated modeling are issues
that require rational planning for practical applications, and the
use of homomorphic encryption in VFL can lead to a significant re-
duction in the computational speed and information transfer speed
of federated modeling compared to centralized ML modeling [22].
To solve this problem, in addition to optimizing the computational
modeling process, another intuitive approach is to reduce the over-
all data volume. That is, not all samples to be predicted need to be
truly predicted with the help of external features from other parties.
For example, those samples in which practitioners have relatively
high confidence in their labels do not need to be predicted by invok-
ing an online trained VFL model because, e.g., the sample features
are poor, and these samples can be safely ignored. Thus, how to
visually help domain experts distinguish samples with different
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confidence in their labels is a desirable capability for real-world
VFL deployments.

In this study, we co-design the modeling process to help VFL
practitioners improve the efficiency of VFL modeling from the
perspective of visualization.We first conduct an observational study
of the current practices of collaborating domain experts to identify
their main needs and concerns regarding VFL applications. Then,
we streamline the analysis pipeline of feature and sample spaces and
propose an interactive visualization system called VFLens. VFLens
helps domain experts to interactively participate in feature selection,
assessment, and sample data iteration processes before the VFL
model training phase, in feature interpretation after the VFL model
training phase, and in data sample selection during the VFL model
inference phase. A case study and expert feedback confirm the
efficacy of VFLens. Our main contributions are summarized below.

• We describe the problem in the VFL context from the perspec-
tive of feature and sample space through an observational
study and in-depth discussions of design requirements with
VFL domain experts.

• We co-design the VFL modeling process to support domain
experts to interactively participate in the data iteration, fea-
ture selection and assessment, and sample prediction pro-
cesses. To the best of our knowledge, VFLens is the first such
effort in the VFL scenario.

• We evaluate VFLens through a usage scenario, a quantitative
experiment and expert interviews.

2 RELATEDWORK
The literature that overlaps this work can be categorized into four
groups, namely, federated learning, visualizations for federated learn-
ing, feature selection and assessment, and sample selection in machine
learning.

2.1 Federated Learning
Federated learning was first proposed by Google, which prevents
data from being transmitted by distributing model training to each
mobile terminal [5]. Later, they released the first commercial FL
application, GBoard [17], which uses a recursive neural language
model to predict the next word in a keyboard application. GBoard
allows each local mobile device to train the model using local data
from the same distributed ML model. The global model can be
updated by averaging the model parameters collected over all lo-
cal models. Along the same lines, many studies have reshaped
different ML models into a federated framework, including deci-
sion trees [31, 58], linear/logistic regression [32, 36], and neural
networks [46, 56]. These works are categorized as HFL because
the clients share the same feature space but differ in the sample
space. Unlike HFL, VFL is applicable to scenarios where we have
many overlapping instances but few overlapping features [51]. For
example, an insurance company and an online retailer in a local
city have many overlapping users, but each has its own feature
space. VFL “merges” features and uses homomorphic encryption to
protect the data privacy of the participating parties, and requires
a more sophisticated mechanism to decompose the loss function
of each party. This study focuses on VFL, “virtually aggregation”
of different features to compute training losses and gradients in

a privacy-preserving manner, and jointly build an ML model [11]
with data from both parties.

2.2 Visualizations for Federated Learning
Researchers from academia and industry are using visualizations to
demonstrate, explain, and monitor the process of federated learn-
ing. For example, in industry, Lenovo has simulated the industrial
revolution in factories by demonstrating the process of horizontal
federated learning to predict the internal pressure of hardware [38].
Similarly, Cloudera Fast Forward Labs released an interactive sim-
ulation prototype, Turbofan Tycoon, which takes advantage of vi-
sualization to examine the federated model and predict when a
turbofan will fail [35]. FATEBoard1 utilizes dashboard visualizations
to display modeling logs, metrics, and evaluation results, including
information on data sets, job status, computational plots, and model
output [12]. While FATEBoard can help domain experts understand
the ranking of features and the performance of models, it does
not support detailed and interactive inspection of the sample and
feature spaces. On the other hand, in academia, Wei et al. [47] de-
veloped a game to demonstrate the superiority of HFL and built a
visualization prototype to help understand the operation of HFL.
However, this work assumes that client-side data can be witnessed
by the server-side. Li et al. [30] proposed HFLens, which strictly
follows a data privacy-preserving design and supports comparative
visual interpretation at the overview, communication round, and
client instance levels. HFLens facilitates the investigation of the
overall HFL process involving all clients, the correlation analysis
of client information in one or different communication rounds,
the identification of potential anomalies, and the evaluation of the
contribution of each HFL client. However, the pain point for VFL
is not the anomaly detection like HFLens, because for VFL there
are generally not as many data collaborators as for HFL, and the
collaborators partnerships with common interests. In this work, we
do not focus on the operational process of FL, but rather improve
the efficiency of VFL modeling by involving domain experts in the
sample and feature space.

2.3 Feature Selection and Assessment
There is a large amount of existing work related to feature selec-
tion [4, 6], which has two main difficulties. First, a large number
of features are used in the process of building machine learning
models; however, if several features are linearly correlated with
each other, many of them will be redundant, which adds additional
computational effort and leads to more complex parameters. Second,
common feature analysis methods use feature correlation metrics,
but correlation metrics cannot measure nonlinear relationships.
Isabelle et al. [15] performed a survey of automatic feature selec-
tion methods. The authors abstracted the core problem of feature
selection, which is to find a minimal subset of features from a large
number of features. The authors also argued that there are many
options for feature selection and that there is no one universal and
unique solution. There are other types of feature selection methods,
such as wrappers [25], which iteratively eliminate features by re-
gression or classification models to find the ideal subset of features.
There are also metric-based methods [2, 14], where users pick the
1https://fate.fedai.org/
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top 𝑘 best features. However, they also suffer from the problems de-
scribed earlier. As for feature assessment, it will be different in VFL
modeling and traditional centralized machine learning modeling.
In VFL, Host B does not have direct access to the features of Guest
A, so in practice, the feature importance of Guest A is obtained
by encrypting the IV values [8, 9, 57] (Host B and Guest A will be
introduced in subsection 4.1). In traditional centralized machine
learning modeling, there are many methods to calculate feature
importance, such as impurity-based feature importance [41] and
permutation feature importance [1]. In this study, we implement
several different types of alternative feature selection techniques
for choosing the internal features of Host B. We allow the user
to decide whether the feature ranking is desirable or whether to
focus on one of the features, while for the external features of Guest
A, we use the encrypted IV values [8, 9, 57] to obtain the feature
importance metrics.

2.4 Sample Selection in Machine Learning
As one of the most critical infrastructures for building AI sys-
tems [16], data has a significant impact on the performance, fairness,
robustness, and scalability of AI systems. However, data is often the
“the least motivated aspect, considered ‘operational’” relative to the
lionized work in building new models and algorithms [16, 34, 40].
Akrong et al. [40] reported on data practices of high-risk AI by
interviewing AI practitioners around the world. They identified
compound events of adverse and downstream effects caused by data
problems named data cascades. Yee et al. [53] proposed Faceted
browsing that allows users to use metadata to extract subsets of
data that share desired attributes. The rank-by-feature framework
allows users to examine low-dimensional projections of multidi-
mensional data based on their statistics [42]. Hohman et al. [20]
proposed CHAMELEON, which allows users to compare data fea-
tures, training/test splits, and performance of multiple data ver-
sions. Facets2 helps developers examine ML datasets, including
training/test segmentation, observe feature shapes, and explore in-
dividual observations. For data selection in FL, recent studies select
relevant data distributively based on a benchmark model prior to
training, regardless of other data quality factors or batch composi-
tion during training. Li et al. [26] provided a systematic analysis of
the underlying data factors that affect FL model performance and
propose an overall design to privately and efficiently select high
quality data samples. However, the focus of these studies is on HFL.
Inspired by their work, we emphasize the importance of training
data in VFL and propose several interactive visualization schemes
to facilitate sample selection prior to training of VFL models. In
VFL inference, we separate the samples to be predicted based on
the different confidence levels of their labels. To the best of our
knowledge, VFLens is the first attempt in this regard.

3 OBSERVATIONAL STUDY
3.1 Background
To understand the application of VFL in practice, we worked with a
team of domain experts from a collaborating local financial and AI
organization, including a FL project manager (E1, male, age: 31), a

2https://pair-code.github.io/facets/

VFL researcher (E2, male, age: 33), two VFL engineers (E3, male, age:
27, E4, male, age: 28), and one business contact (E5, female, age: 29).
A large part of their work is to provide federated learning (both HFL
and VFL) solutions to clients to meet their specific business needs.
They shared with us a recent encounter in which they designed and
developed a precision marketing strategy in a real estate scenario.
Notably, the real estate company wanted to leverage the features of
other parties through VFL to jointly train an ML model to predict
whether a particular customer would come to visit the real estate
sales office and understand the customer’s characteristics. By taking
this jointly trained VFL model, the real estate company can find
more suitable customers from a large pool of other customers who
may visit the sales office. An illustrative pipeline for this case is
shown in Figure 2.

In this case of the approval and start-up phases of VFL, the ex-
perts encountered several problems. First, the domain experts had to
identify training samples from an overlapping set of users between
the real estate (host) and the external data provider (guest, i.e., an
online e-commercial and financial company). Although the total
amount of available training samples has reached about 25, 000, not
all of the samples are good enough. Most records were collected
from field sales representatives and describe a rough profile of cus-
tomer characteristics such as ‘ ‘gender”, ‘ ‘age”, ‘ ‘career”, ‘ ‘income
level”, ‘ ‘marital status”, and ‘ ‘family structure”. E1 commented that
“there may be some outliers in the training samples because sometimes
salepeople cannot guarantee the veracity of all characteristics.” E3
said that “we are not experts in real estate,” so he did not have a clear
idea about how to identify the right sample of customers for model
training. Besides the local feature aspect, the limited computational
resources and communication bandwidth between the host and
the guest is another issue in the modeling process. In other words,
dumping all overlapping training samples to train the VFL model
is unrealistic because it may consume a lot of communication re-
sources. Considering the characteristics of training samples and
resources, domain experts would like to get some intuitive tips on
how to select suitable and sufficient training samples. Second, when
discussing how model knowledge can be used to guide their offline
marketing strategies when contacting potential customers, E1 and
E5 said, “we should at least know what the model has learned so that
we can understand the characteristics of customers who are likely to
visit our real estate sales office.” Third, when it comes to inference
and prediction using the trained VFL model, the initial expectation
of the business requirement was that predictions needed to be made
for all contacts in the real estate pool to obtain the likelihood that
they would visit the sales office. However, the reality is that the
pool is quite large, i.e., about 100, 000 and each prediction requires
a paid call to the online VFL model. “If the model predicts all the
customers in the pool, the budget may not cover this cost.” said E4,
“can we just predict those customers who need the help of the VFL
model without running all of them?”

3.2 Requirement Analysis
To ensure that our approach was in line with the tasks and re-
quirements, we interviewed all experts (E1 – E5) to identify their
main concerns about improving VFL modeling efficiency and have
summarized their requirements below.
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Figure 2: A case the experts encountered: designing and developing a precision marketing strategy in a real estate scenario.
(1) The real estate company provides training samples from one sales office and (2) the samples are divided into two parts:
those who have visited the sales office and those who have no interest in visiting the sales office. (3) The real estate company
(host) jointly trains a VFL model with the data from an external data provider (guest). (4) The real estate company predicts
whether a particular customer will visit the sales office from its large customer pool. (5) The real estate company learns the
characteristics of its potential buying customers to guide offline telemarketing.

R.1 Evaluate the quality of the training samples from the
host. The first pressing problem that experts encounter when build-
ing VFL models is to prepare sufficiently good training samples.
While previous studies have proposed various methods to support
data iteration for better model training [20, 40, 42, 53], there is
little support for this in VFL. E1 and E5 had little work experience
in ML and, given the specific business requirements in the VFL
scenario, they felt that their domain knowledge could be useful in
selecting training samples. Therefore, both technologists (E3 and
E4) and business personnel (E1 and E5) wanted to assess the quality
of samples used by the host for model training in an intuitive and
interactive way.

R.2Understand the internal/external features of hosts and
guests. Although the well-established automatic feature selection
techniques allow analysts to confirm the contribution of each fea-
ture to the final prediction, especially in datasets with many fea-
tures [7], these techniques may produce significantly inconsistent
results. According to E2, in a typical VFL scenario, the feature space
is distributed in two (or multiple) parties. Thus, understanding
internal/external features consists of two stages: 1) comparing al-
ternative feature selection techniques based on their ranking of all
internal features of the host, and 2) simulating external features
of different batches of guests. Notably, the experts indicated that
they would like answers to the following questions: “which internal
features are consistently ranked high?”; “How much does the technol-
ogy vary in terms of feature ranking?” Our approach should allow
experts to respond to such queries.

R.3 Compare performance between models. Inspired by re-
cent studies that use similarities between model representations
to correct for local training of the parties, such as conducting con-
trastive learning in model-level [28] or comparing differences be-
tween the global HFL model and the local model [30], E3 and E4
wished to understand the differences between each locally trained
model and the global VFL model. For example, using standard val-
idation metrics such as accuracy, loss, Kolmogorov-Smirnov (KS),
Area under the curve (AUC), and mean Average Precision (mAP) to
understand performance fluctuations. In addition, experts wanted

to have an overview of the history of the operations they performed
so that they could identify “critical points that might correspond to
model performance improvements” [28]. Therefore, it is desirable
to have an intuitive representation of the model performance per
attempt and the performance differences between models.

R.4 Obtain VFL forecasts at low cost. The most critical busi-
ness requirement raised by E1 and E5 is the conflict between the
large number of forecasting requirements and the limited monetary
budget and computational/communication resources. They com-
mented, “usually, the pool has a large number of samples to forecast,
but blindly feeding all of them into the joint model will inevitably
result in a waste of time and money.” Therefore, given the limited
resources, experts need a strategy to balance the prediction sample
size with a good enough prediction accuracy.

R.5 Checking the prediction results. As mentioned earlier,
since our method makes a trade-off between the size of the VFL
prediction sample and the prediction accuracy, experts are curi-
ous about the effectiveness of our strategy. Therefore, we should
perform a comparative evaluation of the prediction results of our
strategy. This evaluation will allow domain experts, especially E5,
to understand the efficacy of our method and the reasons why those
samples with relatively high confidence in the labels do not need
to call the online trained VFL model for prediction.

4 CO-DESIGN THE MODELING PROCESS OF
VFL

Inspired by the observational study, we propose a co-design process
for VFL modeling, as shown in Figure 3. Our approach, named
VFLens, consists of an LR-based back-end VFL configurationmodule
and a front-end visualization module. Specifically, the back-end
module collects the necessary logs from the embedded VFL model
and processes the information required for feature and data sample
selection. The output of the back-end engine module is fed to the
front-end visualization module for further analysis. The back-end
engine module also receives interactive commands from the user
through the front-end visualization module during the feature and
sample selection phases of model training and prediction.
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Figure 3: Overview of our approach. We divide the pipeline of our approach into two phases, namely modeling stage and
inference stage. In the modeling stage, we first configure the backend using LR-based vertical federated learning. Features
distributed on two parties, i.e., host and guest, are selected and fine-tuned in Features for Modeling and Feature Selection View.
After determining the features, we select the appropriate samples for modeling via Sample Selection View. Then, we fine-tune
the local model via Model Performance View until we are satisfied and run the VFL model using the identified features and
the samples initialized by the host side. Note that the local model can be fine-tuned several times. During the inference phase,
all instances used for inference are compared and sampled via Inference View. Finally, in Inference View, samples with low
confidence are fed into the VFLmodel for prediction; otherwise, samples with high confidence are provided to the local model
for prediction.

4.1 VFL Architecture
In this subsection, we illustrate the general architecture and basic
background knowledge of a VFL system. According to the definition
proposed by Yang et al. [52], VFL is suitable for scenarios with many
overlapping instances but few overlapping features. For example,
suppose two companies, 𝐴 and 𝐵, want to jointly train a machine
learning model with their business data (i.e., they have different
feature spaces). In addition,𝐵 has the label data that themodel needs
to predict. In this case, 𝐵 is considered as the Host and 𝐴 as the
Guest. Due to data privacy and security issues, the two companies
cannot directly exchange their business data for training. To ensure
data confidentiality during model training, an honest third party,
usually played by an authority or a secure computing node, is
introduced and participates without colluding with either party,
i.e., Collaborator 𝐶 . Both parties (𝐴, 𝐵) are honest, but curious
about each other’s data. It is worth noting that a VFL training
process usually consists of the two following phases as shown in
Figure 4(a), i.e., Encrypted Entity Alignment and Encrypted Model
Training [52]. In the Encrypted Entity Alignment phase, VFL utilizes
an encryption-based user ID alignment technique called Private
Set Intersection (PSI) [21], based on some encryption techniques
such as MD5 [37] and Secure Hash Algorithm-1 (SHA-1) [55] to
identify common users who overlap on both sides without exposing
their respective data. Note that the VFL system does not tell non-
overlapping users during the encrypted entity alignment process.
Regarding the Encrypted Model Training stage, we adopt logistic
regression (LR)-based VFL [18, 49] to showcase our approach. Other
federated privacy-preserving ML algorithms such as secure linear
regression [52] and SecureBoost [11] can also be quickly adopted
or replaced with our back-end VFL solution. Since the initiator of

VFL is the host, our proposed co-design process for VFL modeling
(i.e., VFLens) is oriented to the host side.

4.2 LR-based VFL Configuration
We utilize LR and stochastic gradient descent in cooperation with
an additive homomorphic encryption scheme and mask [18, 49].
The phase of encryption model training starts after identifying
overlapping entities common to both parties, which are used to
train the ML model. Notably, our goal is to have both parties, i.e.,
the host and the guest, compute the intermediate results of the
gradient separately as much as possible, and then get their gradient
results through the interaction of encrypted information. As shown
in Figure 4(b) (1 – 4), we divide the computational task as follows.
That is, in each round of parameter update, each party needs to
perform the following computations and interactions in turn and
Step 1 – 4 are repeated until the model converges.

Step 1: Guest A and Host B initialize their parameters, and
Collaborator C generates a key pair and distributes the public key
to A and B.

Step 2: Guest A computes its part of the gradient, encrypts
with the public key, and sends it to Host B. Host B calculates its
own amount of the gradient, encrypts it with the public key, and
sends it to Guest A. All exchanged information is homomorphically
encrypted, so parameters can be computed like in non-encrypted
procedures, but are not visible. After receiving the corresponding
parts, both parties compute their respective parts of the gradient
separately.

Step 3: Both parties send the encrypted part of the gradient to
Collaborator C for decryption, but to prevent Collaborator C from
getting the gradient directly, Guest A and Host B add a random
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Figure 4: Architecture for a typical VFL system.

mask to the gradient part and send it to Collaborator C. Thus, the
gradient obtained by Collaborator C cannot be used directly.

Step 4: Collaborator C gets the two parts of the encryption
gradient, decrypts them, and returns them to Guest A and Host
B, respectively. Then, Guest A and Host B subtract the previously
added random mask to get the actual gradient and update their
parameters.

4.3 VFL Modeling Phase
In this subsection, we first describe the general process of the VFL
modeling phase. Then, we describe how VFLens supports domain
experts to co-design the feature and sample space for VFL modeling.

4.3.1 General Process of VFL Modeling. To train the VFL model,
first, both host and guest collide de-identifiable3 sample users id
to determine the user intersection set. In the modeling phase, we
decide which samples from the intersection will be used as training
and testing samples (subsubsection 4.3.4 Samples for Model-
ing), where the training samples are used to train the VFL model
and the testing samples are used to validate the model. Next, both
parties train a “semi-model” using the features and labels of the sam-
ples. In addition to the samples, the model training also requires the
determination of sample features (subsubsection 4.3.2 Features
for Modeling) and sample performance (sample labels). Specif-
ically, the guest provides a certain amount of modeling sample
features (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑔𝑢𝑒𝑠𝑡 ) for VFL model training, and completes its
“semi-model” training in its local environment. The host provides
labels of the modeling samples for VFL model training, but it is
not necessary to provide the features (𝐹𝑒𝑎𝑡𝑢𝑟𝑒ℎ𝑜𝑠𝑡 ) of the modeling
samples for VFL model training. Based on feedback from domain
experts, “host does not necessarily have the features of the modeling
samples, but must have the labels of the modeling samples.” Without
loss of generality, we assume that the host also has some features of
the modeling samples, i.e., in our case, the host has both some but
limited features and all the labels of the modeling samples. Thus, the
host can also train a “semi-model” locally by using these features
and labels.

3A process that removes personal identity and makes it impossible to identify or
associate the subject of the personal information without additional information.

4.3.2 Features for Modeling. As mentioned earlier, we assume that
the host holds user data that can be processed as features and
labels. The host then needs to transform the user samples used for
modeling into user features and user labels in order to complete the
host’s “semi-model” training locally. Therefore, how to properly
co-design the host samples with features is of great interest to
federated learning practitioners.

For internal features, we explore the feature importance-based
host feature space [7] using the following five representative au-
tomatic feature selection techniques. There are three methods for
Univariate Feature Selection [23]. 1) The first one uses the method
of ANOVA F-value test to select 𝑘 best features. To avoid automatic
feature removal, we always set the value of 𝑘 to the maximum value
of all features retained and let the domain experts decide which
features to retain. 2) The X2-based method uses a chi-square test
to select the 𝑘 best features. 3) The mutual information method
estimates the mutual information of discrete target variables, with
higher values implying stronger dependencies. 4) Impurity-based
Feature Importance [41]. This is related to the intrinsic nature of
the ensemble algorithm, i.e., outputting feature importance after
training. Therefore, we derive the feature importance from the best
model found so far. 5) Permutation Feature Importance [1]. This is
a technique for monitoring the reduction of model scores when
individual feature values are randomly shuffled. To put them in the
same context for comparison, we normalize the output from 0 to
1. We also calculate their average value to represent the feature
performance on an average basis.

For external features, since they are invisible to the host, the
data requester does not have access to the data information of the
training participants in advance. The simplest way is that if the host
wants to perform VFL jointly, they need to try all combinations of
external features. This would waste a lot of training time. Existing
work usually utilize feature bucketing [8, 9, 57] for external feature
engineering and secures the data to measure the importance of
external features. In this work, we also utilize the cryptographic
communication method of feature bucketing to compute the infor-
mation values (iv) of external features.
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Figure 5: VFLens interface: (a) A data loader for selecting cases of interest; (b) A feature selection view embeds five automatic
feature selection methods. Users can select a certain number of local features and external “invisible” features by considering
the internal feature importance and balancing the cost of VFL modeling. (c) The sample selection view shows the statistics
information of the dataset and 2D embedding projection of all training samples. Users can select a particular data cluster in (c1)
for selection and observe the detailed feature distribution of each cluster in (c2). (c3) An interactive scheme to select samples
from the center to the periphery of a cluster. (c4) The quality of the training data set is evaluated by two metrics, homogeneity
and diversity. (d1) Parameter selection for modeling. (d2) The model performance view for training the local and VFL model.
(e) The summary view presents and visualizes the results of the classification results of all the samples to be predicted with
our strategy.

Figure 6: Design alternatives for feature selection.

4.3.3 Feature Selection View. Based on the above internal feature
selection for modeling, we design a feature selection view Fig-
ure 6(a) that supports domain experts to interactively select essen-
tial features from internal and external features based on feature
importance (R2). The view is designed using a heatmap [7], where
the horizontal axis refers to different feature selection methods and
the vertical axis represents different features. The color depth of

the heatmap represents the importance of the features, and the
penultimate column is the average of the first five methods, which
serves as a reference for our selection. The last column can be
interactively toggled to select and decide which local feature we
finally choose for modeling. For external feature selection, due to
the privacy mechanism of federated feature modeling, domain ex-
perts only have access to the importance of federated features and
the anonymous ID of external feature. Therefore, VFLens uses the
depth of the color to encode the information values (iv) in the VFL
feature selection view Figure 5(b).

We initially considered an alternative design solution displayed
as a radial stacked bar chart Figure 6(b). We accumulate the scores
of the different automatic feature selection methods in a stacked
plot, which can directly display the most critical feature. In addition,
thin lines connect the features, and their thickness represents the
correlation between the two corresponding features. However, this
initial design was not accepted by our collaboration experts when
comparing the differences between the various feature selection
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methods. In addition, we need to consider the contribution of fea-
tures from the external party. Therefore, we finally chose the first
design.

Figure 7: Illustration of interactive sampling stage.

4.3.4 Samples for Modeling. In addition to assessing the contribu-
tion of features, another concern of VFL practitioners is to prepare
suitable samples for the VFL modeling process. By selecting rele-
vant samples, the labels of the samples can be potentially balanced
(R1) and the diversity of sample features can be maintained, which
can potentially improve model performance [33]. To this end, we
propose an interactive sampling and evaluation procedure, which
consists of two phases, projection and clustering and interactive
sampling for each cluster.

Projection and Clustering. We utilize t-SNE as a dimension-
ality reduction technique because it is particularly good at con-
veying meaningful insights about the data, such as clusters and
outliers [29]. Nevertheless, it may not be feasible to transform all
avaiable samples in the intersection user set (i.e., the samples for
training, validation, and prediction) into a two-dimensional repre-
sentation based on the data features residing in the host and depict
them on a two-dimensional space, as the data size may be huge. To
deal with this potential problem, we abstract the raw training data
into several clusters using KMeans++ [3], which augments KMeans
with a random and direct seeding technique that greatly improves
its speed. We determine the number of clusters using the Elbow
method [43].

Interactive Sampling. Sampling is a simple but practically
meaningful method to greatly reduce the data while maintain-
ing certain data properties. We propose an interactive sampling
scheme for each cluster. The basic principle is to drop most of
the internal samples and keep the boundary samples to ensure
strong learning and generalization [33]. Users can interactively
control the sampling ratio for a given data interval by adjusting
the sampling slider in Figure 5(c3). Figure 7 is a schematic of the
sample data around the cluster, and the dashed circles are inter-
vals divided from the origin outward, centered on the center of
the cluster. The intuitive idea is that some nodes at the center
of the cluster are more concentrated and representative, while
sample data that are off-center tend to have some noise. We di-
vide each cluster into intervals of 𝑛 from the center to the circle
margin as [0 :

√
𝑟 ],[

√
𝑟 :

√
2𝑟 ],. . . ,[

√︁
(𝑛 − 2)𝑟 :

√︁
(𝑛 − 1)𝑟 ] and

[
√︁
(𝑛 − 1)𝑟 : +∞] with a constant 𝑟 just as Figure 7 (in this work,

we define the value of 𝑛 as 11, 𝑟 as 0.5 after several experiments).
This sampling scheme ensures that each individual region within
the cluster occupies the same area. We sample the data according
to a polar coordinates design because of the clustering mechanism

of KMeans, which clusters the samples according to the distance
between the samples and the centroids. After completing the sam-
pling of each cluster, we merge the sampled instances to the data
pool.

Data Sampling Evaluation.We utilize target label balance and
feature diversity as core metrics to help evaluate the combined
data samples after interactive sampling. Regarding the target label
of the training data, we find that the performance of the model
deteriorates significantly as the imbalance increases [27]. When
the classification distributions of the datasets are almost identical,
the reduction in content diversity will lead to a considerable loss
of accuracy. Thus, larger homogeneity and content diversity are
likely to lead to better model performance. These two metrics are
defined as follows. (1) Statistical Homogeneity. Let Y is the set of
target categories. Cluster C𝑘 has a dataset D𝑘 = {(𝑥𝑘 , 𝑦𝑘 )}, where
each data 𝑥𝑘 has a label 𝑦𝑘 .D𝑘 follows a categorical distribution 𝑞𝑘 .
The uniform categorical distribution over Y is 𝑞𝑢 . The statistical
homogeneity of D𝑘 is defined as [59],

`𝑘 = 2 −
√︄∑︁

𝑦∈Y
|𝑞𝑘 (𝑦𝑘 = 𝑦) − 𝑞𝑢 (𝑦𝑢 = 𝑦) |2, (1)

measuring the similarity between distributions 𝑞𝑘 and 𝑞𝑢 over Y.
(2) Content Diversity. Given a dataset D having 𝑀 samples or 𝑀
sub-collections of samples and let 𝑣𝑖 be the flattened features vector
of the 𝑖𝑡ℎ sample or 𝑖𝑡ℎ subcollection of samples, the similarity
function of two vectors is 𝑆

(
𝑣𝑖 , 𝑣 𝑗

)
. The content diversity of D is

defined as [48],

𝜌 (D) = 1 −
∑
𝑖, 𝑗 ∈[𝑀 ],𝑖≠𝑗 2𝑆

(
𝑣𝑖 , 𝑣 𝑗

)
𝑀 (𝑀 − 1) (2)

4.3.5 Sample Selection View. We design a sample selection view
to facilitate the mentioned interactive sampling for modeling. As
shown in Figure 5(c1), after projecting the clusters into a 2D space,
a key issue is to convey the data characteristics of each cluster in
terms of label distribution and salient features to facilitate the explo-
ration of the data. Notably, we design a novel glyph to represent the
data characteristic of each cluster. It consists of an inner radar chart
and an outer ring. The data features are arranged in the clockwise
direction of the glyph. The values on each axis of the radar chart
represent the distance between the probability distribution of the
data in this dimension of the cluster and the probability distribu-
tion of the entire training data, calculated using EMD distance (i.e.,
Wasserstein distance) [59]. The outer ring shows the label distribu-
tion, with yellow representing 1 and the blue representing 0, e.g.,
in the case of binary classification. When users click on a glyph
in Figure 5(c1), VFLens displays its data features in Figure 5(c2) as
a reference for the subsequent sampling operation in Figure 5(c3).
It is worth noting that users can conduct an interactive sampling
procedure for each cluster by filtering any number of samples from
the center to the subcontinent (R4). In general, the principle of
interactive sampling is to balance the data labels to diversify and
enrich the characteristics of the samples. Therefore, we evaluate
the overall data after sampling in Figure 5(c4), involving sample
count, homogeneity, diversity.

4.3.6 VFL/Local Modeling and Model Verification. After identify-
ing the features and samples to be modeled, we come to the VFL
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modeling stage. Multiple rounds of communication are required
between host and guest to exchange encrypted gradients, and both
parties transmit the following information to each other: 1) en-
crypted gradient information, i.e., the derivation of weights derived
from sample features and labels; 2) de-identifiable sample ID, which
are used to align the gradient information and transmit the conver-
gence direction of the model. This process is a typical VFL, and the
specific information interaction and communication process can
be referred to the LR-based VFL configuration. Users can train the
model by pressing the buttons in Figure 5(d1). After VFL modeling,
a VFL model is built at this point. In addition, since the host con-
tains certain features and full sample labels, we can train a local
model at the host side.

After building the initial VFL model, both parties verify the
accuracy of the VFL model using de-identifiable user ID, features,
and labels of the verification user set. For ease of understanding, we
describe the verification process as follows: 1) The host transmits
the de-identified ID of the verification user set to the guest to verify
whether the guest holds the data of the validation user set. If not, the
verification process ends. 2) If the guest holds the verification user
set, both parties start invoking their own “semi-models” to compute
the corresponding prediction score. Specifically, the guest obtains
the features of the verification user set from its local data and inputs
them into the guest’s semi-model to calculate the prediction score.
Similarly, since the host has certain sample features, it can also
calculate its prediction scores by feeding the sample features into
the host’s semi-model. Admittedly, in some cases, the host may
have only sample labels without any feature dimensions, so there
is no need to compute its prediction score. 3) After computing the
prediction scores for both parties, the guest transmits the prediction
score to the host, who aggregates the prediction score of both parties
to obtain the final prediction result. 4) Finally, the host compares the
prediction results with the ground truth labels and decides whether
to fine-tune the model.

4.3.7 Model Performance View. In the model performance view, we
display the results of the metrics used to evaluate the performance
of the local and VFL models for each configuration (R3). We can
iterate over the local model multiple times, since all communication
and modeling processes occur locally. However, for the VFL model,
we should iterate carefully if good enough performance is achieved..
Notably, as shown in Figure 5(d2), this view shows the traditional
metrics used to evaluate binary or multiclass classifications, such
as accuracy, loss, KS, and AUC. Each iteration of the local and VFL
models is recorded to facilitate the selection of the best model for
the final model prediction.

4.4 Inference Stage
In the inference stage, the host can initiate a prediction based on its
real-world requirement and invoke the “semi-model” of both parties
for inference. Generally, the “semi-model” of both parties will give
a prediction score, and the guest will send its prediction score to the
host. The host will aggregate the prediction scores of both parties
to get the final prediction result. Specifically, the vertical federated
learning inference process is as follows: 1) the host de-identifies the
target user ID to be predicted and transmits the de-identified IDs to
the guest. After receiving the de-identified IDs, the guest queries

whether it holds these corresponding features of these IDs. If the
guest does not have these features, the prediction ends; 2) If the
guest contains the features of these IDs, both parties invoke their
respective “semi-models” to calculate the prediction scores. For
example, the guest reaches the target user data locally, obtains the
features of the target IDs, and then inputs the guest’s “semi-model”
to obtain the prediction scores. Similarly, if the host holds some
user features, the host computes its prediction scores for the target
user IDs; otherwise, if the host does not have user features, it does
not need to compute the prediction scores; 3) The guest transmits
the prediction scores of its “semi-model” to the host, and the host
aggregates the two parts to obtain the final prediction result. At
this point, the VFL inference stage is over and all samples that need
to be predicted will get the prediction result by VFL inference.

4.4.1 Instances for Inference and Sample Selection. In reality, the
number of samples to be predicted can be very large. In the inference
phase of VFL, “semi-models” from both parties are required to
cooperate online to complete the prediction, which poses a great
challenge in terms of communication quality, modeling resources
and economic costs. According to the expert feedback, VFL can
improve the confidence of prediction results by expanding the
feature space, but “this is not suitable for all samples to be predicted.”
It is worth noting that with limited budget cost, E1 and E5 want a
less costly method to accomplish prediction for all samples to be
predicted, while guaranteeing the quality of the prediction results
to some extent. Therefore, we need to classify the samples to be
predicted and send only those samples with high uncertainty to
the VFL model for inference. And for the samples with high label
confidence, we can use the local model of the host for prediction
(R4).

For this purpose, we design the following sample selection schemes
in the inference stage: 1) The sample 𝑝𝑠𝑖 to be predicted is input
into the local model of the host for inference, and the prediction
result is obtained. Note that the local model here is different from
the “semi-model” of the host. The local model only considers the
data features residing on the host side and the data labels. 2) In
the sample space, we compute the similarity between 𝑝𝑠𝑖 and all
training samples in terms of the host feature space, e.g., using the
Euclidean distance to obtain the training sample 𝑝𝑠𝑖 that is closest
to 𝑡𝑠𝑖 . 3) For 𝑡𝑠𝑖 , determine its ground truth label, the local model’s
prediction result and the prediction results of the VFL model are
consistent. We consider 𝑝𝑠𝑖 a plausible sample if and only if the
results of the three parts agree and are the same as the prediction
results of the host local model for 𝑝𝑠𝑖 , where the prediction results
of the host local model can be directly used as the final prediction
results; otherwise, 𝑝𝑠𝑖 is considered to have high uncertainty and
needs to be predicted by the VFL model. At this time, all the samples
to be predicted will be automatically divided into two categories.
One category is samples with high credibility that do not require
federated prediction, and the other category is samples that require
further inference using the VFL model.

4.4.2 Inference View. As mentioned before, we obtained the two
classes of samples to be predicted. To visualize the results and
present the current classification of our strategy (R4 – R5), we
compute a many-to-many mapping based on the shortest distance
from the predicted data to the training samples. In particular, as
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shown in Figure 5(e), we use the t-SNE and KMeans++ clustering
methods to abstract the large number of samples to be predicted
into the Sankey diagram. The flow from left to right in the Sankey
diagram is the number of samples to be predicted. The leftmost
column shows the eight label combinations of the training samples,
corresponding to three cases (i.e., ground truth label, local model
prediction result, and VFL model prediction results). The middle
two columns correspond to the training data and the samples to be
predicted, respectively. The last column lists the number of samples
with high reliability and the number of samples that need to be
predicted by the VFL model.

4.5 Interaction Among the Views
Rich interactions are integrated into VFLens to build a low-cost VFL
model. 1) Sorting. After the user clicks the average button in the
feature selection view, the system will sort the average importance
of all local features from highest to lowest. In the VFL feature
selection view, we encode the importance of VFL feature as the color
depth of the color block, and the color block color will change after
the specified feature is selected. 2) Hover on. In the sample selection
view, when the user selects a data cluster, a zoomed-in view of the
cluster content is presented at the edge of the view, which helps
the user to identify the specific feature patterns of different clusters.
3) Parameter editing. In the sample view, we adjust the scale of the
samples in different regions by mediating the height of the bars
with the mouse.

5 EVALUATION
5.1 Usage Scenario
The modeling data from the real estate industry mentioned in the
observational study has confidentially rules and cannot be used as
experimental data. As an alternative, we take a publicly available
credit card dataset [54], where financial institutions can use their
own customer data to predict various customer performance. Al-
though most customer data are limited in the finance context, if
other information can be used for joint modeling, financial institu-
tions can obtain more accurate prediction models to further provide
better services and reduce potential banking risks. To model this
scenario, we use the dataset of customer defaults in Taiwan [54].
Notably, we use the first 14 dimensions as internal features and
the last 9 dimensions as the federated external features. We also
derive several alternative features. Finally, we obtain 20 local fea-
tures and 33 external features for VFL modeling. In VFL, the host
knows everything about the local features. Nevertheless, due to the
privacy-preserving mechanism, we only use IDs to represent the
federated external features. We use 15, 000 rows of total data in the
VFL modeling stage and 15, 000 rows in the VFL inference stage.

Feature Space Interaction. After loading the local data into
VFLens, we select the top 13 local features based on the recom-
mended results of the standard automatic feature selection methods,
as shown in Figure 8(1). Regarding external features, to simulate
reality, we randomly select 15 remote external features for VFL
modeling.

Sample Space Interaction. After the initial determination of
the internal and external features, the host must select the appro-
priate number of samples for VFL model training. We turn to the

sample selection view and first see a sharp feature in the upper
left corner of the radar chart of cluster No.4. Based on the radar
chart visualization, we find a similar distribution of features in
clusters No.1, No.8, No. 15, and No.11 next to cluster 4. We then
click on cluster No.4 and further observe the specific indicator of
the radar chart enlarged on the right side of the view Figure 8(3A)
and its feature distribution in Figure 8(4). We find that the feature
distribution of this cluster has firm consistency. Therefore, we de-
cide to reduce the overall sampling rate of these clusters to reduce
the number of samples within these clusters for training, and to
reduce the training cost while maintaining the loss of data features.
More specifically, we first select cluster No. 4, and in Figure 8(4),
we determine that the salient feature of this cluster is limit_bal_log.
The other features are similar to those of the overall samples. In
Figure 8(5), we reduce the number of duplicate training samples by
reducing the sampling rate of the central region samples. Then we
click the “Start Sampling” button of cluster No.4. The relevant infor-
mation after sampling is displayed in Figure 8(6). We can observe
that Homogeneity is 1.58, which reflects that the balance of data
labels is moderate. The metric of Content Diversity is 0.10, which in-
dicates that the current sample features are relatively concentrated
with a low degree of diversity. Following a similar procedure, we
sample cluster No.1, cluster No.8, cluster No.15, and cluster No.11 at
a lower sampling rate. The metric of Homogeneity at this point be-
comes 1.58, while Content Diversity becomes 0.12. We can see that
the balance of the current samples is not significantly improved,
since most of the target labels of these clusters are 0. Inspired by
this, we select clusters with more target labels of 1, such as cluster
No.6, cluster No.10, cluster No.14, and cluster No.16 in Figure 8(3B).
We first sample cluster No.6 and No.10 in appropriate proportions
and observe that Homogeneity changes to 1.77 with significant im-
provement, while Content Diversity (i.e., 0.21), which also shows
a huge improvement. However, we are still not satisfied with the
value of Content Diversity. We continue to operate on the cluster
No.13 and No.5 in Figure 8(3C) because they have more target labels.
Finally, the Homogeneity and Content Diversity become 1.77 and
0.64, satisfying our modeling requirements.

Modeling Training and Result Analysis. Since the features
and samples for training are ready, we come to the training phase,
set the learning rate to 0.1, and the number of iterations to 2, 000
in Figure 8(7), and then perform VFL modeling. As shown in Fig-
ure 8(8), we can see that the results of the training model are up-
dated in real time for each iteration. Finally, the ACC of the local
model is 0.68, and the AUC is 0.60. The vertical federated model
has an ACC of 0.75 and an AUC of 0.69. The results show that our
trained VFL model achieves better performance than the host’s
local model. However, the current AUC is still below 0.7. We follow
the above procedure to further improve the model performance,
such as adding more external features required by the host and
sampling other clusters for model training. Finally, the ACC of the
local model reaches 0.78 and its AUC reaches 0.64, while the ACC
of the VFL model is 0.79 and its AUC is 0.75.

Model Inference. After the model training, we then come to
the model inference stage by clicking the “start predict” button.
We observe that 6798 records require further VFL inference, and
the remaining 8202 samples do not require calling the VFL model
Figure 8(9) (i.e., the rejection rate is 54.6%). To evaluate the efficacy
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Figure 8: Usage Scenario: (1) Select the top-ranked local features in the local feature selection view. (2) External features with
high iv values are selected in the VFL feature selection view. (3) In the sample selection view, we select different clusters for
sampling based on the proportional of label in the cluster and the specific feature distribution information encoded in the
clusters. (4) Observe the specific feature distribution information of the data in the cluster. (5) Set the sampling weight for
different regions in each cluster. (6) Observe the two statistical indicators of the overall data that has been sampled and we
will stop sampling when the amount of data and the two statistical indicators reach the basic expectation value. (7) Adjust
the learning parameters and start model training. (8) Run the local inference model, check the proportion of samples to be
predicted, and verify the validity of the model.

of our interactive sampling strategy, we run the VFL model on
the samples that do not need to invoke the VFL model to obtain
their labels generated by the VFL model. We find that the results of
federated inference for 7782 samples are the same as the those of
the local model (i.e., a hit rate of 94%), indicating that our interactive
feature and sample selection strategy helps improve the efficacy
of VFL modeling. As a comparison, we also use the VFL model to
predict samples that require further VFL inference and find that the
VFL model results for the 4707 samples are the same as those of the
local model. Compared to 94% hit rate for the unnecessary samples,
69.2% hit rate suggests that a larger proportion of samples is not
confident in their labels. For these samples, we need to fine-tune
more good features and train a better prediction model.

5.2 Quantitative Experiment
We also conduct quantitative experiments to compare the effect of
VFLens with other cases that do not use interactive feature selection
and sample selection. As shown in Table 1, we can analyze that
using only local data for modeling (Exp.1), the training will be very
fast because no cryptographic operations are needed. However, the
accuracy of the model will be very low due to the poor features.
In Exp.2, all external features provided by the data provider are
selected for federated modeling to obtain a better model. However,
in real business scenarios, the cost spent on federated modeling is
proportional to the sample size involved in the modeling process.
So there is no need to select the entire aligned data for federated

modeling. From the perspective of data reduction and reducing
unnecessary costs, the corresponding (Exp.3 – 4) is about VFLens’s
ability to use local feature selection and federated feature selection
to eliminate some redundant features and also to reduce the tie of
fine-tuning the model by domain experts. In Exp.5, we further use
VFLens for sample selection based on Exp.4, and we can see that the
accuracy of the model is not significantly reduced, demonstrating
the practical value of VFLens in business scenarios.

6 DISCUSSION AND LIMITATION
We conduct semi-structured interviews with all experts (E1 – E5) to
assess the efficacy ofVFLens and to determinewhether our approach
could help them improve the efficiency of VFL modeling.

System Performance. All experts agreed that VFLens demon-
strates a straightforward data science process with an intuitive
visual design and practical implications. “The system is very useful
for hosts to assess the quality of their data and to further evaluate how
much resources are needed for VFL modeling,” said E1. Our system
has the potential to help a variety of commercial enterprises and
sectors build economically usable VFL models. Considering the
balance between resource input and model accuracy, the results
seem to be quite good. VFLens is the first system that attempts to
address realistic pain points across business sectors, which will go
a long way to “enrich and complement existing federated learning
frameworks”. In discussing with our collaborating experts what
inspired them most about our system, E2 said that they were most
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Table 1: Training time(s) of localmodel and federated learningmodel onDefault Credits Prediction data in different situations.

Experiment id Local feature FL feature Sample number AUC ACC Time
1 All(20/20) None(0/30) 10000 0.68 0.70 < 1 min
2 All(20/20) All(30/30) 10000 0.78 0.82 > 1 day
3 Part(13/20) All(30/30) 10000 0.78 0.80 > 12 hours
4 Part(13/20) Part(21/30) 10000 0.77 0.80 > 6 hours
5 Part(13/20) Part(21/30) 2100 0.75 0.79 2 hours

impressed with the fine-tuning and interactive sampling of local
data features based on dimensionality reduction results, which “fits
our sense and it was very valuable.”

Visual Design and Learnability.We draw from observational
studies of experts working routinely in real-world scenario to in-
form the system design and classicial interfaces used in commercial
federated learning products (e.g., FateBoard in FATE [12]). For ex-
ample, the matrix design visually presents the feature importance
provided by different automatic feature selection algorithms. The
model performance represented by various metrics and the sample
distribution represented by the histogram design are familiar visual
metaphors in traditional data science pipelines and analysis. Experts
commented, “we can quickly get used to visual encoding because the
interactions are the same as in traditional modeling.” Specifically,
after a briefly introduction to each view and its capabilities, the
experts developed customized exploration paths for interactive VFL
modeling and inference.

Generalizability and Scalability. In this work, we only show
our pipeline using LR-based VFL. Tree-based models such as XG-
Boost [10] and Random Forest [19] are more commonly used in var-
ious commercial domains. Incorporating such models into VFLens
is not a difficult task. Nevertheless, the visualization design of the
front-end may require unavoidable alternations, as the underlying
models may introduce the necessary specific information to be
checked. Notably, if other types of models or even deep learning
models are used, the deployment and implementation of VFL ver-
sions of the models and a detailed discussion of model performance
comparisons are major concerns for future work.

Contributions Over Previous Work. Compared to previous
works, our system has inspired experts in many ways. They com-
mented that when they utilize VFL in real-world scenarios, they of-
ten experience poor data quality or lack of sufficient data attributes
when a large enterprise group consists of different affiliated busi-
ness units that are unable to share data. Some business units even
lack data labels. All of these real-world problems pose a huge chal-
lenge for VFL modeling. Experts said that if they want to leverage
external data sources from the Guest using VFL, VFLens can greatly
help them sort out the current data quality beforemodeling.With an
understanding of overall data and feature quality, experts can better
understand whether they need to call on external data sources for
VFL modeling. “VFLens could help business units in companies assess
data quality, such as data fill rate, label fill rate,” said E1, adding
that this needs to be done before FL modeling. Also, VFLens can
help experts understand data samples and features before modeling,
which has high application value in real-world scenarios.

Limitation. Our work has several limitations. First, interactive
samplings of predicted clusters relies heavily on user’s experience

and domain knowledge, introducing uncertainty in sample selection.
We should provide more intelligent guideline to help users perform
interactive sampling more efficiently and confidently. Second, we
only utilize representative metrics such as accuracy and AUC to
compare different versions of the model. We did not consider using
the internal information of the models themselves, such as gradient
distribution and weight information, which may be more critical
when employing tree-based or deep learning models.

7 CONCLUSION AND FUTUREWORK
In this study, we present VFLens, a visual analytics system for inter-
active VFL modeling and inference, which improves VFL modeling
efficiency by supporting domain experts to co-design internal fea-
tures and interactively manipulate sample spaces. A usage scenario,
a quantitative experiment, and expert feedback confirm the efficacy
of VFLens. In the future, we will combine more models with the FL
version to enable experts to achieve better prediction results. Also,
we will introduce more sampling methods to reduce the impact
of anomalous samples on training and further discuss the design
space when involving other types of models, such as tree-based or
deep learning-based models.
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