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ABSTRACT
Hybrid creatures are a part of mythology and folklore around the
world. Often composed of parts from different animals (e.g., a Cen-
taur), they are also increasingly seen in popular culture, such as
in films, video games, print media, clothing, and art. Similarly, hy-
brid fictional entities composed of parts from different objects are
widely visible in popular culture. Thus, modeling and animating
hybrid creatures and objects is highly desirable and plays an im-
portant role in 3D character design and creation. However, this is a
challenging task, even for those with considerable prior experience.
In this work, we propose Mix3D, an assembly-based system for
helping users, especially amateur users, easily model and animate
3D hybrids. Although assembly provides a potentially simple way
to create hybrids, it is challenging to extract semantically meaning-
ful segments from existing models and produce interchangeable
edges of topologically different parts for seamless assembly. Re-
cently, deep neural network-based approaches have attempted to
address parts of this challenge, such as 3D mesh segmentation and
deformation. While these methods produce good results on those
two tasks independently, they are not generalizable to human, ani-
mal and object models and are therefore not suitable for the task
of heterogeneous component stitching as needed for creating the
hybrids. Our system tackles this issue by separating the hybrid
modeling problem into three automatic and holistic processes: 1)
segmenting semantically meaningful components, 2) deforming
them into interchangeable parts, and 3) stitching the segments
seamlessly to create hybrid models. We design an user interface
(UI) that enables amateur users to easily create and animate hybrid
models. Technical evaluations confirm the effectiveness of our pro-
posed assembly method, and a user study (N=12) demonstrates the
usability, simplicity and efficiency of our interactive user interface.
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1 INTRODUCTION
There is an increasing variety of 3D content available to consumers
in the form of novel experiences in virtual reality (VR) and aug-
mented reality (AR), 3D video games, animations and films. Creat-
ing 3D content, however, is a laborious and time consuming task.
Among the most prevalent types of 3D content, hybrid shapes are in
high demand for games and films (e.g., the triceratops-tank hybrid
Heavy Tank in Final Fantasy VII, or the the eagle-horse hybrid Hip-
pogriff in the Harry Potter films). But hybrid models are challenging
to create due to high diversity arising from a blend of components
from multiple 3D models. Although various software tools, such as
Blender [5], Maya [4] and 3DS Max [3], can be used for modeling
complex 3D hybrid shapes, they require users to have formal artistic
training and technical expertise in 3D modeling. Surface and solid
handling tools, sculpting, manipulation of control points and view-
ports, all make the task even more challenging, thus preventing
most novice and amateur users from exploring their creative ideas.

Unlike the complex interfaces, protocols and modeling pipelines
of consumer software tools, assembly-basedmodeling enables novice
users to create 3D shapes in a more intuitive manner. Introduced
by Funkhouser et al. [19], assembly-based modeling allows the
creation of new 3D meshes or scenes by automatically connecting
components from existing 3D models in a database using meth-
ods, such as probabilistic reasoning [11, 29], computer graphics
[15], and deep learning [68, 70]. Prior work shows that assembling
parts from 3D models in a mix-and-match manner offers an effi-
cient way to create new meshes from existing content. However,
even with assembly-based tools, allowing end users to create inter-
category hybrids has been less explored. Most prior methods focus
on intra-category assembly of animals, humanoids, or furniture
[10, 15, 62, 68, 70]. Inter-category hybrid shapes can be challenging
to create even for those with extensive 3D modeling experience due
to the need for smoothly sculpting heterogeneous structures from
adjoining parts, such as the upper body of a human with the lower
body of a horse to model a Centaur. We, therefore, find that there
is need and opportunity for building interactive tools that support
novice users to achieve their goals of creating and animating widely
popular 3D shapes, such as hybrid creatures and objects, in a fast
and easy manner. Since most prior assembly-based tools designed
for end users have focused on computer graphics based methods,
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our secondary motivation was to explore the use of deep learning
for creating a realtime interactive 3D tool for novices.

In this paper, we present Mix3D, an interactive assembly-based
modeling system with a machine learning backend. Our goal is
to enable novice and amateur users to create and animate 3D hy-
brid creatures, all in a single system with an easy to use interface.
To resolve the challenging task of combining heterogeneous parts
to create a seamless new model that is rigged for animation, we
decompose our task into a pre-processing and a runtime stage.
In the pre-processing stage, part instances are automatically seg-
mented from a 3D mesh database with semantically meaningful
adjacency correlations (e.g., a human head is adjacent to the body
but not to the legs). In the runtime stage, our user interface allows
novice users to select part instances to be assembled by exploring a
gallery of segmented parts. Our system analyzes the user selected
parts and offers guidance to users for picking part instances that
allow for legal adjacency correlations. Following this interactive
process, the subsequent steps involving part mesh deformation,
interchangeable sewing edge computation, part mesh assembly,
and assembled mesh rigging, which are all automatically accom-
plished by the system’s backend. The output rigged hybrid model
is presented to the user in-situ for animation and download. The
interactive front-end works holistically with the fast and automatic
machine learning backend to empower amateur users to create and
animate complex hybrids easily and quickly.

To train and evaluate the system backend with multiple compo-
nents necessary for cross-breed hybrid creation, we used three pub-
licly available datasets: PASCAL VOC 2010 [12] containing animals,
SURREAL [59] containing humans, and ShapeNet-Part [65] con-
taining objects. We performed a technical evaluation to study the
performance of our proposed part segmentation module designed
for semantically meaningful part instance partition. Compared with
PointNet++ [45], SGPN [61], and Point Transformer [69], our part
segmentation algorithm matches the state-of-the-art performance.
To evaluate our user interface, we conducted a study with 12 par-
ticipants. Our results show that our proposed system offers a good
balance between simplicity, responsiveness and usability in creating
and animating hybrid creatures and objects. The main contributions
of our work are as follows:

• A machine learning enabled assembly-based 3D modeling
pipeline prototype that has the potential to “reduce cost and
time” [26] needed to create and rig similar models using graph-
ics approaches.

• Aweb-based interface that allows users, especially novice and
amateur users, to quickly assemble and animate a variety of
3D hybrid creatures and objects.

• An early prototype of a VR interface that enables in-situ cre-
ation and consumption of 3D models.

• An end-to-end pipeline through a part-selection user interface
to generate new combinations from heterogeneous objects.

• A novel part segmentation method that enables extraction of
semantically meaningful components, computation of inter-
changeable sewing borders, and creation of seamlessly con-
nected parts to produce the final hybrid models that has not
been enabled as a holistic data-driven pipeline by prior work.

2 RELATEDWORK
2.1 Interactive 3D Modeling for Amateur Users
Assembly-based 3D modeling enables creating new 3D meshes by
connecting components from given models in a database [19]. The
user can cut desired parts of 3D models with “intelligent scissoring”
and combine the parts to form new shapes. This technique has
been studied widely to enable amateurs to easily create 3D con-
tent [8, 17, 24, 32, 39, 40, 43, 48, 52, 62, 68]. Among the prior work,
Hecker et al. [24] inspired the Spore game [51] where players use a
2D interface to select, customize, assemble and animate 3D models,
including animals, humanoids and vehicles. This graphic-based
approach enables customization relying on manual editing, while
we use a machine learning-based method aiming to build an auto-
matic, simple and fast 3D modeling tool for amateur/novice users.
Chaudhuri et al. [10] explored real-time interactions by building a
3D modeling website, and enabled the intra-category assembly of
animals and airplanes.

While assembly-based modeling has been explored in prior work,
cross-breeding of 3D shapes is still a challenging task due to the
heterogeneous structures and the difficulty of obtaining the inter-
changeable sewing edges. To this end, we propose to use a machine
learning approach to support 3D model assembly allowing “cut-
ting” body parts from one model and attaching them seamlessly to
another model. Given a library of 3D models and a deep learning
backend, mixing-and-matching components offers the potential to
easily and extensively create new models. In contrast to many prior
methods, our system allows users to not only create new hybrid
models fast and easily, but also supports automatic rigging and
animation of the created models. We compared Mix3D with five
most relevant prior work from four aspects: 1) the supported shape
categories, 2) whether cross-category hybrid creation is supported,
3) whether created hybrid models are rigged for animation, and 4)
running time. Table 1 reports the comparison results and shows
that Mix3D allows fast cross-category hybrid model creation and
animation which none of the reported prior papers do.

Our user interface is inspired by simple and fast interaction
for 3D model creation as seen in sketch-based 3D modeling tools
[16, 21, 27, 36, 67]. These systems convert user drawn strokes into
3D polygonal surfaces, in essence, inflating the 2D silhouettes. Like
these systems, we provide an easy-to-use interface that allows
users to interactively create hybrid shapes with part selection and
assembly in real-time. In contrast to sketch-basedmodeling systems,
we take advantage of mesh details present in 3D parts partitioned
from existing 3D meshes to create fine-grained outputs. These
details are challenging to obtain through a 2D-stroke-to-3D-mesh
inflation mechanism.

2.2 Deep Learning for 3D Hybrid Shape
Creation

2.2.1 3D Mesh Segmentation. 3D mesh understanding includes
instance level segmentation, i.e., semantic segmentation, and com-
ponent level segmentation, i.e., part segmentation. While there is
a lot of research on instance segmentation to help large-scale 3D
structure understanding, we focus this section on component-level
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Table 1: Mix3D compared with most closely related recent assembly-based 3D modeling systems. (The reported timings are
obtained from the source papers since code for direction comparison is unavailable.)

Method Shape Category Cross-category
Hybrid ?

Rigged for
Animation ?

Assembly (+Animation) Time
per 3D Model on average

Kalogerakis et al. [29] animal, airplane, ship,
chair, construction vehicle ✗ ✗ 30 mins

Chaudhuri et al. [11] animal, airplane, ship,
humanoid ✓ ✗ 20 mins

Chaudhuri et al. [10] animal, airplane,
ship ✗ ✗ 10 mins

Duncan et al. [15] animal, chair, humanoid,
face, insect ✓ ✗ 7 mins

Zhu et al. [70] airplane, bike, chair,
candelabrum, lamp, table ✗ ✗ 1 min

Mix3D (ours) animal, airplane, chair,
car, humanoid ✓ ✓ 2.5 mins

segmentation of 3D objects for hybrid model assembly. Component-
level 3D segmentation deals with partition of 3D meshes into se-
mantic components (e.g., an animal can be decomposed into its
head, body, legs and tail). Among a large amount of prior 3D part
segmentation work [6, 13, 22, 23, 25, 30, 31, 34, 38], PointNet++ [45]
enables segmentation of non-rigid models, such as animals, by a
hierarchical neural network that recursively applies PointNet [44]
to the input point clouds to enable the learning of local and global
features. Point Transformer [69] is considered one of the state-of-
the-art methods based on self-attention mechanisms for a variety
of segmentation tasks, including scene and object segmentation.

Most prior work focuses more on boosting the algorithm perfor-
mance and less so on post-segmentation applications. Our system
builds on semantic part segmentation but follows it with subse-
quent focus on using the learned segments for shape assembly.
Moreover, existing work typically treats part segmentation and
cutting edge identification as independent tasks, and the latter is
often not included in many segmentation pipelines. Seeking the
interchangeable edge boundary, however, is an indispensable step
for the hybrid model creation task and critical for assembly based
modeling. We address the research gaps by integrating part segmen-
tation and cutting boundary identification in a holistic pipeline.

2.2.2 3D Mesh Deformation. 3D mesh deformation is one promis-
ing technique to enable animating 3D objects and synthesizing
shape variations. Cage-based deformation is one of the most popu-
lar 3D mesh deformation techniques that has been studied in the
past 30 years. The original idea was introduced by Sederberg and
Parry [47] on cage-based Free Form Deformation. Based on the orig-
inal concept, subsequent work has greatly improved correlations
between the cage and the enclosed 3D model using the Mean Value
Coordinate (MVC) [18, 28], which was originally introduced by
Möbius in 1827 as summarized in a survey [42]. In recent studies,
MVChas beenwidely used in real-time 3D deformation applications,
especially when supported by GPU computations [14, 46]. Among
them, Wang et al. [66] proposed a novel differentiable cage-based
deformationmodule that enables detail-preserving 3D deformations
of humanoids and objects.

Motivated by the existing work, our approach utilizes cage-based
3D deformation to automatically re-scale components to be sewed
driven by coarse cage deformation. It forms an important module
of our pipeline since it greatly reduces the cost of computing 3D
mesh connections as required by some existing surface stitching
methods [15]. Unlike the prior cage-based 3D deformation work,
we also focus on computing interchangeable sewing edges follow-
ing the deformation module (Section 4.4). Our approach presents
a solution to heterogeneous component stitching, namely assem-
bly complexity [37], by proposing a novel deformed component
stitching algorithm to enable seamless part instance connections.

3 USER INTERFACE
We built a web interface to allow users to interactively create and
animate 3D hybrid shapes. Upon launching the web page, the user is
presented with a part-selection panel on the left and a 3D modeling
area on the right. Figure 1 shows all the components of the interface.
The frontend of our web interface was implemented in HTML/CSS
and JavaScript. The web interface functionalities include options
for the user to select body parts, display and assemble them, manip-
ulate the assembled model and animate it. The backend of our web
interface is connected with the machine learning models via a TCP
socket. Specifically, the user-selected parts are fed as input to the
model for inference, i.e. the neural network’s input is multiple 3D
components chosen by the user to generate a hybrid model of their
choice. The assembled and animated hybrid model is sent back to
the interface for display, interaction, animation editing and export
for use in any other system that uses 3D models, such as AR and
VR. For the detailed descriptions of how to use the web interface,
please refer to our supplementary materials.

Our web interface demonstrates an example of a realtime human-
AI interaction system. Such interactive systems have been shown
to be non-trivial to design due to multiple reasons, such as model
complexity, realtime inference and computation needs, and the
somewhat unpredictable nature of AI generated outputs [64]. By
constraining the output with user input and enabling user’s ma-
nipulation of selected part components, our system attempts to
overcome some of the aforementioned limitations.
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(a) User interface (b) Rigging

Figure 1: (a) User interface showing the different types of hybrid shapes that can be created and animated on the left top. The
creation process involves selecting parts from different 3D models on the left and dropping them into the assembly area on the
right. Following assembly, the user can use the buttons at the top to rig, animate, and download their hybrid model. (b) Rigged
bird-human hybrid after being created by a user in (a). Some of the humanoid models are from Adobe Mixamo.

In addition to the web interface, we also built a VR interface for
creating and animating models immersively. We show an exam-
ple VR scene (Figure 2a) that includes models built using the VR
interface (Figure 2b). We developed the VR interface in Unity 3D
for the Oculus Quest VR device. Users interact with the 3D models
and the interface using the Quest hand controllers. Similar to the
web interface, users are presented with a 2D part-selection panel.
In the VR environment, however, the user is free to move around
the scene by walking or teleporting. This allows them the ability to
view their generated 3D model at different scales from any perspec-
tive, and perform canonical manipulation operations on the created
models, e.g., translate and rotate, using the hand controllers. The
VR interface shortens the pipeline by allowing user’s to create and
use the generated animated models in the current scene vs having
to export from the web interface and import into a VR scene.

We conducted extensive evaluations on the web interface (Sec-
tion 6) due to the following considerations: 1) Since our target
audience are novice and amateur users with limited or no experi-
ence in 3D modeling, a web interface has been demonstrated to
be easier to quickly get started as shown in our user feedback. In
contrast, a VR interface requires users to have experience in using
joysticks to interact with the virtual scene and objects for 3D mod-
eling, thus raising the interface use threshold as seen in existing VR
3D modeling systems [2, 20]. 2) A web and a VR interface are not
mutually exclusive for our goal of 3D model creation, animation
and consumption but instead work together. To clarify, creating and
rigging 3D models with a simple web interface satisfies modeling
simplicity; exporting created models to AR/VR/MR scenes enables
easy use in immersive experiences for novice users. These design
goals of our web interface are echoed in our participants’ feedback
(Section 6.4). 3) We were highly concerned about user safety due
to sharing a somewhat difficult to sanitize VR device, especially as
the evaluation was done during peak Omicron (BA.2) spread.

To receive initial feedback on the spatial interactions enabled by
our VR interface, we conducted a pilot study with two participants
and summarize early results and analyses in Section 6.4.2.

(a) (b)

Figure 2: (a) Hybrid creatures in a forest VR scene. (b) VR
user interface.

4 SYSTEM PIPELINE
Figure 3 shows our system pipeline which consists of two main
phases: the pre-processing phase and the runtime phase. In the pre-
processing phase, three types of 3D meshes are sampled to point
clouds and then fed into the part segmentation network to produce
semantically partitioned components with labels and interchange-
able edges (Section 4.1). These components are further clustered
into groups for analyzing the adjacency relationships (Section 4.2).
During the runtime, the user chooses part instances to construct
hybrid meshes. The selected part labels are sent to the backend sys-
tem. If a user tries to assemble parts that violate the adjacency rules,
an error will pop up when the user clicks the Assemble button and
guide them to select missing components. For example, a human
head is not adjacent to their legs, the two meshes hereby cannot be
connected unless the missing body component has been selected.
To sew together the segments from multiple shapes into a single
mesh and to reduce the cost of surface stitching, we propose to
deform the source component to match the target with cage-based
deformation (Section 4.3). Following it we compute the interchange-
able semantic borders to build a seamlessly 3D model (Section 4.4).
Lastly, the created hybrid model is rigged and presented to the user
to view, animate and export.

The main strengths of our proposed pipeline are three-fold: 1)
The part segmentation module automatically extracts the cutting
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Figure 3: The system pipeline. The pre-processing stage shown above the line includes: part segmentation, part clustering and
cluster adjacency analysis. The runtime elements below the line are: part selection from users, part adjacency verification, part
deformation, assembly and rigging, hybrid mesh display and animation, and exporting created mesh.

boundaries. This is unsupported by many prior work and forms
a crucial component for the subsequent part sewing steps. With
boundary awareness, our part segmentation module achieves com-
parable computational complexity against recent work on part
segmentation without boundary extraction (Section 5.4). 2) The
part segmentation, interchangeable edge computation and compo-
nent deformation modules work holistically to provide solutions
to three open research problems: interchangeability of segmented
parts, assembly complexity, and smoothly connected surfaces after
stitching. 3) Our module-based system is flexible allowing removal
of a module or usingmodules in a different order to achieve different
shape creation goals. For example, re-scaling selected components
after assembly enables making partial adjustments on the created
hybrid models. Please refer to the supplementary materials for the
technical details of our pipeline.

4.1 Part Segmentation of 3D Mesh

Table 2: Semantic Part Definition.

Category Semantic Parts
Animal head, body, leg, tail
Human head, body, leg, arm
Object head, body, arm

The first step in our pipeline is taking in 3D shapes and parti-
tioning them into semantically meaningful components or parts as
shown in Table 2. To extract the semantic regions of the input point
cloud sampled from the corresponding mesh, we introduce a part
segmentation model with feature encoding and decoding modules.
Both the encoder and decoder have four stages.

In the encoding phase, the model performs downsampling on
the input points. The downsampling process enables the ability to
capture local context at different scales in the input points as been
studied in [45]. In the decoding phase, we use a U-Net design to
perform upsampling such that the input to each decoder layer is
the interpolated features from the previous decoding step along
with features from the symmetric encoding stage.

Following the feature learning step, we consider the pair-wise
correlation of the features to help with grouping the input points

for segmentation. As been studied by prior work [61], points are
close together when they belong to the same group and are far
away when they belong to different groups in the feature space. To
model such feature distances, we take the L2 norm of every pair
of feature vectors and store the computed Euclidean distances in
an 𝑁 × 𝑁 matrix, namely similarity matrix. A threshold of feature
distances (threshold𝑓 ) is used to determine if two points belong
to the same group. The threshold value is obtained following the
protocol proposed in [61]. Given the distances between pairs of
input points in the feature space, we perform a binary classification
such that points are grouped into either the same or different groups
based on the threshold𝑓 .

The points at the boundary of two semantic parts cannot be
simply classified using feature distances. Therefore, we propose
to use the supervised information provided by the classification
score vector indicating the probabilities of each point belonging
to the corresponding groups. Specifically, the points on semantic
boundaries have similar possibilities of belonging to two groups,
i.e., the difference of possibilities is ≤ 10% in the classification
score vector, and small Euclidean distances, i.e., ≤ threshold𝑓 in the
similarity matrix. Based on the classification score vector and the
similarity matrix, we assign all the input points into their predicted
groupswith corresponding group labels.We use the points classified
as boundary points for border stitching to connect meshes from
different semantic parts (Section 4.4).

4.2 Component Clustering and Adjacency
Analysis

With the segmented meshes, we cluster the segments based on the
predicted segmentation labels. Each label is used to form a cluster
category, e.g., heads of an animal, a human and an airplane are
components of the head cluster.

During runtime, our system receives the choice of mesh compo-
nents from the user. These labels are mapped to the corresponding
clusters for adjacency verification. Components from adjacent clus-
ters across different categories need to be connectable to support
hybrid creation. For example, head and body are neighboring se-
mantic clusters, so a camel head can replace a dinosaur head to be
connected with a dinosaur’s body. On the other hand, replacing a
dinosaur’s head with a rabbit’s tail is not supported because the
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head and tail are not adjacent clusters. Therefore, given the clusters
of semantic components, we analyze their adjacency relationships
to guide component connectivity. To learn the cluster adjacency,
we adapt the Bayesian network introduced in [11]. Specifically, we
train the Bayesian network on our segmented meshes with pre-
dicted labels obtained from the part segmentation module. Every
labeled mesh is represented by two attributes: the adjacency rela-
tions and the symmetries. The attributes (adjacency and symmetry)
are represented by 𝑋 initialized with random variables. We denote
every segmented mesh by 𝑃 (𝑋 ) as a joint probability distribution
of𝑋 . The Bayesian network is trained to learn a probabilistic model
encoding part adjacencies and symmetries.

If the user’s choices lead to a valid hybrid creation, i.e., the input
mesh components are adjacent, we use the symmetry attributes to
check if each component has its symmetric counterpart. Compo-
nents with symmetric attributes are mirrored at symmetric posi-
tions during component assembly (Section 4.4) and novel hybrids
are formed by connecting neighboring semantic parts.

4.3 Cage-based Component Deformation
Building cross-category assembled models involves the challenging
task of determining the scale of each mesh component to support
interchangeability, as introduced in [15]. To this end, we present a
3D cage-based deformation module to automatically re-scale the
source component to match the target component while preserving
component details. The source and target components are differenti-
ated by which component is to be replaced. For instance, to replace
aircraft wings with human arms, we define the source component
as the human arms (the component that needs to be re-scaled),
while the target component is the airplane wings (the component
working as reference for the scaling). The source (S𝑠 ) and target
(S𝑡 ) components are fed into the cage-based deformation model to
obtain coarse bounding meshes: source cage (C𝑠 ) and target cage
(C𝑡 ). The source cage encompasses the source mesh, and is used
to adjust the size of the enclosed mesh. With the cages, the de-
formation model predicts an offset from the source to the target
cages. The offset is stored in a deformed cage (C𝑠→𝑡 ) to produce a
deformed mesh.

The cage-based deformation module matches the scales of ad-
joining meshes, so some visible junctions that would otherwise
be visible due to the different component sizes can be eliminated.
In addition, the deformation process reduces the computational
cost of deforming entire meshes when searching for sewing edges
required by prior work [15], and thereby facilitates the production
of seamlessly connected hybrid meshes.

4.4 Component Assembly and Rigging
Following component deformation, the next step in our pipeline
involves searching for sewing borders on the adjoining meshes,
and meanwhile minimizes unsatisfactory stitch closures (e.g., holes
and bumps). For every segmented component, we define a semantic
border as the boundary of two adjacent clusters. Since the semantic
borders can be heterogeneous in shape, e.g., a dinosaur’s head-body
boundary differs from a camel’s head-body boundary, we need to
find a general edge for each semantic border to link the different
borders and form a smooth surface.

To solve the problem, we describe a component assembly module
containing two steps: 1) computing a general edge for each seman-
tic border, and 2) adjusting cutting boundaries to take on the shape
of the corresponding general edge for connection. Specifically, the
general edge is defined as a set of vertices representing its shape,
and a set of parameters representing the correspondence between
the general edge and each cutting boundary on the semantic border.
To compute the general edge, we propose to solve a constrained
optimization problem similar to [15]). Unlike their method, we per-
form segmented mesh deformation (Section 4.3) before this step to
match the component sizes. Therefore, only the cutting boundaries
need to be deformed towards the general edge to sew adjoining
meshes by a simple union operator, as opposed to deforming both
the segmented meshes and the cutting boundaries by solving a
complex optimization problem.

The connected hybrid meshes are rigged before being presented
to the user. To rig the animal- and human-like hybrids, we use an
automatic tool, RigNet [63], and tuned the tool with tested datasets.
With rigged 3D models generated by our system, users can apply
any type of animations for various purposes. We provide some
animations in our developed web interface; other animations are
available from Adobe Mixamo [1] or Unity Asset Store [55].

5 TECHNICAL EVALUATION
5.1 Data
We evaluate the part semantic segmentation method on datasets
containing three categories: animals, humans and solid objects (e.g.,
cars and airplanes). For animals, we use the SMAL model [71] to
generate meshes consisting of six categories of animals from the
PASCAL VOC 2010 dataset [12]: birds, cats, dogs, horses, cows
and sheep. The training and testing sets are split following the
standard proposed by Wang et al. [60]. The training set consists
of ~3000 samples, and the testing set consists of ~300 samples. For
humans, we use the SMPL model [35] to generate meshes with
various poses from the SURREAL dataset [59]. The train-test split
follows the standard proposed in BodyNet [58]. The training set
contains ~2 · 105 samples, and the testing set contains ~500 samples.
For solid objects, we use the ShapeNet-Part dataset [65]. It contains
~14000 samples for training and ~2800 samples for testing following
the official train-test split introduced in ShapeNet [9].

5.2 Metric
The metric we use to evaluate the part segmentation performance
is point intersection over union, averaged across all part classes
(mIoU). This number is between 0 and 1, and it specifies the amount
of overlap between the predicted and the ground truth point clouds
(higher is better).

5.3 Baseline Methods
PointNet++ [45] is a hierarchical network with MLP backbones
and it proposes to capture the local geometric structures from the
neighborhood of each input point. SGPN [61] uses PointNet++ to
learn a feature vector for each input point, and then captures the
distances between paired features. By adopting a double-hinge loss,
their model adjusts the segmentation results and assigns groups to
each point by a heuristic and non-maximal suppression technique.
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Point Transformer [69] is built upon a self-attention framework to
extract hierarchical geometric features from point clouds. It is one
of the state-of-the-art methods for point cloud part segmentation.

5.4 Results
Part Segmentation Performance. The results of part segmenta-

tion performance comparison are reported in Table 3. As can be
seen, on the task of partitioning semantically meaningful parts,
our method outperforms the listed baseline methods on both the
PASCAL VOC 2010 and SURREAL datasets, and matches the state-
of-the-art method on the ShapeNet-Part dataset.

Table 3: Part segmentation performance. mIoU (%) is mean
point intersection over union. Higher is better. (PN++: Point-
Net++, PT: Point Transformer)

Metric ↑ Dataset PN++ SGPN PT Mix3D

mIoU

PASCAL
VOC 2010 39.3 40.1 40.9 41.2

SURREAL 52.5 53.1 53.6 53.8
ShapeNet-Part 85.1 85.8 86.6 86.1

Computation Speed and Boundary Awareness. Table 4 shows the
comparison of running time and boundary awareness between our
part segmentation method and baseline methods. To benchmark the
testing time and perform a fair comparison, we ran the compared
methods on a single GeForce RTX 3090 graphics card. While our
method is slightly slower than PointNet++ and SGPN, it is faster
than the state-of-the-art Point Transformer method. Furthermore,
our approach enabled the extraction of cutting boundaries, which is
not supported by the compared methods. Therefore, a custom part
segmentation method was necessary for us to compute connectable
sewing edges for part assembly.

Table 4: Inference time per sample (ms, averaged across
datasets), and boundary awareness. (PN++: PointNet++, PT:
Point Transformer)

PN++ SGPN PT Mix3D
Running Time 44 37 56 50

Boundary Aware ? ✗ ✗ ✗ ✓

5.5 Ablation Study
We conducted a controlled experiment to examine the effectiveness
of the introduced similarity matrix (Section 4.1). This study is con-
ducted on the three evaluated datasets, and the results are shown
in Table 5. As can be seen, the mIoUs are improved with similarity
matrix added on all the three datasets. This demonstrates that con-
sidering feature distances between input points can improve the
performance of classifying semantic groups.

6 USER EVALUATION
6.1 Participants
We invited 12 participants (4F, 8M; age range: 21-50, avg: 28y, SD:
7.5) to test our system via the interactive interface. Participants

Table 5: Effectiveness of similarity matrix. mIoU (%) is mean
point intersection over union. Higher is better. (SM: similar-
ity matrix)

Metric ↑ PASCAL
VOC 2010 SURREAL ShapeNet-Part

mIoU w/o SM 39.7 52.9 85.5
mIoU w/ SM 41.2 53.8 86.1

came from different backgrounds including Computer Science (2),
Electrical and Computer Engineering (5), Media Arts and Technol-
ogy (3), and Industry (2). Eight participants had limited to no 3D
modeling, rigging or animation experience, while four participants
were experienced at using one or more popular 3D software and
sculpting tools, such as Blender, Maya, ZBrush, Unity [54] and
Solidworks [50].

6.2 Procedure
Before starting the study, all participants provided informed con-
sent (Protocol #7-22-0512). Following that, we provided a brief
introduction of our interface and a demonstration of the features.
After the introduction (around 6 minutes), each participant spent
about 2 minutes to familiarize themselves with the interface. On
average, the study lasted for 40 minutes, including questionnaires.

6.3 Study Design
Our main goal was to evaluate whether our interactive machine
learning based tool could provide a satisfactory 3D model creation
experience, knowing that it takes approximately 2.5 minutes to
assemble and rig a hybrid model in our system, not including ani-
mating. We asked each participant to create six hybrid models in
the supported hybrid categories. Following the model creation, par-
ticipants were asked to animate the rigged models with provided
animators (e.g., walking, running, idle) within 20 minutes.

Each participant completed four questionnaires during the study.
The NASA Task Load Index (NASA-TLX) questionnaire consisted
of 21-point scale (1: Very low/Perfect, 21: Very high/Failure). All
others were rated on a 5-point Likert Scale (1: Not at all, 5: A lot).

• Pre-study questionnaire containing nine items collected bio-
graphic data, along with information on prior 3D modeling,
rigging and animation experience.

• System Usability Scale (SUS) [56] is a ten-item questionnaire
and it evaluated the usability of our interface.

• NASA Task Load Index (NASA-TLX) questionnaire [41] eval-
uated the workload of our system. Of the six items on this
questionnaire, we used four (mental demand, performance,
effort, frustration) as two were unrelated to the study task
(physical demand and temporal demand).

• Custom post-study questionnaire with open-ended questions
(fourteen questions in total) asked about the participant’s
experience and reflection on using our web interface.

6.4 Results
We observed that all the participants felt confident and were able to
quickly get started using the interface. All participants successfully
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Hybrid of objects

Hybrid of animal and objectHybrid of animal and humanoid

Hybrid of animals Hybrid of humanoids

Hybrid of humanoid and object

Figure 4: Top: 3D hybrid models created by the study par-
ticipants using the web interface. (Left: An airplane with a
car’s head; Middle: A girl with mouse’s arms and legs; Right:
A Centaur with the upper body of a lady and lower body of
a horse). Bottom: Representative examples created by the
study participants in the six hybrid categories supported by
our system with semantic parts shown in different colors.

built the requisite six models from different hybrid categories, and
were encouraged to build more if they were interested and time per-
mitted. Nobody had any incomplete models. The participants also
animated the rigged hybrid models they created with the provided
animators in the given 20 minutes. Figure 4 shows a few repre-
sentative hybrids created by the participants. The models contain
mesh details inherited from assembled part instances, which are
often more challenging to reconstruct in sketch-based 3D modeling
systems for amateur users.

Figure 5 shows the average score for each question in the SUS
questionnaire. The questionnaire has ten items, and the items at
odd indices are in positive tones (higher is better), while the items
at even indices are in negative tones (lower is better). We compute

I think I would like to use this system 
frequently

I found the system unnecessarily complex

I thought the system was very easy to use

I think that I would need the support of a 
technical person to be able to use this 

I found the various functions in this system 
were well integrated

I thought there was too much inconsistency 
in this system

I would imagine that most people would 
learn to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I 
could get going with this system

1 2 3 4 5

Figure 5: SUS results averaged over all participants. Green
bars are odd indexed items with positive tones, and higher is
better. Red bars are even indexed items with negative tones,
and lower is better.

a SUS Score [53] using the following equation:

𝑋 =
∑︁

𝑖=1,3,5,7,9
𝑆𝑖 − 1, 𝑌 =

∑︁
𝑗=2,4,6,8,10

5 − 𝑆 𝑗

SUS Score = (𝑋 + 𝑌 ) × 2.5
(1)

where 𝑖 and 𝑗 are the indices of the odd and even items respectively;
𝑆𝑖 and 𝑆 𝑗 signify the corresponding items in the SUS questionnaire.
The SUS Score for our interface is 87.5 out of 100.0 on average,
which indicates that our system is easy to use. Figure 6 shows the
average score for the selected four questions in the NASA-TLX
questionnaire. From the results, it appears that the participants felt
successful at the given tasks and found it effortless to accomplish
them. They rarely felt insecure or discouraged using the system.

Mental Demand

Performance

Effort

Frustration

0 20 40 60 80 100

Figure 6: NASA-TLX results averaged over all participants.
Lower is better.

6.4.1 User Reflection.

Questionnaire. We created a custom user reflection questionnaire
with eight questions on a 5-point Likert scale (1: Not at all, 5: A lot)
to get feedback on the creation and animation processes as well as
overall system design. We report the questions and results of each
question averaged over all participants in Figure 7. Overall, the
results are positive with high average scores for all the questions.
Q1 and Q2: Participants (10/12 rated above or equal to 4) found
our system offered the potential to create various 3D models and
fantasy characters through assembly, indicating the effectiveness
and usefulness of our proposed machine learning-based system. Q3,
Q4 and Q5: Participants (11/12 rated above or equal to 4) said our
interface provided a fast and easy 3D modeling method, suggest-
ing that despite the 2.5 minutes needed for inference, participants
found the system to be interactive in realtime. Q6: Participants
(6/7 rated above or equal to 4; participants with no 3D modeling
experience skipped this question) found our system offered the
potential to help them create 3D models much faster than their cur-
rently preferred tools, implying that our pipeline could be used as
a stepping-stone for professionals to prototype complex 3D models
and animations quickly before spending large amounts of time and
effort to create final models using their graphics tools of choice. Q7
and Q8: Participants (10/12 rated above or equal to 4) liked that
the 3D models were rigged and ready for animation and found
exporting models easy to do. Since modeling and rigging are often
independent and individually time-consuming steps in graphics
tools, the participant feedback indicates a quick pathway directly
from our system to the use of generated models in other tasks, such
as gaming, animations, AR and VR.
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The system offers potential to allow me to 
create various 3D character and object models

The system offers potential to allow me to 
create 3D fantasy creatures and characters

I found the system helped me create hybrid 3D 
models easily and quickly

I found creating complex models by mixing and 
matching parts useful

I think anyone can create 3D character and 
object models quickly using this system

I was able to create characters faster than 
using other tools/softwares (experienced users 

only)

I liked that some models are already rigged for 
animation

I found adding animation and exporting 
animated models easy to do

1 2 3 4 5

Figure 7: User reflection questionnaire results averaged over
all participants. Higher is better.

Open-ended Questions. The user reflection also included six open-
ended questions asking participants for feedback. Q1 and Q3 asked
about the desirable aspects of our system. Our participants com-
mented on the features they liked from different perspectives, in-
cluding efficiency, simplicity and intuitiveness of our system. Over-
all, participants provided positive responses with P02 saying, “If
I am a modeler or animator this would be a great time-saver.” P03
found our interface to be “straightforward to learn and use.” P10
remarked, “It felt like I was being given a lot of customization in
making a video game character.”

Q2 and Q4 asked for feedback on newer features to be included in
the next version of the prototype. We received constructive sugges-
tions from our participants that focused on enhancing customiza-
tion and fine-grained adjustments to the created hybrid meshes. P06
highlighted that the current prototype supported quick modeling
for amateurs and it lacked support for editing details like some
industry-leading software enables saying, “For any type of work
that requires high-precision sculpting, I probably wouldn’t use it as it
does not provide enough control and detail editing.” P11 expressed
desire for more fine-grained editing of individual body parts saying,
“If I want the legs of a man, I could not adjust the length or thickness
of it. I can only use the default mesh given to me.”

Q5 and Q6 asked about who and what purposes the participants
thought the prototype was best suited for. The responses mostly
aligned with our motivation of building a system for amateur users
to easily and quickly create 3D hybrid models, a task that is chal-
lenging and time consuming even for highly skilled modelers. P12
remarked upon how our system can serve as a first step in a larger
complex process saying, “It would be best suited for creating ani-
mated 3Dmodels very fast and can generate motion and mesh data for
other animation applications.” P06 compared it to strategies used by
experienced modelers to build quick prototypes before committing
time and resources to build the detailed models and animations.
They said, “Many 3D artists often use one system (e.g. Maya, 3DS
Max) to assemble low poly models together to build a rough shape and
then move to a sculpting software (e.g., ZBrush) to add extra details. I
do see this system can work well for 3D artists at the assembling step

as a good and fast preparation for fine-detail sculpting. Also it can be
used by hobbyists to explore and prototype new creatures, using them
for fantasy storytelling.”

Note that from user feedback, none of the participants, amateur
or experienced, commented upon the time taken (reported in Table
1) for the assembled model to be presented. This is an interesting
finding because it indicates the potential for using machine learning
to create 3D modeling tools that can provide a near-realtime yet
satisfactory experience via a simple interface.

6.4.2 VR Interface Pilot Study. We conducted a pilot study of our
VR interface with two participants. They were asked to create a
hybrid creature by selecting part components, and interact with the
generated output using the Oculus Quest hand controllers. After
creating their own hybrids, participants were asked to explore
a VR scene with multiple pre-created creatures. After using the
generation and interaction interfaces, we asked participants what
they liked and/or disliked about the experience. P01-VR commented
“I have a better sense of the object shapes in 3D. I like the VR scenes
provided and I hope to choose a scene from multiple options, and
edit the scenes as I want. However, the controllers are hard to use. I
can hardly click the buttons using them.” P02-VR said “I think the
interface is easy to use as it follows the creation steps. The VR scenes
are immersive. It feels like I was in a magic world with all the fantasy
creatures surrounding me.”

As a followup, we asked about their experience with the spatial
interactions in VR, both for creating and interacting with the 3D
models. P01-VR thought “Rotating is harder using hand controllers
than a mouse. I prefer to walk to the back of a 3D model.” P02-VR
felt “In VR it is great to move around freely in the scene, so that I can
zoom in/out intuitively by walking in the 3D space.”

Last, we asked an open-ended question about what types of
interaction mechanisms would make it easier for them to create
and interact with the 3D content. P01-VR suggested “I hope for an
easier way to interact with the objects. For example, I would like to
use my hands to move and edit the objects directly, or use my fingers
to click the buttons.” P02-VR said “I would like to build a studio-
like interface when creating 3D models. For instance, making there
a spotlight around the created model so that I can focus on it in the
modeling process, otherwise many buttons on a UI will distract me.”

From this pilot study, we learned that with spatial interactions
in VR, 3D modeling becomes an immersive experience as users are
able to step inside the scene. This mimics some of the interactions
and experience of recent consumer 3D modeling software, though
our interface is vastly simpler and targeted at novice creators vs
experts [2, 7, 20, 49]. Although our VR system enables “immersive
authoring” [33], i.e., the creation process that occurs in an immer-
sive environment, and in-situ authoring [57], i.e., creation happens
in the same application used for consuming the content, the pilot
indicates a need to explore specifics of interface design that can
make the process intuitive for users who are novices, both to VR
and the 3D modeling task.

Based on the initial feedback, the interactionmodality canmake a
big difference in the user’s experience. VR hand controllers seemed
to present a relatively high threshold for amateur/novice users.
Future work can analyze how different interactions, such as using
hands, or joysticks, or even custom devices (e.g., gloves), could
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enablemore efficient and intuitive use. A related question is whether
3D modeling is a task suitable for relying only on spatial interaction
paradigms. Prior work [2, 49] has combined the use of 2D and 3D
interactions for 3D modeling, where users perform complex model
editing in 2D using a mouse or pen, and export the output for use
in VR or other spatial environments. This setup aligns with our
design of importing created models from the web interface into
AR/VR scenes. We believe further work is needed to evaluate this
fundamental question of whether 3D modeling is intuitively and
immersively achievable for novices in AR/VR.

7 LIMITATIONS, FUTUREWORK AND
LESSONS LEARNED

Algorithm and Computation Complexity. Although we present
an easy and automatic 3D modeling system, it has some limitations
that result from the complex procedures of an integral pipeline and
the inherent limitations of machine learning based methods. For
example, the inability to create all types of models due to the un-
availability of relevant datasets. However, the pipeline showcases a
prototype for the design of an automatic 3D assembly and anima-
tion system with minimal manual effort. Furthermore, we report
the average time taken to create plus rig a model using Mix3D is
around 2.5 minutes in Table 1. While compared to photo editing
apps or video games, this might seem slow, the time compares fa-
vorably with accomplishing similar goals using commonly used 3D
modeling tools. For example, Adobe’s cloud-based service takes 2-3
minutes just to rig humanoids (only type of model supported cur-
rently) with more time often needed to make manual corrections to
the output rig. Another example is that the time taken to assemble
and rig our hybrid models is considerably faster than creating a sim-
ilar model in Blender or Maya by an expert 3D modeler, or similar
to time taken to create an un-rigged model with photogrammetry
or 3D scanning mobile apps (e.g., Capture3D or Polycam that use
Lidar sensors to build the 3D models). These apps, however, only
work if the physical object is available to scan into a model which
is more challenging for our fictional hybrid use case. In the interest
of enhancing the user experience, reducing assembly time is worth
exploring by refining neural network structures in the future.

High Quality Hybrid Models. An open research problem is im-
proving the quality of the generated hybrid 3D models. Some of the
created models by our system do not have a highly fine-grained
mesh resulting in a more cartoony look, as if the models were scu-
plted from Play Doh©. While not undesirable, this is mainly due to
the lack of high quality input models in the training dataset and
can be addressed in the future as higher quality 3D data becomes
available, or by post-processing with sculpting tools to add details
using ZBrush or SimpModeling [36]. Additionally, a related issue
is when assembling two meshes with highly different levels of de-
tail, the stitching boundary might fail to be smooth, as shown in
Figure 8. This limitation arises from balancing mesh detail preser-
vation and sewing border smoothness. To solve this problem, in our
future work we plan to investigate enforcing both C0 and C1 conti-
nuity [15] between assembled parts with distinct detail richness;
meanwhile, minimizing deformation of original shapes.

Figure 8: An example failure case of our stitching method
resulting from adjoining parts having vastly different levels
of mesh details.

Balance of Usability and Expressiveness. From the user reflection,
experienced participants described their desire to customize the
created models by adjusting individual parts of the models, or the
ability to generate hybrid models not following the adjacency con-
straints (e.g., a creature with its head directly connected to its legs).
Taking in a user’s design intent is a challenging task for data-drive
algorithms since they are trained on existing dataset with features
or rules that are learned from that data. However, with growing
research interest in human-AI collaboration, future work could
study how to integrate a larger variety of user specified rules in the
training phrase to tackle the limitations introduced by the dataset.
On the other hand, although our system is not as highly expressive
as Blender or Maya, our module-based pipeline has the potential
to raise the ceiling by enabling partial scale adjustments on the
created models by adding a cage-based deformation module after
the creation of hybrid models, as described in Section 4. As more
datasets become available and algorithms improve, we can expect
the expressivity of such interactive machine learning-based tools
to increase over time.

8 CONCLUSION
In this paper, we presented Mix3D, an assembly-based system for
amateur users for creating 3D hybrid creatures and objects us-
ing a web interface. The proposed system enabled the creation of
rigged and animated hybrid models across multiple categories of 3D
shapes, including animals, human and objects. To our knowledge,
ours is the first machine learning-enabled 3D model creator and
animator with a web interface that provides an interactive user
experience. Our technical evaluation of the underlying novel part
segmentation module shows that it outperforms prior work and
matches the state-of-the-art model’s performance. The technical
evaluation demonstrates the effectiveness of our proposed part
segmentation network for generalizing to 3D shapes from multiple
categories and identifying interchangeable sewing edges to enable
the creation of seamlessly connected hybrid 3D models. Our user
evaluation demonstrated that our system can help users easily and
efficiently create and animate hybrid creatures and objects.
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