SLAC-PUB-540
January 1969
(MISC.)

A SURVEY OF INTERACTIVE GRAPHICAL SYSTEMS FOR MATHEMATICS*

Lyle B. Smith

Computation Group
Stanford Linear Accelerator Center
Stanford University, Stanford, California

ABSTRACT

Existing and proposed systems for perforining interactive mathe-
matics are surveyed with special attention to those systems with graph-
ical output. The systems are grouped as general purpose, special
purpose and other systems of interest. The solution of a least squares
data-fitting problem by the various general purpose systems is then
compared to the solution of the same problemby PEG, a special pur-
pose system written at the Stanford Linear Accelerator Center for
interactive least squares data-fitting. A summary includes a discus-

sion of many of the references that appear in the fairly comprehensive

bibliography.

(Submitted to ACM Computing Surveys)

*
Work supported by the U. S. Atomic Encrgy Commission,

TABLE OF CONTENTS

I. Introduction

e o e o©o o = a o & s .

O. Whal Are The Various Systems?. « « o o ¢ s « o o o &

A'

H g o

A List of Various Systems

General Purpose Systems — Operation Oriented. . .

General Purpose Systems — Language Oriented . . .

Special Purpose Systems .

Other Systems. « « . .« .

* e o e . . « o o . L)

III. Solution of a Least Squares Problem by Various Systems.

A.
B.

C.

Culler-Fried Solution. . .
NAPSS Solution . « « . &
POSE Solution . « . « « .
OPS-3 Solution o . + » &
JOSS Solution « = « « o &
Lihcoln Reckoner Solution
TOC Solution '« « o o + &
MAP Solution . + + « « &

AMTRAN Solution

IV. How Would PEG Solve the Same

V. Summary « « « ¢ o ¢ o o o

References

. . . . s . « o o . L]

Problem?

Page

(9]

15
21
26
33
35
36
37
39
41
42
44
45

47

48

51

I. INTRODUCTION

Several authors have recently discussed the possibility of man-computer
interaction and its feasibility, promise, and current efforts. In Licklider and
Clark [196 2] an examination of then current on-line capabilitics including some
graphical capability is followed by a discussion of basic problems to be solved
in improving man-computer communication. The five short term problems they
list are:

1) The development of adequate time-sharing systems.

2) To devise an electronic 1/0 surface for two-way communication.

3) The development of a programming system that allows on-line, real-time

selection and shaping of information processing procedures.

4) The development of systems for storage and retrieval of thé large amounts

of data required to support several on-line users,

5) To solve the problem of human cooperation in the development of large

programs and systems.

Some progress has been made in these areas since 1962. In answer to problem
- 1), for example, Schwartz et al. [1964] discuss a working time- sharing system
and Anderson et al, [1968] discuss a proposed time-sharing system which will
allow interactive graphical consoles as well as typewriter-like consoles. Problem
2) is answered by Davis and Ellis [1964] who describe the Rand Tablet, an electronic
surface for communication with a computer. Also in answer to 2), Haring [1965] de-
scribes the Beam Pen, an input/output device for CRT display systems and Lewin
[1965] discusses a magnctic device for computer gr-aphic input.

The third problem has been answered, to some extent, by on-line text editors,

and various other capabilities that are currently implemented. The problem of

storing and retrieving vast quantities of information in support of several
simultaneously active user stations is partially solved by the currently avail-
able disk storage units, drums, bulk core, and large main memorics, used
together in an hierarchical manner. Problem 5) may not be so formidable as
more sophisticated programming systems and languages are developed. For
example, PEG, the interactive data-fitting system written in FORTRAN by this
author alone was operational in somewhat less than one man-year of program-
ming and design effort. In other words, if fewer people are necessary for the
éompletion of a programming project, there is less chance of a problem in
human cooperation.

Licklider and Clark [1962] also pose four long term problems whose solu-
tion will enhance man-computer partnerships. These four problems are:

1) Computer appreciation of natural written languages.

2) Computer recognition of spoken words.

3) The theory of algorithms — their discovery and simplification.

4) Heuristic programming.

The first of these problems has been studied in some detail, It is directly
related to the problem of natural language translation by computer. However,
no completely satisfactory solution has, as yet, been found. Some of the current
efforts toward solving the second problem are described by Lee [1968] and
Allen [1968] . One approach toward solving a related patiern recognition problem,
automatic recognition of handvfritten words, is discussed by Mermelstein and
Eyden [1964] . The third and fourth of these problems_ are more abstract and
thus it is more difficult to illustrate progress in these areas.

In a later paper, Licklider [1965], Licklider makes the statement, "It is

now feasible — and practical, too — for a very creative man to think in direct

-3-

interaction with a compufing machine."’ We shali show by our work and that of
others that it is also feasible (and practical) for everyone who has a problem to
solve — to interact with a computing machine while solving problems.

Somé other papers of interest that discuss the idea of mah—mach'me in-
teraction are Yershov [1965], Uncapher [1965], and Whiteman [1966]. Much
of the interest in interactive graphical systems has been in the area of computer
aided design. Some articles of interest in this area are Mann [1965], Roos [1965],
Chasen [1965], Jacks [1964], Cole et al. [1964], Hargreaves et al. [1964], Allen
and Foote [1964], Krull and Foote [1964] and Newman [1966].

It is, 1 believe, an accepted fact that man-machine interaction both with
graphical capability andv w_ith only textual input/output — is a useful, nay necessary,
part of our scientific problem solving repertoire of today and tomorrow. To sub~
stantiate thivs, consider for example, that three years ago Shaw [1965], at the
conclusion of some remarks about JOSS (see Shaw [1964]), says". . . at least
for small numerical problems, direct conversation with a computing system
meets computing requirements that are not well satisfied by conventional
services.'" Since 1965 we have seen even more successful man-machine inter-
active systems.

In a panel discussion of promising avenues for computer research, Uncapher
[1965] points out that present systems for on-line computing and problem solving
assistance, are not oriented toward the thousands of practicing engineers in the
United States. They may be very useful to the computer .specialist and the skilled
programmer but the casual user is not helped. Recently there has been more
effort to make the power of an on-line system available to the casual user as
proposed by Uncapher [1965]. Some efforts in this area are included in the fol-

lowing discussion of various on-line systems. In particular, the interactive

data-fitting system outlined in Section 4 and described in detail in Smith [1969]

is designed for the use of non-specialists in computer science.
II. WHAT ARE THE VARIOUS SYSTEMS?

First let us simply list several on-line systems which include mathematical
and/or graphical capabilities. Then we will give a more detailed description of
’each system. An interesting survey paper is that by Ruyle et al. [1967], however,
the paper is confined (by choice) to four systems — AMTRAN, the Culler-Fried
System, the Lincoln Reckoner, and MAP. Some of the following remarks are
based on the paper by Ruyle et al, [1967].

A. A List of Various Systems

Here we list some interactive gfaphical systems. This list is compiled from
a search of the literature and thus may omit some very intéresting systems that
are in use or under development but have not been described in the computing
literature. The systems are groupéd according to their applicabili;cy. That is,
a system that provides the general mathematical capabilities to solve a variety
of problems will be classed as a ""general purpose" system. On the other hand,
a system o\riented toward a specific problém area, such as data-fitting by least
squares, will be classed as a ''special purpose' system.

General Purpose Systems

1) Culler-Fried at Santa Barbara, California. Culler-Fried at TRW
Systems, Redondo Beach, California.

2) TOC at Aiken Computation Laboratory, Harvard University.

3) AMTRAN at NASA Marshall Space Flight Center in Huntsville, Alabama.

4) Lincoln Reckoner at Lincoln Laboratory of Massachusetts Institute of

T echneclogy.

8)

9)

OPS-3 at Massachusetts Institute of Technology.

MAP at Massachusetts Institute of Technology.

NAPSS at Purdue University;

POSE at Aerospace Corporation, San Bernadino, California.

JOSS at the RAND Corporation, Santa Monica, California.

Special Purpose Systems

1)
2)
3
9

9)

STATPAC at Decision Sciences Laboratory, Bedford, Massachusetts
Marchuk and Yershov in USSR |

Gear at University of Illinois

Dixon at University of California, Los Angeles, California

PEG at Stanford Linear Accelerator Center (SLAC), Stanford, California

Other Systems

1)

2)

3)

4

5)

6)

DIALOG at IIT Research Institute, Chicago, Illinois. (An on-line
algebraic language with graphic s). |

MATHLAB at Massachusetts Institute of Technology and the Mitre
Corporation (on-line assistance in symbolic computations).

MAGIC PAPER at Bolt, Beranck and Newman Inc., Cambridge, Massachusetts
(primarily for on-line symbolic mathematicls) . |
DISPLAY at System Development Corporation, Santa Monica, California
(primarily for graphical examination of stored data — allows excursions
into TINT, an Algol-type interpretor).

Klerer-May system at Co].umbi:i University, Hudson Laboratories, Dobbs
TFerry, New York.

Moore et al., at the University of Western Australia. (FORDESK an on-
line system and an interactive polynomial fitting program.)

Hall and Ball at the Stanford Research Institute (SRI), Menlo Park,

California. (On-line systems for statistical and data analysis.)

B. General Purpose Systems — Operation Oriented

The first five systems to be described are operation oriented as opposed
to language oriented. This means that commands to the system are generated
by involking operators with appropriate operands. Later we will diécuss several
language oriented systems.
1. The Culler-Fried Systems

The Culler-Fried system was first developed at Thompson Ramo Wooldridge,
Canoga Park, California, beginning in 1961, see Culler and Fried [1963]. Since
then a similar system, operating on the same RW-400 computer (AN/FSQ-27),
has been implemented at the University of California at Santa Barbara. This
system is used for teaching and research on the Santa Barbara campus as well
as from remote terminals at UCLA and Harvard, see Winiecki [1966]. An ex-
panded version of the original system has also been implemented at TRW Systems
(formerly Space Technology Laboratories) in Redondo Beach, California on a
Bunker-Ramo 340 computer. In 1968 the system has also been implemented on
an IBM System 360/65 computer at the University of California at Santa Barbara.
For more references see Culler and Fried [1965], Fried [1967], Culler and Huff
[1962], and others referred to by these articles.

The Culler-Fried terminals consist of an array of pushbuttons (96 keys)
and a five inch storage oscilloscope used for output., The TRW version also has
a Calcomp plotter and an output typewriter shared among four terminals, but
most Culler-Fried consoles have only the scope for output. The pushbuttons
are used for entering instructions to the system. The 96 pushbuttons are ar-
ranged in 2 adjoining keyboards, each with 48 keys. One keyboard permits
access to operators and the other permits access to operands. A user solves
his problem by entering instructions and data through the keyboard and viewing
his results, displayed numerically and/or graphically, on the oscilloscope.

-7 -

Culler-Fried systems are operation-oriented in that they provide
with pushbutton control and allow user definition of new operators (console
programs). Some of the system supplied operators are of a lower level than
some of the more recently developed systems such as MAP and NAPSS which
provide complete solution algorithms (e.g., polynomial root finding) as operators.

For example, some of the operators supplied by Culler-Fried systems are

written at that level. On the other hand, other operators are on a higher level,
for example, the forward difference operator and the running sum operatér are
among the operators intended to provide the basic tools of operator calculus.

There are two working registers, « and g, whose contents are affected by
the various operations. For example, keying PLUS 5,0 will add 5.0 to the
contents of g register and SQRT will take the square root of the number in fhe B
register; in both cases the result is left in the g register.

To add to the limited number of pushbuttons available, levels are introduced
in the Culler-Fried systems. By changing levels (a pushbutton accomplishes the
level change), many keys take on different meanings. Each level is composed of
operators of a particular mathematical character, for example, real numbers
and matrices form different levels so that some operators work automatically
on vectors, matrices, or functions depending on the level. The USER levels al-
low storage of console programs composed by users.

The Culler-TFried systems have been the inspiration for several other inter-
active on-line mathematical systems. AMTRAN, and the TOC system, for example,
bear many similarities to the Culler-Fried on-line sysi:éms as does the Lincoln

Reckoner,

For examples of applications of the Culler-Fried system see Culler and
Huff [1962] and the chapter by B. D. Fried in Karplus [1967].

2. The TOC System

TOC (Tact On-Line Computer) was begun in 1966 at the Aiken Computation
Laboratory of Harvard University; see Ruyle [1967]. TOC was developed by
Project TACT (Technological Aids to Creative Thought) and is based on two
earlier stages of development. The first stage, TOCS, an effort to duplicate
the Culler-Fried system under CTSS at Project MAC, was started in May 1965.
This initial effort differed from the Culler-Fried system in the following ways:

1) an improved display facility

2) inclusion of statistical operators

3) ability to enter numéric data directly into vectors

4) ability to enter expressions \

The second version of TOCS (Version II) contained even further departures
from the Culler-Fried system. The levels which allow multiple use of the push-
buttons were dropped by providing for arbitrary names for console programs.
The ability to designate which variables are local to a console program, and to
designate variables as argument variables (parameters) was added. Edit facil-
ities were also made available for modification of console programs. Other im-
provements were the al\)ility to give multi-character names to data entities, the
ability to redefine system operators, the ability to use vectors of unlimited length
(to within memory size), and error messages.

TOC, the most recent system developed by project TACT uses three basic

features borrowed fro'a the Culler-Fried Systems.

1) The use of pushbuttons to invoke operators.

2) Operators which work automatically on entities larger than scalars.
3) A repertoire of operators providing the basic tools of operator calculus.
Two engineering features which were also borrowed are:

15 The use of storage oscilloscopes for console output.

2) The ability to draw on the output scope from the input keyboard. Draw-
ings are composed using small directed straight line segments, each
associated with a button.

The two versions of TOCS which preceded TOC provided many more ideas for
the development of TOC, most of these ideas are listed above as departures
from the Culler-Fried System. Each TOC console has 65 operator keys plus a
full typewriter keyboard. The TOC system was expected to be in operation by
the fall of 1967 on an IBM 360 /50.
3. The AMTRAN System

AMTRAN (Automatic Mathematical TRANslation System) was developed at
NASA's Marshall Space Flight Center in Huntsville, Alabama and has been
available to users since early 1966; see Wood et al. [1966], Reinfelds et al. [1966]
and Ruyle et al. [1967). AMTRAN was inspired by the Culler-Fried system and
retains many similarities, especially the use of function buttons. The basic
goals of AMTRAN as stated by Reinfelds et al. [1966] are:

1) To use the natural language of mathematics as a programming language
without any arbitrary restriction whatsoever.

2) To obtain immediate graphical output of intermediate and final results.

3) To retain a hard copy of useful results and programs.

4) To retain copies of programs in an easily reusable form.

5) To retain utmost flexibility in the system so as to allow its use from
the level of existing programming language up to the level of advanced

calculus.
-10 -

The AMTRAN system employs remote terminals consisting of a large key-
board (with 224 pushbuttons), two 5-inch cathode ray storage oscilloscopes for
graphical and alphanumeric display, and a typewriter to provide a permanent
record of displayed information when desired. The AMTRAN language is multi-
level in that it can be used by a systems programmer or an applied mathematician
or at any inlermediate level. Both an on-line conversational mode and an off-line
batch mode (or a combination) are available to the users.

The language includes Algol/60 programming capabilities as well as the
pushbutton operators. Among the operators which are implemented to facilitate
the expression of mathematical calculations in classical notation are /., Ei_ ,
MINIMAX, etc. An array of unlabeled buttons is provided for stdring a user

defined sequence of button pushes (a user defined console program). Automatic

array arithmetic is provided.

4, The Lincoln Reckoner

The Lincoln Reckoner system has been in routine use by the staff of the
Lincoln Laboratory of the Massachusetts Institute of Technology -since the spring
of 1966; see Stowe et al. [1966], Wiesen et al. [1967] and Ruyle et al. [1967].
The Reckoner system, designed to operute within the APEX time-sharing system
foi' the TX-2 computer, is for on-line use in scientific and engineering research.
The system in its present state does not provide all the services to an engiﬁeer
or scientist that might be envisioned, instead the development has been con-
centrated in the area of numerical computations on arrays of data. As of the
summer of 1966 there were 64 operations available in the Reckoner public
library. These include the following:

1) Basic arithmetic on arrays.

2) Other arithmetic on arrays.

3) Data shuffling in two-dimensional arrays.

-11 -

4) Matrix operations,

5) Signal analysis.

6) Input and Oufput.

7) Miscellaneous.

The Reckoner is primarily a facility for making use of routines and not for
writing them. The aim is to provide a system whereby a scientist can feel his way
through the reduction of data from a laboratory experiment without previous pro-
gramming experience or training, However, the capability to construct ones own
routines is available in the form of a small algebraic compiler called Junior which
can be utilized on-line.

The Lincoln Reckoner is an '"operation-oriented system as are AMTRAN,
MAP, OPS-3, and the Culler-Fried system. That is, the system tries to provide
the operations (add, divide, integrate, differentiate, plot, etc.) that a user will
need to solve his problem. The user then combines operations and operands so as
to solve a particular problem. For example, suppose we had already stored values
in a one-dimensional array Y and a two-dimensional array X and we wished to

minimize the quantity
(Y. - £X..8.)% .
i 1 1]

To do this with the Lincoln Reckoner would require the following instructions:

TRANSPOSE X XPRIME

MATMUL XPRIME X L
MATMUL ~ XPRIME Y R
SOLVE L R BETA

This would put the solution to this least squares préblem in the array BETA.

To compare graphically the newly found approximation and the original data,

-12 -

a user could type

MATMUL X BETA XBETA
PLOT XBETA Y

This would cause a graph of the elements of XBETA to be plotted against the
corresponding elements of Y.
5. OPS-3

OPS-3, on-line computation and simulation, was developed at the Massachusetts
Institute of Technology, Cambridge, Massachusetts, see Greenberger et al. [1965],
OPS-1 grew out of a graduate seminar on advanced computer systems during the
spring of 1964, OPS-2, an improve;i version of the OPS-1 on-line computational
facility, was programmed during the summer of 1964. The fall of 1964 saw the
beginning of development of OPS-3, a larger-scale improvevment, which runs under
CTSS, the MIT time-sharing system. As stated by Greenberger g_f al, [1965] , the
aim of the designers of the OPS-3 system . . . is to give the researcher a complete
information-processing and model-building facility without placing any artificial
demands on him; that is, without having the system get in the way of the research.
This goal has been partially realized. For example, vectors and matrices are
operated upon algebraically and processed as whole arrays simply by symbolic
reference to their names. A user need not index through subscripts and test for
boundaries, although the ability to do so is retained. OPS-3 does retain some ad
hoc rules and conventions which a beginning user must learn to become familiar
with OPS-3. However, according to Greenberger et al. [1965], experience has
shown that users like the system, especially after becoming well acquainted with it.

Communication with OPS-3 is operator-oriented. There are 60 to 70 standard
operators provided by the system such as:

COMPUT (performs a computation and prints a result)

SET (allows algebraic assignment statements)

- 13 -

PRINT (prints information from storage)

READ (allows entry of data from the console)

FIT (fits a linear equation to a multicomponent set of observations)
The SET operator would be used, for example, to perform an assignment as follows:

SET X =5 * (2+17.3) .

Compound operators, called KOP's, can be written in terms of the standard
operators and saved for subsequent usage. A KOP .is executed interpretively or
it may be compiled. In either case it is referred to by name and thought of as
an operator. Compound operators may call themselves (recursively) and each
other to any depth. A statement to call a KOP named BETA, with parameters
X, Y, 25 would be . . . CALLK BETA X Y 25. | |

With matrix multiplication denoted- by . M." and raising a matrix to a power
by "". P." we can use the SET operator to define statistical calculations of the
mean and variance for data stored in an array DATA and the covariance for data

stored in arrays X and Y as follows:

SET MEAN = (DATA.M. 1)/N

SET SQ = DATA .M. DATA

SET VAR = SQ/N - MEAN . P, 2

SET COV = (X.M.Y)/N - (X.M.1) * (Y. M. 1)/(N*N).

The REPEAT operator used in conjunction with thé IF and IFB operators
allows loops to be programmed. This capability allows‘iterative algorithms to
be easily incorporated as KOP's.

Simulation is one of the primary used of the OPS-3 system. There are

several operators and compound operators available for this purpose, however

since this survey is mathematically inclined we won't discuss this capability here.

- 14 -

For data analysis there are operators for manipulation of stacks, raﬁking
and counting, solving polynomial equations, and for multiple and polynomial
regression. The operators for statistical analysis that are available with the
OPS-3 system include linear least squares curve fitting and regression, con-
tingency analysis, intercorrelation analysis, and about 10 other statistical tests
and computations. Each operator has two forms: a guided form and a short form.
The guided form essentially asks the user for the necessary parameters one-by-
one. The short form allows a user to enter the pérameters as he calls the oper-
ator, thus eliminating considerable interaction time waiting for the system to

type out messages. OPS-3 has no provision for graphical output.

C. General Pufﬁose Systems — Language Oriented

The following four systems are language oriented as opposed to operation
oriented.

1. The MAP System

The MAP (Mathematical Analysis Program) system has been in use by re-
searchers and for teaching at Massachusetts Institute of Technology since the
middle of 1964; see Ruyle et al. [1967], Kaplow et al. [1966], and Kaplow et al.
[1966a] . The system operates within the MIT Compatible Time Sharing System
(CTSS) at the MIT Computation Center or at Project MAC.

MAP can be involked from any teletype or IBM 1050 terminal that can dial
into CTSS, regardless of the physical location of the terminal., Graphical output
can be requested if a CRT is available. Some graphical output has been obtained
by using the MIT Electronic Systems Laboratory display terminal (see Ward [1965]),
but these terminals are expensive. MAP with full graphics was used at Harvard
with the CRT display facilities there by Ruyle [1967]. Storage oscilloscopes are
now available at some terminals.

-15 -

MAZP does not utilize pushbuttons as do the Culler-Fried, AMTRAN, and
TOC systems. Instead a language which is a combinatioh of English and arithmetic
operation symbols is utilized. According to Kaplow et al. [1966], "the user
'talks' in one or two-word phrases or in arithmetic equations, ‘w}vhile the computer
uses a passable form of English." The system is flexible in that it allows inter-
mixing of the basic procedures of MAP and user written programs. Automatic
error control has been designed into the MAP system in the sense that the pro-
cedures used will not lose any of the precision inherent in the input.

Functions are handled as arrays of values at spéciﬁed values of the inde-
pendent variable. To insure accuracy of the results of MAP operations on
functions, methods ére used which are exact (or nearly so) if three point fitting
to the given function values is adequate. Thus a user need only be sure that his
experimental data and calculated input functions (except those intended for least
squares fitting) be tabulated such that a parabolic interpolation over three suc-
cessive points specifies the function as accurately as is meaningful or required.

MAP has no logical operators. This and the absence of looping facilities
mean that the console programming facilities are somewhat limited compared to
the AMTRAN, Culler-Fried, and Lincoln Reckoner systems. However, the
ability to code fuﬂctions in various languages and have them executable from
within a MAP program provides considerable flexibility to a knowledgeable pro-
grammer.

Some of the complex proce‘dures found in the MAP language in addition to
such functions as sine, cosine, exp, and abs are t.he following:

1) Integrate (between fixed or variable limits).

2) Convolute ("folding' of two functions).

3) Least square analysis (linear least square analysis).

-16 -

4) Basis change (F(x) —F(any function of x)).

5) Fourier transformation (sine or cosine or both).

6) Minimax (changes the range of definition of a function) .

T Select (manipulation of a portion of a function).

8) Root (finds roots of an equation g(x) - ¢ = 0).

9) Equalize (creates a function tabulated at equal intervals from two
functions which contain the data and the corresponding values of the
independent variable).

10) Edit (allows editing of MAP functions).
11) Matrix operations (full package).

As state‘d by Riceand Roéen [1966], rthe aim in the design of NAPSS (Numerical
Analysis Problem Solving System) . . . is to make the computer behave as if
it had some of the knowledge, ability and insight of a professional numerical
analyst." Other references to NAPSS are Rice [1967], Roman and Symes [1967a
and 196'ib] and Symes and Roman [1967]. To implement the above stated aims,
the researchers at Purdue University, Lafayette, Indiana, are developing
"polyalgorithms" to be the numerical analysts behind the keyboard (on-line
console). These polyalgorithms will be ", . . formed by the synthesis of a
group of numerical methods and a logical structure into an integrated procedure
for solving a specific type of mathematical problem," \

| NAPSS is currently under development at Purdue. Several polyalgorithms
have been developed to various levels of sophistication,” see Rice [1967]. The
system is planned to be run in a time sharing environment at on-line remote
consoles including graphical capabilities, however NAPSS programs will be ex-
ecutable as batch jobs as well. The system is expected to be useful as a device

for teaching as well as for solving problems in numerical analysis.

-17 -

The polyalgorithms being developed as of late 1967 are shown in the follow-
ing list.
1) Linear equation solver (employs LU decomposition and SOR methods
depending on the size of matrix involved).
2) Solve f(x) = 0 (one variable).
3) Solve differential equations.
4) Perform differentiation.
5) Determine polynomial zeros.
6) Integration (may use Romberg).
- Ty Approximation (includés the following):

a) Least squares poly'nomial.b

. b) Least squarés with user specified functions.
c) Pseudo least squafes by 3.etX + b. |
d) Pseudo least squares by a + b{x + c)P .
€) Minimax broken line,
fy Pseudo minimax pricewise cubic with continuous derivatives.
g) Least squares nonlinear cubic splines.

The NAPSS language is being developed as an interactive problem oriented
language. The purpose being to state numerical problems in a mathematical-
like notation with direct manipulation of arrays and"functions. The language
will include a procedural language for expressing user defined algorithms but
efforts are being made to eliminate all unnecessary clerical operations some-
times associated with procedural language impleinentations.

3. POSE

POSE: A language for posing problems to a computer is being developed at

the Aerospace Corporation, San Bernadino, California, by Schlesinger and

- 18 -

Sashkin, see Schlesinger and Sashkin [1967] and Sashkin et al. [1967]. Its
initial hnpiementation is to be on the IBM System /360 and 1800. The authors
state that POSE (Processing, Organizing and Solving Equations) is very similar
to NAPSS (see paragraph II. C. 2), however POSE will use general pu;'pose
methods on all problems where NAPSS polyalgorithms will attempt to tailor

the methods to the problem at hand.

The POSE language will utilize FORTRAN conventions to express algebraic
statements and allow assembly language instructions to be included as well, The
power of the language comes from the extended capabilities that allow a user to
describe his problem in equation-~like form. The method of solution as well as
translation of the problem from equation form to computer instructions will be
provided automatically.

The extended capabilities to be included in the initial version of POSE are:

1) Solution of simultaneous ordinary differential equations (initial value

problems)

2) ‘Evaluation of multiple integrals

3) Solution of a transcendental algebraic equation

4) Solution of a system of linear algebraic equations

5) Matrix arithmetic

6) Inversion of square matrices

7) Simplified data input

8) "Simplified printed output

9) Two-~dimensional graphical display

10) Table lookup and Nth — order interpolation
11) Basic statistical computation

12) Function evaluation with automatic parameter variation

-19 -

The authors call POSE a polymorphic language since it includes assembly
language, procedural language and a declarative language for involking the ex-
tended capabilities listed above. The ability to mix Fortran statements with
assembly language statements can be very useful to an experié‘nced programmer,
however, the POSE implementation of the extended capabilities looks tothis author
much like a reworded call of a subroutine with a list of arguments. In fact, in
writing POSE programs one must be careful to spell things correctly and get
parameters in some specified order. This somew;rhat lessens the usefulness of
the language to the non-programmer in an on-line interactive environment.

4. JOSS

JOSS (Johnniac Open-Shop System) has been in daily use since January 1964
by the staff members of the RAND Corporation, Santa Monica, California. JOSS
is an experimental, on-line, time-shared computing system which was designed
1, ., to give the individual scientist or engineer an easy, direct way of solving
his small numerical problems without a large investment in learning to use an
operating system, a compiler, and debugging tools, or in explaining his problems
to a professional computer programmer and in checking the latter's results.”
(Shaw [1964]). JOSS was supposed to demonstrate the benefits of on-line interaction.

JOSS was originally written to use the JOHNNIAC computer (a Princeton-class
machine built at the RAND Corporation in 1950~53) in a time-sharing mode to pro-
vide a modest computing service to the open-shop via remote typewriters.
Physically, JOSS consisted of the JOHNNIAC com_puter, ten remote typewriter
consoles, and a multiple typewriter communication system to mediate between
JOHNNIAC and the consoles. The capacity of JOHNNIAC (50 us add time) limited

the service to small numerical computations. In 1964 work began on an expanded

- 920 -

JOSS utilizing a PDP-6 computer, see Bryan [1967]'. This PDP-6 system be-
came operational in February, 1966, and allo&s storage of more and larger
programs thén was previously possible.

The JOSS language permits a user to direct the system in editing as well
as computing and typing. According to Ruyle et al. [1967], "JOSS is a simple
coherent system but the ratio of clerical detail required to power afforded is
rather great." There are no graphical commands or capabilities in the system.

A simple example of the on-line typing illustrates the language (U means user,

J means JOSS):
U TYPE 2+2
J 2+2=4
U SET E= 2.. 71828183
U TYPE log (E)
J 1

A numeric label (user supplied) as a prefix to a step is an implied command to
JOSS to store the step in sequence according to the numeric value of the label.

Steps with no numeric label are direct commands to JOSS which are to be executed

immediately.

D. Special Purpose Systems

1. STATPAC

STATPAC, a lightpen-controlled program for on-line data analysis, was
developed and is being used at Decision Sciences Laboratory, Hanscom Tield,
.Bedford, Massachusetts, see Goodenough [1965]. The system is designed so

that no vocabulary of a language need be learned by a user. This is accomplished

- 21 -

by displaying a ""menu" of the vocabulary on a computer-driven scope for user
selection. By displaying on the scope only those items which will make a
syntactically correct command, no invalid commands can be»generated.

The author claims similarity in his objectives and methods to the Culler-
Fried systems, however, instead of providing general purpose mathematical
operators, STATPAC is oriented toward statistical operations. While composing
a command at the console, menus of operands (vector titles) and operations are
displayed for lightpen selection. Some of the avziilable operations are:

1) DISPLAY

2) TYPE

3) PUNCH

4) CORR between (X) and (Y)

5) STD DEV OF

6) MEAN OF

7 REGRESSION (X) vs (Y)

8) SUM OF SQUARES OF
2. Marchuk and Yershov's System

According to Marchuk and Yershov [1965], ", . . the problem of solving
differential equations comprises at least two thirds of all problems ariéing in
engineering and scientific calculations." Thus they proposed (in 1965) to con-
struct a nonclosed programming system based on a continuous man-machine
interaction to aid in the solution of differential equations. In this problem area
they plan to have the human make such decisions as:

1) Specification of rules, variable substitution, and direction of

analytical transformation to reduce the problem to a canonical form.

- 292 -

2) Information on partition of the operator of the equation into elementary
ones.
3) Which difference scheme is preferred for a given elementary operator.
The current status of this on-line system for solving difféfential equations
is unknown.
3. Gear's Systeni
Gear [1966] describes a system for finding the numerical solution of ordinary
differential equations at a remote terminal. Systems such as MAP represent a
function by a paif of vectors of values and use interpolation when necessary. How-
ever, this method is not sufficiently accurate nor is it convehient for high accuracy
-problems in __differential equations. Therefore, at the Department of Computer
Science, University of Illinois, Ufbana, Illinois, a system has been developed
for the‘ solution of differential equatiohs. The system consists of three basic
packages:
1) The numerical integrator — this contains a lé.rge number of switches
which determine accuracy. |
2) The equation compiler — this allows input in a natural form.
3) The dialogue program — this accepts input, corrections to input (editing), and
interacts with the user to set the switches in the integrator.

A set of differential equations is entered, for example, by typing

10 ' YO' = Y1 * Y2

20 : Y1'= -Y0 * Y2

30 ' Y2'=-,51 % Y0 * Y1
END

To simplify expressions and to make it easier to modify parameters, 23 vari-

ables named A through W are allowed in the expressions on the right hand sides.

- 923 -

Up to ten dependent variables YO through Y9 may be used, the highest order
derivative-of each must appear on the left hand side of an equation.
The dialogue consists of the following steps:
1) Type in equations '
2) Enter initial values
3) Optionally enter
a) step size upper limit
b) order
c) error tests for step conirol
d) or fixed step v
€) where and what to print
1) format | b
g) when to stop
In 1966 teletype models 33 and 35 were in use» as remote terminals, Typewriter
plots of the solution are generated and plotted on-line. No other graphical de-
vices are available to the system.
4. Dixon's On-Line Statistical Programs
Dixon [1967] describes the use of on-line displays with packaged statistical
programs. In this paper he discusses the usefulness of being on-line with a
statistical program and especially the usefulness of on-line graphical ability.
He says ''. . . many experts in data analysis have always used graphical methods
to aid their analysis of data. One often hears directives of these experts to
their assistants something like, 'go thou and plot your data.' The plots and
charts frequently do not survive the process of report writing and publication,
but have played an importanf part in the analytical process itself.' An on-line
interactive situation is ideal for the examination of these charts and plots which

are diccarded during the data analysis process.

24 -

At the Health Sciences Computing Facility, University of California at
Los Angeles, California, the BMD programs (Dixon [1964]) are being rewritten
for on-line usage. Programs for stepwise regression, linear regression and
spectral analysis are now available for on-line use and othef bprograms are
being developed. The programming is being carried out for an IBM System
360 /75 computer with an IBM 2250 display unit with lightpen and special
function keyboard as a console, -
5. PEG System
At the Stanford Linear Accelerator Center, Stanford University, Stanford,
California, this author has been developing the PEG (On-Line Data-Fitting)
system. The work was begun in the fall of 1967 on an IBM System 360/75
computer using an IBM 2250 II display unit with lightpen as the interactive
console. The interactive program runs in a separate partition of memory with
high priority. Bj the fall of 1968 a working system was available and was used
by physicists for actual data-fitting problems. By October 1968 the IBM 360/75
had been replaced by an IBM 360/91 and the PEG system was operational on that
computer,
As described in Smith [1969], the PEG system allows user selection of:
1) Fitting function
a) user defined function
b) orthogonal polynomials
c) spline functions — fixed or variable joints
d) Fourier approximations .
2) Data mode
a) data from cards

b) data of previous fit

- 25 -

¢) residuals of previous fit
d) keyboard entry
3) Display mode — after a fit has been c;omputed there are seven different
display modes.
In addition to the above, PEG allows specification of degree, initial guesses
for nonlinear problems, choice of minimization method (in some cases), cor-
rection, subset selection, selective deletion, or transformation of data values.

All user actions are either light perlx selectio‘ns or numerical entries from
the keyboard. This has been acconiplished by anticipating in advance all possible
(at least nearly all — hopefully) desires of a user and providing for on-line
selection from the list of available options.

The PEG System was partially inspired by the DATAN System, see Simonsen
and Anketell [1966]. Some other references of interest in the approximation and
curve-fitting areas are Conn and vonHoldt [1965] and deMaine [1965]. Pyle [1965]
describes a system for on-line data input by question and answer which is re-
lated to the method employed by PEG to obtain input from the user. PEG in
many cases asks multiple choice questions which can be answered with the

lightpen.

E. Other Systems

1. DIALOG

DIALOG is a conversational programming system with a graphical orienta-
tion described by Cameron et al. [1967]. The language was designed by the IIT
Research Institute, Chicago, Illinois, ''. . . as an experimental development
intended to explore the effectiveness of an on-line graphical communication

{erminal as an algebraic programming tool. The system relies entirely on a

- 26 -

graphical stylus and a single push button to provide input and, when used on-
line, does not make use of a mechanical keyboard."

The language is designed to be used as a computational aid for a casual
user. To facilitate use by untrained personnel, on-line DIALOG programs
are composed by selecting symbols from a list displayed on an on-line oscillo-
scope. The list of displayed symbols is restricted to those symbols whose choice
will result in a syntactically correct program. A few lines of code will illustrate

the type of statements that occur in DIALOG programs.

12.1 K=K+ B -Y)* Xt2+Atz;

12.6 'WRITE'K, A, B

13.3 'PLOT' (A, B)

An interpretive processor for DIALOG programs has been coded for the
UNIVAC 1105 and imbedded in a time sharing monitor that allows simultaneous
operation of several terminals. Programs can be prepared off-line, run as
batch programs, and can produce hard copy of results as well as the on-line
mode of operation. In fact, a DIALOG compiler has been prepared for use on
the IBM 7094 for strictly batch operation.

2. MATHLAB

MATHLAB: A program for on-line machine assistance in symbolic comp‘u-
tations, is described by Engelman [1965]. The program has been developed on ..
the time-shared system of project MAC at Massachusetts Institute of Technolgg-y
and on the IBM 7030 at the MITRE Corporation, Bedford, Massachusetts. As of
September 1, 1965 work was under way to provide the‘ display of mathematical

"expression on scopes and to adapt MATHLAB to the AN/FSQ-32 computer at the
Systems Development Corporation, Santa Monica. In 1965 MATHLAB had no
graphical capabilities,

- 927 -

Some of the qualities of MATHLAB are listed as follows:
1) Numerical computations — these are weak since. original effort was
in the area of symbolic computation.
2) Symbolic computations — capabilities include
simplification
substitution
adding equations
differentiation
some integration
solution of equations, etc.
3) Simple user commands — for example to differentiate el with respect
to e2 a user need only type "differentiate''(el X e2).
4) The program can be expanded by any LISP programmer.
5) MATHLAB can be extended by the user — he can "teach" it derivatives
and rename system functions.
6) It is intimate — a close relationship develops between user and computer.
The following list of some of the system commands available with MATHLAB

gives an indication of the kind of problems that can be worked on in the MATHLAB

environment.
repeat flip
pleasesimplify makeequation
forget ‘ . makeexpression
substitute makefunction
add factor
multiply differentiate B
subtract learnderivative

- 28 -

division ‘ integrate

raise " solve
negative rename
invert ' newname

3. MAGIC PAPER 1

In 1963 Clapp and Kain [1963] described a computer aid for symbolic mathe-
matics called Magic Paper 1, This is a computer system that is primarily for
symbolic mathematics but it does allow some function evaluation and plotting on
;1 display scope. Magic Paper 1 was developed at Bolt Beranck and Newman,
Inc., Cambridge, Massachusetts,for a small time-shared computer (PDP-1).

The console consists of a typewriter, a display scope aﬁd é lightpen. A
paper tape reader and punch and several magnetic tape units are available for
large scaie inpht/output and saving information off-line. Control of the calcula-
tions is handled by executive control characters which the user types in. Some

typical control characters are:

I - - -enter input mode
, - - — leave input mode
1:3- - - display pointer on scope
l:)— - - display figure
EVAI;- - - evaluate function

Typical manipulations are insertion, substitution, multiplication of an
equation by a term, transposition, and the addition of two equations. A function |
can be built up and then plotted on the scope to examine its graphical character-
istics. The scope plots can be "zoomed" in and out to examine certain features

in detail.

- 929 -

Standard two dimensional mathematical notation is used on the scopc while
a linear typewriter notation is used for input. The following mathem:.lical

evaluation operators are included in the system:

+ addition

- subtraction

X multiplication

/ division

z sum over an index between limits

T prbd’uct over an index between limits
T exponentiation

) [] parenthesisation
if
then

< > < > conditional expressions
when
Notational flexibility is built into the Magic Paper system by allowing the user
to define new control and data interpretation operations as he proceeds with a
problem.
4, The DISPLAY System
The DISPLAY system was written at System Development Corporation,
Santa Monica, California, in 1967, see Bowman and Lickhalter [1968]. DISPLAY
is a system for graphical data m:inagement in a time-shared environment which
has been written as a forerunner of the display component of TDMS (Time-Shared
Data Management System) being implemented on the IBM System 360 family of

computers. [TDMS became operational in the summer of 1968, see DATAMATION,

- 30 -

August 1968, p. 95.] The three goals in designing DISPLAY were

1) To provide satisfactory response within a time-shared computer.

2) To produce a system easy for the nonprogrammer to use.

3) By achieving the first two goals, gain users for the system in order

to obtain feedback to improve the system.
These three goals have been achieved by the DISPLAY system implemented on
the SDC Q-32 machine, running under the time-sharing system with no special
consideration from the executive.

The priﬁary function of the system is to allow graphical examination of
stored data, However, excursions into TINT (a higher-order Algol-type in-
terpreter) are allowed whereby a user can perform nonstandard operations on
fhe data. For example, assume we are gsing DISPLAY and we have already
specified the data to be retrieved (time for data retrieval varies from 15 seconds
to 5 or 6 minutes). At this point we could execute the following steps:

1) Call TINT

2) Specify a TINT program (from a list of already written programs) or

3) Write a ncw TINT program on-line

4) The TINT program then operates on the daté and outputs a graphic

» data array which is fed into DISPLAY

5) DISPLAY presents the graphic output on the scope
This capability could be used to do data-fitting similar to that provided by PEG
(see paragraph II. C. 5) if the appropriate TINT programs were available.

5. The Kler:r-May System

Klerer and May [1964] describe a software-hardware system for the purpose
of facilitating the programming and analysis of well-formulated problems. Other
references to this system are Klerer and May [1965a], [1965b] and Klerer and

Grossman [1967]. ,
-31 -

The Klerer-May system was originally written for a GE-225 computer at
the Hudson Laboratories of Columbia University, Dobbs Ferry, New York.

The system employs modified Flexowriters as input/output stations. Special
characters and the ability to control platen movement by half spaces from the
keyboard give fhe modified Flexowriter the capability of producing '"natural”
two-dimensional mathematical notation. In other words, the Klerer-May

language employs summation signs, integral signs, superscripts and subscripts

as in conventional mathematical notation. The cbmpiler takes this two-dimensional
input and produces very efficient code (2 to 4 times faster object co‘de than other
compilers for the GE- 225) |

The system is supposed to be self—teaching a.nd succeeds quite well as
testxhed by the fact that a one-page manual 1s all that is ha.nded to new users -
of the syustem. After a prog'ram has been entered into the system, the computer
"echos" its interpretation of the input, thus catching some anibiguities and mis-
takes in a program. Plans are to implemept the system with on-line inter-
active i)rogramming capability.

6. Moore et al.

Moore et al. [1966] discuss their experiences with a remote console time
shared system at the University of Western Australia. In particular they discuss
FORDESK, a FORTRAN compatible on-line system which enables simultaneous
editing, translation, execution and debugging from a user's console. FORDESK
was first released towards the end of 1965.

Moore and Erickson [1966] describe the use‘ of a CRT with lightpen in a
time-shared environment. Of particular interest is an application involving
polynomial curve fitting. The curve fitting program allows dynamic location
of the axis, adjustment of scale, and choice of the degree of polynomial all by

lightpen picking of displayed '"light buttons."

- 32 -

7. Ball and Hall

Ball and Hall [1967a] discuss PROMENADE, an on-line system for data
analysis using clustering techniques. Their work has been carried out at the
Stanford Research Institute (SRD), Menlo Park, California. They use a high
precision CRT to perfqrm interactive statistics and data analysis. Other ref-
erences of interest are Ball and Hall [1967b] and ‘Eusebio and Ball [1968].
These discuss methods of handling multivariate data in an on-line graphical

environment.
III. SOLUTION OF A LEAST SQUARES PROBLEM BY VARIOUS SYSTEMS

In this sectibn we Will take a least squares problem and discuss how it
would be solved by several of the general purpose interactive systems described
in the preceding section, The particular proiolem we will consider is a con-
strained linear least squares problem that; arose in a physics laboratory.

Several measurements related to a cross section problem gave points which
were to be approximated by a polynomial in even powers only with the added
restriction that the polynomial should always be non-negative. The data, with
weights (inverse of errors in the points), is given in Table 1. The approximating

polynomial is to be:
2 4 6
P =2, + a;X"+a X +a3X .

In the case at hand, restriction of a, to be non-negative is sufficient to satisfy

0
the non-negativity of p(x).

- 33 -

TABLE 1
DATA TO BE FIT BY p(x)

i x(i) “ y () w(i) weight
1 . 713 2.7 5.0

2 . 856 8.1 1.667

3 .932 13.2 1.111

4 . 988 21.5 ' .6667

5 .994 22. 4 . 625

Restating the problem we have:

5
given: Data {(xi,yi,wi)}i=1

given: A function p(x) = ay + aLlX2 + aZX4 +a X6 with a

3 029

Find: Values of 3gs +v. Bg

of p(x) to the given data. That is

which give the weighted least squares fit

12 .

5
minimize D w?‘ [y, - p(x;)
- 1 i

Display: The resulting fit superimposed on the data.

This problem could also be formulated as a quadratic programming problem
and solved by known quadratic prdgramming methods.

In some of the following sample solutions to this problem we will ignore the
constraint, as it complicates the solution considerably. Without the constraint
we have a weighted linear least squares problem which is easily handled by some
of the on-line systems under consideration. The weights are also ignored in some

cases to simplify the problem even more.

- 34 -

A. Culler-Fried Solution

The Cuiler—Fried system is oriented toward handling functions defined on
equally spaced points. The unequal spacing of the data points makes this problem
more complex than it might otherwise be; however, a considerable amount of
console programming would be required even for equally spaced points.

To illustrate the amount of brogramming required using fhe Culler-Fried
system, let us consider the code necessary to eva-luate only the polynomial,

]¢.9] =a1+... -l-a3X6 .
The following code will type out a message "ENTER X'" and upon entry of
a value, proceed to evaluate the polynomial

2+C'X4+D'X6l

PX) = A + B-X

The code is:

TYPE RS ENTER X.....

LI RFAL LOAD ENTER

SQ STORE Y SQ STORE

Z0oY (;) D STORE

TLOADZ ®@ C &

T STORET LOAD Y ©

B © T & ASTORE

T.

- 35 -~

After the abové code has been executed; the valué of p(X) is stored under the
key T for later use. Noting the detail of the code to evaluate the polynomial
we can extrapolate to say that the code to solve a nonlinear set of equations by
iteration, or even the code to solve a set of simultaneous 1ineé.i equations
would be quite involved. The code complexity is, of course, relative. What
we are comparing this code to is, for example, t1_1e code required by NAPSS

to solve a set of simultaneous equations; see paragraph IIl. B.

B. NADPSS Solution

Thanks to Symes [1968], we ha'we two methods of solving the least squares
problem if we ignore the constraint and the weighting. With no constraint on the
constant term the problem is a linear least squares problem. Assuming we
already have the data read into the one-dimenéional arrays X anci Y we have
the following methods.

Method 1. (weighting can easily be added to this method)
FOR I~—1,2, ..., 4 DO
Qlij«<sum (v[K)x[&] | 2@-1), FOR K1,2,...,5)
FOR J«I, I+1, ..., 4 DO
R[L, Jj«—suM & [K]](2@+J-2), FOR K«1 TO 5)
IF) THEN [R+J,I] = R[LJ]:s;

SOLVE R*A = Q FOR A; *

pEy<Af1] +al2] xf2+a[3] x T4 + al3] xte

TABLE (I, Y,X) |

PLOT (f(X), P(X), ON X[1]<x<X[5))

- 36 -

Method 2.

TABLE (f{X), Y, X)

P(X)<——APPROXIMATION fxX), WITH 1, X T 2, X T4 X TG USING LEAST SQUARES)

A< COEF(P)

PLOT (£(X), P(X), ON X[1]<X<X [5])

Although the authors of NAPSS have not mentioned it yet, we expect that
someday they will add a polyalgorithm for optimization (locating a maximum or
minimum). A call on such a polyalgorithm might be

MINIMIZE (f(A), STARTING WITH A=A0).

A solution to the weighted and constrained least squares problem might then be
as follows (we assume the data has already been read into the vectors X,Y, and
W, and that starting guesses for the coeffiéients are in A0):

Possible future method without constrainf

P(X,A)—A[1] + A[2) XTz+A[3 1xtasafexte

F(Aye—SUM(W[I Tz ¥ [1] - Px{1],A)) T 2, FOR I=1 TO 5)

MINIMIZE (F(A), STARTING WITH A=A0) '

Possible future methoed with constraint.
P, A)—All] +A[2) X T2+ap x [a+alg xTe
F(A)y«—SUM((W [I] TZ) (Y[1] - PX[1], A) T 2, FOR =1 TO 5) IF A [1]20
OTHERWISE 10 TSO

MINIMIZE (F(A), STARTING WITH A=A0)

C. POSE Solution

Since POSE is not yet fully implemented it is difficult to state a solution
very precisely. POSE has been implemented on an IBM 1800 with limited

capabilities; see Sashkin et al, [1967]. Plans call for implementation of the

- 37 -

capability to solve a system of linear algebraic equations which would allow
solution to the weighted least squares problem (without constraint). This
modified problem would be solved by a program similar to method 1 of the
NAPSS language. After entry of the data, Fortran statements would be used
to calculate the matrix of the normal equations; then the solution vector would
be found by the built-in subroutine for solving simultaneous linear equations.
An approximation to what the POSE program would look like is:
POSE progré.m (withdut éohstfaints)- S -
S.0 CALCULATION SEQUENCE
READ DATA R
EXECUTE S. 20 Lo
PRINT RPT.1 (X(1), X(2), X(3), X(4))
PROBLEM END
S.20 RANGE OF I=1(})4
RANGE OF J= 1(1)4
A, J) =0.0
RANGE OF K = 1(1)N
AQ,J) = AQL, J) + WE)*W(K)X(K)**(2(1+J-2)
RANGE OF I=1(1)4
B@M = 0.0
RANGE OF K = 1(1)N .
B = B + W(K)*W(K)*¥Y (K) *X(K) **(2(-1)
X = SOLVE (A, B) |
To plot a graph of the resulting computed fit would involve first evaluation of

the polynomial at a series of points for plotting purposes (call these values YY

- 38 -

and the independent variable XX) Once'the points to be plotted are computed
we would then use the following POSE statements to obtain the graph:

PLOT GRAPH: 1(XX: XMIN: XMAX, YY: YMIN: YMAX)

TITLE (POLYNOMIAL(X), X)
The statement, DISPLAY GRAPH:1, in the calculation sequence would then

cause the display to take place.

D. OPS-3 Solution

To solve the constrained least squares problem using OPS-3 would involve
writing a compound operator tb solve the non-linear problem. Therefore let us
describe how to solve only fhe weighted linear least squares' problem. There is
an operator in OPS-3 which performs linear least squares curve-fitting. A
linear equation is fitted to the observations with certain optional constraints.
The allowable constraints, however, do not include the constraint of interest
in this problem. The linear equation used is

Y=a0+a1x1+a2x2+... +anxn ,

where the X4y 00, X, ATE considered as n independent variables, To use this

operator on the problem under consideration, we define four independent

variables:
x1 =1
w2
x2 =X
x3 = X4
6
x4 =X

By defining four independent variables (including the constant, 1) and by selecting

the option which suppresses the term 2, in the above equation, we can solve the

-39 -

least squares problem with weighting. First we consider the equations

_ 4 6 .
YWy = wiay + wiazxi2 +wiagX, +wa X, , fori=1,2,...,5.

Assume we have already read the data into three arrays X,Y, and W. Let A be
a matrix with A(O, K) denoting its kth coluinn. The OPS-3 code to solve the
problem will then be:

SET A(0,1) = W

SET A(0, 2) = W*X*X

SET A(0,3) = W*X.P. 4

SET A(0,4 = W*X.P.6

SET Z = WY

LINFISZ A 45 2
The last line of the code is an invocation of ;che linear least squares curve-fitting
operator in its short form with all parameters given immediately. The guided
form of the call would be

LINFIT Z A
and the OPS-3 system would then come back and ask for valueé of the other
parameters which are:

NV =4 - number of variables

NO = 5 = number of observations

K = 2 = code to indicate option which suppresses the constant term of

the linear least squares fitting function
The printed output from the LINFIT operator _includes the coefficients of

fit and a measure of the goodness of the fit,

- 40 -

E. JOSS Solution
JOSS does not have complex operators included in the language so the code
to solve a problem such as the solution of a set of simultaneous linear equations
must be provided by the user. However, ﬂf:»rograms may be stored for later use
so such frequently encountered problems may be solved by calling out a pre-
viously coded set of JOSS instructions. Since we do not wish to take the space
here to show the solution to the non-linear constrained least squares problem,
we will consider only the linear problem and assume that a program to solve a
set of simultaneous linear equations is already stored. All we need provide is
the coefficients of the weighted least squares normal equations. This would be
dbne on a JOSS console as follows (U - denotes inputs of thé JOSS user. J —
denotes outputs from JOSS): .
(First we read in the data)
U 4.1 DEMAND X(.
4.2 DEMAND Y(J).
4.3 DEMAND W()).
DO PART 4 FOR I=1(1)5.

J/U X(1) = 0.713

Y@ =2.7
W(l)=5.0
X(5) = 0.994
Y(5) = 22.4

W(5)= 0.625

- 41 -

(Now we calculate the coefficients of the normal equations)
U 5.1 SETZK =ZK + (W(I)*Z)‘-i(l).xm*(za{-l))
6.1 SET Z(K) =0
6.2 DY PART 5 FOR I=1(1)5
D® PART 6 FOR K=1(1)4
7.1 SET A(I,J) = A, J) + WEK)*2) - X(K)* (2(I+J-2))
8.1 SET A(,J) =0 o
D@ PART 7 FOR K=1(1)5
9.1 D@ PART 8 FOR J=1(1)4

DY PART 9 FOR I=1(1)4

TYPE Z
J Z@) =....
Z@) =....
Z(3)=....
Z(4)=....

Here JOSS will type out the computed values of the right hand sides of the
normal equations. The coefficients stored in the matrix A could also be

\
printed, if desired; then the precoded program to solve simultaneous equations

could be called on to provide the desired solution to the weighted least squares

problem.

F. Lincoln Reckon¢ ¢ Solution

As stated by Stowe et al. [1966], the Reckoner "is primarily a facility for
making use of routines, not for writing them." There are routines or opera-
{

tions available in the Reckoner public library to perform many operations in-

cluding solving a matrix equation, AX = B, but again there is no provision for

- 42 -

for automatically solving the non-linear least squares problem with constraints.
Therefore let us only consider the weighted least squafes problem as we have
done for several other systems.

Assume the data has been entered into the arrays X, Y, 5nd W. We could

then form arrays as follows:

X1=W

X2 = W. X2
X3 = w. x*
X4 = W-X°
Z =WY

A two-dimensional érray A would then be forméd with X1, X2, X3, X4 as its
four columns. There is an operation available in the Reckoner library for re-
placing a column of a given matrix by a given nxl array which could be used to
form A from X1, X2, X3, X4. Four lines of Reckoner code would then solve

the linear, weighted least squares problem
ATag=aTz.
The Reckoner code is as follows:
TRANSPOSE A APRIME
MATMUL APRIME A L

MATMUL APLIME Z R

SOLVE L R BETA .

The coefficients of the least squares solution are now stored in the array BETA.
There is graphical output available with the Lincoln Reckoner and a
routine available in the Reckoner public library to facilitate plotting on the .-
CRT. A plot of the data points can he obtained directly from the data arrays

X and Y. To obtain a plot of the least squares curve determined by the

- 43 -

coefficients stored in BETA some further calculations are necessary. Two
arrays would need to be generated; XPLOT with some equally spaced values
of X over the range of interest and the corfesponding values of the fitting
function in YPLOT. To compute each value stored in the array YPLOT some

code such as the following would need to be executed.

MULT XPLOT (1) XPLOT/) XSQ
MULT BETA(4) xsq T

ADD T BETA(3) T

MULT T X5Q T

ADD T . _BETA(9 T

MULT T XSQ T
ADD T : BETA(l) | YPLOT(D

After XPLOT and YPLO’I‘ are appropmately defmed the routine to generate a

plot on the CRT can be 1nvoked

G. TOC Solution

The TOC sysfem is derived from the Culler-Fried system; however it has
been changed to allow a more direct entry of formulas so that coding a solution
to the weighted, coustrained least squares problem under consideration should
be somewhat more easily accomplished than with the Culler-Fried system. Thus

instead of the code shown in paragraph III. A to evaluate the polynomial

p(X) = A + BX2 4 cxX* + DX°

we would have in the TOC system the code:
P(X,A,B,C,D) = A + B¥X¥*2+CHX* ¥4+ D*X**6
E PXAB,C,D
STORE POLY .

~ 44 -

Any further evaluations of the polynomial for different values of X,A,B,C, or
D can be accomplished simply by writing
E P(X,A,B,C,D) .

'As with the Culler-Fried and JOSS systems there are no higher level opera-
tions provided for the solution of equations, or minimization, for example.
Therefore, all phases of the least squares problem have to be coded. User-
defined console programs can be stored however and reused again and again.
Console programs could be coded and stored to perform the computations
necessary to the solution éf the ledst squares problem. We will not go into

* this code at this point.

" H. MAP Solution

01“1”' of the several cdinplex proc edures included inthe MAP system isa proceduré

for least squares analysis. There is no direct method of solving the constrained,
weighted least squares problem'but the straightforward linear least squares
problem is handled quite easily.

First the four functions,

F1() =1

F2(X) = X°

F3X) = x*

F4(X) = X° '

should be defined and the data reé.d into arrays XDATA and YDATA. The arrays
YDATA(X), F1(X), F2(X), F3(X) and F4(X) must all be defined for the same
values of X, namely those found in XDATA. Once the functions are all ap-

propriately defined, the interaction can take place as follows (user type-in will

- 45 -

be underlined):

LEAST SQUARE

I CAN FIT EQUATIONS OF THE FORM

V(Y)=XA*FA(Y) + XB*FB(Y)+XC*FC(Y)+)G)*FD(Y)+XE*F]§(Y) WITH A
MAXIMUM OF 5 UNKNOWNS, XA, XB, ETC., AND 100 DATA POINT,
WHAT IS THT: NAME OF THE VARIABLE COMPARABLE TO V(Y).
YDATA(X) |

HOW MANY FUNCTIONS, FA(Y), FB(Y), ETC., WILL BE REQUIRED
TO FIT THE DATA. 4

PLEASE PRINT ON THE NEXT LINE THE NAMES OF THE 4 FUNCTIONS

REQUIRED.
F1X) F2%) F3X) F4 X

Following this interaction MAP will print the coefficients of the normal equa- \
tions and the results of their solution. Then the user is presented with options
to have the fitted curve and the residuals printed.

Ka graphical output terminal is available the MAP plot command can be
used to display the resulting fitted curve. A point plot of YDATA(X) and a line
plot of YFIT(X) could be obtained by the following interaction (we assume the
least squares fit has been calculated and stored in YFIT (X)):

PLOT

PLOT WILL CREATE A GRAPH OF THE DESIRED FUNCTION(S). WHAT

FUNCTIONS WOULD YOU LIKE TO PLOT. YDATA(X) YFITX).

SHOULD THE PLOT BE LINEAR, LOG-LOG, LINEAR-LOG, OR LOG-

LINEAR.

- 46 -

LINEAR

DO YOU WANT A POINT OR LINE PLOT OF YDATA(X). POINT

DO YOU WANT A POINT OR LINE PLOT OF YFIT(X). LINE

IF YOU DO NOT WANT ALL OF THE POINTS OF THE FUNCTION(S)
PLOTTED, TYPE THE RANGE AND/OR INTERVAL IN X TO BE USED.

OTHERWISE JUST GIVE A CARRIAGE RETURN.

I. AMTRAN Solution

The AMTRAN system is based on the Culler-Fried system with a large
keyboard providing rﬁany function buttons, AMTRAN provides the facility to
store user progranis (operations) "under" buttons for later ‘use. There is a
button which invokes a '"locate minimum™ operator which could be used in solving
the weighted, constrained least squares problem we have posed. If the opera-
tion locates a minimum with respect to a single variable it could be used to
construct a Gauss-Seidel type of minimization of the sum-of-squares,

5 6]2

2 2 4
2 W yyaga X - aX) - agk;

if a, > 0
i=1 0

1030 i a, <0 .

If the "locate minimum' operates on a function of several variables it could
be used directly on the function S given above.

A scope is available for output from .the AMTRAN system. An instruction
such as _

DISPLAY SCOPE Y
will cause display of the function described by the values in the array Y to be
displayed on the scope. Such instructions could be used to display the fitted

curve.
- 47 -

Iv. HOW WOULD PEG SOLVE THE SAME PROBLEM ?

In Smith [1969] the workings of PEG are e@lamed in more detail.
Here we will just outline the steps necessary to solve the weighted, constrained
* least squares problem.
There are one or two preparatory steps to be carried out before going on-line

with PEG. First a FORTRAN function must be coded to evaluate the function

: _ 2 4 . B
p(x)—a0+a1x +a2x +tagx .

The constraint on a, is handled in the code for evaluating p(x) by the following
method. Each evaluation is preceded by a test on a, I a, < 0 thenp(®) is
set to 1030 (a large number less than the square root of the largest number that
can be held in the machine), If a, > 0 p(x) is evaluated normally. 'By returning
a large valu.e‘for p() if a, < 0, the sum of squares of residuals which is being
computed becomes vary large. Conéequently negative values of a, are avoidec'l
by the minimization routine as it minimizes the sum of squares of residuals.
This coding of "user functions" is detailed in Smith [1969]. A second step,
prepunching the data on cards is optional since there are only five data points
and we could easily enter then through the keyboard when we get on-line. Let
us assume for this problem that we will enter the data on-line.

When the code for p(x) (constrained) is ready, we include the cards with the
running deck for PEG and submit the total deck to be run. When our program
begins execution an introductory picture appears on the IBM 2250 display unit.

At this point we can sit dow 1 at the console and by selecting options with the light-
pen and entering numbers from the keyboard we can obtéin the desired least squares

fit. Rather than show pictures of the scope images that appear on the screen as we

~ 48 -

step through this problem, we will give a simple word description of each

picture and indicate what user action is necessary at each step. In the follow-

ing list "Lightpen (continue)" means to touch the '"* CONT" optlon with the

lightpen, this will cause the program to go on to the next step. The other light-

pen actions require choosing an item from a list by touching the selected item

with the lightpen. In Smith [1969], typical pictures of the actual scope

images are shown for the various steps involved in the data-fitting process.

1)
@

(3)

(4)

©)

(6)

Q)

(8)

©)

(10)

Pictures Seen During Solution of Least Squares Problem

Picture
Introductlon

Choose
function

Choose
data mode

Enter data
from keyboard

Display
titles

Make
corrections

Perform transfor-
mation on data

Delete ,
data points

Enter number
of parameters
and first guess
for parameters

Choose minimiza-
tion method

Actmn Required

- nghtpen (contmue)

_nghtpen (choose user functlon)

Lightpen (continue)

- 49 -

Lightpen (choose keyboard)
Lightpen (continue)

Lightpen (choose weights)
Keyboard (enter data points with we1ghts)
Lightpen (continue)

Lightpen (continue)
Lightpen (continue)

Lightpen (continue)

1Y

Lightpen (continue)

Keyboard (enter 4--number of parameters)
Lightpen (choose automatic parameter adjustment)
Keyboard (enter firstguess--0.0,0.0,0.0,0.0)
Lightpen (continue)

Lightpen (choose "direct search')
Lightpen (continue)

(11)

12

13

(14)

(15)

(16)

(17

(18)

(19)

(20)

(21)

(22)

(23)

Option to enter
parameters to
"direct search"

Iteration 0 displays
data with fit super-
imposed

Iteration 1

Iteration N

Comparison of
starting fit and
converged fit

Option to examine fit

with iteractive minimizer

Choose display
mode

Display of data with fit
superimposed and table
of fit

Choose display mode

Display of data with fit
superimposed and table
parameter values
Choose display mode

Display data on fit
extrapolated

Branching display

END

Lightpen (use preset values and go on)
Lightpen (continue)

Lightpen (continue)

Lightpen (sfop iteration if convergence
seems to have obtained--program will
also automatically terminate iteration)

Lightpen' (use best values and continue)

Lightpen (terminate iteration)

Lightpen (choose display data and fit with
fit display
Lightpen (continue)

Lightpen (back-up to choose another display

mode)

Lightpen (choose display data and fit with
coefficients displayed)
Lightpen (continue)

Lightpen (back-up to .choose another
display mode)

Lightpen (choose display extrapolated fit)
Lightpen (continue)

Lightpen (choose terminate computer

processing)
Lightpen (continue)

-50 -

Note that we are led through the data-fitting process by the computer program,
At several points we are presented with the opportunity to perform some optional
task, for example deletion of data points.l In such cases if we wish to bypass that
step we simply use the lightpen to continue to the next step. Where thefe are
default options built into the program we may always '"continue" by lightpen
action. On the other hand, if, for example, the program requests keyboard
entry of the number of parameters involved, and there is no default option, the
lightpen will have no effect until the required keyboard entry has been accomplished.
As we step through the iterations shown in displays (12) through (14) above,
we can watch the improvement in the fit of successive iterations. If the fit does
not improve, it is possible to terminate iterations and try different starting values.
The display (22) above allows us to examine the extrapolated fit, This is of special
interest in this problem since the constraint on the first parameter is supposed to
keep the approximating function from ever being negative. A visual examination
of the extrapolated fit can provide verification of the success or failure of the

constraint.
V. SUMMARY

Table 2 summarizes some of the characteristics of the general purpose
systems and of the special purpose systems. It is apparent that Culler and
Fried were the first to develop an on-line interactive system for solving mathe-
matical problems. Their work began in 1961, JOSS, MAP, and OPS appear to
have all become operational in 1964, AMTRAN and the Lincoln Reckoner are
chronologically more recent as they both came into use early in 1966. Since
1966 we have NAPSS and POSE as the most recent systems. NAPSS is still

under development,

adoos pue (Surxeys awrj)
I931amadA} pasodoad ‘JIRD ‘ourpieulog ues 1961 uI
pesodoad (qoreg Lpuesaad) 0081 ‘nonyexodio) soedsoray. A1xeo jyaom uedaq a180d
Aepdsip xo03 2doos (woyshs
I9j1amadf) Surreys swiy} ®B) euRIpul ‘09j19heyeT 998T 9ours
pesodoad pasodoxd ‘fy1saeAruf enpandg juomido[sAep Iopun SSAVN
o[qe[ieAe
It adoos paysaajax 1o adoos K3o10Uuyo9], JO 7961
o3ex03s adA3a193 10 I9jramadA) (ss1D) 2In31su] $319SNYoBSSEIN - *prux 9oUuls osn ul dVIN
arqerreae nd
-ur ode} aaded ‘xsjurad xoxox
aury-uo ue ‘LYD payseIyex ® (maysfs Suraeys ‘L°I'IN 9961 Sutads J9UOHI9Y
‘x9jramadL) pareoqley-om) & o1} X4dV) Z-X.L JO sataojrIOqR] UTOOUIT 90UIS oSN JUTINOI Ul ujooury
BWEqRY ‘O[[IASJUnH
sodoos a3e103s ;G OM] ‘IILIM ‘amue)d JYSId 9961
-odfy ‘preoqdey uopnq $gg 0291 2oedg TRUSIBIN VSVN A[x1ea aouls 9[qB[IBAR NVILNYVY
adoosorroso a3e103s
® pue paeoqLay xsjramadL) Lj18I9ATU) PIBAIEH 9981 Ul
Iy & snid ‘sfey Jojexado g9 (ss1.D) ¢ «qery uorypindwo) uayIy =.rodofessp uedsq 20.L
eIeqreg Bjues
" (sxasn Auewt) 69/09¢ LI Je *J[BD JO ATSI9ATUN 896T Ul
eI®qIBd BIUBS
" 00v-MY Je “JI[eD Jo AJIsIaAIU
*JI[BD ‘yomeg opuopay
adoos 98810)s ;G ® pue (sxasn %) 09g-¥4d swolsAs MY.L $96] 9] QOUlS
Spaeoq4sy uojng gy omy 00¥-MY ‘JiRD “Yaed eSoueDd MUL 1961 padorsaap “_mﬁ para g -I9md
swo)sAs esodind [easusy
(waysAs
uoTNIIIsuy owoH soreqd waysig

SonI[IOB 9IOSUO)

Burgeaedo) osuryory

SIWHALSAS INIT NO 40 AYVININNS

¢ dA71dVlL

uad
ST Yha odoos 0Ggz LI

16/09¢ WdI

uo 8961 I9q0300 1911y
(orjryxed

frxorad y3ry) ¢1/09¢ WAI

(197u8) J0IBISIROOY
JIeaUlT] pIOJUEIS) DV'IS

8961 T1ed
9sn J0J S[qe[IRA®

(Bumnz~eyep).
DAd

paeogAay
uorjouny Teroads pur uad

19811 M adoos 06zg W1

(uornyxed
Ayraorad ySry) g2/09¢ A1

‘JiTeD ‘sorasduy soTy
‘fyrroey Surndwop

$90UaTOg WIeoH ‘VIDN

896T Ut
asn ut sixed swos

(reonistieys)
uoxI(q

(cg pue gg) sedfjorn

STOUTI ‘eueqan

(uoryEnbo 1B

I-OVITTI ‘STOUI[] JO MTSIDATUN 9961 UL 9sn UT | ~UdISFIP) 182D
(suoryenbo
1B1IUOI_IIIP)
AOYSIBX
erssny G961 ur pauuerd 3ureq pue 3nydIeN
spesNYoOBSSeIN {pojuarxo
nduy 2d4y paojped ‘pIoty WOOSUBH A[reonsiie)s)
Jaded ‘uad Y3l y3tM THD ‘ *qBr] S9OUdI0g UOISTO8(G96T Ul osn ut ovVdLvVls

swajsAg asodang [eroods

(paxeys awny)

(9961 °"qad oours) 9 dad
(se[osuoo may

‘JIIRD “BOIUOIA BIUBS

sisjtamads) | B 03 pejeoIpep) DVINNHOL ‘voryerodao) ANVY $961 oours asn AJrep ssor
A3o10Uuy09], JO ﬁw.mﬁ Suradg ur A
adfya193 x0 I3j1aMmadLy (ss1D) 9JNJIISU] S}IOSNYOBSSEIN un8oeq I0Ss909paId e~-8dO

- 53 -

The special purpose systems STATPAC and Gear's system became opera-
tional in 1965 and 1966 respectively. Dixon's on-line statistical programs are
partially completed and the PEG system is now operational.

| A simple comparison of the languages of the general purpsse systems is
given in Table 3. The comparison is for a very simple problem, nevertheless
it gives an indication of the type of bcommands ('instructions) that are used with
each system. |

Some of the special purpose systems have languages associated with them.
For example, Gear's differential 'equation system has a language which is used
to enter:j:héi systems of equations to be solved and control the processing., On
the otherhand Dis;oh's statistisal }programs ansl the PEG system use lightpen
selection 6f :options rather than having user specification by some kind of command
langualge.tv) o o | |

In 'IV‘)avl.)le’k z_ltvwe present a parallel betwees various coding systems used in
batch prossss,ing and some of the interactive systems discussed in this survey.
The purpose of this comparison is to show that just as there are various levels
of programming used in batch processing, there are various levels of interaction
(levels of console programming) used in on-line problem solving. The reason we
have various levels of programming is not just due to the historical fact that
machines were invented first and the languages have evolved from the basic
machine instructions, but due to a need for communication with the machine at
various levels,

We find that some problems are more efficisntly solved by using a higher
level language. For example, a one-shot problem is best coded in FORTRAN
(for example) as opposed to assembler language becaﬁse of the savings in

programming time where as a code that is to be run several hundred times is

- 54 -

TABLE 3
A SIMPLE LANGUAGE COMPARISON
Coding the following problem:

assume: ' A and B are loaded

compute: - Re \/A2 + B2

System Code for R « \/A2 + B2
Culler-Fried ~ . (each item as a button push)
' LOAD A MULT A STORE T LOAD B
‘MULT BADD T SQRT STORE R
TOC ' LET X(A,B) =SQRT (A ** 2 + B * * 2)
| E X(A, B) -
STORE R
AMTRAN B Similar to Culler-Fried for pushbutton version
Lincoln Reckoner MULTAAT
MULT BB R
ADD TRR
SQRT R R
MAP R = SQRTF (A * A + B * B)
NAPSS R = J(AT2 + B12)
POSE R =SQRT (A *A + B * B)
OoPs-3 SET R =SQRT (A * A+ B* B)
JOSS ' SET R =SQRT (A *2 + B* 2)

- 55 -

TABLE 4

Compare Levels of Programming Languages

Batch Processfing

On-line Interactive Processing

(1) Assembler Language

(a) "Interactive machine language program-
ming' see Lampson (1965)

(b) Many of the operations of the Culler-
Fried system are similar to assembler
Language instructions.

(c) AMTRAN (similar to Culler-Fried)

(2) Procedural Language
(e.g. FORTRAN
ALGOL)

(a) JOSS ' These languages provide
(b) on-line inter- on-line capability similar

preters such to-FORTRAN and ALGOL

(3) Using a comprehensive library
of subroutines (procedures).
(e.g. coding input and output

drivers for existing subroutines)

as QUICK-~ (algebraic statements)
TRAN
(a) MAP These systems have op-
(b) NAPSS erators that are backed

by comprehensive algo-

rithms. The userlanguages

are suppos ed to be quite
. "natural"
(4) Using "Canned' programs. (a) Dixon's system These systems allow user
(a user need only prepare at UCLA interaction in a single
data according to a pre- (b} PEG problem area with no

specified order and format)

'language' involved.

-56 -

better coded in assembler language because the object code can be made more
efficient thereby saving considerable machine time. As another example, con-
sider the social scientist who wishes to perform a standard statistical analysis
on Some data but he knows no FORTRAN: not even enough to code a driver for
an existing library subroutine (procedure) which would perform the desired
analysis. For this user, the ncanned" program which includes input and output
and only requires a user to prepare data in some standard fashion, is the appro-
priate language level. Results can be obtained with relatively little effort by the
person who is interested in them without the need for an intermediary (a pro-
gramme.f) or the need for the social scientist to learn a programming language.

. To cdnclude this sﬁrvéy,- lef-ﬁs list with br1efdescr1pt1o;15 soﬂmeﬂ references
which are applicable in various ‘areas of interactive graphical systems. The
areas covered are:

(1) Aids to the implementation of interactive graphical systems.

(2) Interactive console developments.

(3) Extra added attractions-features to add to a "total" system.

(4) Future systems,

(5) On-line systems without mathematical cépabilities.

6)) Aids to the imi)lementation of interactive graphical systems

Feingold [1967] Describes a language, PLANIT (Programming
LANguage for I.ntefaction and Teaching), developed
at Systems Development Coi*pora,tion, Santa Monica,
California, PLANIT is written in the JOVIAL
languagce and used on the IBM AN/FSQ-32 V

computer.

- 57 -

Pankhurst [1968] Describes GULP (General Utility Language
Processor), a compiler-complier for verbal
and graphic languages. Written at the University
of Cambridge, England, to fit in a small computer
memory, a PDP-T,

Thomas [1967] Describes a system designed to provide a user-
corﬁputer interface'employing a model to repre-
sent drawing information in the computer. The

. system,“ GRASP (a GRAphic Service Program),
was written at IBM, Kingston, New York, for
system 360 computers &ith 2250 display units.

Hurwitz et al. [1967] Describes GRAF (GRaphic Additions to Fortran),
a language which is Fortran plus some adcied
statements to facilitate graphics programming.
GRAF was written at IBM Los Angeles Scientific
Center and the Health Sciences Computing
Facilities, UCLA, to extend OS/360 Fortran IV
(E level) and to operate with the IBM 2250 I. The
programs described by Dixon [1967] were imple-
mented using GRAF, |

Newman [1968] Describes a system for developing graphical
problem-oriented languages. The work was done
at Harvard Uliiversity and developed on a PDP-7
computer wit_h a DEC 340 display.

Roberts [1966] Describes a Graphical Service System (GSS) with vari-

able syntax being developedat Lincoln Laboratory, MIT.

- 58 -

Kulsrud [1968] Describes a general purpose graphic language
to handle generation and display as well as
analysis of pictures, The languagé was developed
at Yéle University, New Haven, Connecticut,

(2) Interactive console deveiopments

Christensen and Pinson [1967)

Kopel [1968]

Ninke [1968]

Barlett et al.[196] .

Ninke [1965] } These all describe some aspects of a compre-
hensive hardware ‘setup at Bell Telephone Laboratories.

Lewin [1967] Gives an introduction to the hardware and software
aspects of the various types of computer graphic
terminals available in 1967,

Rippy and Humphries [1965] Describes a machine developed at NBS, Washington,

| | D.C., as a research tool for the investigation of

man-machine communication techniques involving
CRT displays.

Lewin [1965] ~ Describes a tablet-type graphic input device de-

| signed to minimize the amount of associated circuitry,

developed at the RCA Laboratories, Princeton, N.J.

Haring [1965] Describes the ""beam pen', a novel high-speed,
input/output device for CRT display systems, de-

veloped at the Electronic Systems Laboratory, MIT.

-59 -

Davis ahd' Elliot (1964]
Stotz [1963]
Gallenson [1967)
Machover [19??]

Mahan [1968]

Describe the' RAND tablet, a device for man-
machine graphical communication developed

at the RAND Corporation, Santa Monica, Calif.
Discusses man-machine console facilities
needed for computer-aided design and the dis-
play system being developed at MIT.

Describes a graphic tablet display designed at
System Development Corporation, Santa Monica,
for use under time-sharing.

A review of graphic CRT terminals éommercially

- available with an attempt to clarify some commonly

'us_ed disl-)lay:t’ermé. -

Gives ;;, state-of-the-art survey of the data dis-

- play field with a hardware orienfation.

(3) Extra added attractions-features to add to a 'total" system.

Mermelstein and Eyden [1964] Describe a system for the automatic on-line

Lee [1968]

Allen [1968]

Feldman [1968]

Teixeria and Sallen [1968]

recognition of handwritten words developed at MIT.

Describe some research into the problem of
machine-to-man communication by speech done at MIT.
Describes some research into the problem of com-
puter input of forms done at the Walter Reed Army
Institute of Research, Washington, D.C.

Describe the Sylvania data tablet: a new approach

to graphic data input. This device was developed

at Sylvania Electronic Systems, Waltham, Mass.

- 60 -

Smura [1968] Discusses a new approach to hardware and
software for graphical data processing that
could replace, in some cases, present-day
peripheral devices. 7

Walter [1965] ‘ Discusses the use of color in an on-line graphi-
cal environment.

Tobey f1966]

Sammet and Bond [1964] Give an introduction to FORMAC, a programming

- system designed to permit the manipulation of
mathematicalA expressions.

Hearn [1967] ' Describes REDUCE, a user oriented interactive
system for algebraic simplification developed at
Stanford University.

Klerer and May [1964}

flo6sa], [1965b)

Klerer and Grossinan [1967] Describe a system using two-dimension:1 input-
output by typewriter terminals developed at
Columbia University, Hudson Laboratories.

(4) Future systems

Licklider [1965] Describes man-computer interaction and its
promise. A section titled "My partner — the
machine" describes an interactive system he
envisions.

. Sutherland [1965] Describes the attributes of "'the ultimate display"

using many already developed characteristics.

-61 -

(5) On-line systems without mathematical capabilities (these are included for
the sake of completeness)
Lewis [1968)] Describes SHAPESHIFTER, an interactive
' program for experimenting with complex-
plane transformations developed at the
National Institutes of Health, Bethesda,
Maryland.
Lampson [1965] Describes a system allowing interactive machine

language programming developed at the University

_ of California, Berkeley.
. ,_,,“"_Si;'tlki’erlaind [1963] Describes SKETCHPAD, a man-machine
e -graphical communications system developed
S at MIT. |
H Jéh:_nson [1963] Describes SKETCHPAD-III, a computer

: program for dfawing in three dimensions de-
veloped at MIT.

Colin [1966] Describes a simple program for use in the con-
versational mode, written at the University of
Lancaster, England, to gain experience in man-
machinc communication.

Dunn and Morrissey [1964] Describe an experimental system for remote com-
puting using conversation source-language ciebugging
techniques developed at the IBM Development Labor-
atory, New York, N. Y.

Abraham et al. [1968] Describe an on-line multiprocessing interactive

computer system for neurophysiological investiga-

tions developed at the UCLA Brain Research Institute.

- 62 -

REFERENCES
Abraham, F. D., Betyar, L., and Johnston, R. [1968]. An on-line multiproc-
essing interactive computer system for neurophysiological investigations.

1968 Spring Joint Computer Conference, Thompson Books, Washington, D.C.,

345-352.

Allen, J. [1968]. Machine-to-man communication by speech, part II: Synthesis

of prosodic features of speech by rule. 1968 Spring Joint Computer Confer-

ence, Thompson Books, Washington, D.C., 339~344.
Allen, T. R. and Foote, J. E. [1964]. Input/output software capability for a

man-machine communication and image processing system. 1964 Fall Joint

| Computer Conference, Spa.rtan Books Washmgton, D.C., 387-396.

Anderson G. B., Bertran, K R., Conn, R W., Malmqulst K 0.,
Millstem, R. E., and Tokubo, [19 68, Demgn of a tlme-sharmg system

allowmg 1nteract1ve graphlcs. Proceedmgs — 19 68 ACM National Confer-

ence, Brandon/Systems Press, Princeton, N. J., 1-6.
Ball, G. H. and Hall, D. J. [1967a]. PROMENADE, an on-line pattern rec-
ognition system. SRI Technical Report No. RADC-TR-67-310 (September).
Ball, G. H. and Hall, D. J. [1967b]. A clustering technique for summairizing
multivariate data. Behavioral Sciences, 12, No. 2, (March), 153-155.
Barlett, W. S., Busch, K. J. Flynn, M. L., and Salmon, R. L. [1968]. SIGHT,

a satellite interactive graphic terminal. Proceedings — 1968 ACM National

' Conference, Brandon/Systems Press, Princeton, N. J., 499-509.
Bowman, S. and Lickhalter, R. A. [1968]. Graphical data management in a

time~shared environment. 1968 Spring Joint Computer Conference,

Thompson Book Company, Washington, D. C., 353-362.
Bryan, G. E., 1967, JOSS: 20, 000 hours at the console — a statistical summary.

1967 Fall Joint Computer Conference, Thompson Books, Washington, D.C.,

769-777.

Cameron, S. H., Ewing, D., and Liverright, M.. [1967]. DIALMG: a conver-
“sational programming system with a graphical orientation. Communications
of the ACM, Vol. 10, No. 6, (June), 349-357.

Chasen, S. H. [1965]. The introduction of man-computer graphics into the aero-

space industry. 1965 Fall Joint Computer Conference, Spartan Books,

Washington, D.C., 883-892,

Christensen, C. and Pinson, E. N. [1967]. Multi—funct;on graphics for a large

computer system. 1967 Fall Joint Computer Conference, Thompson Books,

" Washington, D.C., 697-711. -

Clapp, L. C. and Kain, R. Y. [1963]. A computer aid for symbolic mathematics.

1963 Fall Joint Computer Conference, Spartan Books, Washington, D.C.,
509-5117.
Cole, P. M., Dorn, P. H., and Lewis, C. R. [1964]. Operational software in

a disk oriented system. 1964 Fall Joint Computer Conference, Spartan

Books, Washington, D.C., 351-362.

Colin, A. J. T. [1966]. A simple progi‘am for use in the "conversational mode".
The Computer Journal, Vol. 9, 238-241.

Conn, R. W. and vonHoldt, R. E. [1965]. An online display for the study of
approximating functions. Communications of the ACM, Vol. 12, No. 3
(July), 326-349.

Culler, G. J. and Fried, B. D. [1963]. An on-line computing center for
scientific problems. Thompson Ramo 'Wooldridge Computer Division Report
(now Bunker~Ramo Corp.) Canoga Park, California.

Culler, G. J. and Fried, B. D. [1965]. The TRW two-station, on-line scientific

computer: general description. Computer Augmentation of Human Reasoning,

Spartan Books, Washington, D.C.

Culler, G. J. and Huff, R. W. [1962]. Solution of nonlinear integral equations

using on-line computer control. 1962 Spring Joint Computer Conference,

National Press, Palo Alto, 129-138.
Davis, M. R. and Ellis, T. O. [1964]. The RAND Tablet: a man-machine

graphical communication device. 1964 Fall Joint Computer Conference,

Spartan Books, Washington, D.C., 325-331.
deMaine, P.A.D. [1965]. The self-judgment method of curve fitting. Communi~-
cations of the ACM, Vol. 8, No. 8, (August), 518-526.

Dixon, W. J. (Ed.) [1964]. BMD, Biomedical Computer Programs. U. of

California, Los Angeles. A

Dixon, W. J. [1967]. Use of displays with packaged statistical programs.

1967 Fall Joint Computer Conference, Thompson Books, Washington, D.C.,
481-484.

Dunn, T. M. and Morrissey, J. H. [1964]. Remote computing an experimental

system. Part 1: external specifications. 1964 Spring Joint Computer Con~

ference, Spartan Books, Washington, D.C., 413-423.

Engelman, C. [1965]. MATHLAB: A program for on-line machine assistance

in symbolic computations. 1965 Fall Joint Computer Conference, Part II,
Spartan Books, Washington, D.C., 117-126.
Eusebio, J. W. and Ball, G. H., [1968]. ISODATA-LINES — A program for

describing multivariate data by piecewise-linear curves. Proceedings of

International Conference on Systems Science and Cybernetics, University

of Hawaii, Honolulu, Hawaii, (January), 560-563.

Feingold, S. L. [1967]. PLANIT — A flexible language designed for computer-

human interaction. 1967 Fall Joint Computer Conference, Thompson Books,

Washington, D.C., 545-552.

Feldman, A. [1968]. Computer input of forms. 1968 Spring Joint Computer

Conference, Thompson Books', Washington, D.C., 323-331.

Fried, B. [1967]. On the user's point of view. Presented at the ACM Syrhposium
for Experimental Applied Mathematics”, August 26-28, 1967 (Proceedings in
.Press).

Gallenson, L. [1967]. A graphic tablet display console for use under time-sharing.

1967 Fall Joint Computer Cohference, Thompson Books, Washington, D C.,

689-695.
Gear, C.' W. [1966]. Numerical solution of ordinary differential equations at a

remote terminal. Proceedmgs — 1966 ACM Natlonal Conference, Thompson

Book Company, Washington, D C. , _43-49
Goodenough, J. B. [1965]. A hghtpen-c 2 tro]led prog‘ram for online data analysm.
Communications of the ACM Vol.,' 8 No. 2, (February), 130 134.

Greenberger M., Jones, M. M., Morrls J. H (Jr.), and Ness, D. N. [1965].

),.

On-line computation and 51mu1at1on The OPS-3 system. The M.L T. Press,

Cambridge, Massachusetts.

Hargreaves, B., Joyce, J. D. and Cole G. L. [1964]. Image processing
hardware for a man-machine graphlcal communication system. 1964 Fall

Joint Computer Conference, Spartan Books, Washmgton, D.C., 363-386.

Haring, D. R. [1965]. The beam pen: A novel high speed, input/output device

for cathode-ray-tube display systems. 1965 Fall Joint Computer Conference,

Spartan Books, Washington, D.C., 847-855.

Hearn, A. C. [1967]. REDUCE — a user oriented interactive system for alge-
braic simplification. Presented at the ACM Symposium for Experimental
Applied Mathematics, August 26-28, 1967 (Proceedings in Press).

Hurwitz, A., Citron, J. P., and Yeaton, J. B. [1967]. GRAF: Graphic additions

to FORTRAN. 1967 Spring Joint Computer Conference, Thompson Book

Company, Thompson Books, Washington, D. C., 553-557,

Jacks, E. L. [1964]. A laboratory for the study of graphical man-machine com-

munication. 1964 Féll Joint .Cdrhi)utef—cénféreﬁcé, Spartan Books, Washington,
D.C., 343-350. |
Johnson, T. E. [1963]. Sketchpad III:" A computer program for drawing in three

dimensions. 1963 "Spring ;Toint‘ Computér 'Conference, Spartan Books,

Washington, D.C., 347-353.

Kaplow, R., Brackett, J., and Strong, S. [1966]. Man-machine communication

in on-line mathematical analysis.v 1966 Fall Joint Computer Conference,
Spartan Books, Washington, D. C. , 465-477, ’

Kaplow, R. Strong, S. ,‘ and Brackett, J. [1966a). MAP, A system for on-line
mathematical analysis.' Report No. MAC-TR-24, Massachusetts Institute

of Technology (January).

Karplus, W. J. (Ed.) [1967]. On-Line Computing, McGraw-Hill Book Co. ,

New York.
Klerer, M. and Grossman, F. [196'7]. Fufther advances in two-dimensional

input-outpht by typewriter terminals. 1967 Fall Joint Computer Conference,

Thompson Books, Washington, D. C.,’675—687.

Klerer, M. and May, J. [1964]. An experiment in a user-oriented computer
system. Communications of the ACM, Vol. 7, No. § (May), 290-294.
Klerer, M. and May, J. [1965a). A user oriented programming language. The

Computer Journal, Vol. 8, No. 3 (July), 103-109.

Klerer, M. and May, J. [1965b]. Two-dimensional programming. 1965 Fall

Joint Computer Conference, Spartan Books, Washingfon D.C., 63-75.
Kopel, P. S. [1968]. Interactive Computer Graphics. Bell Laboratories
~ RECORD, Vol. 46, No. 6 (June), 189-196.

Krull, F. N. and Foote, J. E. [1964]. A line scanning system controlled from

an on-line console. 1964 Fall Joint Computer Conference, Spartan Books,

Washington, D.C., 397-410.

Kulsrud, H. E. [1968]. A general purpose graphic language. Communications
of the ACM, Vol. 11, No. 4 (April), 247-254. |
Lampson, B. W. [1965]. Interactive machine-language programming. 1965

Fall Joint Computer Confei'eﬁéé, Part II, Spartan Books, Washington, D.C.,

141-1496.
Lee, F. F. [1968]. Machine-to-man communication by speech, Part I:. generation

of segmented phonemes from text. 1968 Spring Joint Computer Conference,

Thompson Books ,» Washington, D.C., 333-338.
Lewin, M. H. [1965]. A magnetic device for computer graphic input. 1965

Fall Joint Computer Conference, Spartan Books, Washington, D.C., 831-838.

Lewin, M. H. [1967]. An introduction to computer graphic terminals. Proceedings
of the IEEE, Vol. 55, No. 9 (September), 1544-1552.
Lewis, H. R. [1968]. SHAPESHIFTER: An interactive program for experimenting

with complex-plane transformations. Proceedings — 1968 ACM National

Conference, Brandon/Systems Press, Princeton, N. J., 717-724.
Licklider, J.C.R. [1965]. Man-computer partnership. Int. Sci. and Tech.
(May), 18-26.
Licklider, J.C.R. and Clark, W. E. [1962]. On-line man-computer communication.

1962 Spring Joint Computer Conference, National Press, Palo Alto, 113-128.

Machover, C. [1967]. Graphic CRT terminals - characteristics of commefcially

availalbe equipment. 1967 Fall Joint Computer Conference, Thompson Books,

Washington, D.C. 149-159.
Mahan, R. E. [1968]. A state-of-the-art survey of the data display field. AEC

Research and Development Report No. BNWL-725, UC-2, Battelle Northwest

Laboratory, Richland, Washington.

Mann, R. W. [1965]. Computer-aided design. Proceedings of the IFIP Congress

1965, Part II, 476.

Marchuk, G.1. and Yershov, A. P. [1965]. Man-m;achine inter: ction in solvinga certain

class of differential equations. P”rocee'din.gé of the IFfP Cohgreés 65 , Part Il , 550-551

Mermelstein, P. and Eyden, M. [1964]. A system for automatic recognitionof handwrit-

tenwords. 1964 Fall Joint Computef Conference » Spartan Books, Washington, D. C.
333-~342.
Moore, D.W. G. and Erickson, M. J. [1966]. Thedisplayasa research tool. Preceedings

of Australia Computér Conference. Canberra (May), 16/1/1 - 16/1/4.

Moore, D.W. G. , Jarvis, C. L. and Nicholls, I. G. [1966]. User efficiencyina time

shared environments. Proceedings of Australia Computer Conference, Canberra

(May), 11/3/1 - 11/3/4.
New-aan, W. M. [1966]. An experimentalprogmﬁ forarchitectural design. The
Computer Journal, Vol. 9, No. 1, 21-26. |
Newman, W. M.. [1968]. A’éystém for interactive graphicalprogramming. 1968 Spring

Joint Computer Conference, Thompson Books, Washington, D.C., 47-54.

Ninke, W. H. [1965].' GRAPHIC 1 ~ a remote graphical display console system. 1965

Fall Joint Computer Conference, Spartan Books, Washington, D. C., 839-8486.

Ninke, W. H. [1968]. The growth of computer graphics at Bell Laboratories. Bell
Laboratories RECORD, Vol. 46, No. 6 (June), 180-188.
Pankhurst, R. J. [1968]. GULP—a compiler-compiler for verbal and graphic languages.

Proceedings—1968 ACM National Conference, Brandon/Systems Press, Princeton,

N. J., 405-421. | -

Pyle, 1. C. [1965]. Data input by question and answer. Communications of the ACM,
vol. 8, No. 4 (April), 223-226.

Reinfelds, J., Flenker, L. A., and Seitz, R. N. [1966] AMTRAN, a remote-terminal,

conversational-mode computer system. Proceedings 1966 ACM National Con-

ference, Thompson Book Company, Washington, D. C., 469-477.

Rice, J. R. [1967]. On the construction of polyalg‘orithms for automatic numer-
ical anz;tlysis. Report No. CSD-TR-10, Computer Sciences Department,
Purdue University (June).

Rice, J. R. and Rosen, S. [1966]. NAPSS — a numerical analysis problem solving

system. Proceecdings — 1966 ACM National Conference, Thompson Book

Company, Washington, D.C., 51-56
Rippy, D. E. and Humphries, D. E. [1965]. MAGIC — a machine for automatic

graphics interface to a computer. 1965 Fall Joint Computer Conference,

Spartan Books, Washington, D. C; , 819-830,

Roberts, L. G. '[1966.]. A grai)hical service system with variable syntax.
Communications of the ACM, Vol. 9, No. 3 (March), 173-175.

Roman, R. V. and Symes, L. R. [1967a)]. Syntactic and semantic description
of the numerical analysis programming language (NAPSS). Report No. CSD-
TR-11, Computer Sciences Department, Purdue University (May).

Roman, R. V. and Symes, L. R. [1967b]. Implementation considerations in a
numerical analysis problem solving system. ‘Presented at the ACM
Symposium for Experimental Applied Mathematics, August 26-28, 1967
(Proceedings in Press). |

Roos, D. [1965]. An integrated computer system for engineefing problem

solving. 1965 Fall Joint Computer Conference, Part II, Spartan Books,

Washington, D.C., 151-159.

Ruyle, A. [1967]. Project TACT. Presented at the ACM Symposium on Inter-
active Systems for Experimental Applied Mathematics, August 26-28, 1967
(Proceedings in Press).

Ruyle, A., Brackett, J. W., and Kaplow, R. [1967]. The status of systems for

on-line mathematical assistance. Proceedings — 1967 ACM National Con-

ference, Thompson Book Company, Washington, D.C., 151-167.

Sammet, J. E. and Bond, E. R. [1964]. Introucio,tion to FORMAC. IEEE Trans.
on Electronic Computers, (August), 386-394.

Sashkin, L., Schlesinger, S., and Reed, K. [1967]. Two analyist-oriented
computer languages: EASL and POSE. Report No. ATR-68 (S8111)-2,
Aerospace Corporation, San Bernardino, California (Novémber).

Schlesinger, S. and Sashkin, L. [1967]. POSE: A language for posing problems

to a computer. Communications of the ACM, Vol. 10, No. 5 (May), 279-285.

Schwartz, J. 1., Coffman, E. G., and Weissman, C. [1964]. A general-purpose

time-sharing system. 1964 Spring Joint Computer Conference, Spartan

Books, Washington, D.C., 397-411.
Shaw, J. C. [1964]. JOSS: A designer's view of an experimental on-line computing system.

1964 Fall Joint Computer Conference, Spartan Books, Washington, D. C., 455-464.

Shaw, J. C. [1965]. VJOSSV: Cor;x;efsations._—\kzifil the 3ohnoié.o open’-shoo system

Proceedings of the IFIP Congress 65, Part II. 544-545.

Simonsen, R. H. and Anketell, D. L. [1966]. Mechanization of the curve fitting
process: DATAN. Communications of the ACM, Vol. 9, No. 4 (April),
299-304. |

Smith, L. B. [1969]. The use of man-machine interaction in data-fitting problems.
Ph.D.dissertation, Computer Science Department, Stanford University.

Smura, E. J. [1968]. Graphical data processing. 1968 Spring Joint Computer

Conference, Thomspon Books, Washington, D.C., 111-118
Stotz, R. [1963]. Man-machine console facilities for computer-aided design.

1963 Spring Joint Computer Conference, épartan Books, Washington, D. C. ,'

323-328,
Stowe, A. N., Wiesen, R. A., Yntema, D. B., and Forgie, J. W. [1966]. The
Lincoln Reckoner: An operation-oriented, on-line facility with distributed

control. 1966 Spring Joint Computer Conference, Spartan Books, Washington,

D.C., 433-444.

Sutherland, I. E. [1963]. Sketchpad: A man-mzic,hine'graphical communication

system. 1963 Spring Joint Computer Conference, Spartan Books, Washington,

D. C., 329-346.

Sutherland, I. E., [1965]. The ultimate display. Proceedings of the IFIP Congress

1965, DPart II.

Symes, L. R. [1968]. Private communication.

Symes, L. R. and Roman, R. V. [1967]. Structure of a language for a numerical
analysis problem solving system. Report No. CSD-TR-12, Computer Sciences
Department, Purdue University.

Teixeira, J. F. and Sallen, R. P. 7[1968]. The Sylvania data tablet: A new approach

to graphic data input. 1968 Spring Joint Computer Conference, Thompson Books,

Washington, D.C., 315-321.

Thomas, E. M. [1967]. GRASP — a graphic service program. Prbcéedings —

1967 ACM National Conference, Thompson Book Company, Washington,

D.C., 395-402.
Tobey, R. G. [1966]. Eliminating monotonous mathematics with FORMAC.
Communications of the ACM, Vol. 9, No. 10 (October), 742-751.

Uncapher, K. [1965]. The man-machine interface. 1965 Fall Joint Computer

Conference, Part II, Spartan Books, Washington, D.C., 88-91.

Walter, C. M. [1965]). Color — a new dimension in man-machine graphics.

Proceedings of the IFIP Congress 1965, Part II.

Ward, J. E. [1965]. Display systems research, Project MAC Report: Progress
to July 1964, MIT.
Whiteman, I. R. [1966]. New computer languages. Int. Sci. and Tech. (April),

62-68.

Wiesen, R. A., Yntema, D. B., Forgie, J. W., and Stowe, A. N. [1967].
Coherent programming in the Lincoln Reckoner. Presented at the ACM
Sy mposium for Experimental Applied Mathematics, August 26-28, 1967
(Proceedings in Press).

Winiecki, K., Editor [1966]. Culler on-line system users manual., Harvard
University Comjutation Laboratory, Cambridge, Massachusetts.

Wood, L. H., Reinfelds, J., Seitz, R. N., and Clem, P. L., Jr. [196C]. The
AMTRAN system. DATAMATI@N (October), 22-27.

Yershov, A. P. [1965]. One view of man-machine interaction. Communications

of the ACM, Vol. 12, No. 3 (July), 315-325.

