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ABSTRACT
Quantum Error Correction (QEC) is an essential field of research

towards the realization of large-scale quantum computers. On the

theoretical side, a lot of effort is put into designing error-correcting

codes that protect quantum data from errors, which inevitably hap-

pen due to the noisy nature of quantum hardware and quantum bits

(qubits). Protecting data with an error-correcting code necessitates

means to recover the original data, given a potentially corrupted

data set—a task referred to as decoding. It is vital that decoding
algorithms can recover error-free states in an efficient manner.

While theoretical properties of recent QEC methods have been

extensively studied, good techniques to analyze their performance

in practically more relevant settings is still a widely unexplored

area. In this work, we propose a set of software tools that allows

to numerically experiment with so-called Quantum Low-Density
Parity Check codes (QLDPC codes)—a broad class of codes, some of

which have recently been shown to be asymptotically good. Based

on that, we provide an implementation of a general decoder for

QLDPC codes. On top of that, we propose an efficient heuristic

decoder that tackles the runtime bottlenecks of the general QLDPC

decoder while still maintaining comparable decoding performance.

These tools eventually allow to confirm theoretical results around

QLDPC codes in a more practical setting and showcase the value of

software tools (in addition to theoretical considerations) for inves-

tigating codes for practical applications. The resulting tool, which

is publicly available at https://github.com/lucasberent/qecc under

the MIT license, is meant to provide a playground for the search

for “practically good” quantum codes.

1 INTRODUCTION
Current quantum computing research orbits around a central chal-

lenge, which is the physical realization of quantum computers.

The main roadblock towards constructing universal, large-scale

quantum computers is a fundamental problem that all quantum

architectures suffer from: errors. Quantum systems are extremely

susceptible to noise, which diminishes accuracy of computations

and currently renders general quantum algorithms unusable in

practice. Analogously to classical computing, Quantum Error Cor-
rection (QEC, [1]) evolves around designing methods that allow to

protect quantum computers against noise and to reduce errors that

inevitably happen in quantum systems in order to facilitate the

realization of fault-tolerant quantum computers.

Quantum Error-Correcting Codes (QECCs)—designed to ward

quantum systems by adding redundancy—are a main driver to-

wards the goal of tackling noisy quantum hardware and achieving

fault tolerance. This is due to results which state that with suitable

QECCs it is possible to build arbitrarily large quantum comput-

ers in a fault-tolerant way. A problem with current QEC methods

is that due to the added redundancy, the overall systems grow

too large to actually build them. Recently, Quantum Low-Density
Parity Check codes (QLDPC codes)—a particular class of quantum

error-correcting codes—have become the center of attention as they

have good theoretical properties that promise applicability for large

quantum systems.

A central task in these endeavours is to efficiently recover a state

that is encodedwith a code and has potentially been corrupted—also

referred to as decoding. Inefficient decoding leads to a bad overall

performance of QEC techniques. On the one hand, decoders need

to be fast so that the overall QEC performance is not diminished

by the time it takes to decode. On the other hand, they need to

be able to correct as many errors as possible without introducing

additional errors.

Theoretical (asymptotic) properties of QLDPC codes, i.e., how

much overhead they introduce and how many errors they can

correct, have been studied thoroughly. This culminated in the con-

struction of asymptotically good quantum codes [2]–[5], i.e., codes

whose good properties are preserved with increasing system size.

However, when viewed in a practical setting, i.e., with finite pa-

rameters (as opposed to asymptotic scaling), most codes are widely

unexplored. Good theoretical properties do not necessarily imply

that the codes also performwell for practical sizes (as also remarked

in [6]). Hence, investigations of codes with practical parameters are

essential for future research towards fault-tolerant quantum com-

puting. In order to conduct such investigations around quantum

codes and decoders, corresponding software tools are needed.

In this work, we propose such a set of software tools that allows

to numerically experiment with the class of QLDPC codes that—to

date—has mostly been explored theoretically. Particularly focus-

ing on the problem of decoding QLDPC codes, we demonstrate

how the resulting tool set can be employed to confirm theoretical

results around QLDPC codes. To this end, we implement a very

general decoder that, in principle, can be applied to any QLDPC

code (based on the theoretical concepts provided in [7]) and an-

alyze its runtime and decoding performance. On top of that, we

propose a heuristic—based on ideas for decoding topological quan-

tum codes—that tackles the inherent runtime bottleneck identified

in the general decoder while still maintaining comparable decod-

ing performance. In an effort to continuously extend the amount

of open source software tools for QEC, the resulting tool is made

publicly available at https://github.com/lucasberent/qecc.

The rest of this paper is structured as follows: Section 2 covers

the fundamental notions of QEC. Then, Section 3 reviews related

work and the main motivation. The general decoder provided as

part of the proposed tool set is presented in Section 4 and Section 5

discusses the implementation of the proposed heuristic. Based on

that, Section 6 summarizes the conducted numerical evaluations.

Finally, a short summary and an outlook on future directions are

given in Section 7.
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Figure 1: Tanner graph of the Hamming code

2 BACKGROUND
To keep this work self-contained, this section covers the fundamen-

tal notions around ECCs and QEC.

2.1 Error-Correcting Codes
An Error-Correcting Code (ECC) is a mechanism that adds redundan-

cies to data to protect it from errors. A decoding algorithm (decoder)

tries to recover the original data from the (possibly erroneous) en-

coded one.

In the following, data is simply viewed as binary vectors. In-

tuitively, a binary linear code C of length 𝑛 can be seen as a

set of vectors, called codewords, which all fulfill the same set of

constraints (checks). Data vectors of length 𝑘 are encoded by assign-

ing a codeword 𝑥 ∈ C (of length 𝑛) to each of them. Subsequently,

when errors occur, the checks of C are used to gain information on

which error occurred in order to correct it accordingly. The checks

compute the parity of a subset of elements 𝑣𝑖 of a vector 𝑣 .

It is convenient to view a code C as a bipartite graph

T (C) := (𝑉 = 𝑉𝑄 ∪𝑉𝐶 , 𝐸),
called the Tanner graph of C, where 𝑉𝐶 denotes the set of check
vertices and 𝑉𝑄 the bit (or data) vertices. Naturally, the set of bit
vertices correspond to binary vectors and each check vertex checks

if incident bits 𝑣𝑖 have even parity.

Example 1. The length seven Hamming code is an example of a

binary linear code that encodes vectors of length four into vectors of

length seven. Fig. 1 depicts the Tanner graph of the Hamming code

that has three check vertices (depicted as squares) and seven bit

vertices (depicted as circles). For example, the left-most check (𝑐0)

computes the parity of the bit vertices 𝑣0, 𝑣3, 𝑣5, 𝑣6.

Since the codewords are exactly the vectors that fulfill all checks,

it is crucial to determine whether a given vector is a codeword or

not in order to detect and correct errors. To check if a vector 𝑣 is a

codeword, each bit node of T (C) is assigned an element 𝑣𝑖 ∈ {0, 1}
of 𝑣 . Each check vertex 𝑐 𝑗 computes the parity of its neighbours.

If all checks are satisfied, i.e., the parity of the neighbours of each

check is even, 𝑣 is a codeword.

Example 2. Consider again Example 1 and let 𝑥 = (1, 0, 0, 0, 0, 0, 0)
and 𝑐0 be defined as above. Then, 𝑥 is not a codeword, since

𝑐0 : 1 + 0 + 0 + 0 ≠ 0 (mod 2) .
Recall that if a vector 𝑣 is a codeword, all checks are satisfied. If

any of the checks fails (computes an odd parity), it is indicated that

an error 𝜀 occurred. The checks that are not satisfied constitute the

syndrome of the error. To correct an error 𝜀, an estimate vector 𝜖

that can be used to recover a codeword (an error-free state) has to

be found. This process is called decoding. Decoding algorithms are

vital for error-correction, since the overall protection capability of

a code depends on how well decoders can correct errors and how

efficiently an estimate for a given syndrome can be found.

Figure 2: Tanner graph of the Steane code

2.2 Quantum Error Correction
In classical computing, a fundamental unit of information is a bit,

which is protected by an ECC against bit flip errors (flipping 1 to

0 and vice versa). The quantum analogue of a bit is a qubit [1],
which can assume arbitrary, complex linear combinations of 0

and 1 (superposition). The state |𝜓 ⟩ of a single qubit is described
as |𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩, where 𝛼0, 𝛼1 ∈ C and |𝛼0 | + |𝛼1 | = 1. It can

be shown that errors on qubits are equivalent to combinations of

bit flips and phase flips, where a bit flip is analogous to the classical

case and a phase flip on a qubit changes the sign of its |1⟩ amplitude.

Bit flips and phase flips correspond to applying an𝑋 or a𝑍 operator,

respectively, where 𝑋 and 𝑍 are the well-known Pauli operators.

Example 3. The following equations showcase how 𝑋 and 𝑍 op-

erate on simple quantum states:

𝑋 |0⟩ = |1⟩ , 𝑋 |1⟩ = |0⟩ (1)

𝑍 |0⟩ = |0⟩ , 𝑍 |1⟩ = − |1⟩ (2)

Since quantum errors are combinations of 𝑋 and 𝑍 errors, it

is natural to consider a combination of two classical codes, each

protecting against one type of error. This is the main idea behind

a broad class of codes ubiquitous in quantum computing called

Calderbank-Shor-Steane codes (CSS codes, [8], [9]).
Analogously to a classical code, a CSS code C can be represented

as a Tanner graph T (C). The Tanner graph of a CSS code has two

sets of check vertices, one for 𝑍 errors and one for 𝑋 errors.

Example 4. Fig. 2 depicts the Tanner graph of the Steane code,
which is a CSS code whose 𝑋 and 𝑍 check components each corre-

spond to a Hamming code (as illustrated before in Fig. 1).

The considered noise model assumes independent and identically

distributed (i.i.d.)𝑋 and 𝑍 errors, hence the two components can be

decoded independently and analogously to each other by finding

an estimate for a given syndrome. Thus, without loss of generality,

we consider 𝑋 errors only in the following discussion. A Quantum
Low-Density Parity Check (QLDPC) code is a CSS code such that

each bit is involved in a constant number of checks and each check

involves a constant number of bits. This property renders QLDPC

codes a promising candidate for practical applications, even for

large code lengths.

3 MOTIVATION
Recently, theoretical results around QLDPC codes have accumu-

lated in several breakthroughs around asymptotically good quan-

tum codes [2]–[5]. These mostly theoretical results beg the question

of practical applicability of such codes, e.g., whether they can be

constructed and decoded efficiently for practical instance sizes. In

fact, investigating the potential of these codes for practical appli-

cations has hardly been done yet and necessitates corresponding

(software) tools. In this work, we take a step towards closing this

gap. To this end, this section briefly reviews related work and re-

maining open problems before the remainder of this paper describes

corresponding solutions.
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3.1 Related Work
Very recently, a generalized QLDPC decoder based on ideas of the

Union-Find decoder for topological codes was proposed [7]. While

the authors show theoretical decoding performance guarantees

and conduct numerical simulations for a QLDPC code, no publicly

available implementation is known and extensive numerical exper-

iments on variants of the decoder and investigations around the

practical runtime performance are still open.

Following the vast amount of research recently proposed in the

domain of QEC, industrial research has also started to show interest

in QEC and has acknowledged the importance of practical investiga-

tions. Most recent endeavors towards that include FlamingPy [10]

and Qiskit QEC (available at github.com/qiskit-community/qiskit-

qec), which support toric codes but do not support the generalized

QLDPC decoder. Furthermore, several tools [11]–[15] have been

used to numerically decode and evaluate quantum codes. Although

some are publicly available, most of them focus on surface codes and

none include the recently proposed generalized QLDPC decoder.

3.2 Considered Problem
Since theoretical results around QLDPC codes have shown their

promising properties, investigations of these codes inmore practical

settings (as opposed to asymptotic regimes) are of great importance.

Central prerequisites for this are software tools to facilitate the pos-

sibilities of research in this direction. In this work, we are proposing

tools with a focus on the decoding problem for modern QLDPC

codes. Decoding algorithms need to correct errors well and in a

highly efficient manner, which naturally makes it a hard problem.

In fact, decoders with sub-optimal performance have been iden-

tified as the main bottleneck of the QLDPC paradigm in QEC, as

the general algorithm known from classical LDPC codes does not

perform too well on QLDPCs [16].

As a first step towards a comprehensive set of tools and methods,

we focus on the decoding problem of QLDPC codes and provide

implementations of a general QLDPC decoder in the form of an

efficient, extendable, and openly available software tool set. On

top of that and to tackle inefficient runtime of current decoding

algorithms, we additionally propose an algorithm to decode QLDPC

codes with improved runtime performance. Both considerations

are described in the following sections.

4 SOFTWARE TOOLS
FOR DECODING QLDPC CODES

While a decoder (based on ideas of decoding topological quantum

codes) that, in principle, works for any QLDPC code has been

proposed in [7], no software tools are available that implement

this decoder and, hence, allow to perform broad numerical studies

on QLDPC codes. In the following, we describe our endeavours to

change this situation. First, Section 4.1 settles the technical details

that build the basis for the proposed software tools. Based on that,

Section 4.2 describes the implementation of the recently proposed

general decoder for QLDPC codes. Afterwards, Section 4.3 discusses

the main advantages and disadvantages of the resulting decoder.

4.1 Technical Details
A CSS code C is defined by two Parity Check Matrices (PCMs)

𝐻𝑋 ∈ F𝑚×𝑛
2

and 𝐻𝑍 ∈ F𝑙×𝑛
2

, such that

(a) Syndrome 𝜎 (𝑥) . (b) A grown component K0.

(c) A valid estimate 𝑥̃ for K0.
Figure 3: Example of UF decoding on the Steane code.

𝐻𝑋𝐻
𝑇
𝑍 = 0. (3)

Such a code encodes 𝑘 = 𝑛−𝑟𝑎𝑛𝑘 (𝐻𝑋 )−𝑟𝑎𝑛𝑘 (𝐻𝑍 ) logical qubits
into𝑛 physical ones. Note that a PCM𝐻 can be seen as an adjacency

matrix of T (C), with rows corresponding to check vertices and

columns to bit vertices. An entry𝐻𝑖 𝑗 is set to one if and only if bit 𝑗

occurs in the parity check defined by 𝑐𝑖 .

Concerning the possible errors that occur, we consider inde-

pendent Pauli noise, where each data bit is affected by an error

with a certain probability. For a CSS code of length 𝑛, an error is

represented as a binary vector 𝜀 = (𝑥, 𝑧) ∈ F𝑛
2
×F𝑛

2
.

A CSS code has a set of stabilizerswhich is a set of errors that have
no effect on the encoded data. From Eq. (3) it follows that an error 𝑥

is a stablizer iff it is in the rowspace of𝐻𝑋 , i.e., a linear combination

of 𝐻𝑋 ’s rows. The syndrome of an error 𝑥 , is 𝜎 (𝑥) = 𝐻𝑍𝑥 ∈ F𝑙
2
.

Given a syndrome 𝜎 (𝑥) of an error, the goal of the decoder is

to find an estimate 𝑥 that is equivalent to 𝑥 up to stabilizer, i.e., to

find 𝑥 such that 𝑥 + 𝑥 is in the rowspace of 𝐻𝑋 . For simplicity, we

assume that the syndrome can be inferred without any additional

error being introduced during the process. In the following, an

𝑋 -error 𝑥 ∈ F𝑛
2
is identified with the qubit vertices 𝑣 ∈ 𝑉𝑄 it sets

to one. Similarly, the syndrome 𝜎 (𝑥) of an error is identified with

the set of check vertices 𝑐𝑖 ⊆ 𝑉𝑐 triggered by 𝑥 .

Tanner graphs are a central data structure for working with

QLDPC codes. To this end, some graph theoretic notions and func-

tions are needed. For any graph 𝐺 = (𝑉 , 𝐸) and a vertex 𝑣 ∈ 𝑉 ,

𝑁 (𝑣) ⊆ 𝑉 denotes the neighbours of 𝑣 , i.e., the vertices connected

to 𝑣 . The interior 𝐼𝑛𝑡 (𝑊 ) of a set of vertices𝑊 contains vertices

whose neighbours are also in𝑊 , i.e., 𝑣 ∈ 𝐼𝑛𝑡 (𝑊 ) iff 𝑁 (𝑣) ⊆ 𝐼𝑛𝑡 (𝑊 ).

Example 5. The concepts described above are illustrated in Fig. 3

(the respective captions can be ignored for now). To this end, Fig. 3a

again shows the Tanner graph of the Steane code with the check

node 𝑐1 marked red. Its neighbours𝑁 (𝑐1) are exactly the bit vertices
also marked red in Fig. 3b. The interior of the marked vertices

consists of 𝑐1 together with the vertex highlighted in green as

shown in Fig. 3c.

4.2 Implementation of a
General QLDPC Decoder

The technical details introduced above allow to describe the imple-

mentation of a decoder that can in principle decode any QLDPC

code (based on the theoretical concepts provided in [7]). This gen-

eral QLDPC decoder uses ideas of the Union-Find decoder for topo-

logical codes [17] and reduces the decoding problem of QLDPC

codes to a combinatorial problem on the Tanner graph of the code.

https://github.com/qiskit-community/qiskit-qec
https://github.com/qiskit-community/qiskit-qec
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Algorithm 1 Generalized QLDPC Decoder [7]

1: Input: 𝜎 (𝑥) ⊆ 𝑉𝐶 of some error 𝑥 .

2: Output: Estimate 𝑥 s.t. 𝜎 (𝑥) = 𝜎 (𝑥)
3: Initialize K = 𝜎 (𝑥)
4: while K contains invalid clusters do
5: Grow K𝑖 by adding 𝑁 (𝑣), ∀𝑣 ∈ K𝑖

6: for K𝑖 ⊆ K do
7: Find valid correction 𝑥𝑖 ⊆ Int(K𝑖 ) with 𝜎 (𝑥𝑖 ) = 𝜎 (𝑥) ∩ K𝑖

The general structure of the algorithm is sketched in Algorithm 1.

In the following, an implementation of the algorithm is discussed.

Let T = (𝑉 = 𝑉𝑄 ∪𝑉𝐶 , 𝐸) denote the Tanner graph of a QLDPC

code. Given a syndrome 𝜎 (𝑥) ⊆ 𝑉𝐶 of some error, the decoder

grows clusters (sets of nodes)K𝑖 ⊆ 𝑉 around syndrome nodes until

all clusters are valid (Line 5). A cluster K𝑖 is valid if an estimate 𝑥𝑖
can be found that covers the syndrome occurring in K𝑖 . Formally,

a clusterK𝑖 is defined to be valid iff there exists a set of nodes 𝑥𝑖 ⊆
𝑉𝑄 ∩ 𝐼𝑛𝑡 (K𝑖 ) such that 𝜎 (𝑥𝑖 ) = 𝜎 (𝑥) ∩K𝑖 . When all grown clusters

K𝑖 are valid, an overall estimate 𝑥 whose syndrome matches 𝜎 (𝑥) is
computed by looking for local corrections 𝑥𝑖 inside eachK𝑖 (Line 7).

Example 6. Consider again Fig. 3, which suffices to illustrates the

main idea of the generalized QLDPC decoder. Assume that check 𝑐1

fails. First (Fig. 3a), the syndrome 𝜎 (𝑥) = 𝑐1 is initialized as the first

(and only) clusterK0. Then,K0 is grown (Fig. 3b). The nodes ofK0

are marked. The decoder can find a correction 𝑥 = (0, 1, 0, 0, 0, 0, 0),
as there is a qubit node in 𝐼𝑛𝑡 (K0) covering the syndrome (Fig. 3c).

4.3 Discussion
The advantages of the algorithm are clearly its generality which

implies that it can be applied for any QLDPC code. Furthermore,

the algorithm has a rather simple formulation as it is formalized as

a graph problem. Moreover, the authors of [7] proved correction

guarantees for several classes of codes. More specifically, the de-

coder can successfully decode all sufficiently low-weight errors for

hyperbolic QLDPC codes of arbitrary dimension [18], [19], toric

codes [20], and locally testable codes [21]–[23]. On a practical

note, the proposed implementation only requires the formulation

of codes in terms of parity-check matrices, which is very general

and therefore ensures compatibility with a broad range of codes

and easy extendability. The main bottlenecks of this decoder are

the procedures for checking validity and finding corrections which,

essentially, can be reduced to Gaussian elimination [7]. Overall,

Algorithm 1 thus has worst-case runtime complexity 𝑂 (𝑛4).

5 UNION-FIND DECODING HEURISTIC
In order to tackle the runtime complexity of the decoder discussed

above, in this section, we propose decoding heuristic based on ideas

borrowed from a decoder for topological quantum codes [17] that

improves the runtime of the general QLDPC decoder by a quadratic

factor and show how it can be implemented on top of the proposed

software package.

5.1 General Ideas
In order to achieve an efficient runtime performance, a dedicated

data structure, called Union-Find (UF, also called disjoint-set data

structure, [24]), is employed to represent clusters of nodes. This

data structure accelerates two of the main routines in the general

Algorithm 2 Union-Find Decoding Heuristic

1: Input: 𝜎 (𝑥) ⊆ 𝑉𝐶
2: Output: Estimate 𝑥 ⊆ 𝑉𝑄 s.t. 𝜎 (𝑥) = 𝜎 (𝑥)
3: Initialize K = 𝜎 (𝑥)
4: Init A = ∅
5: while K ≠ ∅ do
6: For all K𝑖 ∈ K grow K𝑖 by its neighbourhood

7: Use Union to merge clusters grown together

8: Replace each cluster representative𝑢𝑖 by its root using Find
9: Update boundary lists

10: Add valid clusters to A
11: procedure Erasure procedure(A) ⊲ Local Decoding

12: Compute 𝐼𝑛𝑡 (K𝑖 )
13: Take a bit node 𝑣 𝑗 ∈ 𝐼𝑛𝑡 (K𝑖 )
14: Add 𝑣 𝑗 to the estimate 𝑥𝑖 for K𝑖

15: Remove checks 𝑐𝑘 adjacent to 𝑣 𝑗 by removing 𝑁 (𝑐𝑘 )

decoder considered above: determining the cluster a node belongs

to (the Find function) and efficiently merging two separate clusters

(the Union function).

The Union-Find data structure consists of a list of disjoint sets

of vertices (of T ). Each disjoint set is represented as a tree (UF tree)
rooted at a dedicated node 𝑟𝑖 . The overall data structure can then

be seen as list of root nodes—each identifying a UF tree. Because of

the tree-like representation, the operations of determining which

UF tree a given node belongs to (Find), and merging two disjoint

UF trees (Union) can be computed efficiently.

It is important to emphasize that the proposed algorithm is a

heuristic, since there is no (theoretical) guarantee it can correct a

certain number of errors for general QLDPC codes. However, the

runtime performance is considerably reduced by a factor of 𝑂 (𝑛2).
Therefore, the proposed heuristic presents an interesting step in

the direction of highly efficient decoding algorithms and allows to

trade-off decoding performance for runtime.

5.2 Implementation
Using the idea of the generalized QLDPC decoder and the UF data-

structure as sketched above, Algorithm 2 sketches the implemen-

tation of the proposed approach. Based on the UF data structure,

clusters grown in the Tanner graph T are represented as UF trees.

The algorithm maintains a list K = { 𝑟0, . . . , 𝑟ℓ } of root nodes 𝑟𝑖
corresponding to the grown clusters K𝑖 . As the algorithm grows

clusters in T by adding the neighbouring vertices (in T ) of bound-

ary nodes to a cluster (Line 6), it may happen that two clusters

are grown together, i.e., share a common node. The Find function

is used to determine which cluster a node belongs to and consec-

utively Union is used to efficiently compute the union of two UF

trees, i.e., merge two clusters into one (Line 7). Once all clusters are

valid, a procedure to compute an estimate 𝑥𝑖 is computed for each

cluster K𝑖 (Line 11).

To maintain low runtime, some further implementation details

have to be considered. The algorithm grows clusters in T until all

are valid, i.e., until each cluster K𝑖 , 𝐼𝑛𝑡 (K𝑖 ) contains a possible

correction. The validity check determines for each cluster whether

there exists neighbours of check nodes that are not in the boundary.

To avoid recomputation of the boundary in each step (which would

contribute to a quadratic factor in the runtime), a precomputed
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list of boundary vertices is stored at the root node of each UF tree.

The boundary list of a cluster K𝑖 contains nodes of the cluster that

share an edge with a node not in the cluster. Thus a book keeping

step is needed that recomputes the boundary list for each K𝑖 after

the growth step (Line 9).

Moreover, similar to [17], it is necessary to replace each vertex

representing a cluster by its root node in K . Merging of clusters

might cause that this produces duplicates. Thus, a lookup table

indicating which root is present in K is added. To avoid duplicate

root nodes, the decoder can simply check whether a root is already

present, and if so not add it again to K .

The main cost of growing clusters and is dominated by the

the Find and Union functions. Using weighted Union (appending

smaller to larger clusters) and path compression (when calling Find,

appending all nodes encountered directly as children of the root

node) leads to an almost linear worst-case time complexity since

both functions have a worst-case complexity of 𝑂 (𝑛𝛼 (𝑛)) where
𝛼 is the inverse Ackermann function [25]. Checking validity and

finding estimates for each cluster requires quadratic worst-case

runtime, since for each cluster a valid estimate is computed iter-

atively from the nodes inside the cluster. Overall the worst-case

runtime is in 𝑂 (𝑛2)—a considerable improvement compared to the

general QLDPC decoder.

6 NUMERICAL EVALUATIONS
The ideas presented in the previous sections have been implemented

in C++ with easy-to-use Python bindings as an interface. The result-

ing implementation is available at https://github.com/lucasberent/

qecc. Based on that, we investigate the runtime scaling as well as the

decoder performance of both presented decoders. Additionally, we

study the impact of different variants of growth on the performance

of the decoding performance. As mentioned above, in all of our

investigations, we assume independent and identically distributed

Pauli noise, perfect syndrome measurements, and focus on𝑋 errors

only. To construct the codes, we used a publicly available tool [12].

The codes and all numerical data is made publicly available along

with the source code. All numerical simulations were conducted on

a machine equipped with a 16 core Intel Xenon(R) W-1370P 3.6GHz

processor and 128GiB RAM, running Ubuntu 20.04 LTS.

6.1 Runtime Performance
In a first series of evaluations, the runtime of the general QLDPC

decoder and the proposed heuristic was investigated. To this end, we

ran Monte Carlo simulations for decoding toric codes of increasing

sizes under different levels of physical noise (physical X-error rate,

per). Fig. 4 depicts the obtained average runtimes for the general

QLDPC decoder (GD) and the heuristic (UFH). Note that each data

point corresponds to the average runtime to decode 10
3
samples.

The results confirm the discussion in Section 4.3 on the bottleneck

of the general QLDPC decoder—the use of Gaussian elimination.

This is the dominating factor here since the degree of the Tanner

graph is small. The experimental data shows a scaling in 𝑂 (𝑛2) for
our implementation, the considered code, and noise model.

The data clearly confirms the drastic performance benefit of

the heuristic. For small code sizes the runtime behaves almost

constantly. For code sizes 𝑛 larger than roughly 10
3
, linear scaling

can be observed while maintaining low runtimes even for large

code sizes. For instance, for code sizes of 𝑛 = 3000 with 𝑝 = 0.01,

Figure 4: Average runtime of the general QLDPC decoder
and the heuristic to decode 103 samples for toric codes with
increasing length 𝑛.

the heuristic takes several seconds to decode 10
3
samples, while

the general QLDPC decoder needs several minutes.

6.2 Decoding Performance
In addition to the runtime behaviour, the decoding performance of

the general QLDPC decoder and the proposed heuristic was studied

on a medium-sized QLDPC code. More specifically, we conducted

simulations in which errors with increasing physical error rate were

sampled and the fraction of failed runs with respect to the code

dimension (the so-calledWord-Error Rate, WER) was investigated

for a [[1024, 18]] lifted product code [6].

We used a simulation procedure that is constituted of repeated

runs of the following steps for a code with parameters [[𝑛, 𝑘]]:
(1) Sample a Pauli error 𝑥 ∈ F𝑛

2
.

(2) Compute the syndrome 𝜎 (𝑥).
(3) Apply the decoder to get 𝑥 .

(4) Compute 𝑥 ′ = 𝑥 + 𝑥 .

(5) Check if𝑥 ′ is a stabilizer. If yes, then return success otherwise
return failure.

The fraction of failed runs is called the block error rate, 𝑃𝐿 . In

order to factor out the number of encoded qubits 𝑘 , the Word-Error
Rate (WER) 𝑃𝑊 defined as

𝑃𝑊 = 1 − (1 − 𝑃𝐿)1/𝑘 .
was used to evaluate the decoding performance. For small logical er-

ror rates it holds that 𝑃𝑊 ≈ 𝑃𝐿/𝑘 . The growth procedure in Line 6 of
Algorithm 2 offers some degrees of freedom for different variants of

how this growth is realized. In our evaluation we compared several

different variants of growth. The first one (AG), where all clusters

are grown in each growth step (also valid ones) is motivated by the

original formulation [7] and underpinned by theoretical results that

guarantee correctability bounds for the general QLDPC decoder.

The other two variants grow only a single cluster in each growth

step, either the smallest one (SSG) or a random one (SRG). Single

smallest cluster growth has been demonstrated to be beneficial for

topological codes [17].

The results of the investigations around the decoding perfor-

mance are summarized in Fig. 5. Every data point was obtained by

https://github.com/lucasberent/qecc
https://github.com/lucasberent/qecc
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Figure 5: Decoding performance of the proposed heuristic
using different variants of growth and the general QLDPC
decoder on a [[1024, 18]] lifted product code.

10
5
samples. Since the growth variants of the proposed heuristic

where a single cluster is grown in each step (a random one or the

smallest one) perform very similarly, only the single smallest cluster

growth is depicted.

In summary, the overall WER of both the general decoder and

the proposed heuristic is rather high for the considered physical

error rates. This matches results from [7], where the authors demon-

strate that the general QLDPC decoder only outperforms a belief-

propagation decoder for very low physical error-rates. Interestingly,

all growth variants of the proposed heuristic perform very simi-

larly. Furthermore, the heuristic performs nearly equivalently to

the general QLDPC decoder in the considered scenario.

7 CONCLUSION
Motivated by several recent theoretical breakthrough results around
QLDPC codes, this work provides a set of software tools for inves-

tigations in more practical settings. The central aspect studied in

this work is the decoding of QLDPC codes. The proposed solution

encompasses an open-source implementation of a general QLDPC

decoder and allows to conduct numerical evaluations on a large

variety of codes to investigate the runtime as well as the decoding

performance of this algorithm. On top of that, we proposed an algo-

rithm that aims to address the runtime bottlenecks of the general

decoder while still maintaining comparable decoding performance.

Both solutions have been evaluated with regard to their runtime as

well as decoding performance—confirming theoretical results and

showcasing promising future directions.

In the future, it would be interesting to improve the decod-

ing performance—for both the original decoder and the proposed

heuristic—for instance by considering more sophisticated growth

procedures. Especially ones that consider edge weights and hence

weighted growth, or a combination with a pre-decoder. Moreover,

taking more realistic noise models into account is a crucial next step.

Furthermore, it would be desirable to prove decoding performance

bounds for families of codes for the proposed heuristic analytically.
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