TiC-SAT: Tightly-coupled Systolic Accelerator for Transformers

Alireza Amirshahi, Joshua Alexander Harrison Klein, Giovanni Ansaloni, David Atienza
{alireza.amirshahi,joshua.klein,giovanni.ansaloni,david.atienza}@epfl.ch
Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL)
Switzerland

ABSTRACT

Transformer models have achieved impressive results in various
Al scenarios, ranging from vision to natural language processing.
However, their computational complexity and their vast number of
parameters hinder their implementations on resource-constrained
platforms. Furthermore, while loosely-coupled hardware acceler-
ators have been proposed in the literature, data transfer costs
limit their speed-up potential. We address this challenge along
two axes. First, we introduce tightly-coupled, small-scale systolic
arrays (TiC-SATs), governed by dedicated ISA extensions, as dedi-
cated functional units to speed up execution. Then, thanks to the
tightly-coupled architecture, we employ software optimizations to
maximize data reuse, thus lowering miss rates across cache hier-
archies. Full system simulations across various BERT and Vision-
Transformer models are employed to validate our strategy, result-
ing in substantial application-wide speed-ups (e.g., up to 89.5X for
BERT-large). TiC-SAT is available as an open-source framework?.
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« Computer systems organization — Neural networks; Sys-
tolic arrays; - Computing methodologies — Natural language
processing; « Hardware — Hardware-software codesign.
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1 INTRODUCTION

Transformers, first conceived to tackle Natural Language Process-
ing (NLP) tasks [19], are state-of-the-art solutions in many Artificial
Intelligence (AI) scenarios. They now are used for question answer-
ing, sentiment analysis, image classification, clinical note analysis,
and speech-to-text generation [1, 2, 5, 21].
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However, the massive size and the large number of parameters
of typical transformer implementations pose a computational chal-
lenge. Transformer architectures are composed of several layers,
each embedding many large matrices of parameters. A typical trans-
former such as BERT-large [1] usually requires hundreds of million
of parameters. Such characteristics call for the hardware acceler-
ation of inference in transformer models, in order to reduce their
run-time and/or enable their execution in resource-constrained
devices.

Hardware accelerators for transformers usually target general
matrix to matrix multiplication (GEMM), which dominates the run
time of this class of applications. In this context, Systolic Array (SA)
architectures [15] are the focus of renewed research interest [3].
SAs enable parallel execution of GEMMs on a 2-dimensional mesh
of processing elements, computing outputs in linear time.

Recently, a number of research efforts have focused on devising
effective strategies to integrate SAs into computing systems. Most
(as discussed in Section 2) assume that SAs are interfaced on the
system bus, employing scratchpad memories to store working sets
[17]. We instead take a different approach, investigating the benefits
of integrating small-scale functional units with dedicated SAs in
the processor pipeline. We name such systolic arrays TiC-SATs:
Tightly-Coupled Systolic array Accelerators for Transformers.

Our strategy has two main advantages. First, as TiC-SATs are
integrated into CPUs, they are frugal from a resource perspective
because they do not require dedicated scratchpads. Second, they do
not incur significant overheads for data transfers to/from the accel-
erators. Contrarily, TiC-SATs can leverage data-reuse optimization
strategies across the cache hierarchy. They also do not disrupt
locality when transitioning from accelerated to non-accelerated
computation segments.

Seeing the potential benefits of TiC-SAT, we implement it as a
parametric module in the gem5-X full system simulation environ-
ment [16]. TiC-SAT instances are governed at run-time by custom
instructions, which we define by extending the ARMv8 instruction
set. We conduct comprehensive explorations to gauge the benefits
of TiC-SAT across various SA sizes and transformer applications.

The contributions of our work are summarized as follows:

e We introduce a novel strategy for tightly coupling SAs as
custom functional units governed by dedicated instructions.

e We showcase how SA accelerators can be integrated into
computing systems, enabling full-system and application-
wide explorations.

e We highlight how tight-coupling lightweight SAs can aptly
exploit software optimizations that increase data locality to
take advantage of available resources in cache hierarchies.

e We assess the benefit of small-scale, tightly-coupled SAs
when accelerating inference in transformer models, consid-
ering different TiC-SAT sizes and benchmark applications.
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2 RELATED WORKS

One of the earliest works investigating systolic array accelerators
designed explicitly for transformers is [14]. The work implements a
large SA accelerator using a hardware description language (HDL)
and evaluates it on a Xilinx FPGA, considering a single transformer
model. In [11], again, a systolic accelerator is implemented at the
HDL level. In this hardware/software codesign work, the BERT
model is fully quantized to 8 bits and 4 bits to reduce the latency
and computation. However, these two works do not consider the
integration of accelerators in computing systems.

Similarly to us, the work [17] proposes a systolic array accelera-
tor simulated in a cycle-accurate platform for deep learning models,
including transformers. However, The architecture in this work is
designed assuming a loosely-coupled interface which hinders the
accelerator from utilizing the cache hierarchy.

The papers describing the Gemmini [3] and the SMAUG [20] plat-
forms also introduce accelerators based on systolic arrays, adopt-
ing a full system simulation abstraction level akin to the one we
consider in this paper. Nonetheless, Gemmini and SMAUG are
integrated as loosely-coupled accelerators, requiring large scratch-
pad memories to store local data. Indeed, scratchpads account for
52.9% of the total area in Gemmini and 79.1% in SMAUG. Further
resources are dedicated to the orchestration of data movements
between memory and accelerator.

Another loosely-coupled accelerator for transformers is described
in [22], which also introduces a hardware/software codesign to
leverage acceleration opportunities. First, an algorithm is proposed
to dynamically identify the most critical weights in the first layer of
a transformer. Then, a hardware weight filtering unit is employed
to recognize these weights at run-time. As in [3], a vast part of the
area of their accelerator (58.6%) is employed to buffer input-output
data, an overhead that we entirely avoid in our approach.

The authors of [9] employ Analog In-Memory Computing (AIMC)
crossbars based on resistive memories to speed-up transformers.
Their solution employs a multiplicity of crossbars interfaced to
content-addressable memories. A tightly-coupled solution for AIMC
integration is introduced in ALPINE [8]. The authors of this pa-
per focus on different applications with respect to us: multi-layer
perceptrons, recurrent neural networks, and convolutional neural
networks, where matrix-vector multiplications (as opposed to the
GEMMs) are the main computational bottleneck.

3 BACKGROUND

3.1 Transformers

Transformers are deep learning models composed of multiple blocks,
where the outputs of each block are produced based on the inputs,
weighted according to a “self-attention" significance metric [19].
Self-attention values state the relevance of each input elements.
BERT [1] is a highly successful family of transformer networks
based on the self-attention concept, dedicated to language pro-
cessing. BERT networks consist of three different parts. First, an
embedding layer translates a sequence of input tokens (e.g., words
or syllables) into numerical values. The second part of a BERT model
implements the main transformer functionality, and is composed of
encoder transformer blocks. Depending on the BERT version, differ-
ent numbers of blocks of identical size are employed. Transformer
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Figure 1: Left: A representation of a transformer block. Right:
A single head from the multi-head attention layer. Asterisks
(*) denote layers whose execution is dominated by matrix-
matrix multiplication and hence are a target for acceleration.

outputs are derived by a final, application-specific linear layer. For
instance, for text classification, a simple representation reduction is
applied. A similar structure is implemented in VisionTransformer
(ViT) models [2], which target image interpretation tasks. In par-
ticular, both BERT and ViT employ multi-head attention (MHA) in
encoder blocks to increase robustness.

Encoders dominate the workload of transformer-based mod-
els. The optimization of encoder blocks is, therefore, key from an
application-wide perspective. Figure 1-left illustrates the block’s
structure. Their first component is devoted to the computation
of multi-head attention (MHA) values. It applies the input matrix
X € R%eq*dmodel to h number of heads, where dseq denotes the
input sequence length, and d,;,4.; denotes the vector length for
each input in the sequence. The heads have identical structures,
but because they employ different weights, they produce different
values from the same input. Then, in the subsequent "Projection”
layer, MHA outputs are concatenated and transformed to a lower
dimension using a further rectangular weight matrix. The output
dimension of this layer has the dimensions of the encoder block
input, so that both can be fed to the subsequent “Add & Norm" layer.
As the name implies, in this stage, the inputs of an encoder block
are added to the Projection outputs, and the resulting values are
normalized to have zero mean and unit variance. The final stages of
the transformer block employ two position-wise feed-forward (FF)
transformations to increase the dimension to d¢¢ and decrease it
again to dy,,4.;- The FFs are followed by a further “Add & Norm"
operation.

Figure 1-right shows the details of the computation of one head
in an MHA layer. In it, the input X is multiplied with three weights
matrices Wl.Q, WiK , and Wl.V to obtain Q;, Kj, and V; (named the
Query, Key and Value matrices, respectively). The output of this
single-head attention layer is then computed by applying non-linear
softmax and scale functions and multiplying to V;.

3.2 Systolic Arrays

SAs are composed of sparsely-interconnected Processing Elements
(PEs) which process an input stream to produce an output stream.
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Figure 2: Left: architecture of a 3x3 weight-stationary systolic
array. Right: detailed view of the PE structure.

Each PE embeds arithmetic units and storage. Recently, SAs have
been the focus of renewed interest, as 2-dimensional SA grids can
be specialized to spatially distribute the computation of GEMM
algorithms [6].

SA designs for GEMM can stream the two input operands and
have an output value being computed on each cell (output-stationary
SA). Alternatively, one input may be stationary, while the other
and the computed output values are streamed to/from the array
(weight-stationary SA). We focus on the latter choice, as it guar-
antees a better degree of data reuse for transformer applications
when weights are considered as stationary inputs. In turn, a high
degree of data reuse is key to coping with bandwidth constraints
in tightly-coupled accelerators, as we discuss in detail in Section 4.

Figure 2 illustrates the structure of a 3x3 weight-stationary SA
architecture. In a weight stationary SA, input and outputs propa-
gate in an array along two orthogonal directions (e.g., inputs stream
left-to-right, outputs top-to-bottom). Weights are initialized before
the start of computation and are resident in PEs. Then at every
clock cycle, inputs are moved from one PE to the next unmodified,
while outputs accumulate the results of the multiplication of inputs
and weights. Figure 2 shows that to produce a correct result, both
inputs and outputs must be skewed along a diagonal. In our im-
plementation, such skewing is performed with First-In-First-Out
(FIFO) queues of appropriate sizes that act as delay elements.

4 TIC-SAT: A TIGHTLY-COUPLED SYSTOLIC
ARRAY

In this section, we describe how SAs can be effectively integrated
into computing platforms as tightly-coupled accelerators, how their
capabilities are exposed to software through Instruction Set Archi-
tecture (ISA) extensions, and how applications can effectively map
matrix multiplications on available TiC-SAT resources.

4.1 TiC-SAT integration

An example system featuring a TiC-SAT accelerator as a specialized
Functional Units (FUs) is presented in Figure 3-left. From a resource
requirements perspective, such an approach has the advantage that
the SA, similarly to other FUs (e.g., devoted to integer, floating-
point, or load/store operations), is interfaced to the cache hierarchy
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Figure 3: Left: architecture of systems integrating a tightly-
coupled TiC-SAT accelerator. Right: TiC-SAT as a custom
functional unit enriching a CPU pipeline.

of the processor. Hence, no data movements across cache levels
are required to provide inputs and retrieve outputs from/to the
array. Moreover, data locality can be exploited even for computation
patterns that involve both the SA and other functional units.

A processor pipeline featuring TiC-SAT is depicted in Figure 3-
right. TiC-SAT is accessed by employing dedicated instructions.
Similar to instructions defining integer, floating-point, load/store,
and other operations, custom instructions governing the SA are
first fetched and then decoded. In the latter stage, the instruction
parameters are identified. In the case of TiC-SAT, the instructions
have indirect addresses. Therefore, the effective address is read
from memory in the decode step and set into a register. Then, the
TiC-SAT-specific instructions are executed, directing operations on
the systolic array. Finally, results are written back in the last stage
of the pipeline.

4.2 TiC-SAT Custom Instructions

TiC-SAT-specific operations, extending an ARMv8 ISA, are com-
posed of an operation code (opcode) field and data/address operands.
During the instruction decode stage, the field of the instruction
referring to the indirect address in the operand is set to a register.
Operands are assumed to be 32 bits. Such bitwidth, while com-
mon in computing systems, is not required to represent data (both
weights and intermediate values) in transformer models. Indeed, it
is shown in the literature [7, 12] that 8-bit quantized transformer
models incur a negligible accuracy drop. Therefore, to optimize
run-time performance, we allow the transfer of four 8-bit data ele-
ments as different bit-fields of the same 32-bit register. Then, SAs
with different multiple-of-four size (4*4, 8*8, etc.) can be paramet-
rically defined. In the common case in which the SA size exceeds
4*4, multiple instructions are required to complete the transfer of a
matrix row. We hence use two different instructions to a) transfer
four data items to/from the accelerator and b) transfer four data
items to/from the accelerator and activate the MAC computations
on the array. Figure 4 shows these two instructions.
In more details, the custom instructions are defined as follows:

e SA_LD. This instruction loads the weight inside PEs. It has
three operands: two operands identify a PE cell by row and
column address. The third operand is the weight value that
should be stored in the PE. SA_LD transfers four weights
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Figure 4: (a) The SA_IO instruction enqueues four 8-bit values
at the TiC-SAT input, and reads back four 8-bit values at
its output. b) In addition to performing I/0, SA_IOC also
activates the FIFOs at the periphery of the SA and the PEs
performing the computation of MACs in the array.

at each invocation: that of the cell at the indicated row and
column, and the three cells after it on the same row.

e SA_IOC. This instruction is for Input, Output, and Computa-
tion (IOC) in the systolic array. It has two 32-bit operands.
The first one dictates the input data, expressed as four con-
catenated 8-bit values. The second operand indicates in
which position of the input row the values should be stored.
As shown in Figure 4b, when SA_IOC executes, the PEs in-
side the TiC-SAT array perform the computation of MAC
operations in all columns, and inputs are propagated in all
rows. Outputs are then produced at the bottom of the SA.
The four 8-bit values corresponding to the position indicated
as the second operand are forwarded to the writeback stage
of the processor pipeline.

e SA IO. In contrast to the SA_IOC, in SA_IO, the SA does not
perform the computation because a row of inputs has not
fully loaded. Similarly to SA_IOC, the instruction has two
operands, determining the input data and the data position.
In the same cycle, a 32-bit of output is read, again determined
by the second instruction operand.

Considering an SA with a size of k’k, the weight initialization
requires sz SA_LD operations because, in every operation, four 8-
bit weights are transferred via a 32-bit register. The streaming in/out
of an SA row employs % operations, from which % —lare SA_IO
to fill the input buffer and read the output buffer, and one operation
is SA_IOC to perform the computation step as well as the in/out
streaming. Since the input is set and output is read in the same cycle,
the most performant configuration is when the kernel dimensions
are equal, i.e., for square SAs. Indeed, additional SA_IO instructions
must be issued solely for loading inputs if the input dimension
exceeds the output dimension. Dually, SA_IO instructions which
solely read output values, are required if the SAs have more columns
than rows.

In order to guarantee correctness, the input of weight stationary
SAs must be skewed row-wise (see Figure 4). The proper input
matrix shape could be arranged in software, i.e., by explicitly in-
serting ‘0’ values in the upper-left region of the input matrix. This
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solution would unnecessarily increase memory requirements. In
TiC-SAT, we instead address this issue by employing row-wise FI-
FOs of increasing size at the SA periphery. Further column-wise
FIFOs of appropriate size are used to enforce the correct alignment
of output data. Data in FIFOs is advanced in response to an SA_IOC
instruction.

4.3 Executing large GEMM:s in constrained
TiC-SATs

Transformers rely on very large matrices, which cannot be executed
as-are in a realistically-sized TiC-SAT. Hence, our approach relies
on the tiling [4] of input, weight, and output matrices to divide them
according to the SA dimension. Tiling has been shown to be highly
beneficial for GEMM even in the absence of hardware acceleration
[10] because, by increasing data locality, it can minimize cache miss
rates and the consequent clock cycles penalties. Indeed, a hierarchy
of tiles of increasing dimensions can be adapted to conform to
different cache levels. Herein, we introduce a further hierarchical
tiling layer, targeting the maximization of data reuse for TiC-SAT
systems.

If we consider a system comprising of one TiC-SAT of size k*k,
and an L1 cache, our strategy divides data into three sub-matrices
(containing inputs, outputs, and weights, respectively), which can
fit in the L1 cache. Sub-matrices are further divided into tiles of
dimensions equal to that of the SA. At run-time, tiles perform
iterative computations inside sub-matrices, and sub-matrices iterate
over the working set of a GEMM computation.

Algorithm 1 details the inner loop of such run-time behaviour,
i.e., the iteration of tiles inside the sub-matrices. In the algorithm,
the sizes for the input, weight, and output sub-matrices are indicated
as Ril X CIIA, RZ\; X CX‘{, and Ril X CK, respectively. Note that the
column size of a sub-matrix in the input must be equal to the row
size of the weight matrix, hence C!. = RW. Line 1 and 2 iterate

L1 L1
over the weight sub-matrix in steps of the tile dimensions k.

Algorithm 1 L1 cache-optimized management of TiC-SAT
acceleration

Input: Wy;: Sub-matrix of size R{'{ X CZ‘{ in the weight matrix
Input: I;;: Sub-matrix of size R{l X CIIA in the input matrix
Output: Or;: Sub-matrix of size Ril X CZ‘; in the output matrix
1: for m from 1 to RK by k do
2: for n from 1 to CI‘:‘{ by k do

3: Initialize the tile Wy, , € RF¥ into SA (SA_LD)
4 for p from 1 to Ril by k do
5: Stream the tile I, , € R**K to SA, and

Obtain the tile 05, € RF*¥ from SA
(SA_IO and SA_IOC)

6: end for
7: end for
s: end for

Line 3 performs the weight initialization in the SA for a tile with
size k*k. The innermost loop of the algorithm (line 4) reports the
iteration along the rows of a tile. We choose this loop ordering to
minimize the number of weight initialization (SA_LD) operations.
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In Line 5, the input tile is streamed to the SA, and the output is read
out.

We empirically choose the sub-matrix sizes as follows:
Riy > Cpy.Ryy > Cry

RI xClo+cl xC¥ +RL x CY < L1 size

The rationale for this choice lies in the minimization of the overhead
for loading weights in the weight-stationary SA, which makes a
slightly larger RI{I desirable. However, the total sub-matrix sizes
cannot exceed the L1 cache size. Since the cache space available for
sub-matrices does not correspond to the entire cache, the sum of
the tile size should be slightly less than the cache size.

4.4 System simulation

TiC-SAT instances are realized as gem5-X modules, allowing the
evaluation of their benefits when accelerating transformer applica-
tions from a full-system perspective [16]. We employed gem5-X to
explore various performance indicators besides run-time, including
hits/misses in different levels of the memory hierarchy. gem5-X is
based on the popular gem5 framework [13], adding enhancements
to support architectural extensions and advanced features such as
guest/host shared spaced and fine-grained check-pointing.

We targeted systems based on the ARMv8 ISA, using gem5-X to
extend the instruction set using unallocated opcodes, which we as-
signed to the TiC-SAT custom instructions. The behavioural model
of the SA, including the functionality of each defined instruction,
is modeled in C++.

Applications can access TiC-SATs by inserting in-line assembly
calls in their code. Three such code snippets are exemplified in
Table 1. In the first column, two values are loaded in registers with
a PE row and column index. Then, a third register is programmed
with a weight value. Finally, the weight is transferred to the in-
dexed PE using SA_LD. The second and third columns illustrate
the use of SA_IO and SA_IOC, respectively. In both cases, data and
position registers are set, the custom instruction is called, and the
result is stored in memory. For convenience, in our implementation
assembly code such as the one in Table 1 is encapsulated in a library
of higher-level functions performing the programming of weights
and the streaming of data to/from the systolic array.

Table 1: Use of ISA extensions for TiC-SAT.

Load Weight ‘ Input, Output ‘ Input, Output, Compute
MOV R1, col MOV R1, col MOV R1, col
MOV R2, row LW R3, $(in_addr) LW R3, $(in_addr)

LW R3, $(w_addr)
SA_LD R1, R2, R3

SA_IO R1, R3, R4
SW R4, $(out_addr)

SA_IOC R1, R3, R4
SW R4, $(out_addr)

5 EXPERIMENTS AND RESULTS

5.1 Target system and transformer applications

We investigate the run-time performance of our TiC-SAT systems
considering multiple transformer applications belonging to the
BERT and VisionTransformers (ViT) families. We adopt the differ-
ent sizes mentioned in [2] for VisionTransformers and in [18] for
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the BERT models. Benchmarks, therefore, range from very small
implementations (BERT-tiny) having 4 million parameters, up to
ViT-huge, which requires 632 million parameters.

Experiments are carried out on a system with in-order CPU core
clocked at 1 GHz, 32 KB of L1 data and instruction cache and 1MB
of L2 cache size. The main memory is a 4GB DDR4. The considered
baseline (non-TiC-SAT) solutions are:

o Non-optimized models (N.O.): Conventional matrix to matrix
multiplication implemented as a triple-nested loop iterating
on the input rows, weight columns, and input columns.

o Optimized cache utilization (C-Opt.): In this baseline, the
input, weight, and output matrices are divided into sub-
matrices that fit inside the L1 cache memory.

TiC-SAT systems embed SAs of varying k*k sizes. We constrained
our exploration to small-scale arrays that can realistically be inte-
grated as tightly-coupled processors. We synthesize TiC-SAT using
Synopsys Design Compiler with TSMC 28 nm library and a 1n clock
constraint. The design shows that a 16*16 SA consumes 38 516um?,
and the FIFOs implemented for data alignment in input and output
require 3 031um? and 2 836m?, respectively. The total cell area for
TiC-SAT is only 44 384um?. On the other hand, in Gemmini [3],
as a loosely-coupled accelerator, the components with 22 nm tech-
nology consume much more area, namely, 858 000um?, which is
19.3x larger than TiC-SAT. Also, in [20], the SMAUG accelerator
consumes an area of 1.44 mm? characterized with 16 nm FinFET
technology. The dedicated area for this accelerator is 32.5x times
larger than TiC-SAT.

5.2 Run-time analysis of TiC-SAT-enabled
systems

Figure 5 showcases the run-time required to execute a block (as
shown in Figure 1) of the BERT-large model on the system. Results
are shown for different baseline implementations, as well as for
systems featuring TiC-SATs of increasing size. In each case, stacked
bars detail the execution time for every layer inside the transformer
block. Figure 5 also displays the corresponding speed-ups with
respect to the non-optimized baseline.

The graphs highlight that the software optimization enhancing
data locality in caches is very effective. TiIC-SAT tightly-coupled
accelerators can effectively speed-up software-optimized baselines.
When considering a small 4*4 SA, an additional speed-up exceeding
2X (with respect to C-Opt.) is obtained. Further reductions in run-
time are achieved when increasing the array size.

This figure also shows that the most time-consuming layers in
a transformer block are the feed-forward (FF) ones. These layers
almost entirely consist of GEMM operations, and hence can be
accelerated by employing TiC-SATs. As mentioned in Section 3,
GEMMs are not nonetheless exclusive to feed-forward layers. In-
deed, the only layers that do not comprise GEMMs are “Scale/Soft-
max" and “Add/Norm". Non-GEMM layers are not, however, the
computational bottlenecks of transformers, as shown in Figure 6.
This consideration stands even for TiC-SAT-accelerated systems,
where they account for only 3.1% of the execution time at most.
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Figure 5: The run-time and speed-up of the BERT-large en-
coder block executing with and without TiC-SAT accelerator.
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Figure 6: Proportion of non-GEMM operations in a BERT-
large block executing (a) as a non-optimized implementation
and (b) accelerated by a 1616 TiC-SAT.

5.3 Impact of TiC-SAT acceleration on data
locality

TiC-SAT increases performance both by parallelizing computation,
and by increasing the locality of memory accesses, hence lowering
the burden on the cache hierarchy. We herein focus on the latter
aspect, again investigating the use-case of BERT-large.

Figure 7a shows the number of accesses in different memory hi-
erarchy levels for different baselines and TiC-SAT-based instances.
As shown in this figure and as expected, L2 cache (and main mem-
ory) accesses are reduced by applying software optimization. Such
benefit comes at the cost of an increase in L1 instruction accesses,
as tiling introduces a more complex loop structure, hence more
instructions are executed.

When the TiC-SAT is used to execute the transformer block,
accesses across the memory hierarchy are drastically decreased
(Figure 7a). The reason for this behaviour is two-fold: first, a single
SA_IOC instruction triggers k*k MAC operations, hence lowering
the number of required instructions. Second, k*k parameters are
resident during computation in the SA, and must not be re-read
at each use, thus reducing the size of the working set. Both effects
become more prominent for larger TiC-SAT sizes.

Figure 7b and 7¢ show the number of read and write accesses to
main memory in different layers of the BERT-large model. Results
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Table 2: Transformer benchmark characteristics and speed-
up of 1616 TiC-SAT with respect to the N.O. baseline.

Model ‘ dseq dmodel h params speed-up
ViT-base/16 197 768 12 86M 69.4
ViT-base/32 50 768 12 86M 48.8
ViT-large/16 197 1024 16 307M 82.5
ViT-large/32 50 1024 16 307M 57.2
ViT-huge/14 257 1280 16 632M 82.7

BERT-tiny 512 128 2 4M 20.3
BERT-mini 512 256 4 11M 38.2
BERT-medium | 512 512 8 41M 58.3
BERT-base 512 768 12 110M 69.3
BERT-large 512 1024 16 340M 89.5

highlight that the large matrices employed in the feed-forward lay-
ers result in a considerable amount of replacements and evictions of
L2-cache lines. Such trashing effect is countered by C-Opt. Further
reductions in read accesses are observed when employing TiC-SAT,
due to the reduction in the instruction count of the application, as
discussed above.

5.4 TiC-SAT run-time on different benchmarks

Table 2 reports the benchmark characteristics and the speed-up in
ten different transformer applications. The speed-up refers to the
executions of the entire block with the Non-optimized baselines
and ones where a 16*16 TiC-SAT is employed.

Results show that double-digit (up to 89.5X) speed-ups are achieved
in all applications. Such outcomes originate from a combination
of software optimization and hardware acceleration. They high-
light the benefit of employing tightly-coupled acceleration, as it
can effectively leverage data reuse in the memory hierarchy, in the
presence of both accelerated as well as non-accelerated layers.

5.5 Comparison with a loosely-coupled
implementation

We compare our TiC-SAT tightly-coupled approached with the
SMAUG loosely-coupled accelerator [20]. Both implementations
extend the gem5 system simulation framework [13], which allow to
perform a fair comparison. As shown in Table 3, we considered the
same baseline system in terms of clock frequency, cache size, and
CPU type. Then, we performed an iso-area comparison, targeting
a 64764 TiC-SAT and a SMAUG system with 3x8 KB scratchpads.
Notice that this setting results in a slightly bigger TiC-SAT array,
but also that SMAUG models a smaller technology node (28nm vs.
16nm). Simulations on a BERT-Medium feedforward layer highlight
that both accelerators can effectively speed-up the computation,
but that TiC-SAT outperforms SMAUG by more than 2.5X.

6 CONCLUSION

In this work, we have showcased TiC-SAT, an architecture and
framework for tightly-coupled systolic arrays devoted to acceler-
ating transformer applications. We designed a model for systolic
array acceleration in the gem5-X full system simulator, and defined
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Figure 7: a) Memory accesses at different levels of cache and memory. b) Read accesses and c) write accesses to main memory

for different transformer layers.

Table 3: Comparison of TiC-SAT and SMAUG [20] perfor-
mance

System 6464 TiC-SAT | SMAUG [20]
CPU Frequency 1 GHz 1 GHz
L1 Cache Size 32 KB 32KB
L2 Cache Size 1 MB 1 MB
CPU type out-of-order | out-of-order
Data type Int8 Float16
Technology 28nm 16nm
Area (mm?) 0.70 0.61
Speed-up wrt baseline 234x 88x

its interface with custom extensions to the ARMv8 instruction set.
Our approach overcomes traditional data transaction bottlenecks
associated with other accelerated systems for transformers. There-
fore, targeting various BERT and VisionTransformer models, we
tested embedding systolic arrays of varying dimensions defined
in gem5-X. We examined the speed-ups and memory behaviour
relative to the reference and optimized applications. Our explo-
ration of transformer architectures and computer organizations
have demonstrated substantial speed-ups, including up to 89.5X for
the BERT-large transformer using a 16*16 TiC-SAT accelerator.
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