A Characterization of Ten Hidden-Surface Algorithms

v
G IVAN E. SUTHERLAND*, ROBERT F. SPROULL**, AND ROBERT A. SCHUMACKER*

This paper discusses the hidden-surface problem from the point of view

of sorting. The various surfaces of an object to be shown in hidden-surface
or hidden-line form must be sorted to find out which ones are visible at
various places on the screen. Surfaces may be sorted by lateral position in the

picture (X'Y), by depth (2), or by other criteria. The paper shows that the
order of sorting and the types of sorting used form differences among the
existing hidden-surface algorithms To reduce the work of sorting, each
algorithm capitalizes on some coherence property of the objects represented.
“Scan-line coherence,” the fact that one TV scan line of output is likely

to be nearly the same as the previous TV scan line, is one commonly used
kind of coherence. “Frame coherence,” the fact that the entire picture does
not change very much between successive frames of a motion picture can

be very helpful if 1t is applicable.

By systematically looking for additional kinds of coherence and untried sorting
orders and sorting types, the paper 1s able to suggest two promising new
approaches to the hidden-surface problem. The first, a combination of three
existing algorithms, 1s promising because 1t would capitalize on both frame and
scan-hine coherence The second new approach would sort in the order ¥V, Z, X, -+
the only sorting order for which an existing algorithm could not be found

Key words and phrases hidden-line elimination, hidden-surface elimination,
sorting, coherence, computer graphics, raster-scan, perspective transformation,

analysis of algorithms

CR Categories: 82, 5 31.

L. INTRODUCTION

While it is relatively easy to produce a
perspective picture of a transparent object
made up only of lines, it is rather more
difficult to produce a realistic rendering of an
opaque object. The opaque object is more
difficuit to show because one must decide not
only where each part of the object will appear
on the picture, but also whether to show any
part at all Some parts of an opaque object
will be concealed in any view of it; a computer
programmed to make pictures of opaque
objects must be able to decide which parts are

& Evans and Sutherland Computer Corporation, Salt Lake
City, Utah

wx Stanford University, Palo Alto, California (formerly with
Evans and Sutherland Computer Corporation).

visible in the chosen view and thus must be
shown, and which parts are hidden and thus
must be omitted.

The task of deciding which parts of an
object should be shown and which parts should
be omitted was originally known as the
"Hidden-Line Problem,” because it amounted
to finding and eliminating--or making dashed--
all of the lines in an output drawing which
were hidden by other objects. Now that shaded
pictures are being produced by computer, a
variant of the problem, the "Hidden-Surface
Problem,” has become important. In a shaded
picture one must include or omit entire surface
areas rather than just the lines representing
edges. Because the hidden-line and hidden-
surface problems are very similar, we have
chosen to treat them together in this paper.

Computing Surveys, Vol. 6, No 1, March 1974

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356625.356626&domain=pdf&date_stamp=1974-03-01

CONTENTS

ABSTRACT
I. INTRODUCTION
II BACKGROUND
The Environment

Obyect Descriptions

Enmronment Complexrty Defimitrons
The Perspective Transformation
Geometric Computations

Minamaz Tests

Surrounding Polygons

Uses of Plane Equations

Computing the Plane Equation

Edge Intersections

Segment Comparison
Sorting
Coherence

III TAXONOMY OF THE ALGORITHMS
Object-Space Algorithms

L G Roberts (1963)
Edge-Intersection Algorithms

A Appel (1967)

P. P Loutrel (1967)

R. Galvmbertiand U Montanar: (1969)
Image-Space and List-Priority
Last-Priority Algorithms

R A Schumacker, B Brand, M Gilliland,

W Sharp (1969)

M, E Newell, R G Newell, T L Sancha

(1972)

Depth- Priority Algorithms

J E Warnock (1968)
Scan-line Algorithms

C Wylie, G W Romney, D. C Ecans, A, C

Erdahl (1967)

W J Bouknaght (1969)

G. S Watkins (1970)

IV OBSERVATIONS
Use of Coherence
Existing Uses of Coherence
New Uses of Coherence

Frame and Object Coherence

Edge Coherence

Scan-Lane Coherence

Area Coherence

Depth Cokerence
Sorting Order
An Untried Sortang Order
Other Combinations of Sorting
Sortang Order and Computing Cost

V CONCLUSIONS
ACKNOWLEDGMENTS
BIBLIOGRAPHY

This work 1s sponsored by the Information System Pro-
gram of the Office of Naval Research under NR 049-333
Copyright (€) 1974, Association for Computing Machinery,
Inc General permission to republish, but not for profit, all
or part of this matersal is granted, provided that ACM's
copyright notice is given and that reference is made to this
publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the
Association for Computing Machinery.

Computmg Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

APPENDIX A STATISTICAL PROPERTIES
OF THE RENDERING
Definitions
Definition of Environments
Derimng the Environment Statistics
Analysis of the Algorithme
APPENDIX B SOME STATISTICAL ESTI-
MATES OF COMPUTING COST
Complexity Factors
Statistics for the Various Algorithms
Roberts
Appel, Loutrel, Galimbert: and Montanar:
Schumacker, et al
Newell, et al.
Warnock
Romney, et al
Watkins
Brute-Force Image-Space
Statistical Results

Shaded pictures are produced by recording
the shade of gray or the color of each point in
a two-dimensional array Because many shades
of gray or shades of color may appear in such
pictures, they are correctly called shaded
pictures, but the slightly erroneous term “half-
tone pictures” has also been applied Because
the large array of points used by a computer to
define a shaded picture is often reproduced by
scanning it in a raster, much as does a TV set,
these pictures are also referred to as “raster-
scan” pictures. The raster-scan process
contrasts with the random-scan process used by
plotters and calligraphic display systems to
make line drawings.

The computer programs which produce
pictures of opaque objects accept as input a
description of the object to be shown, and a
desired viewing position and direction for a
hypothetical observer. From this basic data
the program then computes what such an
object would look like to an observer so
positioned, a process lfong known by architects
as “rendering.” Although it is easy to compute
the perspective projection that is usually
involved, it is much more difficult to solve the
hidden-surface problem. In light of the
difficulty of the hidden-surface problem it is
remarkable that many people have

A Characterization of Ten Hidden-Surface Algorithms . 3

independently solved it, and natural that their
solutions have taken many different forms. It
is the purpose of this paper to survey the
principal published methods and to provide as
background some understanding of the
mathematical operations common to all.

The study which led to this paper had a
further purpose. It was our plan to compare
and categorize the known algorithms in the
hope that such a categorization of alternate
solutions to a problem might lead to some
fundamental insight into the nature of the
problem itself. We took this taxonomic
approach for reasons of research rather than
teaching, discovering only later that a survey
paper like this could also be useful.

Two underlying principles have emerged
from our study. First, all of the algorithms
sort or search through collections of surfaces,
edges, or objects according to various criteria,
finally discovering the one visible item and
displaying it. Although the order and kind of
sorting used differ, our supposition that sorting
is the key to the task seems amply justified

The second underlying principle is cokerence.
The environments rendered by the hidden-
surface algorithms consist of objects with more
or less flat surfaces and straight edges rather
than random discontinuities. This coherence
of the environments being rendered limits how
different the picture can be from place to place
or from time to time. All of the algorithms
capitalize on various forms of coherence to
reduce to manageable proportions the work of
sorting. The kinds of coherence most helpful
to particular algorithms are easily identified;
the extent to which useable coherence exists in
a particular solid object seems to determine the
speed with which the algorithm will render it.

1. BACKGROUND
The Environment
Object Descriptions
There are, of course, as many ways to

describe three-dimensional objects in a
computer memory as there are programmers to

assign to the task. The algorithms which we
treat in this paper operate on objects which are
made up only of flat faces, ie, plane-faced
objects. Convex objects can be described by
giving the coefficients of the plane equation of
each of their faces, but it is often simpler to
use the coordinates of their vertices and the
topology of the connections between vertices.
Although the data required by the various

algorithms may differ from this form,
conversion to the required form s
straightforward.

Each vertex, then, is described by giving its
coordinates in three dimensions in some
convenient coordinate system, the “object
coordinate system " Each face is described as a
polygon (presumed to be planar) by listing its
vertices. Such an object description is shown
in Figure 1. If the faces have more than three
vertices each, the vertex positions must be
related if the surfaces are actually to be planar.
Each face might also be assigned a color,
transparency, reflectance, texture, or other
properties.

Because collections of objects are often
shown together, it is convenient to build a

8
Cc
: POLYGONS
| ABCD
A DCGH
| D EHGF
| BAEF
i ADHE
I CBF6
/)F.-‘~—“ 6
/
/
E““‘--—-._____
H
VERTEX X Y z
A -1 ' I
8 -1] -1
c } ' -1
o | ' '
E -1 - '
F - -1 -1
6 I -t -1
H] -1]

Figure - Point-polygon representation of a cube

~
Computing Surveys, Vol. 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

FIGURE 2A

FIGURE 28

structure of object references. A single object
definition, for example a ship, might be
referenced several times to make a fleet. Each
reference would, of course, carry different
position, size, orientation and, possibly, color
and texture parameters. Because of the
obvious applicability of such a presentation to

Computing Surveys, Vol 6, No 1, March 1974

Figure 2. The data for computer-generated pictures may be
measured by hand g, & A model F-4 and the resulting
computer output. ¢, d, ¢, f: A Volkswagen and three forms
of computer output.

simulating natural scenes, we have chosen to
call the totality of objects to be shown an
"environment.” The environment is nothing
more than a description, possibly structured, of
all of the surfaces on which the hidden-surface
algorithm must operate.

A structured environment requires programs

FIGURE 2¢

A Characterization of Ten Hidden-Surface Algorithms . . 5

FIGURE 2p

FIGURE 2e

to interpret its structure. The hidden-surface
part of the computation may make use of the
structure, determining that a given object is
entirely hidden by another object, rather than
doing the computation individually for the
faces of the objects. On the other hand, the
hidden-surface part of the computation may
ultimately have to know the final location of a
particular surface of some object in order to
detetmine whether it hides some other surface.
Thus the programs which interpret the
environment must be able to compute the
location of any vertex, and hence the location
of any surface, as it finally appears through all
of the structure of the environment. More
important, we often choose to treat the
environment as if it were made of only a single
object, speaking of the “object coordinate
system” when a more exact term would be the
“environment coordinate system.”

The initial generation of environments and
object descriptions for use with hidden-surface
algorithms can itself be a major task. For the
algorithms surveyed here the object must first

FIGURE 2¢

be approximated by a set of planar faces.
Economy insists that the number of such faces
be minimized, while quality of representation
insists that the approximation remain faithful.
Thus the first task is to choose a set of
approximating faces, a task which remains an
art not unlike the art of representing objects
with paint on canvas. One may, of course,
avoid this step if the object is already plane-
faced or if some natural representation is
evident.

After having chosen the set of faces with
which to represent the object, one must obtain
the coordinates of their vertices. This process
can be done by hand, as shown in Figure 2, by
digitizing in three dimensions with mechanical
measuring equipment (Figure 3); by digitizing
from pairs of two-dimensional drawings or
photographs (Figure 4); or as a direct result of
some computation

Having obtained the coordinates of the
vertices one must next connect them together
into faces. Omission of a face description will
leave a hole in the final result. Inversion of

Computing Surveys, Vol. 6, No, 1, March 1974

I. . Sutherland, B. F. Sproull, and R. A. Schumacker

the order in which two vertices are referenced,
or erroneous reference will result in wild
distortion of the face. Such errors, as well as
any errors in vertex position, must be
laboriously corrected. The process of
describing a reasonably complex object, such as
the automobile or the aircraft shown in Figure
2, can consume several man-days. The task is
not unlike programming.

One should be alert to differences in the
topological properties of different environment
descriptions Some hidden-surface algorithms
need to know which surfaces meet at a
particutar edge, while others make no use of
such information. Similarly, some make use of
groupings of faces into objects or clusters while
others simply treat faces as if they were
disjoint. The difficulty of building
environment models for the algorithms
increases with the amount of such topological
information required by the algorithm, but the
algorithm may profit immensely from the

Computing Surveys, Vol 6, No. 1, March 1974

it

Figure 3 Direct digitization of a three-dimensional object.

quicker reference that such additional
information provides.

The algorithms surveyed here capitalize on
various properties of the environment. If the
environment is stationary, for example, and a
series of pictures is being made which
simulates an observer moving through it, it is
appropriate to invest a large amount of
computing in preparation of the environment
before starting the hidden-surface computation.
One can afford to find, by exhaustive search if
necessary, all penetrating surfaces, and, by
dividing them at the lines of penetration,
eliminate penetrations from any later
consideration. If parts of the environment
move with respect to each other, or if only a
single picture is desired, such computations
may not be worthwhile If the environment is
known to be made only of convex polygons, or
only of polygons smaller than a certain size, or
only of a single sheet of connected polygons
representing a single valued function Z =«

A Characterization of Ten Hidden-Surface Algorithms . 7

Figure 4 Digitization of an object using two views The views may be (a) orthographic, or
(b) perspective

Computing Surveys, Vol 6, No 1, March 1974

8 .

F(X,Y), or has any other special property
known in advance, one can use this property to
advantage in simplifying the hidden-surface
computation.

Environment Complexity Definitions

In order to speak quantitatively about
environments, we have developed a number of
statistical measures of environmental
complexity. These measures say something
about the number of surfaces represented, their
size, their orgamization into groups, and so
forth. The most common measure of
environment complexity is the number of edges
included, a measure which unfortunately is
ambiguous. By an edge do we mean the
junction between two surfaces, of which a cube
has twelve, or the hine delimiting a surface, of
which a cube has twenty-four, four for each of
six faces? We choose the latter definition as
more widely applicable.

A face is a polygon, usually planar, bounded
by straight lines. A back face is a face that
cannot appear in the picture by virtue of being
on the side of an object away from the
observer. Algorithms which accept open
polyhedra may not distinguish back faces.
Most authors define faces in terms of a list of
their vertices or corners, giving each vertex a
position in space by a coordinate triple (X,Y,Z).
A face usually carries a color or shading rule
that is used to compute its appearance in the
rendering should it be visible. A face may also
carry a plane equation defining the location
and orientation of the plane of the face. If the
coordinate triples for the vertices of a face and
the numbers describing its plane equation
match, the face is planar. Some algorithms
tolerate nonplanar faces

An edge is a straight line segment connecting
two adjacent vertices of a face. This definition
implies that the joint between adjacent faces
contains two edges. In some algorithms the two
faces share a common edge representation for
the joint. A confour edge is an edge that forms
part of the outline of an object as seen by the
observer. A back edge is one that cannot appear
in the environment being rendered because it

Computing Surveys, Vol. 6, No. 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

lies on the side of an object away from the
observer.

A surface normal is an outward-pointing
vector, normal to the surface of the object.
The surface normal for a face, or face normal,
is closely related to the plane equation for that
face. The surface normal at a vertex, or vertex
normal, is sometimes used to Dbetter
approximate curved surfaces by polygonal
faces. Faces which are back faces are
identified because their face normals point
away from the observer. Back edges and
contour edges are determined by noticing
whether the faces that share the edge are back-
facing.

An edge or a face is relevant if it survives
an intial culling operation. Most of the
algorithms begin by culling out back faces or
back edges as well as those faces and edges that
are not visible because they lie outside the area
of the picture or behind the observer.
Whatever remains after such a clipping cull is
relevant.

A cluster is a collection of faces that can be
treated as a group for some special reason.
Often a cluster consists of all those faces
belonging to a single object, but a cluster might
consist of several objects or only a part of a
single object. One might also define a cluster
based on limited lateral extent, object
connectivity, or some other property. Clusters
simplify some of the sorting tasks because the
faces within a cluster need not be treated
separately. Two clusters are linearly separable
if a plane can be passed between them.

An environment includes penetration if any
of the faces intersect. In rendering a line.
drawing image of a scene with penetration, the
algorithm must compute an implied edge
representing the intersection of the two faces.
In a shaded rendering of two penetrating faces,
a discontinuity of shade will appear to mark
the penetration.

The Perspective Transformation
At first glance the perspective aspects of the

hidden-surface problem seem very difficult: we
must consider many “rays” leaving the

A Characterization of Ten Hudden-Surface Algorithms . 9

observer’s eye at various angles, and compute

which faces the rays intersect. Such ray
computations might easily depend on
complicated trigonometric relationships. It

would be much easier to do a hidden-surface
computation for an orthographic projection
instead of a perspective projection, for in an
orthographic projection all of the viewing rays
are parallel, and if we choose to place the Z
axis in the viewing direction, then the X and ¥
coordinates can be those of the screen and the

Z coordinate can be that of depth.
Remarkably enough, there is a perspective
transforms a

projection which three-

OBSERVER
AT -CO

e

dimensional object as viewed in perspective
into another three-dimensional object which
looks the same when viewed orthographically,
as can be seen in Figure 5. This
transformation, n effect, moves a local
observer off to infinity, and distorts the objects
appropriately so that they still look the same to
him. The transformation preserves the flatness
of planes, the straightness of lines, and the
ordering of objects in depth, so it is always
possible to apply the three-dimensional
perspective transformation before doing the
hidden-surface computation, and thus do the
hidden-surface work with parallel projection.

Figure 5 The perspective transformation a The eye coordinate system, showing a cube.
b The screen coordinate system, showing the same cube An orthographic projection of
the screen coordinate system onto the display screen produces a correct perspective image
of the cube (notice that the more distant face of the cube is smaller in the screen

coordinate system)

Computing Surveys, Vol. 6, No 1, March 1974

10 .

The ability to use parallel projection in the
hidden-surface computation greatly simplifies
many computations which would otherwise be
quite difficult. Because it is such a big help,
we summarize the three-dimensional
perspective projection again here, although it
has been known to mathematicians for at least
one hundred years and . has been reported
several times in the recent computer literature
{14, 15). The essential idea, again, is to project
X and Y into their final positions on the screen,
and to adjust the values of Z so that the
flatness, sttaightness, and depth ordering of the
objects are preserved.

The complete transformationp from the
coordinate system of the environment, the
"object coordinate system,” to the coordinate
system in which hidden-surface computations
are done, the “screen coordinate system,” takes
place in two separate transformations. The
first coordinate transformation expresses the
location of objects relative to the observer's
eye, in the “eye coordinate system,” accounting
for the observer's position and direction of
view. The second coordinate transformation
expresses the location of objects relative to the
screen accounting for the effects of perspective
projection. Because both transformations are
in matrix form they can be applied
simultaneously by using the product of their
mats ices.

The first transformation places information
in the “eye coordinate system.” We think of the
eye coordinate system as a coordinate system
with X to the right and ¥ up as the observer
sees them, and Z parallel to the line of sight
forward from the observer." Multiple
applications of such a transformation can be
used to position various objects in different
positions in the environment should one wish a
structured envitonment.

This first transformation can be expressed

* The left-handed nature of this coordinate system comes
about from our desire to make Z a direct measure of the
range to an object and to keep X and V in their most
famihar positions Because our decssion to put the
posstive Z axis in front of the observer 1s at variance
with the coordinate systems used by some of the authors,
the reader must be careful in comparing our use of
" 2" (g closest to the observer) with that
of authors with other coordinate systems.

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

easily in matrix form as:

()(¢ Y. 2, I)-(XOYOZOI)

"o Qo

r
r
r
t

-~ % N
ha b TN TR

n

where all thiee-component vectors have had a
unity fourth component appended to them.
Notice that this formulation is identical
mathematically to the more familiar rotation
and translation formulation:

(xeyezc)'(xoyozo)R°T 2

The unity fourth term in the first formulation
picks out the translation terms from the bottom
row of the matrix. The formulation of (1) is
somewhat simpler to think about because it
expresses a complete three-dimensional motion,
both rotation and translation (and scaling or
certain skews) as a single matrix.

The second coordinate transformation
process converts the eye coordinates into the
screen coordinate system. This is the
“perspective transformation™ The essential
features of this transformation are:

1. The X and Y coordinates of the
perspective view are obtained by
dividing the X or ¥V, eye coordinates by
the distance from the observer forward
to the object, Z .

2. We must compute the “perspective

“depth” for each pomnt which preserves
the straightness of lines, the flatness of
planes and the depth ordering. This
perspective depth will be used later by
the hidden-surface algorithm to decide
which objects are hidden by others.

The perspective transformation expressed in
the coordinate system of the observer's eye is:

(xsy:z’w’)-(XGYezel) 1000
0100
000 if
00-10 (3

XemxJuwg YV owylwe Z =z

where f is related to the “focal length® of an

A Characterization of Ten Hidden-Surface Algorithms . 11

imaginary optical system that might be used to
generate the view.

The transformation can also be expressed in
terms of a coordinate system based on the
center of the screen rather than the observer’s
eye, a formulation that reduces to an identity
transformation as the observer's eye is moved
further and further from the screen, ie, as the
projection contains less and less “perspective,”

ultimately reducing to an orthographic

projection.

(xsyszsws)-(xe)'elel) 1000
0100
001 Wd
0001 |(4)

Xgmxdug Vimyfug Zo=zlug

where d is the distance from the observer’s eye
to the screen.

By representing three-dimensional
coordinates with four-component vectors we are
free to scale arbitrarily the four components
used. This notation 1s called "homogeneous
coordinates” and is explained further in [14]
and [20] The divisions which subsequently
convert from the homogeneous coordinates to
real coordinates, of course, remove any
arbitrary scale factor that may have been used.

An orthographic projection of the screen
coordinate system onto a display screen will
now produce an image (see Figure 5). In
addition, the “perspective depth” Z, computed
by the transformation can be used by a hidden-
surface algorithm to decide which faces lie in
front of others, and hence to compute a
rendering with hidden surfaces removed.

The values of X: and Y‘ are directly related
to the coordinates that must be given to display
hardware to display the point originally
represented in the object coordinate system as
(Xo Yo Zo). By convention, we shall assume
that values of X and ¥ lying between -1 and
+1 are to be mapped onto the display screen: -1
corresponds to the left (bottom) edge, and +1 to
the right (top) edge. If, for example, our
display required coordinates in the range 0 to
1023 for both x and y values, we compute

511.5X +511.5 and 5ILSV +511.5 as the
coordinates to give the display hardware.

However, the perspective transformation
does not guarantee that the values of X s and
Y, will indeed lie within the ranges that map
onto the screen surface. The two-step
transformation process transforms ail objects,
whether they will lie off the screen or behind
the observer. It is essential that objects be
"chipped” so those that lie off the screen or
behind the observer are eliminated from
further consideration. This chpping process
may be performed after the perspective
transformation, but must be performed before
the division, because the division destroys some
essential information. The effect of the
clipping operation is to insure that -w < x <
+woand -w €y < g, and thus that the
values of X, and ¥ will lie within acceptable
ranges.

The chpping operation involves simple
computations on each face; its difficulty grows
linearly with the number of faces. A rather
simple. formulation of the clipping process for
planar and nonplanar faces may be found in
(20}

An essential feature of the perspective
transformation is that lines and planes in the
object coordinate system must transform into
lines and planes in the screen coordinate
system. Thus, a line in screen coordinates can
be generated by interpolating linearly between
the endpoints in screen coordinates. The
hidden-surface algorithms make extensive use
of this property when comparing the depths of
various edges or faces in the environment.

In summary, the screen coordinate system
that we have established preserves the depth
relationships of objects as seen by the observer
in the object cooidinate system. Furthermore,
the X and ¥ coordinate values already reflect
the perspective effect. Figure 6 illustrates the
convenience of the screen coordinate system:
The effective location of the observer is at
Z =-c0, thus making all rays from the eye
parallel to the Z axis.

Geometric Computations

There are a number of geometric
computations that appear in many of the

Computing Surveys, Vol 6, No. 1, March 1974

12 .

OBSERVER
AT ~cO

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker

Figure 6 The hidden-surface computation in the screen coordinate system. Face S defines
a "shadow box” (shown shaded) The box has the same cross-section as the face S, and

extends behind §, away from the observer

shadow box, is clearly hidden by face §

hidden-surface algorithms. The purpose of
these computations is to establish relationships
among polygons or edges. For example, a
particular test polygon may be compared to
others to deade which, if any, obscure it.
Obscuring involves not only lateral
computations to discover if pairs of polygons
overlap on the screen, but also depth
computations to chiscover if part or all of one
polygon les further from the observer than
another. Both the lateral and depth
computations can conveniently be performed in
screen coordinates because the angular
questions which might otherwise complicate the
process have been eliminated by doing the
perspective projection first

Generally the authors of hidden-surface
papers fail to tell how these computations are
done, leaving the reader to invent his own
methods. In this section we outline several of
these methods in the hope of arming our
readers with a “bag of tricks” with which to
attack their own programming tasks. This
brief collection by no means includes all the
calculations performed by the hidden-surface
algorithms. More information can be found in
the section that describes the algorithms, in the
original papers, or in [14].

Computing Surveys, Vol 6, No 1, March 1974

The face P, wholly contained inside the

Minimax Tests

If two polygons do not overlap in X § OF Y’.
then neither can possibly obscure the other (see
Figure 7a). If a fast method is available for
detecting no overlap, a great many faces can
quickly be proven irrelevant to the visibility of
a given test face. Minimax tests provide such
a quick rejection test. If the maximum X
coordinate of a face is less than the minimum
X coordinate of another face, the two cannot
possibly overlap mn X, A similar argument
can be applied in the ¥ direction. Because
these tests are equivalent to comparing the
minimum bounding rectangular boxes for the
two surfaces, they are sometimes called
minimum box tests. There are, of course, cases
which minimax tests cannot reject in which the
faces nevertheless do not overlap (see Figure
7b). A minimax test in Z, can often select the
foremost of two surfaces known to overlap in
X and V..

Surrounding Polygons
A technique that can establish the

relationship between a face and a point is the
surrounder test (see Figure 8). We must detect

A Characterization of Ten Hidden-Surface Algorithms . 13

Lo ___2

L =

Figure 7: Mirimax tests for polygon overlap a. Minimax
boxes do not overlap, indicating that the polygons do not
overlap & Polygons do not overlap even though the
minimax boxes do ¢ Polygons and boxes overlap

whether the edges of face F surround the point
B in X -Y_ in order to determine whether F
might obscure B. If the polygon does surround
the point, a depth comparison of the point and
the polygon will tell whether the point is
visible.

There are three methods for computing
surroundedness. If the polygon is known to be
convex, one can substitute the point location in
X, -Y¢ into the two-dimensional hine equations
for each of the edges, and if the signs of all

such substitutions are the same, the point is
"inside” every edge, and is thus surrounded.
This test requires that the signs of the
coefficients of the hne equations be chosen
correctly. If the polygon is not convex, two
other methods may be used. The first draws
any line from the point to infinity, and counts
the number of times the line crosses the
polygon boundary. If the crossing count is
even, the point is outside the polygon; if odd,
the point is inside To implement this method,
one computes whether each edge of the
polygon crosses the semi-infinite test line. The
intersection computation is not difficult, but if
a polygon vertex lies exactly on the semi-
infinite test hne, care is required to get
consistent results. The second method for
nonconvex polygons computes the sum of the
angles subtended by each of the edges as seen
in two-dimensional projection from the test
point. The sum of these angles is always
either 0 or a multiple of 2i. If the sum is 0,
the pont 1s outside. If the sum is 2p, the point
is inside; if the sum is 41 or more, the polygon
overlaps itself more than once. If the sum is
-2nt the polygon goes around the other way.
Notice that the addition implied need only be
done to 2 bits precision, and so this angle
computation need not involve any complicated
trigonometry [18]

Uses of Plane Equations

Figure 9 illustrates a case in which neither
minimax nor surrounder tests can determine
that face B obscures a part of face A
However, if we know the equation of the plane
of A, for example:

aXS&b)’SochOd-O 5

we can calculate that B lies on the same side of
the plane A as does the observer, and hence
must obscure A. If the point (X .V .Z) is not
on the plane A4, then the sign of the expression
aX +bY +cZ +d will be positive if the point hes
on one side of A, and negative if it lies on the
other side. When we compute the plane
equation coefficients a, b, ¢, d, we arrange by

Computing Surveys, Vol 6, No. 1, March 1974

14 .

000 NUMBER (nl
OF INTERSECTIONS |
> SURROUNDED

ZAha=360°
=> SURROUNDED

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

| EVEN NUMBER (2)
OF INTERSECTIONS
> NOT SURROUNDED

s
NS Elacor
v 2> NOT SURROUNDED

Figure 8 Surrounder tests Point 4 is surrounded by polygon F, point B is not ¢ The
number of intersections of the polygon and a semi-infinite line from the point is counted
b The sum of the angles subtended by directed édges of the polygon determines the

surrounder condition

convention that a point outside the plane (ie.
outside the object of which the plane is a face)
gives a positive value when substituted into the
equation of that plane.

The plane equations have other important
uses in the hidden-surface algorithms. For
example, the depth Z of a face can be
calculated at a given point (X‘,YS). This
computation is used to compare the depths of
two faces, and hence to decide which one is
closer to the observer. In addition, the vector
of plane equation coefficients [a, b, ¢, d] is an
expression for a homogeneous vector normal to
the plane and by convention pointing outward
from it. This normal can be used to identify
back faces because the dot product of the
normal and a vector in the viewing direction

Computing Surveys, Vol 6, No 1, March 1974

(00 10]is posttive. Similarly, contour edges
are identified because they separate two faces,
only one of which is a back face. Face normals
are also used to compute shading parameters
(8, 22].

Computing the Plane Equation

Because the first three plane equation
coefficients a, b and ¢ represent a vector
normal to the plane, one can find them by
knowing such a normal. The fourth
coefficient, d, is found by knowing a point on
the plane. If thiee points on a polygon are
known not to be collinear, then a, b and ¢ can
be computed by taking the crossproduct of the
two edges between such points Because such a

A Characterization of Ten Hidden-Surface Algorithms . 15

Zy

Xs

!7 OBSERVER

Figure 9 Use of the plane equation to compute visibility Face B lies closer to the
observer than does face A This is determined by noticing that all vertices of face B lie on
the observer side of plane 4 The plane equation for A is used in this calculation

computation requires detection of special cases,
we prefer a method suggested by Martin
Newell. For vertices V, = (X,V,Z). the
components a, b and ¢ are found as:

j= (if i=n then 1 else isl)

a= T (Y)(Zez)

J §
b= (Zi-Zj) (Xi‘xj)
¢ =T (X-Xp (V,.*Yj) 6

This method requires only one multiplication
per coefficient per edge. If the polygon is not
planar, this method will produce a plane
equation related closely to the polygon, but not
the best-fit plane equation.

If the equation of a plane is known in object
coordinates, 1t can be transformed into screen
coordinates by transformations very similar to
those wused to transform points. The
homogeneous coordinate notation is very
convenient in this regard because both points
and planes are represented with four
components.

Edge Intersections

The algorithms that compute hidden-line
renderings are more concerned with edge

intersections than with face relationships.
Figure 10 illustrates a typical case' a face is
defined by four directed edges (the direction is
by convention clockwise when viewed from
outside an object), we are testing the edge AB
to see whether 1t is hidden by this object. Since
AB and CD intersect at I, we can have one of
three cases: AB may be nearer the observer
than the plane including CD (Figure 10a), and
hence be completely visible; / can mark the
disappearance of the edge from A to B (Figure
10b); or I can mark the appearance of the edge
(Figure 10c) The first case is identified by
calculating the depth of the face containing
CD, by substituting the X, ¥, coordinates of /
into the plane equation and comparing the
result to the depth at / of the line from A to B.
If the depth of the line is less than the depth of
the face, the line cannot be hidden by the face.
Otherwise, if the directed edge CD subtends a
positive clockwise angle about A4, the edge
appears, otherwise it disappears. Appel [1]
calls this the “vorticity” of the edge CD with
respect to the point 4.

Segment Comparisons
The algorithms that generate renderings for
raster-scan displays such as television monitors

often use a class of techniques called "segment
comparisons” to solve the hidden.surface

Computing Surveys, Vol. 6, No. 1, March 1974

16 .

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

Figure 10 Computing the visibility of a line. The line 4B intersects the edge CD at the
point I. @ Edge CD is farther from the eye than AB. 5. CD marks the disappearance of

AB. ¢. CD marks the appearance of AB.

problem. The raster displays scan from top to
bottom, left to right, in a fixed pattern. The
algorithms are designed to generate the
computed image lhine by line so that it can be
displayed in the same order the results are
generated Computing the correct image for
one scan line is considerably simpler than
considering the whole image at once: the plane
of the scan line defines "segments” where it
intersects faces in the environment (see Figure
11). The hidden-surface problem then becomes
a problem of deciding which segments are
visible in which parts of the scan hne.

The segment comparisons are all performed
in the X -Z plane (see Figure 12). The dotted
lines divide the scan line into "spans.” Within
each span, segment visibility can be determined

Computing Surveys, Vol 6, No 1, March 1974

by comparing the depths of the segments that
lie within the span. Depths of segments are
computed from the plane equation. The
segment with minimum depth is visible
throughout the span.

The strategy used to select spans is one of
the distinctive features of the various
algorithms. The method we have shown in
Figure 12a uses each segment endpoint to start
a new span. Figure 12b shows a better
division of the scan line into spans.

Sorting
Many of the hidden-surface algorithms that

we discuss make extensive use of various forms
of sorting operations. This section mentions

A Characterization of Ten Hidden-Surface Algorithms . 17

=<

Figure |1 Segments are determined by the intersection of faces and scan lines. The depth
relationships among segments in X ‘-Z 5 plane are used to compute visibility

. Z’L

X3

b. z" —

Xg

Figure 12 Comparison of segments in the X -Z plane. a.
Dotted lines divide the scan line into “spans” Within each
span, the closest segment is visible b. A span-selection
strategy that examines fewer spans to solve the hidden-
surface problem for the scan line

briefly the sorting techniques that are relevant
to the further discussion; for a complete
description and analysis of sorting and
searching methods, the reader is referred to
Knuth’s excellent book [9]).

When used in hidden-surface algorithms, the
sorting and searching techniques operate on
records whose “keys” are often geometric
quantities. For example, we might want to sort
all polygons; the key for each polygon is the
minimum value of the Z coordinate of its
vertices. Or we may wish to sort edges, using
as key the minimum value of the Y,
coordinates of the two endpoints.

Sorting is an operation that orders a set of
records according to a selected key. The time

required to perform the sort depends on the
number of records to be processed (N), the
algorithm wused to perform the sort, and
various statistical properties of the initial
ordering of the records. We shall be concerned
primarily with two initial orderings: random,
and nearly in sort. The following table
summarizes several sorting algorithms:

Name Knuth page Time Time
(random) (nearly in sort)
Bubble sort 106 N2 N
Shell sort 84 N2 N
Quick sort 114 Nlog N N?
Tree sort 422,451 Nlog N N
Radix sort 170 N N

One variation of the radix sort, which we
shall call a bucket sort, chooses the radix of the
sort to be the range of all possible keys. Thus,
if we are sorting elements on a 10-bit key field,
we may simply allocate 2'0 buckets: an element
with key i is placed into bucket {. In order to
fetch an element from the sorted output of a
bucket sort, we must scan the buckets until a
nonempty bucket is found. Since this search
operation can be quite expensive if most of the
buckets are empty, one should include the cost
of a "priority search” operation following a
bucket sort.

The precise properties of sorting techniques
may be of tremendous importance. Some
require more storage space than others; some

lend themselves to fast hardware
implementations more easily than others.
Although these properties impact the

performance of the hidden-surface algorithms,
we shall not consider them here.

Computing Surveys, Vol. 6, No 1, March 1974

18 .

A search operation is used to identify exactly
one element in a set of records. For example,
we might consider the set of all polygons and
wish to search for the polygon whose furthest
vertex is nearest the viewpoint. If we are
searching for a record with a minimum or
maximum value of some key, and if the
records are already sorted on that key, then the
search may be extremely fast. If, on the other
hand, we are searching for a record with a
particular key (or a particular property), and
the set of records is unordered on that key, we
must examine all records. In general, the cost
of searching algorithms depends on the
structure of the set of records being searched
and on the nature of the key:

Name Structure of Knuth Time
records page
Sequential unordered 393 N
Sequential ordered table 393 N2
Binary search ordered table 106 log N
Binary tree ordered tree 22 log N

In some cases, a set of records that is
ordered on a key related to the key we are
searching for can cut the searching time.
Suppose polygons are ordered by depth of the
vertex closest to the observer. Then the search
for the polygon whose furthest vertex is
nearest the observer need consider only the
first few polygons--as soon as we encounter a
polygon whose closest vertex is farther from
the observer than the farthest vertex already
located, the search may be terminated.

A cull is a particular form of search: we
wish to extract from a set of records ail those
that have a given property, eg., extract from a
list of edges those edges that intersect a given
edge on the screen. If the records are sorted in
some way that is relevant to the property, we
may be able to avoid examining all of the
records in the set.

A merge adds a new record to some existing
set of records and preserves any (sorted)
structure of the original set of records. Thus,
merging 23 into the ordered list (1 34 56)
should yield a list (1 23 34 56). Merging is
often a component of sorting algorithms. The
performance of merging steps is related to the
structure of the records and to the number of

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

records already in that structure:

Name Structure Knuth page Time
List merge List 159 Ni2
Tree insertion Binary tree 422 g N

Coherence

Throughout this paper we use the term
coherence to describe the extent to which the
environment or the picture of it is locally
constant. Just as laser light exhibits a
characteristic coherence length, a distance
which the light must travel before it is no
longer possible to predict its phase accurately,
so environments and pictures exhibit a
coherence distance, a distance over which one
must travel before he can no longer predict
with accuracy what he will find. An
environment is coherent not only because it
consists of flat faces but also because those
faces relate to each other to form objects.

The coherence of a set of data can vastly
increase the speed with which it can be sorted.
If an initially sorted deck of cards is lightly
shuffled, for example, the coherence remaining
in the deck can be of great use in resorting it.
Similarly the relatively slow changes that take
place in the appearance of a picture from one
place to the next can be of great help in
reducing the number of sorting operations that
must be applied.

We will later distinguish several types of
coherence to see what properties of the objects
being rendered enable the rendering algorithms
to save work. For example, area coherence
describes the fact that many pictures have
areas in which the shade does not change very
much. Frame-to-frame coherence describes the
fact that in a sequence of movie frames the
successive frames are likely to be closely
related.

Hl. TAXONOMY OF THE ALGORITHMS

Taxonomy: orderly classi fication of
plants and animals according to their
presumed natural relationships.

The objective of the research from which this
paper grew was to categorize, compare, and

A Characterization of Ten Hidden-Surface Algorithms . 19

contrast the methods used by ten authors for
solving the hidden-surface problem and thus to
learn something fundamental about the
problem. Such a categorization, or taxonomy,
is easily expressed as a tree whose nodes
represent different classes of algorithms and
whose various branches represent distinctions
between those classes. The particular
categorization we have chosen is shown in
Figure 13.

The root node of the tree divides the
algorithms into three classes: those that
compute a solution to the hidden-surface
problem in "object-space”; those that perform
calculations in “image-space™; and those that
work partly in each, the Clist-priority”
algorithms. By calculations in object space, we
mean that computations are performed to
arbitrary precision, usually the precision
available in the computer executing the
algorithm. The aim of the solution is to
compute “exactly” what the image should be; it
will be correct even if enlarged many times.
The image-space solutions are performed with
less resolution, usually the resolution of the
display screen that will ultimately present an
image of the solution. The goal of these
algorithms 1s simply to calculate an intensity
for each of the 250,000 or 1,000,000 resolvable
dots on the display screen.

In other words, the object-space algorithms
ask whether each potentially-visible item in the
environment is visible,; the image-space
algorithms ask what is visible within a raster
dot on the screen This difference in attitude

OPAQUE OBJECT ALGORITHMS

LIST PRIORITY

-
ul
a
o
<

LOUTREL
GALIMBERT!I
ROBERTS
SCHUMACKER
NEWELL
WARNOCK
ROMNEY
BOUKNIGHT
WATKINS

Figure 13. The ten algorithms arranged in a tree.

produces a corresponding difference in
performance: the cost of the object-space
algorithms grows as a function of the
complexity of the environment, but the cost of
the image-space algorithms is limited because
the number of screen dots remains constant,
independent of the environment complexity.

Coincidentally, the root node of the tree also
divides the algorithms into those that are
hidden-line algorithms and those that are
hidden-sur face algorithms. This distinction is
incidental to the object-space/image-space
distinction; one can imagine an object-space
hidden-surface algorithm, and we know of at
least two image-space hidden-line algorithms,
both derivatives of Warnock [22]

Object-Space Algorithms

Among the object-space algorithms, we can
identify a further division. Although ali of
these algorithms test relevant edges to
determine what parts of the edges are visible,
the invisibility criteria are quite different. In
the Roberts algorithm, an edge may be
obscured by the volume of an object that lies
between the edge and the viewpont. The
algorithm thus capitalizes on the spatial
coherence of objects: it tests edges against
object volumes.

The algorithms of Appel, Loutrel, and
Galimberti and Montanari, however, test edges
against edges. They observe that the visibility
of an edge is coherent, particularly at the
vertices that terminate the edge Thus, if the
visibility of one edge is calculated, it can be
used to save calculations on other edges that
share a vertex with the first edge. In this way,
most of the visibility decisions become
incremental calculations.

L. G. Roberts (1963) [15)

Roberts devised the first known solution to
the hidden-line problem. His algorithm tests
each relevant edge to see if it is obstructed by
the volume occupied by some object in the
environment This test is implemented by
writing a parametric equation for a line from a

Computing Surveys, Vol. 6, No 1, March 1974

20 .

point on the edge to the viewpoint:

P=(l-wE; +aE,+pHO 0-1 0]
Ocaci;0cp &

The first two terms are simply the parametric
equation of a point on the edge £, in the
perspective coordinate system; the third is a
vector pointing toward the viewpoint in the
perspective space, (0,0,-00).

This point, P, lies inside a convex object, §,
if P is on the “inside” of all planes that

comprise the object. This condition
corresponds to:
P.F'.jco foratlt (8)

where F . 1s the plane equation of the ith face
of object j. If, for a given object j, values of a
and B can be found that satisfy (8), the point
on the edge corresponding to a is hidden by the
object.

This edge/object test may discover that: 1)
the edge is entirely hidden by the object; 2) no
portion of the edge is obscured by the object; 3)
one part of the edge is not obscured; or 4) two
portions of the edge are not obscured. Any
unobscured portions are then tested against the
remaining objects.

The algorithm uses a variety of techniques
to solve (8) for minimum and maximum values
of a. Roberts made very effective use of the
mimimax test, eliminating whole collections of
objects from comparison against other objects
when their bounding boxes did not overlap. If
the simple minimax tests fail, linear
programming techniques are required to solve
(8).

The algorithm severely restricts the
environment: the volume test requires that
objects be convex. Although concave objects
can be represented by a collection of convex
ones, computing a useful decomposition is a
difficult task. The computation required by
the Roberts algorithm grows roughly as the
square of the number of objects in the scene:
each edge of a body must be tested against
every object in the scene.

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

Edge-Intersection Algorithms
A. Appel (1967 (1)
P. P. Loutrel (1967) (10, 11)
R. Galimberti and U . Montanari (1969) (5]

The algorithm of Appel exemplifies a class
of hidden-line algorithms that compute line
drawings. Appel defines the quantitative
invisibility of a point as the number of
relevant faces that he between the point and
the viewpoint. The solution to the hidden-line
problem requires computing the quantitative
invisibility of every point on each relevant
edge.

Appel's algorithm uses "edge coherence” to
himit the computing requirement: the
quantitative invisibility of a relevant edge can
change only where the projection of that edge
into the picture plane crosses the projection of
some contour edge. At such an intersection, the
quantitative invisibihity increases or decreases
by 1. After all contour edges have been
considered, the relevant edge has been divided
by the intersections into a number of segments.
If the quantstative invisibility of the initial
vertex of the edge is known, the visibility of
each segment can be calculated by summing
the quantitative invisibility changes (see Figure
14)

The quantitative invisibility of the initial
vertex is calculated by an exhaustive search of
all relevant faces to count how many faces hide
the vertex. The hiding condition has two parts:
1) the line of sight to a vertex intersects the
plane of the face between the viewpoint and
the vertex, and 2) the point of intersection lies
“inside” the polygonal face.

The calculations of the initial and
incremental invisibilities determine the
quantitative invisibility of the final vertex of
the edge, which can be used to determine the
initial invisibility of other edges emanating
from that vertex. This, too, is a form of
coherence, for it often saves the exhaustive
search to determine the quantitative invisibility
of an initial vertex. In general, the exhaustive
search will be performed only once for each
cluster. For these algorithms we define a
“cluster” as a collection of faces and edges that

A Characterization of Ten Hidden-Surface Algorithms . 21

2,0

Ax= 41

g =
20 N\ -0

Figure 14 Computation of the quantitative invisibility (\) of a relevant edge The
nvisibility of the initial vertex, A , 1s computed The quantitative invisibility on the edge
changes only where images of contour edges intersect the image of the relevant edge and
the contour edges are closer to the viewpoint than the relevant edge The invisibility of
the final vertex, A, is used as the initial invisibility of other edges emanating from the

vertex.

requires only one exhaustive search to compute
the quantitative invisibility of a starting point
from which invisibility may be promoted along
a network of edges.

A correction must be applied to the
quantitative invisibility of a vertex to
determine the quantitative invisibility of the
starting point of an edge beginning at the
vertex (see Figure 15). The complication arises
because faces that intersect the vertex may hide
some relevant edge emanating from the vertex.
This "nvisibility correction” requires testing
the edge against only those faces that intersect
the vertex.

The implementation of these ideas varies
among the three edge-intersection algorithms
we studied. Appel, who was the first to propose
this scheme, defined the terms quantitative
invisibility, contour edge, and material edge
(equivalent to our definition of relevant edge).
His method of intersecting relevant and
contour edges in object coordinates s
noteworthy: a contour edge will change the
visibility of a relevant edge if it pierces the
triangle formed by the viewpoint and the
vertices of the relevant edge as shown in
Figure 16. The test which determines that the
piercing point lies within the triangle is called
vorticity. it measures the direction (clockwise or
counter-clockwise) of the three directed edges of
the triangle relative to the piercing point. If all
directions are the same, the piercing point lies

within the triangle and hence changes the
quantitative invisibility of the relevant edge; if
not, the contour edge has no effect on the
visibiity of the relevant edge’ If an
intersection is located, the change in the
quantitative invisibility is either +1 or -I; the
sign is determined from the sign of the cross
product of the contour edge vector and the
relevant edge vector. This is a very quick test
that depends on all faces being drawn in a
consistent direction (eg.. clockwise) as viewed
from outside the object.

Loutrel's approach is very similar to that of
Appel: his term “order of invisibility” is
equivalent to quantitative invisibility; his term
"boundary edge” is equivalent to contour edge.
Loutrel computes intersections of edges by
projecting edges onto the picture plane and
computing intersections in a two-dimensional
space. If an intersection is found, the depths of
the two edges are compared at that spot to
decide which edge hides the other.*

The approach of Galimberti and Montanari
is similar to Appel's and Loutrel’s, but rather
than computing the number of faces hiding a
point, they compute the ser of faces hiding a
point, which they call the nature of the point.
The methods of determining the nature of an
initial vertex, the invisibility correction, and

* These calculations would be greatly simplified if

performed in the perspective coordinate system. None of
the three algorithms, however, did so.

Computing Surveys, Vol, 6, No. 1, March 1974

22 . 1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

— ~— — BACK EDGES
————— HIDDEN RELEVANT EDGES
VISIBLE RELEVANT EDGES

Figure 15 Invisibility correction Two of the four edges emanating from vertex V are
hidden by a face of the polyhedron, even though vertex V is not obscured.

Figure 16 Appel's test for intersection of two edges is performed by testing one edge
agamnst the triangle formed by the eye point and the other edge. If the test edge pierces
this triangle, as shown, it not only crosses the other edge in the viewing plane, but is known
to obscure it.

the incremental invisibility changes are similar relevant faces that the edge separates. For
to those of Loutrel, with the added complexity example, if the nature set at a point of an edge
of computing a set of obscuring faces. Each is { .. a ..}, and the edge image crosses another
edge has an associated set of, at most, two edge whose face set is {aB}, ie, the edge

Computing Surveys, Vol 6, No 1, March 1974

A Characterization of Ten Hidden-Surface Algorithms . 23

between faces o and f, the nature of the
moving point changes to {} Whenever
the set is empty, the point is visible.

Each of these three algorithms locates all
intersections along a relevant edge, and then,
although none of the papers mentions it, must
sort the intersections in order of their
occurrence along the edge in order to establish
the quantitative invisibility of all points on the
edge. However, in certain instances, the sort
can be avoided by noticing that the
quantitative invisibility of the initial vertex is
so high that there are not enough intersections
to make any portion of the edge visible. In this
case, the quantitative invisibility of the final
vertex can be computed quickly as the sum of
the quantitative invisibility at the initial vertex
and all the incremental changes The set notion
of Galimberti and Montanari does not seem to
be amenable to omitting the sort within an
edge.

A number of unpleasant singularities can
occur which require carefut attention to
compute the invisibility correctly (Figure 17).
Galimberti and Montanari have encountered
these problems and report ad hoc solutions in
their paper; the other authors make little
mention of them" Since all visibility
calculations are incremental, it is important
that these cases be handled carefully, for errors
will propagate to other portions of the picture.

Image-Space and List-Priority

The image-space and hist-priority algorithms
are designed to create images for a fixed-
resolution display, often a television monitor.
Although the specific aims of the various
algorithms are not identical, the group has
been motivated by desires for real-time speed
and for realism in the images. These
algorithms are now used to generate quite
spectacular shaded pictures in color; they have
been used to produce a number of quality
movies.

Historically, the efforts in this field are due
to two groups. The first work, reported mostly
in the writing of Schumacker and his

o» Loutrel commented to us, “They all had to be solved in
the program and that was no picnic”

Figure 17 Singularities a. The images of edges V¥, and
V,V 4 overlap b. The image of vertex V lies on the image
of an edge

collaborators, was begun at General Electric in
1965 Their goal was to develop a high-quality
image-presentation system for use in visual
flight simulation. Their work culminated in
the delivery and later enhancement of a system
for NASA's Manned Spacecraft Center. This
system generates images of a spacecraft
environment, typically involving another craft
and a background landscape, and presents the
image to the pilot on a television monitor This
was the first real-time solution to the hidden-
surface problem and has been operational since
1968.

The other major group to develop image-
space algorithms was started in 1967 at the
University of Utah by D. C Evans. Evans
understood cleatly from the start the
importance of the hmited resolution of image-
space, and the need for incremental
computation during TV scanming. The Utah
efforts produced a series of interesting
algorithms, and have resulted in a real-time
algorithm by G S. Watkins that is now

Computing Surveys, Vol. 6, No. 1, March 1974

24 .

commercially available in hardware from the
Evans and Sutherland Computer Corporation.

The most recent algorithm, that of Newell et
al of the Computer Aided Design Centre,
Cambridge, England, resembles most closely
that of Schumacker; thase two are therefore
classed together in the tree. It appears that the
Newell group constructed their algorithm
without any knowledge of the details of
Schumacker's work. The reasons for classifying
these two algorithms together is, as we shall see
below, based on a technical similarity rather
than any detectable historical influence.

The distinction between image-space and
hst-prionity algorithms concerns the way in
which the ulumate visibility of a surface is
computed In the image-space algorithms, the
visibility test is postponed until last, and comes
about as a computation of the depth of the
various surfaces that would be penetrated by a
viewing ray at a particular point in the image.
Thus, these algorithms can capitalize on the
lateral separation of the image to reduce the
number of depth computations required. The
hist-priorsty algorithms of Schumacker and
Newell, on the other hand, precompute in
object-space a visibility ordering or “priority”
for all surfaces before generating the picture in
image-space. The priority of a surface can be
expressed as a linear-ordering of the surfaces
such that if ever two surfaces need be
compared for visibility, the one with the higher
priority is the visible one.

The list-priority algorithms are placed
between the object-space algorithms and the
image-space algorithms because they function
partly in each space. The algorithms have
object-space character because the depth
overlap calculations are performed with high
precision. Their image-space character comes
about only because of the finite resolution of
the output medium available. Were an output
device available which could paint a sequence
of polygons to arbitrary resolution, leaving
visible at any place only the last painted
polygon, then these algorithms could be
considered object-space algorithms. Because
such a device is not available, the output step
of these algorithms takes on much of the
character of the image-space algorithms.

Computing Surveys, Vol 6, No 1, March 1974

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker

List-Priority Algorithms

The difference between the Schumacker and
the Newell algorithms concerns the manner in
which the list-priority is computed. The
Schumacker algorithm performs most of the
priority calculations “off-line,” occasionally with
human intervention. Schumacker's priority list
is primarily a property of the environment and
does not depend very much on the location of
the viewpoint.

Although the investment in computing the
priority hist from the environment description
is quite high, virtually the same hst can be
used to generate many, many frames. This
approach is particularly convenient for flight
simulation, where the environment rarely
changes, although the viewpoint changes quite
frequently. The Schumacker algorithm takes
advantage of the environments usually
employed in flight simulation to limit the
topology of the environment: only
environments with convex faces and linearly
separable clusters’ are allowed.

The Newell algorithm, on the other hand,
computes a priority list from the environment
description before processing each frame. This
approach very conveniently accommodates
changing environments. In addition, Newell's
priority computation makes no restrictions on
the topological complexity of the environment.

Another important difference between the
algorithms concerns clustering. Schumacker
observed that the computation of priority need
not compare every face in the environment
with every other face to determine the order of
faces in the priority list Rather, the
environment is divided into clusters. Within a
cluster, each face is compared with every other
face in the cluster to compute a face priority.
If the image consists of only one cluster, then
the priority computations are complete. If,
however, the environment contains several
clusters, the algorithm computes the relative
priorities of the clusters, the cluster priority.
Cluster priority thus relates entire objects: if
object A4 is nearer to the viewpoint than object
B, cleatly all faces of object A take priority
over all faces of object B. This observation
fails when objects A and B penetrate or

A Characterization of Ten Hidden-Surface Algorithms . 25

intertwine in a complex fashion, i.e., when they
are not linearly separable.

The remarkable thing about these clusters is
that within a cluster the priority of faces can
be determined independent of the viewpoint.
Thus the priority within a cluster can be
determined once for all time and need not be
recomputed as the viewpoint changes. Priority
within a cluster can be independent of
viewpoint because a different set of back faces
will be removed from the priority list for each
viewpoint, and those which remain will assume
the proper priority order (experiment with
Figure 18).

|
3
2
8. | |
2
3
[}
- ——— - = =
I |
i
i b—q
| |
b. I '
[|
) s |
| I
[
{

4

Figure 18 Face priority. a Top view of an object with face
priority numbers assigned (the lowest number corresponds
to the highest priority) b The same obgect with a specific
viewpoint located The dashed lines show back faces. Face
1 takes priority over face 2.

The priority index computed by Schumacker
can be viewed as a number with integer and
fractional parts. clustere face. The face-priority
calculation is a property of the topology of the
cluster and does not depend in any way on the
location of the viewpoint. The cluster-priority
computation, on the other hand, is determined
by isolating clusters with separating planes
defined as part of the data base. As the
viewpoint moves, cluster priority depends on
the location of the viewpoint relative to the
separating planes

Calculating cluster and face priorities
independently drastically reduces the amount of
computation. In other words, the Schumacker
algorithm capitalizes on cluster coherence. The
Neweil algorithm puts fewer restrictions on the
environment by not taking advantage of this
coherence.

R. A. Schumacker, B. Brand, M. Gilliland,
W. Sharp (1969) (6, 7, 17, 24]

The major contributions of the Schumacker
work, as we have already mentioned, are the
priority computations based Jargely on
topological properties of the environment, thus
utilizing frame-to-frame coherence, and the
cluster coherence techniques. In this section, we
shall describe in more detail the face-priority
computation within a cluster, the cluster-
priority computations, and the actual
generation of the image in real-time.

The notion that face priority within a
cluster can be computed independent of the
viewpoint is extremely important. Consider the
top view of an object, as shown in Figure 18.
If, for any viewpoint, we eliminate the back
faces (relative to that viewpoint), the numbers
assigned to each face in the figure are the
priority numbers. A cluster is a collection of
faces that can be assigned a fixed set of
priority numbers which, after back edges are
removed, provide correct priority from any
viewpoint.

The computation of face priority requires
computing whether face A4 can, from any
viewpoint, hide face B. If so, face A4 has
priority over face B. These computations are
performed for all faces of a cluster, and a

Computing Surveys, Vol 6, No. 1, March 1974

26 .

priority graph is constructed. If there are any
circuits in the graph (e.g, face 4 has priority
over face B, and face B has priority over face
A), the faces cannot be assigned priorities that
will produce a correct image. In this case, the
cluster will have to be split manually into
smaller clusters

The calculation of priority of several
clusters is demonstrated by Figure 19. If the
viewpoint lies in region C, cluster 3 should
have priority over clusters 1 and 2. Of these
last two, cluster 2 should have priority over
cluster [. These observations can be formalized
by deciding whete the viewpoint lies with
respect to planes that separate the clusters. The
tree in the figure shows how the relation of the
viewpoint to the two separating planes

3,2 32,1 12,3 2,3

Figure 19 Cluster priority a Three clusters (1,2,3) are
separated by two planes (a8) The viewpoint may be
located in one of four areas (4,BC.D) b A tree structure
for finding the cluster priority from the viewpoint location
At nodes labeled with planes, we take a branch depending
on which side of the plane the viewpoint lies. The result is
to sort the clusters into priority order.

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

produces one of four possible orderings of the
three clusters. This concept can be extended to
arbitrarily large collections of clusters, provided
that separating planes can always be found (ie.,
the environment is linearly separable).

Schumacker will tolerate motion of clusters
in the environment provided they remain
linearly separable. The cluster priority,
recomputed for every frame, correctly accounts
for the changing depth relationships of the
clusters. Of> course, if either a cluster or the
viewpoint moves, the X and Y perspective
coordinates of the edges and vertices of the
faces must be recomputed for every frame.

The generation of the video-image signal is
accomphlished with a large amount of special-
purpose hardware. For each frame, the
hardware performs the following operations: 1)
the cluster priorities are computed by
comparing the viewpoint location to the
separating planes in the environment; 2) a list
of faces is constructed, in priority order,
excluding those that are back faces for the
present viewpoint location; and 3) the
perspective coordinates of each edge in the
environment are computed, giving edge
equations in the viewing plane of the form
X 5" A+BY 5

For every scan line, the following
computations are performed: 1) the X s
intercepts of all edges are updated by adding
the incremental value, B, to each intercept; and
2) the priority-ordered list of faces is processed
to find the X intercepts of the faces on this
scan line. This procedure assumes that all faces
must be convex polygons, and can therefore
result in, at most, one segment per face per
scan line. Each edge of a face is either a left
edge or a right edge; the procedure for a face
computes the maximum (rightmost) of the X
intercepts of its left edges (L), and the
minimum (leftmost) of the X intercepts of its
right edges (R). If L <R, then the face
intersects this scan line, and may be visible (see
Figure 20).

For every picture element a priority
determination is accomplished with special
hardware. At the start of the scan hne the L
and R intercept values for each face that
intersects the scan line are loaded into two

A Characlerization of Ten Hidden-Surface Algorithms . 27

SCAN-LINES

/

M N/R\

Figure 20 Calcuation of X intercepts of a face on a scan hine The triangular face is
described by three infinite edges (L)L ,,R)) The maximum of the X intercepts of the left
edges and the mimmum of the X intercepts of the right edges are caiculated. If
max L < min R, then the face intersects the scan line in a segment (dark line on the top
scan hne) Otherwise, the face does not intersect the scan line (bottom scan line)

down-counters. There must be an individual
pair of such counters for every face that
intersects the scan line Furthermore, the
counters are arianged in order: the first
intersecting face to be found, the one with the
highest priority, is recorded in the first pair of
counters, the second 1n the second, etc.

As the scanning spot progresses across the
scan line, the down-counters are decremented
for each raster element encountered. Any
counters with L < 0 and R > 0 represent faces
that might be visible at that raster position. A
simple combinatorial logic network decides
which counter pair with this property has the
highest priority (ie, the lowest-numbered
counter pair with this property).

These last two operations, the X sort to
determine which faces intersect a particular
raster element, and the prionty search to
determine the visible face are potentially very
costly operations However, the hardware
realization of these operations is so extremely
simple and fast that the scheme becomes
feasible. Emulating this process in software
would be quite costly.

M. E. Newell, R. G. Newell, T. L. Sancha
(1972) [13])

The principal contributions of the Newell
algorithm are the development of a priority
computer and the concept of “overwriting”
faces to achieve the effect of transparency. In
the discussion above, we have taken the view
that the priority list is used to determine the
face that is visible where a number of faces
surround a given element of the picture raster.
In other words, the priority index is used to
announce the visible surface at any spot.
Newell views the list in quite a different way: if
we write the images of successively higher
priority faces successively onto a picture
buffer, the picture buffer will have a correct
hidden-surface view after we have processed
the enure list. Faces of higher priority will
overwrite faces of lower priority.

Newell achieved the transparency effect by
permitting transparent faces to only partially
overwrite the underlying face. If the intensity
of the transparent face is greater than that of
the wunderlying face, it becomes the new

Computing Surveys, Vol 6, No. 1, March 1974

28 .

intensity directly. Otherwise, the two intensities
are combined according to a linear rule to
produce the new intensity.

In fact, Newell's algorithm does not store
every picture element in the picture buffer as
in a video buffer. Instead it stores segments of
scan lines, allocating a bucket for each scan
line. Each bucket contains a lhist of the visible
segments, which Newell called "beads,” for that
scan line. As each face from the priority list is
painted, its segments are merged into these lists,
replacing (i.e, overwriting) any conflicting
segments.

The heart of Newell's algorithm is the
priority computer This procedure sorts an
arbitrary collection of faces into a priority
otder, not necessatily unique The first step in
the procedure sorts all faces by the depth of
the furthest vertex of each face. If faces do not
overlap in depth at all, this sort successfully
establishes the priority order (see Figure 2}).

The remainder of the procedure, the "Newell
special sort,” tests whether the depth-sorted list
is indeed in priority order, and if not, fixes the
list appropriately. First, we examine the last
face on the list, P. If the closest vertex of P is
deeper than the farthest vertex of), the next-
to-last face on the list, then P cannot possibly
obscure (. Furthermore, since the furthest
vertices of other members of the list are closer
still, P cannot obscure any other member of

—
\
F2
—_— ——
—_— Fy
/

Figure 21- Z sort to determine priority order. If the faces
are sorted by furthest vertex from the viewpoint (arrows),
the order F, F2' F 3 is produced, which is the correct
prionity order for these faces

Computing Surveys, Vol. 6, No. 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumnacker

the list, and P may safely be written onto the
video buffer.

If, as is more likely the case, P and Q
overlap in depth because the closest vertex of
P is closer than the furthest vertex of Q, we
must use some other test to determine that P
cannot possibly obscure Q. In fact, we must use
such other tests to compare P with the set of
faces {(} at the end of the list which overlap P
in depth. If we are successful in proving that P
cannot obscure any member of {(Q}, then P may
be written onto the video buffer. Notice that
the set {Q} is not the entire collection of
polygons, but only those up to the first one
whose furthest vertex is closer to the observer
than the closest vertex of P.

If in testing P against the set {Q} we
discover that P can indeed obscure some
polygon, P cannot be written onto the output
buffer. Instead we consider as a candidate for
next output the offending polygon by placing it
at the end of the list and making it serve the
role of P. Such a case is illustrated in Figure
22. A marker must be placed on such a
displaced polygon so that should we be
unsuccessful in proving that it cannot obscure
any other, we will not enter a non-terminating
loop, but rather conclude that a pair of
unorderable polygons exists.

If unorderable polygons exist, that is if Q
cannot be written before P and P cannot be
written before Q, the priority computer must
divide either face P or face Q to eliminate the

~

)v(

Figure 22 The Z sort fails to place faces Q and P into the
correct order (Q,P) However, the Newell special sort will
interchange the order and discover that the order (P.Q) is
acceptable

A Characterization of Ten Hidden-Surface Algorithms . 29

Figure 23. Cychic overlap. faces P and Q cannot be placed
in priority order because they conflict. However, if Q is
divided into two faces Q) and Q, by the plane of P, then
the order (Q,. P, Q) is acceptable.

conflict. This conflict is often called cyclic
overlap In the example of Figure 23, face Q
has been divided by the plane of face P into
two faces (0 and Q,. These two faces are
placed in the priority hist; the priority computer
will then determine that the order Q,, P, Q is
the correct priority order.

The test, "does P obscure Q" is applied
many times and must be made quite efficient.
If the answer to the question is "no,” then P
may be written onto the frame buffer before Q.
This condition exists if any of a sequence of
increasingly more discriminating tests is true:

1. Test for Z overlap;, imphed in the
selection of the face Q from the Z sort
list.

2. The extreme coordinate values in X of
the two faces do not overlap (minimax
test in X).

3. The extreme coordinate values in ¥ of
the two faces do not overlap (minimax

test in V).

4. All vertices of P lie deeper than the
plane of Q

5. All vertices of Q lie closer to the

viewpoint than the plane of P.
6. The faces P and Q do not overlap on the
screen.
These conditions are tested 1n the order
given heire, because they become increasingly

difficuit to compute. The final test, the overlap
condition, is particularly troublesome.

The prionty computer used by Newell is
capable of finding a priority-ordering of faces
for any environment. This is accomplished by
dividing conflicing faces until the conflicts are
resolved. It should be noted, however, that this
division may be computationally expensive. A
suitable method is described in [20).

Depth-Priority Algorithms

The depth-priotity algorithms divide neatly
into two different categortes: those that sample
areas of the screen (Warnock), and those that
sample infinitesimal points on the screen (scan-
line algorithms). We shall call these two
approaches area-sampling, and point-
sampling.

The aim of the area-sampling approach is to
compute an appropriate ntensity for every
area of the screen. If much of the screen is
homogeneous, such as sky or background
intensity, the area-sampling approach need only
peiform one computation for each such
homogeneous area. In other words, the
algorithm capitalizes on area coherence.

The point-sampling scan-hine algorithms are
all designed to compute answers to the hidden-
surface problem in a form and order suitable
for a raster-scan display such as a television
monitor. These algorithms compute the
intersection of the plane of a scan line and
each face in the environment; the line segments
resulting from these intersections are called
segments (see Figure 11). As we shall see, the
scan-line algorithms capitalize on the coherence
properties of segments: the relations among
segments change only slightly from one scan
line to the next

The creation of segments simplifies the
hidden-surface problem to an analogous
problem on segments in two dimensions:
segments are measured by X and Z coordinates
only. The reduction of the problem from three
to two dimensions makes many common
computations, such as those that test segments
for overlap or depth, simpler than the
corresponding tests in three dimensions used in
the area algorithms.

Computing Surveys, Vol. 6, No 1, March 1974

30

This reduction has one serious drawback:
the intensity calculated for a raster element
cannot be an average intensity corresponding to
all visible items that fall within the square
raster element Instead, the intensity of the
entire element is based on computation at one
discrete point As a result, objects can
"disappear” between scan lines or between
raster elements (sece Figure 24). Even though
the lateral extent of these objects is below the
lateral resolution of the screen, it is important
that illumination of these objects be included
when calculating intensities at surrounding
raster elements Similarly, raster elements near
edges of large objects must have intensities that
represent the average intensity within the
raster element, if this average is not computed,
ugly "sawtooth” patterns are displayed at object
boundaries.

J - E. Warnock (1968) (22]

The Warnock algorithm hypothesizes that
sample areas on the screen, called windows, can
be declared to be homogeneous, and hence can
be displayed after a simple shade calculation.

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

The hypothests 1s considered correct if I) no
faces fall within the sample window at all; or 2)
one face completely covers the window and is
nearer the viewpoint than every other face that
falls in the window. If the hypothesis cannot be
proven true or the proof appears too difficult,
the sample window is divided into four smaller
sample windows, and each of these 1s examined
analogously. When the size of the sample
windows decreases to the size of the raster
element, the subdivision process 1s terminated
(see Figure 25). (Actually, we can subdivide
until the test window 1s 1/2 or 1/4 the raster
size, and thus compute an average intensity for
that raster element)

The procedure for testing a sample window
is a cull. A set of faces is compared to the
window to see whether the face 1) surrounds
the window; 2) intersects the window, or 3) is
completely disjoint from the window (see
Figure 26) The complexity of this operation
depends on the relation between the window
and the face' if the window and the face are
laterally disjoint in either X or ¥, the cull
operation can quickly determine that the face is
disjoint from the window. Otherwise, more

¥* X 3
- RASTER
\ ~ GRID
v A}
X ' !
X + X T
A}
v /
\\ //
P P2 Pa

P3

Figure 24 Incorrect shading intensities result unless locations of objects within a raster
element are measured The two small objects, which may be brightly ilfuminated, should

contribute to the intensity at the points marked with x's Similarly, the points P r

P 2 etc

should have decreasing intensities because the object does not fill the region underlying the

raster dot

Computing Surveys, Yol 6, No 1, March 1974

A Characterization of Ten Hidden-Surface Algorithms . 31

{ S
T ~
BEI N
P 3t i
4~ 1
il]
= =i /
= ¥
\ = i
LW] 1
i 1
| =5
mopm el 1
=
r. 1
N
|
|
L1
NE
AN NT
—an N
BE FS
HH A

Figure 25 Subdivision by Warnock’s algorithm. The object contains three intersecting
bricks. In this example subdivision occurs at a vertex if possible.

F2

Figure 26 The relationship between a face and a sample window. F, surrounds the
window, F, intersects the window, and F ; is disjoint from the window Note that these
properties depend only on X-Y relationships, not on Z.

Computing Surveys, Vol 6, No. 1, March 1974

32 .

expensive calculations are required [see 4, 18,
and 22)

An important concept of the Warnock
algorithm is that the hypothesis test for a
sample window need not test all faces in the
environment. If a hypothesis test fails, the four
sub-windows to be examined need only be
tested against intersectors of the origmnal
window; faces disjoint from the large window
will certainly be disjoint from the four small
windows, and faces which surrounded the
original window will surround its descendant
windows. The algorithm saves “ancestral
information” with each face to avoid needless
computation: the surrounder and disjoint
properties can both be passed down to sub-
windows.

The cull operation is turned into a
legitimate sort, the "Warnock Special,” by the
subdivision operation. In fact, the algorithm
bears a striking resemblance to Quicksort: the
faces are culled 1nto two groups: those that are
disjoint from this window, and those that are
relevant to this window. The relevant faces are
then passed down to sub-windows, where the
faces are again culled according to a new
criterion, aspect to the smaller window, and so
forth. The process terminates when a window
is proven to be homogeneous, Just as
Quicksort terminates when the lists contain
indistinguishable elements. The Warnock cull
and subdivision thus become a radix 4
quicksort.

Once the surrounders and intersectors for
each sample window have been found, the
algorithm must decide whether esther of the
two homogeneous cases exists Clearly if no
intersectors or surrounders are found, the
entire window is empty. If surrounders are
found, the algorithm searches for the critical
surrounder, the one that is nearer the eye than
all others. This search requires computing the
depth of the surrounders at the four corners of
the window. These values are compared to
determine the closest surrounder. Then, the
depths of the critical surrounder are compared
against the depths at the corners of the window
of the planes of all the intersectors, suitably
extended if necessary. If the critical surrounder

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

is closer than all such planes, the window is
homogeneous.

If thete is no unique critical surrounder,
then two surrounder faces must penetrate
somewhere within the window. In this case, the
Warnock algorithm does not find the window
homogeneous; subdivision of the window
eventually results in the correct display

There are many variations on the Warnock
algorithm: the windows need not be square; we
can subdivide the windows at specific points,
such as vertex locations, rather than at the
center point; windows do not need to be
rectangular, the decision procedure can be
enhanced to check for a number of simple
cases: 1) only one face intersects a window, in
which case all portions of the face that
intersect the window are visible; and 2) exactly
one intersector intersects the window in front of
the critical surrounder, in which case the shade
for the window can be fairly easily computed,
etc

One difficulty with the Warnock algorithm
is that its output cannot conveniently be passed
to a raster-scan device like a television. The
decisions about windows are reached in a
seemingly random order, rather than in a top-
to-bottom left-to-right order. Cohen has devised
a scheme for driving a raster display from
window computations, but it involves a massive
sort of the windows by ¥ and X coordinates (4).

Scan-line Algorithms
C. Wylie, G. W. Romney, D. C. Evans, A.
C. Erdahl (1967) (16, 25)
W. J. Bouknight (1969) [2, 3}
G. S. Watkins (1970) [23)

The three point-sampling scan-line
algorithms are remarkably similar; we shall
describe the general philosophy used by all
three, and then describe the differences among
them, and the paiticular strong points of each
approach All make use of the notions of
segment and span defined at the end of the
Geometric Computations section above.

Al three algonthms perform a VY sort, then
an X sort, and finally a Z depth search to
establish the visible face The purpose of the

A Characterization of Ten Hidden-Surface Algorithms

Y sort is to hmit the attention of the algorithm,
on each scan line, to only those edges or faces
that intersect the scan line. Thus the edges or
faces are first sorted by Y. As processing for
each scan line begins, the V.sorted structure is
examined to find any new edges that enter on
this scan line they are added to those already
entered. Any edges that terminate on this scan
line are discarded.

This feature of the algorithms already takes
advantage of one kind of scan-line coherence:
the edges that intersect one scan hine are very
likely to intersect the next scan hine It is
therefore quite sensible to keep a list of
"active” edges and merely make incremental
changes to this list as new edges enter or as old
edges terminate.

Next, the algorithms examine the reduced
list of edges in order to compute which faces
are visible in which portions of the scan line.
This process involves dividing the scan line
into smaller sections, called sample spans,
within which the same face is visible. Here, the
algorithms capitalize on another form of
coherence: point-to-point coherence along the
scan line.

T he processing of each sample span requires
comparing the faces that fall within the span to
determine which one is closest. The exact
details of this comparison depend on the
method of selecting sample spans For example,
if sample spans go from edge crossing to edge
crossing, then the comparison is quite
straightforward- we merely compare the depths
of the faces at the hmits of the sample span.
The procedure must be altered slightly if
penetrating faces are allowed [2]

This process is illustrated in Figure 27a. At
each X coordinate indicated with a caret, we
compute the nearest face; that face is visible at
least until the next edge in X order. In the
illustration, five sample spans are required to
process the scan hine. The next edge in X order
may quite probably be invisible, however, and
so it may be possible to save computation by
using more "aggressive” selection of a longer
sample span as shown in Figure 27b.

To summarize, the scan-line algorithms have
four basic steps: 1) edges are sorted by ¥ so

33

A X

Figure 27- Sample span selection. a. Each edge crossing
starts a new span b Aggressive sample spans The caret
divides the scan line into two manageable spans

that only those edges intersecting the current
scan line need be examined; 2) on each scan
line, appropriate sample spans are determined
(this usually involves sorting the edges on the
scan line by X coordinate); 3) within each
sample span, we must cull out the segments
which fall in the span and therefore must be
examined, and 4) the segments that fall within
a span are searched to find which one is
visible. These four operations are called Y sort,
X sort, span cull, and Z depth search
respectively.

The algonithm developed by Romney et al
was the first to use these main features. The ¥
sort is a bucket sort; triangular faces are sorted
by the ¥ coordinate of their uppermost vertex.
On each scan line, the corresponding V bucket
is used to update a "Y occupied table” that lists
all the faces that intersect the scan line. Then
the X intercepts of the faces that intersect the
scan line are sorted with an X bucket sort. The
X buckets are scanned from left to right; an "X
occupied table” is kept that records which faces
are potentially visible under the current raster
element. Whenever a face enters or leaves the
X occupied table, Romney's algorithm
recomputes the depths of all faces in the
occupied table to establish which one is closest.
That decision persists until the next change to
the X occupied table. Thus the sample spans
are determined by edge crossings.

Where penetration is not allowed, Romney

Computing Surveys, Vol. 6, No. 1, March 1974

34 .

made a very important observation about the
depth coherence of faces: if exactly the same
faces are present on one scan line as in the
previous scan line and if the X order of their
edge crossings is exactly the same, then one
need not repeat any of the depth computations.
The same faces will be visible as were
previously, although their extent in X may be
different.

Romney failed, however, to capitalize on the
coherence of X intercepts of edge crossings
from one scan line to the next. Both the
Bouknight and Watkins algorithms use this
coherence by keeping a hinear list of edges or
segments called the "X sort list." When a new
scan line is encountered, the ¥ sorted edges that
enter on the scan line are merged into the X
sort list; any edges in the X sort list that exit
on the new scan line are deleted. Then the list
is sorted in X with a bubble sort, and because
very few edges cross each other from one scan
line to the next, the bubble sort is extremely
rapid.

Bouknight used this X sort list in a fashion
analogous to the Romney procedure: in
Bouknight's algorithm, edge crossings define
the limits of sample spans. As each new span is
entered, a new depth computation is performed
to decide which face is visible within the span.
Boukpight's algorithm marks faces with a
"visible” bit whenever the face falls within the
current span; the bit is turned off when the
sample span moves to the right of an edge of
the face This 1s precisely analogous to the "X
occupied table” concept of Romney.

Watkins, however, generated spans more
aggressively. In his algorithm the left end of
the sample span s fixed and the right end
“floats.” Intially, the right end coincides with
the night end of the scan line. As new segments
are extracted from the X sort list, the right
edge of the sample span may be moved to the
left until the situation represented within the
sample span is simple enough to compute
directly which segment is vistble. Watkins'
algorithm solves the situation of Figure 27b by
placing the right edge of the first sample span
at the caret.

The Watkins algorithm also uses a very
economical form of Z search, a logarithmic

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker -

search. Rather than solving exactly the plane
equations of all faces that lie within the sample
span in order to determine their depth, it
computes only as much information about the
depth as is required to decide which face is
visible. Very often, no depth interpolations are
needed: the closest edge of one segment is often
deeper than the deepest edge of the other
segment. This condition does not exist in the
example of Figure 28. However, if segment A
is divided at its midpoint, its left half can be
seen to obscure segment B for precisely this
reason. The midpoint division scheme might
ultimately compute the depth of segment A at
the points indicated by carets. However, the
process can often be terminated quickly, as the
example of Figure 28 demonstrates.

1V. OBSERVATIONS

Qur avowed intent in this activity was to study
systematically the existing hidden-surface
algorithms to discover what principles they
share in common and what distinctions exist
between them. We had hoped that such a study
might highhight approaches to the hidden-
surface problem that not only would be novel,
but also would be more efficient than
In order to find such
need to examine our

heretofore possible.
algorithms we

Figure 28 Logarithmic Z search
farther from the viewpoint than the farthest part of 4 &
After one midpoint division, segment B can be declared
invisible because it lies farther from the viewpoint than the
corresponding part of 4 We have no need to compute
accurately the depth of segment 4 at the endpoints of B
(carets)

a Segment B is not

A Characterization of Ten Hidden-Surface Algorithins . 35

categorization tree carefully for missing nodes
and for other combinations of the basic
operations found in the various algorithms

Use of Coherence

Each of the algonithms was designed to use
some form of coherence as the basss for
efficiently computing the rendering. In some
cases, the use of coherence permits special
performance gains in sorting operations; in

others, coherence allows incremental
calculations to replace more costly direct
computations Roberts chose to use object

coherence, because he noticed that each object
can divide an edge into at most two pieces.
Appel, Galimberti and Montanari, and Loutrel
all chose to use edge coherence, progressing
outward along the network of edges from some
starting point 1n order to promote the known
visibility of one vertex along edges to other
vertices. Schumacker and Newell both made
use of depth coherence to precompute an order
of priority for the faces, and Schumacker's
algorithm also makes use of cluster coherence
to reduce the per-frame computing cost by
making some additional investment in
environment preparation.

Finally, the four remaining algorithms make
use of lateral coherence to reduce the number
of surfaces under consideration at any position
on the screen by elminating from
consideration those that are laterally displaced.
Warnock vsed a kind of lateral coherence that
is symmetiic in the X and Y screen directions,
whereas the other three, Watkins, Romney et
al, and Bouknight, made specific separation
between the X and Y processes in order to
capitalize on particularly favorable sorting
techniques, bucket and bubble sorting.

Let us enumerate the various forms of
coherence we have uncovered 1n the aigorithms
we surveyed.

Frame coherence: The picture does not

change very much from frame to frame.

Object coherence Individual bodies are

confined to local volumes which may not
conflict Use of clusters is a form of object
coherence

Face coherence The faces are generally

small compaied to the size of the screen
and may therefore not conflict. Moreover,
penetration of faces i1s a relatively rare
occurtence which may reasonably be
allowed to introduce -extra cost into the
process

Edge coherence: The visibihty of an edge
changes only where it crosses another
contour edge

Implied-edge coherence. If face penetration 1s
detected, the location of the entire implied
edge can be extrapolated from two
penetration calculations This avoids
repeatedly calculating the penetration on
each scan line

Scan-hine coheirence: The set of segments
treated on one scan hine and ther X
intercepts are closely related to those of
the previous scan line

Area coherence A particular element of the
output picture and its neighbors on all
sides are hkely to be influenced by the
same face.

Depth coherence: The different surfaces at a
given screen location are generally well
separated in depth relative to the depth
range of each.

If a new form of coherence were to be
discovered, or if a class of environments were
to exhibit a particular predominant coherence,
the coherence might well be the basis for an
entirely new approach.

Environment Restriction Codes

An unrestricted environment is one in which clusters need
not be closed polyhedra, faces need not be planar nor
convex polygons, penetrating faces are allowed, and faces
may be positioned arbitrarily with respect to the observer.

CC Al clusters must be closed convex polyhedra.

CF Al faces must be convex polygons

TR Al faces must be triangular

LS Al clusters must be linearly separable.

NP No penetrating faces are allowed

TP The algorithm needs topological information about the
environment, ie, faces are classed as adjacent, or
clustered 1n some way

PF Only planar faces are allowed

OF No faces may lie outside the field of view.

BE No faces may lie behind the observer

Characterization of ten
Environment restriction

Figure 29
algorithms a

opaque-object
codes.

Computing Surveys, Vol 6, No 1, March 1974

36

RESTRICTIONS-_

COHERENCE

SORTING

COMPARISON ALGORITHMS

edges edges

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker

OPAQUE-OBJECT
ALGORITHMS

OBJECT SPACE

edges volumes

(partly each)

LIST PRIORITY
ALGORITHMS

a priori
priority

Promote visibility
of a vertex to all
edges at vertex

Back Edge Cull

Promote visibility
pf a vertex to all
edges at vertex

Back Edge Cull

Promote visibility
of a vertex to all
edges at vertex

Back Edge Cull

Back Edge Cull

APPEL GALIMBERTI, et al LOUTREL ROBERTS SCHUMACKER, et al
1967 1969 1967 1963 1969~ — —
TP,NP TP,NP TP,NP TP, CC, CF, NP CF, NP, LS (TP)

Frame coherence
in depth
No X coherence used

Intra-Cluster

1
What,
what prop-
erty

(2)
Method

(3)
Type

4)
Result
structure

(5)
Number per
frame, num-
ber of ob-
jects

(merge)
Number of
new entries
per frame,
length of
list

(search)
Number of
searches,
length of
last

1) Edges separating
back-facing planes

2) Dot product with
normals § topology

3) Cull

4) List of edges, Eg

5 1, B,

Contour Edge Cull
1) Edges separating
front & back faces
2) Dot product with
normals & topology
3) Cull
4) List, E.

5) 1, Et

Initial Visibility

1) Edges separating
back-facing planes
2) Dot product with
normals § topology
3) Cull

4) List of edges, ES
515y E

>t

(Omitted)

Initial Visibility

1) Edges separatingft
back-facing planes
2) Dot product with
normals § topology
3) Cull

4) List of edges,E
5) 1, Eg

(Om1tted)

Initial Visibility

1) Edges separating
back-facing planes

k) Dot product with
hormals § topology

) Cull

) List of edges,E

k) 1, E

Claipping Cull

Priority
1) Faces -
visibility
2) Dot product with
normals
3} Exhaustive search
S14) Ordered table
5) 0, (off-line)

Inter-Cluster

1) Tntersect edge
li1th visible volume

2
k) Ccuil

E
P) 15 &,

Edge/Volume Test

Priority
1) CIusters
2) Dot product with
separating planes
3) Prefix scan
binary tree
4) ordered table

$) 1, C,

Back-Face Cull

1)"Ray to vertex

against all faces

2) Depth,
Surroundedness

3) Exhaustive search

4) Quantitative

visibility of verte

§) # Objects, Fr

Edge Intersection

1) Ray to vertex
against all faces

2) Depth,
surroundedness

3) Exhaustive search
4) Quantitative
visibility of verte
5) #objects, Fr

Edge Intersection

I) Ray to vertex
against all faces

2) Betweenness,
surroundedness

3) Exhaustive search
4) Quantitative
visibility of verte
5) #objects, Fr

Edge Intersection

1) Intersect one E
with all E

2) Penetration

w1ith sweep triangle
3) Cull (unordered)
4) Intersection list]
5) E EC

Sort Along Edge

>

1) Intersect one E
with all E

2) Interseft 1n
Ipicture plane, depth
3) Cull (unordered)
4) Intersection lisy
5) Eg, E 1

s
Sort Along Edge

1) Intersect one E
with all E

2) Intersect 1in
picture plane, depth
3) Cull (unordered)
4) Intersection lis{
5) B By - 1

Sort_Along Edge

1) Intersections on
edge, ordering

2) Comparison

3) Bubble

4} Answer

S B, X /E

Omit 1f well hidden)

1) Intersections on
edge, ordering
2

3)
4) Answer
5) Bs, X/E

(must be done)

1) Intersections on
edge, ordering

2

3)

4) Answer

) By, X /B

(Omit 1f well hidden

1) Edges, visibilat
relative to volumes
2) Linear
Programming

13) Mini-max sort

4) Answer

5) E + split edges,
#objects

yl) Faces

2) Dot product with
face normal

3) Cull

4) Smaller ordered
table

) 1, F,

Y Cull

1) Faces by Y extent
2) Mini-max on

X intercepts

3) Cull (unordered)
4) X 1ntercepts of
relgvant segments

5) n, Eg

X Sort

T) Segments

2) Counters

3) Hardware

4) Segments at
this X

S) nm, Sg

Priority Search

Ty Segments, priorit
2) Logic network

3) Logic network

4) visible segment
5) nm, Sy

Figure 29. Characterization of ten opaque-object algorithms b. Comparison of the algorithms.

Computing Surveys, Vol 6, No 1, March 1974

IMAGE SPACE

dynamicall,
computed
priority

A Characterization of Ten Hidden-Surface Algorithms

area sampling

DEPTH PRIORTTY ALGORITHMS

point sampling

NEWELL, et al WARNOCK WATKINS ROMNEY, et al BOUKNIGHT
1972 1968 1970 1967 3 1969
None {TR) None None TR,CF,NP

None used Area coherence Scanline ¥ Scanline Scanline

coherence Depth Coherence X Coherence

Z Sort Z Sort (Opt) Y Sort Y Sort Y Sort

I) Faces, max Z 1) Faces, max Z 1)} Edges, min Y 1) Polygons, Y 1) Edges, Min Y

2) Comparison of 2) Comparison of 2) Comparison endpoints 2) Comparison

max points max points 3) Bucket 2) Comparison 3) Bucket

3) n logm 3) nlogm 4) Table of Lists) 2 bucket 4) Table of 1lists

)

4) Ordered table
5) 1, F

Newell Special

4) Ordered table

$) 1, F,

Warnock Special

1, B

X Merge

1) Faces, pairwise
visibilaty

2) Depth, bounding
boxes, separation

3) Bubble, splitting
4) Ordered table

5) 1,F +split faces

Y Sort

1) Face segment

by Y range

2} Y 1intercept

3) Bucket

4) None

5) F_ + split faces
HT

f

X Merge
1) Begments,
X intercept
2) Comparison
3) Ordered merge
4) Ordered list
5) Sr’ SV/Z

T} Faces with windowl) Edges, X value

2) Depth, mini-max
in X and Y, sum of
angles

3) Radix 4 subdivi-
sion with overlap
4) Stacks of
unordered tables

5) Lv’ Fr/factorl

Depth Search

2) Comparison

3) Merge (ordred’

4) 2-way linked
list

5) Ep, Sg

X Sort

1) Surrounder faces
2) 4-corner compare
3) Exhaustive

4) Answer/failure
5) Lv’ Fr/factorZ

TV Sort (Opt)

1) Segments,
X left
2} Comparison
3) Bubble
4) 2-way linked
list
5) n, Sp

Span Cull

Sort windows into
scan-line order if
needed

1) Segments, overlap

with sample span

2) Double comparisor

3) Cull ordered lisYy

4) Active list

5) n*s, * f (>1), S

i
Z Search

1) Segments, Z

2) Depth by

logarithmic search

3} Search (unordered

4) Visible segment

5) n*s *£(>1), D

3
4) Table of lists

$) 1, F,

X Sort

1) Eages, X value
2) Comparison

3} 2 bucket

4) Table of lists
5) n, SZ

X Priority Search
1) Edges, X value

2) Comparison

3) Priority search
4) Active segment
list

5) n, m

Z Search
1) Segments, depth
2) Linear equations
and comparison
3) Search (unordered
4) Visible segment
5) n*2S,,D_

(Omitted 1f X

priorities same as
last time)

)

sy 1, E,

X Merge
1) ges, X value

2) Comparison
3) Merge (ordered)
4) Linked list
§) B, 28, (edges)

X Sort
1) "Edges, X value
2) Comparison
3) Bubble
4) 1-way linked list
5) N, 28, (edges)

Z Search
1) “Segments, depth
2) Linear equations
and comparison
3) Search of un-
ordered active list
4) Visible segment

5) n*ZSl, DC

37

Computing Surveys, Vol. 6, No 1, March 1074

38 .

Existing Uses of Coherence

The various algorithms make use of
coherence in various combinations Knowingly
or not, each of the various authors placed his
principal bet on the form involved in his first
sorting operation, for all sorting operations
except bucket sorting grow mote than hnearly
with the number of stems sorted. Let us
consider what the principal bets of the various
authors were

Roberts bet only on object coherence. While
this allows his algorithm to eliminate objects
irrelevant to the obscuration of particular
edges or particular groups of edges belonging
to some other object, the cost of the sorting
operation involved still giows with the square
of the environment complexity

Appel, Galimberti and Montanari, and
Loutrel all bet heavily on the edge coherence
of the environment. While this avouds
laborious computation of the visibility of each
vertex, it still requires comparison of every
edge with every other edge, hence growing with
the square of environment complexity. The
observation that only contour edges need be
considered saves about 207 of the effort, but
unfortunately makes no- change in the
fundamental growth of computation as the
square of the complexity. These algorithms
could reahize a considerable improvement by
making use of object coherence to ebminate
whole groups of edges from consideration for
conflicts with a particular edge. Indeed, their
authors may well have made this kind of
improvement, but the algorithms still face a
square-law growth.

Newell and Schumacker bet principaily on
depth coherence. Newell’s algorsthm specifically
sorts the surfaces into an order that does not
conflict n depth; Schumacker's algorithm
accomplishes the same thing with separating
planes. Indeed these two algorithms are
virtually interchangeable once the Tpriority
order” is established. In fact, the Schumacker
group built a post-processor much like Newell's
for their own wuse. Newell, therefore, has
principally contributed a special kind of bubble
sort that produces the priority order for an
arbitrary set of input faces.

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

Both the Newell and Schumacker algorithms
make use of implied-edge coherence by
dividing polygons wherever they intersect.
Newell exphcitly computed such intersections;
Schumacker insisted on nonpenetrating
surfaces in his environment, and included, by
implication at feast, a pre-processor to make
the division if necessary The disadvantage of
using this kind of coherence, however, is that
the algorithm may have to compute
intersections that later turn out to be invisible.

The Schumacker algorithm 1s the only one
that makes effective use of frame coherence.
Schumacker was interested in producing not
one frame, but a sequence of frames depicting
a moving viewpoint traversing a relatively
static environment. He was therefore willing to
invest heavily in pre-processing of the
environment f such an investment could
significantly reduce the per frame computation
cost. The other authors have been unwilling
to make or unable to use such an investment in
environment pre-processing. It 1s clear that one
should seek new algorithms that include
Schumacker's initial investment ideas or some
similar mechanism to capitalize on frame
coherence.

Schumacker’s key idea, which he calls
clustering, 1s indeed a very simple and
powerful one He observed that if back faces
are culled out by some other process there are
many faces which either cannot overlap in any
view or always overlap in a specific order. Sets
of such faces can have priority numbers
assigned that are independent of viewpoint.

Such clusters of faces can be treated as a
group in further priority computations,
provided extraneous faces do not enter the
volume occupied by the cluster. Thus, if a
complex environment can be broken down into
clusters, the per frame work of computing
priority order reduces to computing the priority
of the clusters.

Schumacker further observed that the
priority of clusters could be computed easily if
they were hinearly separable. If a plane can be
passed between two clusters, then their relative
priority can be computed by calculating on
which side of the plane the viewpomnt lies. If a
binary tree of separating planes can be

A Characterization of Ten Hudden-Surface Algorithms . 39

generated, then the sort into cluster priority
order need take only as many computations as
there are clusters, and Schumacker has found a
lincar growth rule. This is an idea whose
power has not been fully appreciated.

The remaining algorithms alt bet heavily on
lateral coherence. Warnock, by specifically
making an area sort fisst, intended to output
data for rectangular parts of the picture. His
notion has two defects: first, computation of the
relation between a face and an area is difficult,
and second, no suitable output device is
available to absorb the output information an
area at a time. The other algorithms, starting
with Romney, use area coherence first in ¥ and
then in X, betting heavily that the number of
faces "nvolved” on any one TV scan line of
output is significantly less than the total
number in the environment. Moreover, a
particularly nice form of sorting, bucket
sorting, is avaslable for determining the “order
of appearance” of faces as scanning progresses.

All of the television output algorithms make
some use of scan-line coherence. All observe,
for example, that the X intercept of an edge
can be computed incrementally by knowing its
inverse slope (the change in X position per
scan line) and merely updating the X intercept
from the previous scan line. Romney also
observed that if penetration is disallowed, and
no new edge occurs in going from one scan line
to the next, then the same visible segments
apply in the succeeding scan line. As Romney
also knew, his observation was more powerful
than his implementation of it, for he applied it
only in the unhkely event that an entire scan
line was the same as its predecessor, or for a
correspondingly unchanged left part of a scan
line, rather than mamntaining a constant
sequence of visible segments in any region
untroubled by edge crossing.

Watkins and Bouknight also capitalized on
edge coherence by using a bubble sort to keep
the active edges in X sort from one scan line to
the next. The bubble sort is particularly well
matched to this task because edges cross
infrequently and, when they do, usually form a
pair whose otder need only be interchanged to
restore correct oidering. Thus not only is the
“bubblhing” operation required infrequently, but

the "bubble” does not have to move very far in
the list.

After each culling operation in the various
algorithms the number of items left to consider
is reduced, often by more than an order of
magnitude. On the other hand, the number of
times that the resulting smaller number of
items must be considered is vastly increased. As
one progresses through an algorithm it seems
possible to be less and less careful about the
type of sotting used because the lists are
shorter. The selection of the types of sorts must
account not only for the shortened lists,
however, but also for the increased number of
times they must be sorted. Thus, for example,
the linear merge used by Watkins to enter new
material into the X sort list after ¥ sorting is
costly only for very complex environments.
Similarly, because Watkins made no use of
depth cohetence at the final stage of his
algorithm, preferring rather to search for the
frontmost output element, his final output step
is very costly for cases with many layers of

polygons.
New Uses of Coherence

Having enumerated all evident forms of
coherence and having shown how the various
authors used them, we can indulge our
hindsight to make “improvements” in the
algorithms. Our intent in this section is to
apply the various forms of coherence to the
algorithms that do not already use them to see
if useful information emerges. No doubt the
various authors have anticipated some of our
suggestions, and no doubt our readers may
think of more, perhaps better, ideas.

Frame and Object Coherence

We believe that the principal untapped
source of help for hidden-surface algorithms
lies in frame and object coherence These types
of coherence are closely related because the
objects presumably do not change between
frames and thus any computation done on
objects may be preserved from one frame to
the next Only Schumacker was able to make
significant use of frame coherence, although

Computing Surveys, Vol. 6, No. 1, March 1974

40 .

Roberts, and the Appel group made some use
of object coherence. Frame and object
coherence should be powerful aids to the
hidden-surface problem because the objects
rendered are usually well-behaved and the
changes between frames are often minimal.
Unfortunately, making use of object and frame
coherence requires computation of redundant
information about the environment, which
must then be saved. It is really hard to make
much use of object and frame coherence, so
perhaps it is not surprising that not much has
been made. Here, however, are a few ideas.

o It makes very good sense to remove
interpenetrating faces from the
environment at an early stage. For

individual objects this process can be done
once before the object is ever used. For
interpenetrating objects moving with
respect to each other some per-frame
processing is required. Such processing
need not compare every face with every
other one if the offending objects can
somehow be detected.

¢ Newell et al might make use of frame
coherence by saving the priority order of
faces from one frame to the next. Because
the priority list already has interpenetration
and cychc-overlap problems resolved, it will
presumably tequire less effort in the
succeeding Newell special sort Saving an
initial Z depth sort might also make a
bubble sort applicable for Z sorting of
succeeding frames.

« Newell mentions in his paper the notion of
speeding up his special sorting process by
using groups of faces rather than
individual faces in the comparison process.
Schumacker's clustering provides an
excellent guide for actually doing so.

o Simtarly, Warnock might make use of
frame coherence by saving a partially
sorted list of window/face interactions. Such
a breakdown might list which surfaces
interact with the 64 or 25 prinapal
regions of the screen and what their
interaction is. Incremental changes to such
a breakdown on a frame-by-frame basis
might be less costly than a complete
recomputation.

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherlqnd, R. F. Sproull, and R. A. Schumacker

» The algorithms of Warnock, Romney et al,
Bouknight, and Watkins might make use
of object coherence in clever ways.
However, the bucket sort in ¥V and the
bubble sort in X are already very efficient
operations and therefore hard to improve.
The use of Schumacker's clustering notions
might ease the final Z depth computations,
a notion that is considered in the section on
sorting order. Knowledge of which edges or
surfaces were previously found to be visible
might prove very useful in picking sample
spans aggressively.

Edge Coherence

Edge coherence might easily be used with
the scan-hine algorithms.

+ If penetration were disallowed or otherwise
accounted for, Watkins and related
algorithms might ignore non-contour edges
as candidates for changing the visibility of
some other edge which they cross.
Information about which edges are contour
edges might also be valuable in computing
anti-raster effects on smoothly shaded
objects, since contour edges almost always
cause discontinuities in shade where the
sawtooth effects of rastering are significant.

Scan-Line Coherence

Romney’s notion that an area free of edge
crossings preserves the visibility of segments
might be a powerful tool for reducing the work
involved in other algorithms.

o Watkins and Bouknight could compute the
number of scan lines until an edge crosses
its neighbors in the X sort list, and thus
avoid, for that many scan lines, the task of
sorting, or even of computing the X
intercept for, edges whose quantitative
invisibility is high.

Area Coherence

Area coherence can be a powerful tool for
the hidden-surface algorithms. If one can sort
information by the area of the screen in which
it appears, far fewer comparisons than would

A Characterization of Ten Hidden-Surface Algorithins . 41

otherwise be necessary may suffice The
Warnock algonithm is a good example

o Appel, and the related algorithms could
achieve a substantial gain in efficiency by
sorting edges according to the upper-left
corner of the smallest bounding rectangle.
An edge could then be compared with a
collection of edges very much smaller than
the total set of edges, namely those whose
bounding boxes overlap. Sorting the
bounding boxes in advance could often aid
such comparisons

+ Similarly, Newell could make a substantial
improvement in the cost of his special
sorting operation if he were to sort laterally
rather than merely culling the list. His X
and Y face overlap tests determine as a
byproduct whether a given face which does
not overlap the test face is above or below
it on the screen. This ordering information
is neither preserved nor utilized in
subsequent testing.

« If Watkins were to sort edges by X position
of upper vertex prior to doing his ¥ bucket
sort, his ¥ bucket sorted hst of edges would
automatically be sorted by X within each
bucket. This presort by X could save him
substantial time in the X merging
operation

Depth Coherence

Depth ctoherence might be used in many
ways.

+ The scan-hne algorithms might keep a
depth-sorted list of polygons "active” during
each segment in the scan hine rather than
merely remembering the single one which
is frontmost. As edges are crossed, new
polygons might be entered into this list in
the same numerical position, e.g., third, in
which they were found to le in the
previous scan hine. The correct position
would then be confirmed by comparison
with adjacent surfaces and corrected by
bubbling if necessary. This procedure
would not only provide relevant polygons
against which to test a new arrival, but also
would permit the exciting effects of

transparency that Newell et al

demonstrated.
Sorting Order

In searching for a new combination of
coherences to use, we are struck by the fact
that one can consider the order of sorting as a
measure of the types of coherence used. This
approach suggests considering sorting orders
not represented 1n the existing algorithms.
Sorting can occur along a specific dimension,
X, Y or Z, or along a combination of
dimensions as in Warnock’s area (XY) sort.
Enumerating all possible orderings of such
sorts, we find:

ZyX Newell and Schumacker

ZXY Uninteresting variant given use of
TV output

YXZ Romney, Watkins, Bouknight

XYZ Uninteresting variant given use of
TV output

Yzx Untried

XZY Uninteresting variant given use of
TV output

(XV)Z Warnock

Z(XY) Newell's algorithm if a frame

buffer memory had been available
to him. This scheme was
implemented by Schumacker.

An Untried Sorting Order

It is interesting that there is an untried order
of sorting. Let us consider what its properties
might be. The initial ¥ sort uses lateral
coherence to reduce the number of faces that
need be considered at the next sorting step. Use
of bucket sorting for the limited resolution
required in this sort is particularly attractive.
The output of this first step is a table of faces
sorted by order of appearance in the scanning
process.

The intetmediate Z sort might be
accomplished by a method similar to Newell's,
and because there are fewer faces to sort, the
effect of the square law involved will be
reduced. Moreover, because newly-entering
faces are added to a list from the previous scan

Computing Surveys, Vol 6, No. 1, March 1974

42 .

line which is already in order, depth coherence
from scan line to scan line can be preserved.
Newell's sort is thus simplified to finding an
appropriate position in the priority- hst for
each newly-entering face While we do not
presume to know whether this indeed helps, the
approach seems promising.

The final X sorting step would make full
use of the scan-line coherence properties
familiar in the other algorithms. X intercepts
would be computed incrementally, and kept in
X order by a bubble sort. When depth
computations are required, a simple test of
priority number would suffice. One would
make use of scan-line depth coherence by
remembering which segments are visible from
scan line to scan line and by repeating a visible
segment if no edge crossing had occurred
involving one of its visible edges. Note that
penetration conflicts will have been resolved
for entive faces during the Z sort process.

Finally, one would capitalize on depth
coherence by keeping an ordered list of
involved segments during a span. As scanning
progressed, new segments would be entered in
this list in the same position as in the previous
scan line. From there the correct position would
be found by bubble sort. This process would
make available an ordered set of surfaces
involved with the scanning ray at each point,
and thus provide for shadow effects and for
the transparency effects Newell so attractively
portrayed

Other Combinations of Sorting

One might combine the existing types of
sorting in other ways. In its simplest form this
approach involves taking ideas from several of
the algorithms and reassembling them into
some other grouping. In a more complicated
form this approach involves using one whole
algorithm as a sub-part of another, thus
caputalizing on the best features of each. In this
section we will explore both of these
approaches.

One might use one whole algorithm as a
part of another in several ways.

« Warnock's approach 1s excellent for

reducing the number of polygons under

Computing Surveys, Vol 6, No 1, March 1974

1. . Sutherland, R. F. Sproull, and R. A. Schumacker

consideration 1n a given area of the screen
but suffers from considering too many
individual areas. After some subdivision by
the Warnock speaial sort, say until fewer
than 100 polygons remained, one might use
Newell’'s method, or Watkins’ method to
figure out the actual picture within that
area.

+ Schumacker's method is excellent for
capturing frame coherence by use of
clusters and hnear separating planes One
could wuse Schumacker's approach to
compute the inter-cluster priority of objects,
passing them n priority order to a Newell-
type algorithm which would compute the
intra-cluster priority (which would no
longer need to be fixed) and write them
into a frame buffer. Alternatively a
Watkins-type algorithm could be used for
the second stage.

In effect, these techniques sort in more than
three stages. Instead of sorting in the order
(XY)Z, the first proposal is sorting only
pattially (subscript p) in (XY) so that the
sorting order is in effect (XY) YXZ. The
second proposal sorts in the order Z,Z¥VX or
Z,YXZ. Proposals which sort partia%ly in 2
first depend on having an overwritable output
buffer so that the rendering can be painted in
layers. Proposals which sort only partially in
other dimensions need not depend on such an
output device.

One may also recombine parts of the
existing algotithms in new ways.

+ Both Catmull and Newell have suggested
the apphication of a Newell-type priority
sort as a prelude to Watkins' algorithm. In
this proposal one would save the depth
computations required by Watkins in the
final stages of his algorithm by, instead,
computing a priority list as a preliminary
step. Thus at the final stage one could
determine which of two surfaces was in
front by comparison of their priorty
indices rather than by the more difficult
computations that Watkins now uses

+ The object-space algorithms of Appel,
Galimberti and Montanari, Loutrel, and
Roberts could profit a great deal from
laterally sorting the edges or objects to be

A Characterzation of Ten Hidden-Surface Algorithms . 43

compared. Such a presort would alow the

algorithms to reduce vastly the number of

edge/edge or edge/object comparisons.

Warnock recently reported having
programmed such an algorithm. Edges are
bucket-sorted by northmost Y. Computation
moves down the screen in the V direction. An
X-sorted active edge list is kept of all edges
involved at the Y position currently being
considered As computation progresses, new
edges enter the active list. At the ¥V coordinate
corresponding to each such ‘entry the active
edge list is resorted in X by a bubble sort. Any
edge interchanges are noted, for they indicate
edge crossings.

Simple application of new types of sorting
might also be productive.

» The algorithms which perform bubble sorts
in X might use a sorted tree rather than a
sorted list. This would greatly assist in
merging in new data, and might
significantly reduce the high cost of the X
merge step in the Watkins algorithm, for
example.

» The image-space algorithms have gone to
considerable trouble to avoid sorting in Z.
The reason, it seems, is that the resolution
preserved in Z is substantially higher than
that pieserved in X and Y, typically 18 or
20 bits rather than the 9 or 10 used
laterally. But if algorithms are to avoid
the problems of loss of information
between finite scan lines, as implied in
Figure 24, additional resolution in X and ¥
will have to be preserved; indeed the pre-
processors used by these algorithms make
this resolution available. The X and ¥
bucket sorts are thus just high-radix
quicksorts on the first 9 or 10 bits of 18 or
20 bit key fields. Why not a similar sort in
z2?

Perhaps bucket sorting in Z is avoided
because the distribution of depths over the

available range of Z is uncertain. The
extensions of clipping proposed in [20),
however, provide a mechanism for

guaranteeing that data will be well distributed
over the range of Z and thus render this final
argument specious. Accordingly, we should
consider bucket sorting in Z as a potentially

powerful tool for easing the burden of the
depth computations.

Sorting Order and Computing Cost

In choosing a sorting order we would like to
know if one ordering is likely to lead to a more
efficient algorithm than another. Obviously the
number of things to be sorted is largest in the
first sorting step and decreases rapidly
thereafter until very few items remain in the
lists that are sorted in the final step. Because,
as Watkins observed, the number of
overlapping layers of polygons in most objects
being rendered 1s very small, and because
efficient sorting processes are available at the
finite lateral resolution of the screen, it is
tempting to conclude that the lateral sorting
algorithms enjoy some fundamental advantage.
Indeed, in early drafts of this paper we made
this apparently correct assertion. In light of
very powerful symmetry arguments advanced
by Tom Sancha in his review of these early
drafts, we now believe that there is no intrinsic
advantage to either lateral or depth sorting as
the first sorting step.

Sancha's symmetry argument assumes that
the environment is isotropic, i.e, that the
statistical distribution of faces is the same in X,
Y, and Z. If this is true, a minimax overlap test
will be equally effective in reducing the
number of polygons that need be further
considered regardless of whether the minimax
is computed on X, ¥, or Z. Thus it follows
that the first step of the Newell algorithm, in
which polygons are considered only if they
overlap the depth of a test polygon, is exactly
as effective as the first step of the Watkins
algorithm, in which polygons are considered
only if their vertical extent on the screen
overlaps the current Y coordinate of the scan
line. The number of polygons remaining after
each initial step s statistically identical.
Moreover, the Newell algorithm follows its
depth overlap test with overlap tests in X and
Y, while the Watkins algorithm follows its ¥V
test with overlap tests in X and Z, and
therefore at each of the first three stages both
algorithms will be equally effective in reducing
the total number of polygons to be considered.

Computing Surveys, Vol 6, No. 1, Mareh 1974

44 .

In both cases complex polygon-to-polygon
computations are performed only for the very
few polygons which overlap each other in all
three coordinates. Thus, when viewed in light
of environment isotropy, these two very
different algorithms can be expected to produce
identical performance statistics.

Watkins' statistics {23] showed that relatively
few layers of overlapping polygons exist in
most environments being rendered. In
Appendix A we have quantified this notion as
the “depth complexity,” D o of an environment.
D, is essentially the number of layers of
polygons that would be seen at any place on
the screen were all polygons transparent. If the
environment is isotropic, then this is also the
expected number of polygons that will be
plerced by an infinite hine passing through the
environment in any direction. A set of such
polygons can be culled out by two minimax
overlap tests. Similarly, the number of
segments in any scan line, S, is just the
number of polygons that intersect the plane
defined by the eyepoint and the horizontal scan
line on the display. If the environment is
isotropic, then §, is also the expected number
of polygons that will be cut by a plane passing
through the environment in any direction. A
set of such polygons can be culled out by one
minimax overlap test.

Of course, one must be alert to capitalize on
any anisotropy of the environment. If one
knows in advance that there will be little
overlap of surfaces in a particular direction,
for example in making a picture of a single
bumpy surface, then one should choose the
sorting order accordingly. Unfortunately, it is
relatively difficult to predict a priori what
anisotropies may be expected in the
environments being considered.

V. CONCLUSIONS

Concluding that sorting is at the heart of the
hidden-surface problem seems inescapable in
view of the considerable hght such an
approach sheds on the various algorithms. In
every algorithm examined, the sorting steps are
easily defined, clearly separated, and simply
described. This view provides the basis for a

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

framework within which to categorize the
various algorithms, and thus an approach
towards seeking improved algorithms.

The effect of square-law growth of
computational complexity is devastating.
Although many approaches to the hidden-
surface problem are applicable to simple
situations, the square-law appioaches rapidiy
become too inefficient as complexity increases.
Because the hidden-surface computation is
difficult at best, great care must be taken in
selecting sorting methods which will conserve
computation time by capitaliung on the
coherence available in the environments being
rendered.

The fact that ssotropy of the environment
might lead to identical statistical performance
of algorithms with very different sorting
philosophies suggests that one may have to
seek subtler criteria for choosing algorithms.
The special characteristics of buffer memories
in which to stote pictures, or a desire to
provide highly accurate lateral computation to
avoid the "staircasing” effects produced by the
interaction of edges and the picture raster may
be the only basis for a chowce Of course,
whatever basic philosophy is chosen, one must
be very careful to provide efficient sorting
steps

Finally, and perhaps most satisfying of all,
our taxonomic approach seems to provide a
substantial basis for future research. Our
various suggestions for improvements in
algorithms and combinations of algorithms
mostly come from systematic examination of
our characterization of the ten algorithms
studied. Having suggested a framework, the
framework itself suggests how to look for
improved algorithms.

ACKNOWLEDGEMENTS

We would hke to thank Ed Catmull and
Martin Newell for their continuing interest in
our activities and for many discussions with us.
Thanks are also due to the several authors of
algorithms who have spent time with us in
person, and by telephone, helping us gather an
understanding of what they have done. We
would especially ke to thank Tom Sancha,

A Characterization of Ten Hudden-Surface Algorithms . 45

Rich Riesenfeld, Elliott Organick, Ted Lee,
and the Computing Surveys referees for their
critical reading of our manuscript, and for
many helpful suggestions. The work reported
here was supported by the Office of Naval
Research under contract N 00014-72-C-0346.
The flexibility of ONR’s contracting procedure
allowed us to proceed without delay when the
ideas and opportunity for this work arose.

BIBLIOGRAPHY

1)) Appel, A, "The Notton of Quantitative invisibility
and the Machine Rendering of Sohds,” Proc. ACM
Natienal Con ference, 1967 387-393

[2) Boukmght, W}, "An Improved Procedure for
Generation of Half-tone Computer Graphics
Representations,” University of Ilinois, Coordinated
Science Laboratory, R-432, (Sept 1969)

[3) Boukmight, W], "A Procedure for Generation of
Three-Dimensional Half-toned Computer Graphics
Representations,” Comm. ACM, 13, 9, (Sept 1970),
527

4] Cohen, D, “Incremental Methods for Computer
Graphics,” ESD-TR-69-193, Harvard University,
April 1969, (Ph D Thesis)

[s) Galimberts, R, and Montanari, U, "An Aigorithm
for Hidden-Line Elimination,” Comm ACM 12, 4,
(April 1969), 206

[6] General Electric Corporation, "Modifications to
Intertm Visual Spacefhight Simulator,” Final
Report, NASA Contract NAS 9-3916, Feb 1968

7] General Electric Corporation, "Electronic Scene
Generator Expanston System,” Final Report, NASA
Contract NAS 9-11065, Dec 1971

8] Gouraud, H, "Computer Display of Curved
Surfaces,” University of Utah, UTEC-CSC-71-113,
June 1971 Abnidged version in J/EEE Trans. on
Computers, C-20, (June 1971), 623,

(9} Knuth, D E, The Art of Computer Programming,
Volume 3, “Sorting and Searching,” Addison-
Wesley, 1973

[10} Loutrel, P P, "A Solution to the Hidden-Line
Problem for Computer-Drawn Polyhedra,”
Depattment of Electrical Engineering, New York
Umversity, Bronx, New York, Technical Report
400-167, (Sept 1967) (Available from Umversity
Microfiim, Ann Arbor, Mich)

{11} Loutrel, P P, "A Solution to the Hidden-Line
Problem for Computer-Drawn Polyhedra,” IEEE
Trans on Computers, C-19, 3, (March 1970), 205.

[12) Marun, W A, "Sorting,” Computing Surveys, 3, 4,
(Dec 1971). 147-174

[13] Newell, M E, Newell, R. G, and Sancha, T. L, "A
New Approach to the Shaded Picture Problem,”
Proc ACM National Conf , 1972

[14) Newman, W M, and Sproull, R F, Principles of
Interactive Computer Graphics, McGraw-Hll, 1973

{15] Roberts, L G, "Machine Perception of Three-
Dimensional Solids,” MIT Lincoln Laboratory, TR

315, (May 1963) Also i Optical and Electro-
Optical In formation Processing, Tipper et al, (Eds)
MIT Press, 159

(16] Romney, G W, "Computer Assisted Assembly and
Rendering of Sohds,” Department of Computer
Science, University of Utah, TR-4-20, 1970.

[17) Schumacker, R A, Brand, B, Gilliland, M, and
Sharp, W, "Study for Applying Computer-
Generated Images to Visual Simulation,” AFHRL-
TR.69-14, US Air Force Human Rescources
Laboratory, (Sept 1969)

[18] Sproull, R F; and Sutherland, | E, "A Chpping
Divider,” Proc AFIPS F JCC 1968 Conf , Vol. 33,
part 1, 765-776

{19] Sutherland, [E, "Computer Inputs and Outputs,”
Scientt fic American, New York, N Y, (Sept 1966).

[20) Sutherland, i E; and Hodgman, G. W., "Reentrant
Polygon Clipping,” Comm. ACM, 17, 1, (Jan 1974),
32

{21) Suthertand, 1 E, Sproull, R F, and Schumacker, R.
A, "Sorting and the Hidden-Surface Problem,”
Proc AFIPS 1973 National Computer Conference,
Vol 42, 685-693

[22) Warnock, J E. "A Hidden-Surface Algorithm for
Computer-Generated Halftone Pictures,” Computer
Science Department, University of Utah, TR 4-15,
(June 1969)

(23] Watkins, G S, "A Real-Time Visible Surface
Algorithm,” Computer Science Department,
University of Utah, UTECH-CSC-70-101, (June
1970)

{24) Wild, C, Rougelot, R S, and Schumacker, R. A,
"Computing Full Color Perspective Images,” paper
presented at XDS Users Group, 20 May 1972 Also
published in General Electric Technical Information
Series R71ELS-26, (May 1971)

[25) Wylie, C, Romney, G W, Evans, D C, and
Erdahi, A, “Halftone Perspective Drawings by
Computer,” Proc AFIPS F JCC 1967, Vol. 31, 49.

APPENDIX A: STATISTICAL
PROPERTIES OF THE RENDERING

This appendix presents a set of statistical
measures of the complexity of a rendering.
Some of these properties depend directly on the
complexity of the environment, ie, on the
number of faces, number of objects, etc. of the
envitonment itself. Some of the measures
depend also on the resolution of the picture,
the apparent size of the faces, thewr position
with respect to the observer, etc. If some of the
environment faces are behind the observer, for
example, they need not contribute to the
difficulty of the rendering. Similarly, a small
isolated object, no matter how complicated, can
be rendered as a single dot if viewed from far

Computing Surveys, Vol. 6, No. 1, March 1974

46 .

enough away. Accordingly we have gathered
together a set of statistics characteristic of a
particular rendering. We hope this set may
provide a basis for meaningful comparison of
the performance of different algorithms by
providing a basis for specifying the complexity
of the rendering task.

Definitions

Many of the environment terms used in this
appendix are defined in Section II under the
heading, Environment Complexity De finitions,
to which the reader is referred. The direction
and magnification of the view itself and the
type of picture being produced might also be
described by many “viewing parameters,” of
which the only one we need is the resolution of
the output picture. Some notions result from
the interaction between the environment and
the viewing parameters, and so we define:

The depth complexity is a measure of how
many front faces are pierced, on the
average, by an arbitrary ray from the
viewpoint. If the environment s
composed of a large cube standing in
front of a back-drop face, the depth
complexity would be nearly 2. If the
depth complexity of a scene is |
throughout, the hidden-line or hidden.
surface problem is trivial, all relevant
faces and edges are visible. As the depth
complexity increases, so does the difficulty
of rendering the environment.

An environment is said to be isotropic if the

depth complexity is independent of
viewing direction. Another way of
looking at this is that the expected
number of faces penetrated by any

randomly chosen line is independent of
the direction of the line. For isotropic
environments the average face width and
average extent of faces in depth are equal
to the average face height, possibly
muitiphled by a factor to account for
different measuring units in the different
directions. Surprisingly enough, most
environments of any great degree of
complexity appear to be nearly isotropic.
The average face height of an environment

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

is the average extent of faces in the V
direction measured in resolution units as
seen by the observer. Average face height
is related to the average number of
segments found on a scan line unless the
environment is laterally anisotropic. The
average face height is also related to the
number of faces and the depth complexity
of the environment.

A segment is the straight line portion of a
face defined by its intersection with a
plane containing both the observer’s eye
and a horizontal hne in the picture.
Segments are of interest because many
hidden-surface algorithms compute the
output picture one horizontal scan line at
a time to correspond with television
output devices.

Visible segments are those segments or
portions of segments actually seen.

Definition of Environments

It is easy to show that there is a simple
relationship between the number of faces, the
average face height, and the depth complexity.
This relationship is:

D.=F, { (Hfln) (Hflm)]

H n and Hflm are just the average size of
faces expressed as a fraction of the picture
height and width, and so the term in brackets
is the fraction of picture area occupied by an
average face.

Because of this relationship, one can choose
freely only two of the parameters Fr' H, and
D, in setting the complexity of the
environment. Any increase in face height for a
given number of faces will automatically

increase the depth complexity. Notice,
however, that moving around in the
environment does not change the depth

complexity, for if one moves closer to a set of
faces, thus increasing their apparent size, one
also reduces the number of faces that appear
in the picture because some are bound to move
beyond the edges of the picture. In fact,
halving the distance to a set of faces will
double 4 f but reduce the number of faces in

A Characterization of Ten Hidden-Surface Algorithms . 47

TABLE1 ENVIRONMENT STATISTICS

Total number of faces in the environment

Number of relevant faces in the environment

Depth complexity of the environment (average).

Total number of clusters in the environment

Number of relevant clusters in the environment.

Number of faces per cluster (average)

Total number of edges in the environment

Number of relevant edges in the environment

Number of relevant edges 1f sharing is allowed

Number of contour edges in the environment.

Total number of edge crossings in the viewing

plane

Number of intersections of visible edges

Number of face intersections

Height of a face in resolution units (average)

Total number of segments, visible or not

Number of segments on a scan line, visible or not

(average)

S Number of visible segments on a scan line
(average)

L Total length of visible edges (measured in
resolution units)

n Vertical resolution of screen (number of scan
lines)

m Horizontal resolution of screen.

XX XmBEm MO0 0y

NM‘M
-

the picture by a factor of four, thus
maintaining D_. For this reason we have
chosen to speafy Fand D, as independent
variables and to compute the resulting value of
H . Thus, environments with small F_ values
become valid representations of detailed views
of environments with larger F_ values which
are presumably more complex.

We have chosen three levels of complexity
for particular environments (see Table 1f). We
chose an intermediate environment first whose
complexity seems to be difficult but not
impossible with today’s state of the art.
Finding it too difficult in many cases, we
retreated to an environment 25 times simpler,
that being about the complexity of many of the
test objects used in demonstrating various
algorithms. Finally, to think ahead just a few
years, we envisioned a giant environment 25
times more complex than our first one.

We have chosen to call our intermediate
environment a "harbor scene.” It is inspired by
thinking of a representation of New York
harbor as it might be presented on a ship
simulation system. The complexity afforded
would provide quite a recognizable appearance.

The giant envitonment we envision is the same
environment with much more detail included,
e.g., windows in buildings, finer representation
of curved surfaces. The simple environment
we call "Roberts’ house™ having in mind his
early architectural example which can be seen
in [19].

The most controversial number in our
environments is the depth complexity. Most of
the other numbers in the environment statistics
can be derived by simple reasoning once one
has decided how many faces there shall be and
what the depth complexity is. The number of
faces is, of course, our variable, and so we can
select it relatively free of criticism. The depth
number, however, represents the degree to
which faces overlap In the harbor
environment the depth number will vary from
unity, when looking at the sky or ocean, to
quite a high number, when looking at a
collection of tall buildings.

Deriving the Environment Statistics

The various statistics for the environments
are mostly derivable from the number of faces
and the depth number. The (following
discussion describes the derivation of the
elements of Table ll. We assume that the

TABLE Il STATISTICS FOR
THREE ENVIRONMENTS

Statistic Rule of Roberts’ Harbor Big
Thumb House Harbor
(1/2%)) (25)
n given 500 500 500
m given 500 500 500
F, given 100 2500 60000
F . given 10 25 200
D, given 3 3 3
F, 2F, 200 5000 120000
c, F ‘/F ¢ 20 200 600
Er 4F f 800 20000 480000
E, E 2 " 400 10000 240000
E, EKF 12) 180 2800 24000
E, (E,—EC)IQ ‘Ec 290 6400 130000
X’ (DC‘I)E,,H 200 5000 120000
X, XD, 70 1700 40000
12
Hf (’IMD‘/F')ID 86 17 4
S (DCF'm/n) 17 87 420
S v S l/Dc 5 29 140
L, 2n3, 5000 29000 140000

Computing Surveys, Vol. 6, No 1, March 1974

48 .

number of faces selected for consideration is
the number of relevant faces rather than the
total number, since the initial clipping cull and
back-face cull are universally applicable. The
number of clusters is derived by choosing 25
faces per cluster, a number said by
Schumacker to be reasonable. In the simple
environment we have cited only 10 faces per
cluster, reasoning that that is appropriate, and
in the complex environment we have 200 faces
per cluster, arguing that the greater detail will
not prevent a clustering similar to that of the
harbor environment.

The total number of edges is computed as 4
times the total number of faces, since most
faces are rectangular. The number of relevant
faces or edges is computed by assuming half of
the faces are back faces and will be eliminated
by the early cull. The number of contour
edges for large arrays of faces can be found by
dividing the number of relevant edges by the
square root of the number of visible faces of
an object.

Because our definition of an edge is at
variance with the definitions used in some of
the papers, we define E, the number of
relevant edges if edge-sharing is permitted.
This is simply the sum of the contour edges
(which cannot be shared), and 1/2 the non-
contour relevant edges.

The total number of edge crossings in the
viewing plane is a difficult statistic to estimate.
Our formula is admittedly just a guess, but it
has the virtue of growing with both D, and £,
and is correctly zero when D «l In fact, we
estimate that for D =3, every edge will cross
approximately one other, and thus that the
number of edge ciossings is £ /2.

The height of a face in resolution units is
computed as the square root of the average
area of a face, considering the number of faces
and the depth number. If there are nm square
resolution units of total picture area and a
depth number of D, then there are nmD, units
of picture area covered by F, faces, and each
must occupy an area of nmDJF. The
average length of a segment on each scan line
is the same as the average face height, and
from this we can compute the number of

Computing Surveys, Vol 6, No 1, March 1974

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

segments on a scan line, 3, « mD [(average
length) = mD fnmD JF)VZ o (mD F m°.
Another way of looking at this 1s that there are
Dc layers of uniform faces laid out over the
screen area, each layer having F /D, faces. If
n and m are equal, then there must be
(Frlnc)”2 faces per layer involved |?I2any one
scan line Thus Sl - Dc(Fr,Dc) . The
number of visible segments is obviously I/D,
times this number

The total length of visible edge is computed
as twice the number of visible segments. Each
visible segment contributes one unit of visibie
edge length per scan line on which it hes if the
edge is vertical. But edges which are
horizontal are not represented at all, so we
apply the factor of two.

Analysis of the Algorithms

The environments given in Table II have
been used to obtain crude estimates of the
performance of the ten hidden-surface
algorithms we have considered in this paper.
The results of this analysis are contained in
Appendix B.

APPENDIX B: SOME STATISTICAL
ESTIMATES OF COMPUTING COST

This appendix explores the performance of the
algorithms on the three artificial environments.
The numbers we have derived are but crude
estimates: nevertheless the vast variance,
typically three orders of magnitude, among the
performances of the various steps serves to
highhght the relative difficulty of the various
steps. There may be substantial disagreement
with the environments we have used, with the
complexity factors we have ascribed for each
step, and thus with the resulting “cost”
numbers. Furthermore, these “cost” measures
in no way quantify other important properties
of the algorithms- space required, feasibility of
hardware implementations, etc. This appendix
is intended to be helpful, not authoritative.

A Characterization of Ten Hidden-Surface Algorithms . 49

Complexity Factors

In our rough calculations we associate a
“complexity factor” with each of the operations
listed in Figure 29. These factors are based on
the difficulty of the particular tests or
computations performed in the various steps.
A complexity factor of 1 is assigned to simple
operations such as comparing two numbers or
solving a plane equation. A complexity factor
of about 10 is assigned to more difficuit
problems, for example, computing the
relationship between two segments in two
dimensions (X-Z) The complexity factor of
about 100 is assigned to very complicated
operations, such as Roberts’ edge/volume test,
and Warnock’s cull of faces based on their
relation to a sample window. The actual
complexity factor chosen is usually immaterial
to the lessons of the computations which
follow.

Statistics for the Various Algorithms

The statistics for the three scenes are given
in Table II, and the “performance” of the
algorithms in Table Ill. Brief justifications of
the expressions listed in Table il follow:

Roberts

(1) The back-edges cull is performed on the
set of edges; complexity factor 1.

(2) The clipping cull is performed on
relevant edges (the algorithm permits
edge sharing); complexity factor 100.

(3) The edge/volume test must test each
relevant edge against all objects in the
environment. The factor f is included
to account for two facts: more than E‘
edges are tested because they become
sphit into fragments by previous tests; C
must be somewhat higher for Roberts’
algorithm than for others because it
allows only convex objects. The
complexity factor of this test is 100.

Appel, Loutrel, Galimberti and Montanari

(1) The back (and contour) edge cull is
performed on the total number of edges;
complexity factor 1.

(2) The initial visibility search is performed
once for each object in the environment,
and must examine all faces to count the
number of hiding faces; complexity
factor is 100.

(3) The edge intersection test must test each
relevant edge against each contour edge;
the complexity factor is 30.

(4) The invisibility correction is performed
twice for every relevant edge, and must
examine about 3 faces each time; the
complexity factor is 100.

(5) The sort along the edge sorts XrlE s
things, on the average (less than | for
our three scenes), for each relevant edge;
complexity factor 1.

Schumacker, et al

(1) The detetmination of intra-cluster
priority requires comparing each face of
a cluster with other faces of the cluster,
and must be performed for each cluster.
The complexity factor is 100 (this is
generous- this step often involves human
intervention in the programs
implemented at General Electric)

(2) The inter-cluster priority computation
requires locating the viewpoint with
respect to all separating planes, and
traversing the binary tree set up by step
(1): the determination must be made for
each cluster in the environment;
complexity factor 10.

(3) The back-face cull removes from
consideration all back faces; complexity
factor 1.

(4) The ¥ cull is performed on each scan
line, and processes E potentially-visible
edges, complexity factor 1.

(6) The X sort and priority search steps are
combined, 5, potentially-visible faces are
examined at each raster element;
complexity factor 1.

Newell, et al

(1) The Z sort can be performed with a two-
pass radix 512 Quicksort, hence the
performance 2 F ; complexity factor I.

Computing Surveys, Vol 6, No. 1, March 1974

50 .

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

TABLE 11l COSTS FOR THREE ENVIRONMENTS

Roberts

I Back-facing edges cull

E, 800 20K 480K
2 Clipping cull

100 £ 29K 640K 13M
3 Edge/volume test

100 E.fC, 23M 510M 318

J = 4, spiit edges, and C' should be higher

Appel, Loutrel, Galimberti and Montanari

1. Back (and contour edge) cull

Et 800 20K 480K
2 Imitial visibihty search

100 C’F' 200K 50M 368
3 Edge intersection

0L E 16M 540M 938
4 Invisibility correction

30(E Y 52K 12M 23M
5 Sort along edge

E(X IE) log, (X JE) 290 64K 130K

Schumacker et al

1 Intra-cluster priority

100 F %c, 200K 12M 248
2. Inter-cluster priority

¢, 200 2K 6K
3. Back-face cull

F, 100 25K 60K
4. Y cull

nkE 150K M 65M
5. X sort and priority search

am S, 42M 2M 100M

Newell et al

1. Z sort

2F, 200 5K 120K
2. Newell special

F 2210053 15K 650K 60M

f «2Hn
3 Segment generator and ¥ sort

10 F H 86K 420K 24M
4. X merge

F’HISUIQ 1K 310K 84M

Warnock

1. Z sort

2F, 200 5K 120K
2 Warnock special cull

100L,D, 1 5M 8IM 92M
3. Depth search

LD, 15K 87K 420K

Romney et al

L VY sort

2F, 200 5K 120K
2 X sort

ns,; 85K 43K 210K
3 X priority search

nm 250K 250K 250K
4. Depth search

20n28,D.f 510K 26M 13M

J = 112, due to depth coherence

Wathins, Bouknight

LY sort

E, 400 10K 240K
2 X merge

E 5,2 34K 430K 50M
3 X sort

n(S, + 10 X _AnS,) 85K 43K 210K
4. Span cull

ns, 85K 43K 210K
5 Depth search

30 nD, min(m.£3) 450K 26M 13M

£ = 2, spans include not only visible segments

Brute- force tmage space

No memory

100 nmF 258 628 15008
Large memory

15M 1.5M 7.5M

10 H °F
f

[Note- K=1,000, M«1,000,000]

(2)

The Newell special sort examines faces
for X, ¥, or Z overlap with all other
faces. Only those faces that overlap in
all three components require complex
tests and polygon divisions The overlap
tests are assigned complexity |, and the
complex tests complexl 3 100. Thus the
total cost is F, (f f° o+ 100f)where
[is the probabllny that two faces
overlap along one dimension (this

Computing Surveys, Vol 6, No 1, Mareh 1974

&)

probability 1s the same for all three
dimensions if the scene is isotropic). We
can estimate the probability of overlap
in ¥ as follows: a region H . scan lines
high will overlap another Such region
with probability f = (H +H J)/n.

The segment generator and VY sort
required to place the segment in the
simulated frame buffer are performed
for all relevant faces; approximately Hf

(1)

¢}

(2

(3)

A Characterization of Ten Hidden-Surface Algorithms . 51

segments are generated for each face;
complexity factor 10.

The X meige into the hst of segments
for each scan hne is performed F H
times; the average size of the list at the
time of the merge is Svlz, but we must
search only about §/2 this list to find the
correct spot for the new segment;
complexity factor 1.

Warnock

Again, we assume the initial Z sort may
be accomplished with a radix 512
Quicksort, complexity factor 1.

The Warnock special cull 1s performed
approximately L times (the tree of sub-
windows has most of its nodes near the
terminal nodes); the approximate
average number of faces intersecting a
sample window is D, (again, this number
is repiesentative of the terminal nodes
rather than of the root node), the
complexity factor is 100.

The depth search is performed as often
as the special cull on D, faces but has
complexity factor 1.

Romney, et al

1)

(2

(3)

(4)

The V sort of faces is a bucket sort
(actually, two bucket sorts), complexity
factor 1

The X bucket sort is performed on each
scan line for approximately S, faces;
complexity factor 1.

The X priority search 1s performed for
each raster element; complexity factor 1.
The Z depth search is performed at each
edge intersection (2 S)), on D, faces, on
each scan hine. The factor f 15 less than
one because Romney can sometimes
avoid depth searching altogether because
of depth coherence, the complexity factor
of the search 1s 20 because plane
equations must be solved Although the
numbers for Romney's algorithm appear
very favorable, the algorithm handles
only non-penetrating triangular faces in
the environment.

Watkins

(1) The Y bucket sort is performed on all
relevant edges; complexity factor |.

(2) The X merge is performed once for
every relevant edge; the average length
of the hst at the time of the merge is §;
we need search only /2 of the list to
find the correct spot; complexity factor 1.

(3) The X bubble sort is performed on each
scan line; at least §, compares are
required to verify that the list is in sort;
about X /(nS)) elements are out of sort:
they are usually only interchanged with
immediate neighbors, hence a complexity
factor of 10.

(4) The span cull involves testing each
segment on each scan line,

() The Z search is performed for each
sample span (the maximum number of
such spans is the number of visible
segments, muliiplied by a factor to
account for the fact that sample spans
must occur slightly more frequently than
visible segments). D, elements are
searched in each span; the complexity
factor of the logarithmic search is 30.

Brute-Force Image-S pace

This expression represents the cost of
computing the visible surface at each raster
element by a brute-force examination of each
plane to see which ones fall on the raster
element, and which of these is closest. This
statistic is presented for comparison with the
other algorithms.

If a large memory is available, large enough
to store a color and a depth at each point in
the output picture raster, one can simply
compare the already-recorded depth at each
point withuin a polygon with the depth for the
new polygon. If the new polygon is closer, its
data replaces that already in the memory. This
method results in a computing cost which
depends only on the depth number D, and not
otherwise on the environment complexity.
Some hazard with edge effects exists with this
algorithm, however.

Computing Surveys, Vol. 6, No, 1, March 1974

52 .

Statistical Results

In spite of the crude nature of the statistical
numbers that we have presented in this
appendix, some interesting observations can be
drawn from them. One must, of course,
refrain from conciuding that one algorithm is
“better™ than another by virtue of having a
“cost” number half that of the "worse™ one,
because the estimates are not nearly accurate
enough for such a conclusion. On the other
hand, when one algorithm appears to be 100 or
1000 times the cost of another, it is harder to
argue that errors in our estimates are at fault.
Thus we feel free to make order of magnitude
comparisons between the various algorithms to
learn something about the effectiveness of the
various methods.

We will be examining the numbers in Table
V1l to see which algorithms provide roughly

I. E. Sutherland, R. F. Sproull,

and R. A. Schumacker

environment complexity. In each case we will
refer back to Tables 1V, V and V] to discover
which steps in the algorithms account for the
bulk of the cost. It is interesting that in aimost
every case one step in the algorithm accounts
for a preponderance of the “cost.” The effects
of square-law growth of "cost” with complexity
show clearly in these numbers. Although the
specific values of the numbers may be wrong
by an order of magnitude or two, the lesson of
the importance of avoiding square-law growth
remains valid and important.

At the level of complexity represented by the
simple environment nearly all of the
algorithms come out with a "cost™ on the order
of one million. The variation from 500K for
Watkins to 4M for Schumacker et al, is not
significant, considering the crudity of our
estimates and the fact that Schumacker's final
computation steps, though many in number,

equivalent “costs” for various levels of are particularly simple to implement in
TABLE IV. COST SUMMARY: SIMPLE ENVIRONMENT
Appel, Loutrel, Schumacker Newell " Romney Wathkuns, Brute
Roberts Galimberti and Montanari et al et al Warnock et al Bouknight force
Intra-cluster
priority
(200K)"
Back edges Back edges Inter-cluster Z sort Z sort Y sort Y sort
cull cult priority 200 200 200 400
800 800 200
Clipping cull Initial invisibility Back faces Newell Warnock X sort X merge
29K search cult speaial special 8 5K 34K
200K 100 45K 15M
Edge/volume Edge intersection Y cull Segment Depth X priority X sort
tests tests 150K generator search search 85K
23M 16M 86K 15K 250K
Invisibility ~ X sort and X merge Depth Span cull
correction priority 11K search 8 5K
52K 1.2M 510K
Sort along Depth
edge search
290 450K
24M 18M 12M 140K 15M 770K 470K .2, :ﬁ;’

* Not charged in per frame cost.
{ Note: K=1,000; M=1,000,000]

Computing Surveys, Vol. 6, No. 1, March 1974

A Characterization of Ten Hidden-Surface Algorithms . 53

TABLE V. COST SUMMARY: MIDDLE ENVIRONMENT

Appel, Loutrel, Schumacker Newell Romney Wathkins, Brute
Roberts Galimberti and Montanari et al et al Warnock et al Bouknight Jorce
Intra-cluster
prionity
(12m)°
Back edges Back edges Inter-cluster Z sort Z sort ¥ sort Y sort
cull cull priority 5K 5K 5K 10K
20K 20K 2K
Clipping cull Initial invisibility Back faces Newell Warnock X sort X merge
640K search cult special speaal 43K 430K
50M 25K 650K 8 M
Edge/volume Edge intersection Y cull Segment Depth X priority X sort
tests tests 32M generator search search 143K
510M 540M 420K 87K 250K
Invisibility X sort and X merge Depth Span culi
correction priority 310K search 43K
2M 2M 26M
Sort along Depth
edge search
64K 26M
sioM 590M 25M LM oM 29M M _’6";; or

* Not charged in per frame cost
[Note: K=1,000; M=1,000,000 }

hatdware Thus the only variation of interest
here is Newell et al, an order of magnitude less
"costly” and the brute-force approach which is
already ridiculously expensive.

This remarkable similarity in the “cost” of
algorithms at the simple model level of
complexity may not be entirely coincidental, for
this is the level at which most demonstration
programs operate. An algorithm several orders
of magnitude more expensive at this
environmental complexity would not survive
long enough to appear in the literature, and
one significantly less expensive would already
have been hailed, and recognized, as a major
breakthrough

Reference to Table 1V shows that the
edge/volume test of Roberts and the edge/edge
tests of Appel and related algorithms are
already their dominant costs Similarly, the
Warnock special (XY) sort is the major
contribution in his case. The Watkins and

Romney algorithms, on the other hand, are
dominated by the depth search which they
laboriously perform over and over on a scan-
line by scan-line basis for the relevant
segments. It appears that Newell, by avoiding
the square-law growth of edge tests and the
fine resolution of Z depth tests, has managed to
gain an order of magnitude edge in "cost” for
this level of complexity. Of course, this
advantage may be an illusion brought about by
incorrect estimation of the complexity of some
operation. It nevertheless seems reasonable to
point out that for simple pictures the image-
space algorithms are forced by the resolution
of the screen. ’

At the middle level of complexity, a quite
comphcated picture by today’s standards, the
situation is quite different. The edge/edge and
edge/volume algorithms of Roberts and the
Appel group have become impractical.
Reference to Table V shows that this is

Computing Surveys, Vol. 6, No. 1, March 1974

54

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker

TABLE VI COST SUMMARY: COMPLEX ENVIRONMENT

Appel, Loutrel, Schumacher Newell Romney Wathuns, Brute
Roberts W, k
ober Galimberti and M d et al et al arnoc et al Bouknight Sorce
Intra-cluster
priority
(248"
Back edges Back edges Inter-cluster Z sort Z sort Y sort Y sort
cull cull priority 120K 120K 120K 240K
480K 480K 6K
Clhipping cull Initial 1nvisibility Back faces Newell Warnock X sort X merge
13M search cull special speciat 210K 50M
36B 60K 60M 92M
Edge/volume Edge intersection Y cull Segment Depth X priority X sort
tests tests 65M generator search search 210K
318 938 24M 420K 250K
Invisibality X sort and X merge Depth Span cull
correction priority 8 4M search 210K
23M 100M 13M
Sort along Depth
edge search
130K 13M
318 978 170M nM 13M 14M g4 1500Bor
7.5M
* Not charged in per frame cost.
[Note: K=1,000, M=1,000,000)
TABLE VII. COST SUMMARY: THREE ENVIRONMENTS
Appel, Loutrel, Schumacker Newell Romney Wathkins, Brute
k
Roberts Galimbert: and Montanari et al et al Warnoc et al Bouknight force
24M 18M 42M 140K 15M 770K 470K 24Bor 7.5M
sS1oM 590M 25M 14M M 29M wm 62B or 7.5M
318 97B 17oM nMm 43M 1M 64M 15008 or 7.5M

[Note. K=1,000; M=1,000,000)

because of the square-law growth property of
their basic edge/volume and edge/edge tests.
The other algorithms are all about equal in
performance, but notice that the "special sort”
is now the major contribution to the Newell
algorithm cost. The cost of depth searching
for the image-space algorithms bhas not
increased very much, nor has the cost of
Warnock’s special sort.

At the level of complexity of our very

Computing Surveys, Vol 6, No 1, March 1974

complicated environment, only the Schumacker
et al, Neweil et al, Warnock, Romney, and
Watkins algorithms rematn in contention. We
see Romney again dominated by the depth-
searching operations, but Watkins is now
donunated by the X merge step, again a step
with square-law growth. The Newell et al
algorithm 1s intermediate. if D, remains fairly
constant in the environments, the cost of the
Neweli special sort grows as F ™%, thus

A Characterization of Ten Hidden-Surface Algorithms . 55

staving off only shghtly longer the expiosion of
computation. Only Schumacker et al, Romney
et al and Warnock remain free of this
distressing difficulty.

The lessons of these numbers are quite clear:
avoid those types of sorting whose cost grows
as the square of complexity. The bucket
sorting technique used by Romney, Watkins
and Bouknight has a most desirable linear cost

growth The depth searches required by these
algorithms grow in cost only with the square
root of the number of surfaces, because the
surfaces get smaller as there become more of
them. In effect the image-space programs
allow a cruder approximation to the correct
picture as the environment becomes more
complex and the detail becomes
correspondingly smaller.

Computing Surveys, Vol. 6, No. 1, March 1974

