
Approximate Methods for Analyzing Queueing Network Models of
Computing Systems

K. MANI CHANDY
CHARLES H. SAUER

Computer Sciences Department, Unwers~ty of Texas at Austin, Austtn, Texas 78712

The two primary issues in choosing a computing system model are credibility of the model
and cost of developing and solving the model Credibility is determined by 1) the experience
and biases of the persons using the model, 2) the extent to which the model represents
system features, and 3) the accuracy of the solution technique. Queuemg network models
are widely used because they have proven effective and are inexpensive to solve. However,
most queuemg network models make strong assumptions to assure an exact numerical
solution. When such assumptions severely affect credibility, slmulatmn or other approaches
are used, in spite of their relatively high cost. It is the contention of this paper tha t queueing
network models with credible assumptions can be solved approximately to provide credible
performance estimates at low cost This contention is supported by examples of approximate
solutions of queueing network models. Two major approaches to approximate solution,
aggregation (decompositmn) and diffusion, are discussed

Keywords and Phrases: performance evaluatmn, queuemg networks, approximate solutions,
hierarchical modeling

CR Categories" 3.81, 3.89, 4.32, 4 6, 6.20, 8 1

INTRODUCTION

Computer systems analysts use models to
gain insight into the behavior of systems
and to aid in systems design. The analyst
has several tools (programs) at his disposal
to aid in estimating the performance of
systems. These include queueing models,
random-number or trace-driven simula-
tions, and statistical models. The specific
tool that an analyst uses depends upon the
amount of error he can tolerate, the speed
with which he wishes to get results, and
perhaps most importantly, the amount of
faith he has in the tool. In our experience
computer center managers and systems an-
alysts generally rank tools in increasing or-
der of credibility in the following sequence:
queueing models, discrete-event random

number simulations, trace-driven simula-
tions, monitoring systems running syn-
thetic jobs, and measurements of a real
workload on a real system. Unfortunately,
the above ranking is generally also a rank-
ing of tools in increasing order of cost {i.e.,
time used by the analyst and time used by
the solution technique).

We will frame our discussion of our ap-
proximations in the context of analysts
choosing between competing predictive
tools, focusing attention on the three crite-
ria of: 1) time used by the solution tech-
nique (speed), 2) credibility, and 3) degree
of accuracy required for the problem at
hand. Credibility is a subjective criterion; it
varies from analyst to analyst. Yet it is
crucial to the understanding of how tools
are used. In particular, it is fundamental to

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the puhhcahon and its
date appear, and notme is gwen that copymg is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission
© 1978 ACM 0010-4892/78/0900-0281 $00 75

Computing Surveys, Vol. 10, No. 3, September 1978

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356733.356737&domain=pdf&date_stamp=1978-09-01

282 K. M. Chandy and C. H. Sauer

CONTENTS

INTRODUCTION
! TRACTABLE QUEUEING NETWORK MODELS
2 EXAMPLES OF SYSTEMS THAT ARE ANALYZED

VIA APPROXIMATION
Dmtnbutiotm and Dtsclp|mes
Multiple Resource Holding
Blocking
Schedulers
Parallehsrs. Forks and Joins
Routing
Summary

3 AGGREGATION (DECOMPOSITION)
APPROXIMATIONS
Flow-Eqmvalent Methods
Passive Queue Flow-Eqmvalents
Flow-Equivalents with Non-Exponentml Distributions
General Closed Networks (Multiple Chains)
Flow-Equivalents m Simulation
Justdicatlon of Aggregation
Summary

4 IMPROVEMENTS OF FLOW-EQUIVALENCE
An Overwew of the Approaches
Iteration Methods
General Closed Queuemg Networks
A Case Study for VM/370 Using Iteratlve Methods
An Iteratwe Scheme for Open Network Models of Packet-

Switching Systems
Product Form Methods
Summary

5. FLOW-EQUIVALENT SYSTEMS AND THE
MANAGEMENT OF MODELING PROJECTS

6 DIFFUSION APPROXIMATION
Why Bother with Diffusion Processes ~
Mapping Between Queuemg and Dtffusmn Processes
Networks
Other Applications of the Dtffnslon Approxtrnatlon

an Example
7, CONCLUSION

Core Ideas
A Comparmon of Analysis Techmques
The Authors' Bumes
APPENDIX An Example of a Complex Flow-Equivalent

Queue
REFERENCES

A

the basic issue of this paper: How can ap-
proximation methods be commonly used by
systems analysts in the field?

In keeping with most of the queueing
network literature, we adopt the stochastic
approach to approximation methods. All
the systems considered in this paper are
assumed to attain equilibrium; further-
more, we restrict attention (with a few ex-
ceptions) to predicting the performance of
systems at equilibrium. In our experience
systems analysts rarely use tools to predict
transient behavior; however, this situation
may change as tools become increasingly
flexible.

By analyzing a model we mean running
a computer program that estimates queue-
length distributions for one or more queues
in the model. Device utilizations, mean re-
sponse times, and throughputs may be de-
rived from the queue length distribution.
We usually ignore the problem of comput-
ing response time distributions. The prob-
lems of estimating response time distribu-
tions and their moments other than the
mean are very difficult. The successful so-
lutions have been limited to systems con-
sisting of a single queue or a very restricted
network of queues.

We generally ignore the software aspects
of queueing network modeling, even though
software is of critical importance. Rarely
will an analyst implement a special purpose
program for a specific model. Rather, the
analyst will rely on existing software, per-
haps adding modifications or a #pecialized
user interface. Reiser and Sauer discuss
queueing network software with emphasis
on solution techniques [REIs78]. Sauer and
MacNair survey significant queueing soft-
ware with a comprehensive view of the
requirements specifically associated with
queueing software [SAUE78]. In this paper
we only discuss software of special signifi-
cance.

We put queueing network models into
three categories:

1) Tractable: those which can be ana-
lyzed to give exact (as opposed to ap-
proximate) solutions in an "ade-
quately" short time. ("Adequately" is
a subjective term that will be defined
later in this section.) It should be em-

Computing Surveys, Vo|. 10, No. 3, September 1978

Approximate Methods 283

phasized that tractable models often
do not represent reality faithfully; the
analyst should not be lulled into false
security by the exactness of the solu-
tion.

2) Intolerably slow: those which can be
analyzed to get exact results but which
cannot be analyzed in an adequately
short time.

3) Unsolved: those for which there is no
known method of analysis guaranteed
to give exact results.

The vast majority of queueing network
models used for estimating and predicting
computer system performance are of the
tractable category. Rather than attempting
to use a queueing network model of the
second or third categories, most analysts
would resort to simulation. However, con-
structing a simulation model with a conven-
tional language may require a large amount
of effort, and running a simulation may be
computationally expensive. Thus there is a
significant cost gap between queueing
models and simulation models in the cred-
ibility sequence described above.

There have been three major approaches
to bridging this gap:

1) Using approximate solution tech-
niques;

2) Using a simple, tractable model to
obtain bounds for performance mea-
sures of a more complex model; and

3) Using simulation tools specifically de-
signed for solution of complex
queueing models.

The following example will help to clarify
these terms and approaches. Consider a
model of a CDC 6000 series machine; this
model consists of a central server with a
queue for Peripheral Processors (PPs)
ahead of the disk queues (Figure 1). To
carry out an I/O operation, a job needs
both a peripheral processor and a disk.
When a job completes a CPU service it
joins the PP queue. Only after securing a
PP does the job enter one of the disk
queues. The PP is held while the job is
waiting in the disk queue and while the job
is being serviced by the disk. After comple-
tion of disk service the job relinquishes its
PP; the relinquished PP is immediately as-
signed to a job in the PP queue, or, if the

~o ooo, . / ' I

FIGURE 1. Central server model with peripheral
processors.

PP queue is empty, the relinquished PP
joins the pool of available PPs.

Consider a system with five disks, four
PPs, and a level of multiprogramming of
five. Assume that the PP and disk queues
have a first come first served (FCFS)
queueing discipline and that the CPU has
a processor sharing (PS) discipline. (PS is
defined as the limiting case of a no overhead
round-robin discipline as the quantum goes
to zero. It is used in queueing models be-
cause it is much more mathematically
tractable than round-robin.) Assume the
CPU service time distribution is hyperex-
ponential and that the I/O service time
distributions are exponential. (Service time
distributions have a key impact on the
tractability of queueing models. In Section
1 we will discuss distribution representa-
tions for those readers unfamiliar with this
subject.)

This model can be represented as a Mar-
kov process and an exact numerical solution
can be obtained [KELL76]. (Markov proc-
esses are essential to the stochastic ap-
proach to queueing networks. This is espe-
cially true of exact solutions and specialized
simulation techniques and less true of the
aspects of approximation we discuss here.
Section I gives a brief introduction to Mar-
kov processes.) However, the time required
to obtain this solution on a CDC 6600 is in
the order of several minutes. We must con-
clude that this model falls into the category
of intolerably slow models because most
analysts would prefer to use alternative
methods or models. If the service time dis-
tributions were arbitrary, and thus less
tractable than hyperexponential and expo-
nential forms, then this model would fall
into the category of unsolved models.

Approximate solution methods can be
applied to the 4 PP model [KELL76]. There
is no assurance, besides empirical results,
that an approximation will give satisfactory

Coraputmg Surveys, VoL 10, No. 3, September 1978

284 K. M. Chandy and C. H. Sauer

answers, but an approximation may give
values very close to the exact values in less
than a second of processor time. Thus the
approximate solution is very attractive. Ap-
proximations usually use heuristic solution
techniques. The philosophy is very similar
to that of artificial intelligence search strato
egies: The methods are reasonable but, in
general, it cannot be rigorously proven that
the methods provide the desired solutions.

Consider this model with five rather than
four PPs. Since the degree of multipro-
gramming is equal to the number of PPs, a
job will never wait for a PP. Hence we can
remove PPs from the model. The resulting
model can be analyzed in less than a second
on a CDC 6600, since the model satisfies
product form (Section 1). This model falls
into the tractable category.

It is possible to approximate the 4 PP
system by a 5 PP tractable model because
we know from experience that the 5 PP
model provides a tight upper bound to the
throughput of the 4 PP system. This is an
instance of a complex model being analyzed
by obtaining bounds for performance mea-
sures from a simpler model [SEvc77a].
Such an approach is extremely useful. How-
ever, we do not consider such approaches
in this paper because a general theory un-
derlying such approaches is yet to be de-
veloped; cases have to be treated individ-
ually. A general theory in this area would
be a breakthrough in systems modeling.
One must proceed cautiously; for instance,
it is tempting to hypothesize that systems
with more regular arrival processes (i.e.,
processes with smaller coefficients of vari-
ation of interarrival times, where the coef-
ficient of variation is the standard deviation
divided by the mean) may be analyzed to
obtain lower bounds on the mean wait
times of systems with more variable arrival
processes, but this hypothesis is invalid
[WOLF77].

Queueing network tools such as QSIM
[FosT74] and RESQ [REIS78, SAtTE77c] al-
low the user to easily specify and simulate
complex queueing models of the intolerably
slow and unsolved categories. (RESQ also
provides numerical solutions for most
models of the tractable category.) A simu-
lation of the 4 PP model above would re-

quire considerably less than a minute to
obtain satisfactory results. Thus simulation
would be a more reasonable method than
exact numerical solution of that model.

Thus one can conclude that both approx-
imation and simulation are viable ap-
proaches to solving this model. Though the
approximation has a definite computational
advantage, one must consider factors such
as credibility and availability of software.
For other models we may not have a choice;
only one technique is viable. Our object
here is to survey approximation methods
for intolerably slow and unsolved models.
There is no known rule for choosing be-
tween simulation and approximation meth-
ods, nor is there one for choosing among
approximations. However, we feel it is im-
portant to bring approximations to the at-
tention of a larger audience.

Before proceeding with approximations
we should say a little about simulation.
Simulations could be considered an approx-
imation technique, since simulations do not
provide exact results, but this is an unusual
view. To clarify this point, consider a sim-
ulation of a queueing network that has a
tractable numerical solution. The numeri-
cal solution is exact--if a mean response
time is estimated, then that value is correct
for the queueing network (though not nec-
essarily correct for the modeled computer
system). A simulation estimate of mean
response time will, hopefully, be near the
correct value but will usually not be equal
to the correct value. Two of the principal
problems with simulation are: determining
how close simulation estimates are to the
correct values (for the model, not the
modeled system), and determining how
long to run the simulation in order to obtain
estimates near the correct values. These
problems are still difficult for arbitrary sim-
nlations, but much progress has been made
toward their solution for simulations of
queueing networks.

A general approach to the first problem
is the estimation of confidence intervals. If
a simulation run produces an estimate R
for mean response time, then we produce a
confidence interval estimate [R - ~,
R + $] and say that the correct mean re-
sponse time is in this interval with a certain

Computing Surveys, Vol. 10, No. 3, September 1978

level of confidence, e.g., 90%. Suppose we
run the same simulation model many times
with different random number streams for
each run, and estimate confidence intervals
for mean response time on each run. Infor-
mally, we could expect the fraction of runs
with confidence interval including the cor-
rect value, to be equal to the level of con-
fidence. Note that we are not saying that
90% (or whatever the level of confidence)
of the response times are in the interval;
this is a common misinterpretation of the
confidence interval.

Though estimation of confidence inter-
vals is difficult for arbitrary simulations,
much progress has been made in rigorous
estimation of confidence intervals for sto-
chastic systems in equilibrium, e.g.,
queueing networks. The most rigorous ap-
proach is the regenerative method. Laven-
berg and Slutz give an excellent introduc-
tion to this method [LAVE75], Iglehart gives
a thorough survey of it [IGLE78], and Sauer
and MacNair illustrate application of the
method to general queueing networks
[SAUE77C]. The regenerative method is not
always practical; Kobayashi [KOBA78] and
Sauer [SAUE77a] discuss alternative meth-
ods for queueing models.

The second problem can be handled by
sequential stopping rules applied in con-
junction with confidence interval estima-
tion [LAVE77]. In brief, a sequential stop-
ping rule allows the simulation to run for a
while (a "sampling period") and then ex-
amines the confidence intervals. If the in-
tervals are "sufficiently narrow" then the
simulation stops. Otherwise, additional
sampling periods are run, with confidence
intervals estimated after each period, until
the intervals are sufficiently narrow.
APLOMB, the simulation component of
RESQ, provides several confidence interval
methods and a sequential stopping rule.

The remainder of the paper discusses
approximations. Section 1 informally de-
scribes the tractable category of models.
Section 2 give examples of system models
that are not in the tractable category but
have been solved by approximations. Sec-
tion 3 describes approximations based on
aggregation of submodel results. Section 4
considers techniques for improving the ac-

Approximate Methods 285

curacy of aggregation approximations. Sec-
tion 5 briefly discusses use of aggregation
in the management of modeling projects.
Section 6 describes diffusion approxima-
tions. Section 7 is an overview of approxi-
mation techniques.

1. TRACTABLE QUEUEING NETWORK
MODELS

Before giving a characterization of tractable
models we informally review the concepts
of arrival processes, service time distribu-
tions, and Markov processes. A more thor-
ough introduction is given by Drake
[DRAK67].

Mathematicians have tried to make the
representation of queueing systems as sim-
ple as possible for the sake of tractability.
They then studied more complex queueing
systems because they are more represent-
ative of actual systems, and because they
are more mathematically interesting. To
keep our discussion simple we will avoid
unnecessary mathematics and therefore
sacrifice some rigor and general applicabil-
ity.

First consider the arrival of jobs at a
queue, a queue not connected to other
queues. The simplest representation of the
arrivals assumes that the arrivals are
strictly independent of each other. To be
more precise, we define a Poisson process
for the arrivals: 1) observations of the ar-
rivals during non-overlapping intervals of
time are mutually independent; and 2) if we
look at small enough intervals of time there
will be at most one arrival per interval, and
the probability of an arrival during the in-
terval is equal to the overall rate of arrival
times the length of the interval. The advan-
tage of the Poisson representation of ar-
rivals is that it is memoryless because of
the first part of the definition; the proba-
bility of an arrival during a sufficiently
small interval of time is totally independent
of arrivals or lack of arrivals in the preced-
ing intervals. The Poisson process is often
a realistic representation of actual arrival
processes but is usually chosen for queueing
models because of the resulting tractability.
Corresponding to the process of arrivals
during a time interval, there is a distribu-

Computing Surveys, Vol. 10, No. 3, September 1978

286 K. M. Chandy and C. H. Sauer

tion of times between arrivals. For the Pois-
son process the corresponding interarrival
time distribution is the exponential distri-
bution; "Poisson arrivals'and "independent
identically distributed exponential arrivals"
are equivalent. The exponential distribu-
tion also has a memoryless property; the
probability distribution for the time until
the next arrival is independent of the time
elapsed since the last arrival. Statements
about arrivals and interarrival times can be
applied to service completions and inter-
departure times, respectively.

Now consider a single isolated queue with
FCFS discipline. It is not reasonable to
describe the queue as a whole as memory-
less; even if the arrival and service proc-
esses are memoryless, the response time a
job experiences will be dependent on the
number of other jobs ahead of it. A Markov
process has a limited amount of memory.
This memory consists of distinct disjoint
states. The time the process spends in a
state is exponential; the memory consists
only of the state distinctions. (We are con-
sidering continuous time processes only, as
is usually the case. Analogous statements
can be made if time is represented as dis-
crete units.)

For the queue we have just described,
the Markov states are uniquely determined
by the number of jobs at the queue. The
queue changes from one state to another
when a job arrives or departs. To obtain a
solution for this process means to solve for
the equilibrium probabilities of each state.
This is done by solving a set of linear equa-
tions (balance equations) equating the rate
at which the process leaves each state to
the rate at which it enters the state. (A
distinction is sometimes made between
global and local balance equations. The
equations just described are the global bal-
ance equations. Local balance equations ig-
nore some of the terms of the global balance
equations without affecting the solution.
This is only possible for special kinds of
Markov processes.)

Before returning to queueing networks,
let us consider generalization of service
time distributions. The same approach may
be used with interarrival time distributions,
but this is not often done with queueing

networks. In addition to the memoryless
property, the exponential distribution also
has the characteristic that the standard
deviation is equal to the mean. If we want
to represent a distribution with standard
deviation greater than the mean but still
retain as little memory as possible, we can
use the hyperexponential form of Figure 2.
An individual service time will be exponen-
tially distributed with mean S~ with prob-
ability pl and exponentially distributed
with mean $2 with probabilityp2. The figure
represents a special case of the hyperexpo-
nential distribution; it will have coefficient
of variation greater than one if pl ~ p2. S is
the mean service time.

On the other hand, if we want to repre-
sent a distribution with coefficient of vari-
ation less than one, we can use the hypoex-
ponential form of Figure 3. In this case a
service time consists of the sum of several
exponential service times. Both the hyper-
exponential and hypoexponential forms are
special cases of the method of (exponential)
stages [Cox55]. The method of stages al-
lows us to closely represent most service
time distributions with the only memory
introduced being the distribution stage of a
service time in progress. For example, if we
substitute a hyperexponential service time
in our single queue example, then we distin-
guish Markov states of the process by the
distribution stage of the job in service as
well as by the number of jobs at the queue.
For a discussion of equivalence of various
forms of the method of stages, problems
with low coefficient of variation, and a heu-

$1 : S..//(2p I)

S 2 = S//(2 p2)

FIGURE 2. Hyperexponential form.

5d " S/D
i- / 7 d '~ '

!
!

u.._ .]

FIGURE 3. Hypoexponential form.

Computing Surveys, Vol. 10, No. 3, September 1978

ristic solution to those problems see
[SAUE75a]. For most of the remainder of
the paper we assume time distributions rep-
resented by the method of stages.

Having discussed the necessary back-
ground, we now characterize tractable
queueing networks. A queueing network
will have a tractable solution if one or more
of the following conditions are met:

1) State Space Size: The balance equa-
tions can be mechanically generated
and numerically solved in an ade-
quately short amount of time.

2) State Transition Structure: The state
transitions are such that recursive
techniques may be used to obtain the
probabilities of a few states, and then
the queue length distributions can be
expressed in terms of these states
[Herz75, SAUE75a].

3) Product Form: The equilibrium state
probability distribution consists of
factors representing the states of the
individual queues, i.e., P(S~ S~)
ffi (l/G) P(S~) . . . P (SK) where P(S,)
is the probability that the ith queue is
in state S, and P(S1 SK) is the
probability that the network is in state
($1, . . . ,SK). (G is a normalizing con-
stant chosen so that the probabilities
sum to one.)

Though in all three cases we can obtain
performance measures such as throughput
from the state probabilities, this is usually
computationally inappropriate. For exam-
ple, throughput can be obtained directly
from normalizing constants without explicit
consideration of state probabilities
[DENN78a]. (See pp. 225-261, this issue.)
With each of these conditions one can as-
sociate programs written to solve networks
meeting that condition.

The best known program corresponding
to the first condition is RQA [WALL66].
Experience with this program indicates
that it is useful with models having not
more than a few thousand states. Unfortu-
nately, many models will have much larger,
perhaps infinite, state spaces. Though there
have been recent results on generating bal-
ance equations [GAVE76] and on numerical
methods for this problem [STEW78], there
is no indication that significantly larger

Approximate Methods 287

state spaces will be accommodated. Note
that the generality of the technique is lim-
ited only by algorithm complexity and ma-
chine resources.

The method of [HERZ75] corresponding
to the second condition has only been ap-
plied to cyclic queue models (Figure 4) con-
sisting of two queues with a fixed popula-
tion of jobs. This technique is attractive
because exact answers may be obtained
rapidly for a variety of interesting queueing
disciplines [SAUE75a]. A drawback is that
a different procedure is required for each
combination of queueing disciplines in the
recursive method (as opposed to RQA). On
the whole, this method is beneficial and is
the basis of some of the approximations in
Section 3. It has also been used directly in
the parametric analysis of multiprocessing
systems [SAuE77b].

The most important tractable models are
those corresponding to the third condition,
i.e., those having a product form solution.
The exponential networks of [GORD67 and
JACK63] have such a solution. Recent ef-
forts [BASK75, CHAN72, DENN78, REIS75]
have shown that many other networks have
a product form solution. Programs such as
ASQ [KELL73] and RESQ [REIs78] can
analyze large product form networks in an
adequately short time. In the remainder of
this section we describe an important sub-
set of the networks with product form so-
lutions. The reader should be aware that
this description is incomplete and should
refer to the cited original works for formal
and complete descriptions.

A queueing network of this subset con-
sists of a set of jobs, a set of queues, an
infinite source of jobs, a sink, and a set of
routing rules. The jobs are partitioned into
groups called "routing chains," or simply,
"chains," by the routing rules. All jobs of a

CPU I/O

FIGURE 4. Cyclic queue model.

Computing Surveys, Vol. 10, No. 3, September 1978

288 K. M. Chandy and C. H. Sauer

given chain are identical in their behavior.
A chain is open if it is connected to the
source and sink, and closed if it is not
connected to these. (Thus a closed chain
has a fixed population of jobs.) A network
is mixed if it has both kinds of chains. The
arrival process of jobs from the source is
Poisson.

A queue consists of a set of devices, a
queueing discipline, and a set of "local"
classes. Two alternate, functionally equiv-
alent representations of job classes have
appeared in the literature. One considers
classes to be global in the sense that a job
belongs to that class unless it explicitly
changes class. The other approach, the one
we adopt, consists of classes local to queues
and explicitly partitioned by routing chains.
This representation facilitates implemen-
tation of solution packages [REIS78] and is
often more convenient for model formula-
tion. Global classes must also be partitioned
into chains for non-simulation solutions;
this is often ignored.

We will use Figure 5 to illustrate the
concept of chains, local classes, and global

I class ~ II0 Device 2 I

FICuRE 5. Single routing chain with fodr classes.

Terminals
c l a s s ~

classes. This figure shows three queues and
four local classes. The four classes form a
single routing chain because a job of one
class will eventually join any other class. If
we represented this network using global
classes, we would need two global classes.
For example, let global class A consist of
local classes 1 and 2 and let global class B
consist of local classes 3 and 4. When a job
leaves device 1 it changes from (global)
class A to class B; a job leaving device 2
changes from class B to class A.

If a job of a certain chain is to be routed
to a given queue, then that queue must
have one or more classes associated with
the chain. The different classes of a queue
may have distinct routing and, under con-
ditions described below, may have distinct
service time distributions. However, differ-
ent priorities may not be assigned to the
classes if a network is to retain a product
form solution.

Consider the example of Figures 6, 7, and
8. They represent a computer system serv-
ing a set of terminals and also supporting a

Source Sink

Disk Queue

FIGURE 7 Open chain (batch load).

Disk Oueue

/_,,
fcl ass 2 '~ ~ss.~2 ~/ Drum Oueue \

. . . . 2

FICURE 6. Closed chain (terminal load).

Computing Surveys, Vol. 10, No. 3, September 1978

01sk Queue

1 2 f x 6 I i

FIGURE 8. Central server model with terminal and
batch loads.

batch workload. There are two routing
chains: a closed chain representing the in-
teractive load and consisting of classes 1
through 4, and an open chain representing
the batch load and consisting of classes 5,
6, and 7. Assume the closed chain popula-
tion is equal to the number of terminals. As
this example illustrates, we consider the
routing to be from class to class rather than
from queue to queue. Where alternate rout-
ings are possible we must specify the rela-
tive frequency associated with each path.

For a certain class of queueing disci-
plines, which we shall call product form
disciplines [CHAN77], different classes of a
queue may have different service time dis-
tributions. The two most common in-
stances of product form disciplines are 1)
processor sharing, and 2) when the number
of jobs at the device never exceeds the
number of devices (the "infinite server"
queue). The service time distributions at
queues with product form disciplines may
be non-exponential.

If a queue has a FCFS queueing disci-
pline (and fewer devices than the possible
queue length) then all classes of the queue
must have the same exponential service
time distribution. The service times may be
"load (queue length) dependent.

2. EXAMPLES OF SYSTEMS THAT ARE
ANALYZED VIA APPROXIMATION

We have attempted to motivate the reader
to consider the use of approximations (In-
troduction) and we have outlined the class
of models that can be analyzed without
resorting to approximations. Models that
require the use of approximation tech-
niques usually represent reality more faith-
fully than models that do not. The question

Approximate Methods • 289

is--which is preferable: approximate solu-
tions to relatively faithful models, or exact
solutions to relatively unfaithful (tractable)
models? The question cannot be answered
without empirical evidence. However, if a
model ignores the existence of a resource,
that model cannot be used to design or
schedule the ignored resource. For example,
if peripheral processors are ignored in a
central server model, we cannot use that
model to determine the effect of the num-
ber of PPs on performance, and then ap-
proximations, simulation, or measurement
are the only alternatives.

In this section we discuss problems that
force the use of approximations, because
tractable models fail to represent key as-
pects of these problems. Our goal in this
section is to introduce the reader to a wide
variety of such problems and to the litera-
ture describing successful approximate so-
lutions to these problems.

Distributions and Disciplines

If service time distributions in a model have
high coefficients of variation, and if the
corresponding queueing disciplines are not
product form disciplines (for example,
FCFS), then the values of performance
measures obtained from the model may be
substantially different from values obtained
assuming product form [SAUE75a]. For ex-
ample, consider a cyclic queue model (Fig-
ure 4) with a single CPU, a single I/O
device, and three jobs. If the mean CPU
service is 40 ms., the coefficient of variation
of CPU service time 5, and the mean I/O
service time 40 ms. with an exponential
distribution, then the CPU utilization with
FCFS queueing at the CPU will be 64.9%.
If we assume a product form CPU queueing
discipline, e.g., PS, then the utilization will
be 75.0%--a relative error of 15.6%.

Priority queueing disciplines usually give
significantly different results than FCFS
and PS. Networks of queues with priority
disciplines have been solved approximately
[CHAN75b, REIS76, SAUE75b, SEVC77a].

Multiple Resource Holding

A job may hold more than one resource at
a time as in the peripheral processor ex-

Computing Surveys, Voi. 10, No 3, September 1978

290 • K. M. Chandy and C. H. Sauer

ample. In the example in the Introduction,
a PP does not have a service time associ-
ated with it; the length of time that a PP is
held depends upon other devices such as
disks. Main memory is another example of
an important resource that does not have
a service time associated with it, though
jobs need main memory to use other de-
vices such as the CPU. Resources that do
not have service times associated with
them, but limit the population of jobs that
may utilize other devices, are called passive
resources [FoST74]. Busses and switches in
multiprocessing architectures are examples
of critical resources that are passive.
Models with passive resources have been
analyzed approximately [BRow77,
BRow75, D~,NN76, KELL76, SEKI71].

Blocking

Most models with passive resources allow
an arbitrarily long queue for the passive
resource. Thus, the passive resource serves
only to limit the population of jobs in cer-
tain systems; for example PPs limit the
population of jobs in the disk subsystem. It
is usually assumed that a device will serve
jobs whenever there are jobs in that de-
vice's queue. However, in models of packet
or message-switching systems, a device may
be blocked (Figure 9), i.e., prevented from
serving "jobs" in its queue because a queue
elsewhere in the network is full to its ca-
pacity and cannot accept any more jobs. In
some communication systems a job at-
tempting to enter a queue that is filled to
capacity may be lost, i.e., disappear from
the system. In some systems a device may
expect an acknowledgment that a job
(packet) has safely entered the next queue;
if it does not get an acknowledgment in a
specified period of time it may re-serve the
job, i.e., retransmit the message. Queueing
network models with blocking, lost mes-
sages, or acknowledgments do not satisfy
product form. However, such models have

Finite t~altin 9 Roo~

D - iJJ...li -C}
Source Queue 1 ~ Queue 2 Sink

\
Server 8locked When Queue 2
~elttn9 RO0~ Full

FIGURE 9 Blocking.

been analyzed approximately [IRLA75,
LAM76].

Schedulers

In many systems the processes that act as
schedulers are not always active. Thus a
job waiting for memory may have to wait,
after memory becomes available, until the
memory scheduler is activated.

The length of time that a job must wait
for schedulers to become activated to allo-
cate resources to it may comprise a signifi-
cant part of the overall delay experienced
by ,the job, especially in systems with a
significant degree of process communica-
tion. Schedulers are clearly a scarce re-
source in this context. However, they are
different from other resources such as
CPUs and disks because 1) a scheduler is a
program that requires the CPU to run, and
hence a job needs two resources to get
service: the CPU and the scheduler, and 2)
a scheduler, once it is activated, may serve
several jobs in a relatively short time, in
which case it is incorrect to model the ser-
vice time of a scheduler as the length of
time between scheduler activations,
whereas it is equally incorrect to model the
service time as the length of time required
for the scheduler to handle a single job after
it has been activated. Systems with sched-
ulers have been modeled approximately
[BROW77].

Parallelism: Forks and Joins

Some systems allow jobs to fork, spawning
new tasks that can be processed in parallel.
For instance, CPU:I/O overlapped process-
ing has been modeled by means of prece-
dence graphs showing forks and joins
[Tows75]. In the CPU:I/O overlap model,
a job is assumed to make several cycles
where each cycle is modeled as a prece-
dence graph (Figure 10). Each cycle in this
example consists of three tasks; at the start
of the cycle a CPU task must be performed.
This task might set up the buffers for an
I/O operation. After this task has been
completed the job forks, creating two tasks
that may proceed in parallel. One of the
tasks requires an I/O device while the other
requires the CPU. Only after all the tasks

Computing Surveys, Vo|. 10, No. 3, September 1978

I/0 Task

FIGURE 10.
model.

. s t a r t of cycle

CPU Task

~ CPU Task

? doin

Precedence graph for CPU. I /O oveNap

in a cycle have been completed can the next
cycle be initiated. This model does not sat-
isfy product form. Relatively complex over-
lap models have been solved by approxi-
mation methods [Tows75]. Similar prob-
lems appear in communication networks
[SAuE77C].

Routing

Most queueing network models assume
that the frequency at which a job will join
class j after leaving class i is a constant qu,
independent of the state of the system.
However, there are systems in which the
route that a job takes through a network of
queues is designed to depend upon the state
of the system. For instance, a job requiring
the use of a computing system in a multi-
computer network may be allowed to use
any one of a pool of computers. In this case
a reasonable scheduling policy is to direct
the job towards that computer with the
least expected delay; thus the job's path
depends upon the relative congestion at
different computers. Such load balancing
models do not generally satisfy product
form.

However, Towsley has defined a class of
load balancing strategies for closed net-
works that do satisfy product form
[Tows75]. Foschini has studied load bal-
ancing (also called dynamic routing) by
means of diffusion approximations
[Fosc77]. A general approach to approxi-

A p p r o x i m a t e M e t h o d s • 291

mation methods for dynamic job routing is
yet to be devised.

Summary

The above problems are some of the char-
acteristics that preclude tractable solutions.
They are discussed in roughly descending
order of importance, based on the amount
of attention each has received in the com-
puting literature. We do not believe a strict
ordering can be given; importance of these
characteristics varies from system to sys-
tem. For example, it is generally assumed
that CPU:I/O overlap is not significant, but
individual systems may have a high degree
of overlap, sufficient to make overlap more
important than distributions, disciplines, or
multiple resource holding.

3. AGGREGATION (DECOMPOSITION)
APPROXIMATIONS

Perhaps the most important approximation
strategy in queueing networks is that of
aggrega t ion: one solves portions of the
model in isolation ("offline") and gathers
the results together ("online") to produce
a solution of the whole model. This ap-
proach has also been referred to as decom-
pos i t i on . One can view the strategy alter-
nately as decomposition of the whole model
or as aggregation of portions of the model.
The choice of terminology is primarily a
matter of emphasis and personal taste. Sim-
ilar methods have been used for a long time
in combinatorics, systems theory, and arti-
ficial intelligence. Indeed, the motivation
for such methods in queueing networks
came from similar approaches in general
systems theory and in electrical networks.

These methods can be shown to give
exact solutions for queueing networks with
product form solutions [CHAN75a]. Though
aggregation is computationally advanta-
geous in parametric analysis of product
form networks [CHAN75a], our interest will
be in networks without tractable solutions.
In these cases the strategy wi l l cause s o m e
error because the aggregation process does
not totally capture the interaction between
the individual portions. The bulk of this
section will be concerned with the represen-
tation of interfaces between portions.

Computing Surveys, Vol. 10, No. 3, September 1978

292 K. M. Chandy and C. H. Sauer

There is another very important justifi-
cation for the aggregation strategy
[COUR75, COUR77]: loose coupling of sub-
networks. This is in addition to the justifi-
cation based on results for product form
networks. We will discuss the loosely cou-
pled justification later in this section.

Flow-Equivalent Methods

A basic approach is to replace a subnetwork
of queues by a single ("composite") queue
which is flow-equivalent to the subnetwork,
i.e., the job flow through the composite
queue is equal to the job flow through the
subnetwork. This can be done repeatedly,
replacing subnetworks (including those
with composite queues) by flow-equivalents
until the solution of the resulting network
is tractable. There may be additional con-
straints on the aggregation process, e.g., if
we need to find performances measures for
a particular queue, this queue should ap-
pear explicitly in the network after aggre-
gation.

Determination of the flow-equivalent is
not obvious. In this section we will discuss
exact flow-equivalents and approximations
based on variations on exact flow-equiva-
lents proposed for other networks. In Sec-
tion 4 we discuss methods for estimating
the amount of error introduced and taking
appropriate corrective action.

We assume, for the time being, that the
subnetwork has a single routing chain and
that there is a single input path to the
subnetwork and a single output path from
the subnetwork. We primarily discuss
closed networks since most of the research
and application of fiow-equivalent methods
has concerned closed networks. (It should
be pointed out that flow-equivalents also
apply to open and mixed networks.)

First we must determine the mean ser-
vice time for the composite queue. One
obvious estimate would be the expected
time spent in service in the subnetwork.
However, this estimate may be much too
low if all jobs in the composite queue re-
ceive parallel service; if only one composite
queue job receives service the estimate is
high if several jobs may be in service si-
multaneously in the subnetwork. Thus we
must let the composite queue service times

be load dependent (dependent on the
queue length of the composite queue).

A method for determining composite
queue service times that gives exact results
for product form networks [CHAN75a] is
the following: Consider the subnetwork
with the output fed back to the input, i.e.,
consider the subnetwork offline. Determine
the throughput, X(n), along this feedback
path for each possible job population size n
in the subnetwork. Set S(n), the mean ser-
vice time of the composite queue given n
jobs in the queue, to 1/X(n). In other words,
if the network satisfies product form, then
the online behavior of the subnetwork is
identical to its offline behavior.

Passive Queue Flow-Equivalents

To illustrate an approximation using a
flow-equivalent method consider the 4 PP
example of the Introduction. Let the sub-
network be the PP and disk queues (Figure
11). From [CHAN75a, DENI~78] we know
that X(n), n = 1,2,3,4 will be G(n-1)/G(n),
ignoring the PP queue. Further X(5) must
be the same as X(4) since there will never
be more than 4 jobs in the disk queues.
Replacing a subnetwork with the load-de-
pendent composite queue (Figure 12) re-
sults in a network that satisfies product
form and is easily solved. Since the 4 PP
model violates product form conditions, we

~11ocate PP ~ ~ Release PP

FIGURE 11 PP/disk subnetwork with output con-
nected to input.

CPU Composite Queue

s(1) = l/x(1)
I = I , . . . ,5

FIGURE 12. 4PP model with subnetwork replaced by
flow-equivalent.

Computing Surveys, Vol. 10, No. 3, September 1978

Approximate Methods 293

f Hem°rY P°°l I I "
I %
I I

[' :

t 1 t
'

~ Allocate CPU Allocate ~ ~ Release Release
~ - J Hemory pp ,,m ~ pp Hemory

Tenni nal s

FIOURE 13 PP models with memory and terminals.

cannot expect performance measures of the
network of Figure 12 to be the same as the
corresponding measures of the original net-
work. But the difference is very small
[KELL76], and the aggregation is both rea-
sonable and economical.

As a numerical example, consider a PP
model with parameters chosen for ease of
solution and exposition. Let there be a de-
gree of multiprogramming of 3, 2 PPs, and
2 disks. Let the mean service time at the
CPU and each disk be exponential with
mean 40 ms. Assume all queueing disci-
plines are FCFS. The routing frequencies
to each disk are equal. {Remember that this
network does not satisfy product form.)

The exact value for CPU utilization is
82.6% [KELL76]. If we consider the PP-disk
subnetwork offiine with the output fed back
to the input, we find X(1), the completion
rate with 1 job in the offline system, to be
25 jobs per second. X(2) is 33.3 jobs per
second and X(3) is also 33.3 since at most 2
jobs can be in the disk queues. (Without
this restriction X(3) would be 37.5.) Substi-
tuting this offline behavior in the CPU-
composite queue network we give the com-
posite queue a mean service time of 40 ms.
with load (queue length) 1 and 30 ms. with
load 2 or 3. Solving this two queue (product
form) network for CPU utilization we get a
value of 83.0%. Thus the error in this case
is small. If we solve a similar model with 3
PPs to get an upper bound on CPU utili-
zation, this bound would be 84.6%.

Note that this replacement of subnet-
works by flow-equivalents may be repeated.

9[

Allocate /~mory CPU PP/DlSkS Releise ffemory

FIGURE 14 Network to be replaced with flow-eqmv-
alent

Consider the model of Figure 13. Here the
4 PP model is embedded in a network also
representing memory contention and ter-
minal think times. After making the above
aggregation of the PP and disk queues, we
can construct a flow-equivalent of the mem-
ory, CPU, and composite PP/disk queue in
a similar manner (Figure 14). We are as-
suming that each job has the same fixed
memory requirement. The more realistic
case in which jobs require variable amounts
of memory has been treated using flow-
equivalents [BRow77].

Flow-Equivalents with Non-Exponential
Distributions

As mentioned earlier, another situation
where approximations succeed is the case
of FCFS queues with non-exponential dis-
tributions. The 4 PP model had processor
sharing as the CPU queueing discipline, but
now suppose it was FCFS. Since the CPU
service time distribution was given as hy-
perexponential, the model corresponding to
Figure 12 would not be solvable by product
form methods. However, the recursive
method of [HERz75] (the second condition
in Section 1) is well suited to this new two

Computing Surveys, Vol. 10, No. 3, September 1978

294 K. M. Chandy and C. H. Sauer

queue model, and again we get results close
to the correct solution with little computa-
tional effort [KELL76].

Let us now consider a traditional central
server model (without peripheral proces-
sors) in which all service times may be non-
exponential and all queueing disciplines are
FCFS. Again a reasonable approach is to
isolate the I /O queues and try to find a
flow-equivalent composite queue represen-
tation. Pictorially this would correspond to
Figures 1, 11, and 12 without the passive
queues. As we explain below, the solution
of the I /O subnetwork and the composite
queue representation are more difficult is-
sues than with the 4 PP network that was
similar to a product form network. Though
this problem has received considerable at-
tention, the known approaches must be
considered heuristic, since they are sup-
ported primarily by intuition and empirical
studies rather than rigorous proofs.

Presumably we still want to use a load-
dependent queue as an approximate flow-
equivalent of the I /O subnetwork because
it represents reality more realistically.
Three key issues must be faced:

1) How do we estimate the mean service
times S(n) for the (approximately)
flow-equivalent system? This seems
to be the most crucial issue. There are
several ways of estimating the
throughputs in the subnetwork; unfor-
tunately, the better the estimation,
the more expensive the method.

2) How do we choose the service time
distributions in the flow-equivalent
system? The emphasis in this work
has been on selecting variances
[SAUE75b, SEvc77b], though there
has been an increasing realization that
percentiles are very important
[Bux77, LAZO77].

3) How do we select the queueing disci-
pline in the flow equivalent system?

Issue 1: Selecting mean service times S(n)
for the flow-equivalent system. (All of the
following methods extend to general net-
works.)

Method 1: Figure 15 shows the network
obtained by feeding the output of the I /O
system back on itself. This corresponds to

taking the I /O system "offiine." If any one
of the I /Os has non-exponential service
times, it does not satisfy the conditions of
product form, and therefore the system
may be very time-consuming to analyze.
However, the most accurate solution is to
model this subnetwork as a discrete-state
Markov process and to then determine
steady-state probabilities numerically, and
thus compute the exact mean service times
of the flow-equivalent.

Method 2: [ZAHO77] If there are many
I /Os then the number of states in the Mar-
kov model of the subnetwork may be so
large as to make the problem intractable.
Suppose we have a technique to determine,
relatively rapidly, the steady state proba-
bilities for a network with J I/O devices.
We may determine the approximate flow-
equivalent composite I /O in several steps.

S tep 1: We may group together the
first J I /O devices and represent this group
by a flow-equivalent system with exact
rather than approximate service rates. We
may then group together the next J devices
and determine the flow-equivalent system
for this group and so on. We may choose to
have exponential or non-exponential ser-
vice times for the flow-equivalent system.

S tep 2: If the flow-equivalent systems
in the first step are given non-exponential
service times, in the second step we may
determine the flow-equivalent for a group
of J flow-equivalent systems obtained in
the first step; thus in the second step we
determine the approximate flow-equivalent
for j2 devices, and we proceed in this fash-
ion until we have an approximate flow-
equivalent for the entire I /O system. This
process takes logjM steps, where M is the
number of I/Os.

If the flow-equivalents obtained in the
first step are given exponential service

I1[
FmvnE 15 I / O subnetwork.

Computing Surveys, Vol. 10, No. 3, September 1978

times,, in the second step we have a network
of systems each of which satisfies product
form conditions, and hence we may deter-
mine the approximate flow-equivalent for
the entire' I /O system in two steps. This
method will usually be less accurate than
the previous method.

Method 3: We may make the assump-
tion that all I /O devices have exponential
service times, in which case the subnetwork
has product form, allowing us to compute
the subnetwork throughputs and the mean
service rates in the approximate flow-equiv-
alent directly. This method is very quick
but probably not very accurate.

I s sue 2: Selecting service time distribu-
tions for the flow-equivalent system.

The emphasis has been on selecting the
most appropriate second moment. There
has been no work on the potentially valua-
ble method of using percentiles of the in-
dividual service distributions to determine
the percentiles of the service distribution of
the composite system.

The simplest solution is to assume that
the service times of the composite system
are exponential (as in Method 3 above).
However, this solution can result in consid-
erable error. A more realistic solution is to
estimate the second moment of the com-
posite system from the second moments of
its component parts.

Let C V be the coefficient of variation of
the service time, and let a -- CV2-1. Thus
a is negative for hypoexponentials, positive
for hyperexponentials, and zero for expo-
nentials. Use the subscript C for the com-
posite system and the subscript i for the ith
I /O device. Let p, be the routing frequency
for a job entering the I/O system going to
the ith I /O device. Sauer and Chandy pro-
pose the following heuristic formula for the
coefficient of variation of the composite
system [SAUE75b]:

e v e ffi Z p, CV,.

Sevcik, et al. propose a more accurate for-
mula [SEvc77b]:

ac ffi Z P, 2a,

for heavy load conditions and also the fol-
lowing complex, but more accurate, equa-
tion:

A p p r o x i m a t e M e t h o d s 295

2

where M, is the mean service time of the
ith I /O device and Mc the mean time a job
is in service in the subnetwork.

The general problem of estimating sec-
ond moments of job inter-arrival times at
different points in general networks has
received considerable attention, though the
focus has been on networks with a single
chain of jobs, one job class per queue, and
FCFS queueing disciplines. Considerable
work remains to be done in the area of
networks with priority and other multi-
class disciplines. Sevcik, et al. [SEvc77b]
has the most comprehensive treatment of
this issue, based in part, on earlier work
[DISN74, GELE76, KOBA74, REIS74].

A summary of the results in [SEvc77b] is
presented in Figures 16, 17, and 18. Once

Branch

Total ~ ~ ~ R o u t i n g Frequency P

a(Branch) = p.a(TOTAL)

FIGURE 16. Estimating second moment ofspilt flow.

Departure

Arrival v [, , ~

/
Service

a(Departure) = Ut111zation 2 • a(Service)
+ (l -Ut i l izat ion 2) • a(Arrival)

FIGURE 17 Estimatmg second moment of interde-
parture times.

Branch ~ / a(t~rge)

Merqed Flow

B r a n c h 2 ~ ~ i ~ ' p -
Pl = (Branch I Flow)/(Merqed Flow)

a(Merqe) = Z Pl 2 a(Branch l)
FIGURE 18. Estima~ng second moment of merged

flow

Computing Surveys, Vol 10, No. 3, Sepzember 1978

296 K. M. Chandy and C. H. Sauer

the coefficient of variation is computed, the
conventional approach is to represent the
service time as a sequence of exponential
stages (see Section 1).

Issue 3: Queueing disciplines.
The queueing discipline of the composite

system does affect performance measures
in the CPU-composite I/O network. Unfor-
tunately, there has been very little work in
the area of selecting queueing disciplines.
Queueing disciplines have been selected
more to reduce computational complexity
than to better model the composite system.
If there are many chains in the network,
the assumption of processor sharing at each
queue results in the simplest state-transi-
tion diagram. Usually, PS gives the same
results for non-exponential distributions as
exponentials, thus discarding efforts to
characterize distribution form. Processor
sharing allows a job to enter the I /O sub-
system after another job B, but to leave
before B leaves. For this reason we might
choose a FCFS discipline for the flow-
equivalent system for a sequence of FCFS
queues in series. However, it must be em-
phasized that such arguments are merely
educated guesses, and much empirical work
needs to be done in this area.

In summary, the specification of flow-
equivalent systems is still an art. However,
empirical simulation work and case studies
of real systems are leading to a better un-
derstanding of this problem.

General Closed Networks (Multiple Chains)

So far we have been assuming a single
routing chain. The approximation tech-
niques can be extended to multiple chains,
but relatively little has been done in this
area. The ease or difficulty of the extension
depends on the similarity between the
chains and on the number of chains.

Suppose we have a central server model
with two chains. The chains are parallel in
their routing (Figure 19), and the only
queue that violates product form conditions
is the CPU queue. We can determine a
flow-equivalent of the I/O subnetwork in a
manner analogous to the single chain case
by connecting the output of each chain to

the input of that chain, i.e., once again
studying offline behavior. From considera-
tions similar to the single chain case we
determine the throughput Xc(nl, n 2) for
each chain (c ffi 1, 2) for nc = 1 , Nc and
n 3 - c = 0 , N3-~. This computation is
similar to the single chain case, e.g.,
Xl(nl, n2) ffi G(nl - 1, n2)/G(nl, n2)
[CHAN75a]. However, the choice of
queueing discipline for the composite queue
encounters the same sort of problems as
those discussed in the previous subsection.
One possible approach to specifying the
queueing discipline is given in [SAUE75b]:
Each chain has a dedicated device in the
composite queue. Jobs of a chain are ser-
viced FCFS by the dedicated device with
load dependent service times SAn1, n2) =
1/X~(nl, n2). This discipline was chosen as
being generally reasonable, but there are
cases where it would be unrealistic, e.g.,
when the I /O subsystem consists of a single
FCFS queue.

Even after replacement of the I/O sub-
system by the approximate flow equivalent,
the network consisting of the CPU queue
and composite queue may be difficult to
solve. For example, the CPU queue may
violate product form by having a FCFS
queueing discipline with different service
time distributions for the classes of the
different chains. The solution of the CPU
and composite queue model must take into
consideration the possible orderings of jobs
of the different chains, and this increases
the state space size drastically. Thus the
solution quickly becomes unmanageable
with even moderate chain populations.

Other important cases violating product
form allow priorities among the different
classes at the CPU queue. Because priori-
tie~ eliminate many of the possible order-
ings of jobs, the FCFS ordering problem
will be. reduced by priorities, possibly even
eliminated, depending on preemption rules.

~ - - - i i_j - J ~ _ 1

FXGURE 19. C e n t r a l s e r v e r m o d e l w i t h two cha ins .

Computmg Surveys, VoL 10, No 3, September 1978

But these cases also become unmanageable
with moderate numbers of chains (e.g.,
five).

When the CPU-composite queue net-
work becomes unmanageable because of
chain populations and/or numbers of
chains, one can attempt aggregation of
chains as well as aggregation of queues. In
aggregation of queues one replaces several
queues by a composite queue that is ap-
proximately flow-equivalent as far as the
remaining jobs are concerned. In aggrega-
tion of chains one replaces several chains
by a single chain that is approximately
equivalent as far as the remaining jobs are
concerned. The approach used in
[SAuE75b) is first to solve a central server
model identical to the given model, except
that the CPU queue with disciplines violat-
ing product form is treated as a processor-
sharing queue. The service times at the I/O
queues are the same for all chains, assuming
FCFS disciplines at those queues. For the
chain-dependent values (the CPU service
time distributions and the routing frequen-
cies) the "composite chain" values are de-
termined as a weighted sum of those values
for the componen t chains. The weights
used in [SAuE75b] are the throughputs of
the component chains divided by the sum
of the throughputs of the component
chains. Other weights may be used, e.g., the
number of jobs of the component chains
divided by the total population of the com-
ponent chains [MAcN75].

These techniques extend to networks
with more complex routing structures than
the central server model; the appendix con-
tains an example.

Flow-Equivalents in Simulation

Some of the subsystem flow-equivalents
could be constructed from simulations, i.e.,
by simulating a subnetwork. We could also
use simulation to analyze the model with
the flow-equivalents. Note that flow-equiv-
alent methods are totally general because
the technique used in constructing flow-
equivalents (e.g., simulation, queueing the-
ory, regression analysis) is left unspecified.
See [CHIU78, SAUE76, and SCHW78] for fur-
ther discussion of this approach.

Approximate Methods 297

Justification of Aggregation

We informally described the class of prod-
uct form networks in Section 1. At the
beginning of this section we stated that
aggregation was exact for product form net-
works, i.e., one can determine the flow-
equivalent of a product form subnetwork
and use the flow-equivalent in a product
form network as if it were the given sub-
network. This should be plausible to the
reader, since the state of a product form
network factors into components represent-
ing the states of the queues of the network.
Informally, aggregation of the queues cor-
responds to association of the factors. For
a more formal discussion see [CHAN75a].

The primary justification we have im-
plicitly used for aggregation approximation
is the exact aggregation of product form
networks. This justification becomes less
credible as the network to be solved be-
comes "less similar" to a product form net-
work. Examples include the number of
queues violating product form conditions
(e.g., distributions and disciplines) increas-
ing, an individual queue tending to deviate
greatly from product form conditions (e.g.,
service times at an FCFS queue having very
small or very large coefficients of variation),
and conditions such as multiple resource
holding becoming dominant. There is an-
other justification, loosely coupled subnet-
works [CouR75, COUR77], which is inde-
pendent of product form conditions. The
product form justification holds regardless
of the degree of coupling of subnetworks;
the loosely coupled justification holds re-
gardless of product form conditions.

We illustrate degree of coupling by an
example. Consider a closed queueing net-
work with two subnetworks A] and A2 (Fig-
ure 20). A job leaving a subnetwork is fed
back to the input of the same subnetwork
with frequency p, and goes to the other

FmURE 20. Two loosely coupled subnetworks, p ffi 1.

Computing Surveys, Vo|. 10, No. 3, September 1978

298 K. M. Chandy and C. H. Sauer

subnetwork with frequency 1 - p. Consider
the limiting behavior of this network as p
tends to 1, but p < 1. The rate of flow of
jobs between the subnetworks decreases as
p increases, which implies that the times
between subnetwork interactions (job tran-
sitions) increase. In the limiting case of p
arbitrarily close to but less than 1, each
subnetwork may be assumed to reach equi-
librium between subnetwork interactions.
This key idea will be developed further.

If p = 1 the network decouples into two
closed networks BI a n d B2 (Figure 21)
where B,, i = 1,2 is the network obtained
by feeding the output of A, back to its input
(Figure 20). Let there be C chains in the
network and let Xc(nl, . . . , nc) be the equi-
librium throughput of chain c jobs in Be
when the population of B2 is n], ..., nc for
chains 1 , C, respectively. Suppose we
wish to study the detailed behavior of jobs
within A]. Then we may replace A2 by a
composite queue that has a mean service
time of 1/((1 - p)Xc(n] nc)) for class c
jobs (at a device dedicated to class c) when
the queue population is nl , nc. (The
service distributions may be set to the in-
terdeparture distribution in B2. It can be
shown that as p approaches one the inter-
departure distribution becomes exponen-
tial.) Decoupling works as p tends to 1.

Summary

The key concept in aggregation is to replace
a subnetwork by a simpler one, ignoring the
interactions of subnetwork components not
of interest to us. In the terminology of
Denning and Buzen [DENN78], we are as-
suming that the subnetwork's offline be-
havior is identical to its online behavior.
The basic problem is to 1) develop a frame-
work for characterizing the offline behavior,
2) solve the subnetwork to estimate these
characteristics, and 3) aggregate the behav-

FIGURE 21. Decoupled subnetworks.

ior of subnetworks until we obtain a net-
work with a tractable solution. We have
assumed the concept of flow-equivalence as
a solution to the first part of the problem
and have illustrated approaches to the sec-
ond and third parts by examples.

4. IMPROVEMENTS OF FLOW-
EQUIVALENCE

The goal of flow-equivalence approxima-
tions is to simplify network analysis by
replacing a subnetwork by a single compos-
ite queue that behaves in approximately
the same way as the subnetwork. Further-
more, the composite queue must have sim-
ple queueing disciplines and distributions
to keep the computation manageable. In
this section we shall survey methods that
attempt to reduce the inaccuracies result-
ing from simplistic representations of sub-
networks. Rather than attempting to rep-
resent a subnetwork accurately, these
methods carry out the computation assum-
ing simplistic subnetwork representation
and later attempt to correct for the inac-
curacy in subnetwork representation. We
survey two such methods: iteration and
product form. We next discuss the common
aspects of these methods and then discuss
the methods in detail. The key concepts
used in the two methods can be combined.

An Overview of the Approaches

We partition a network A into subsystems
S1 S• in some suitable manner. Since
we analyze each subsystem in turn, we
would like to keep the number M of sub-
systems small. On the other hand, we do
not want a subsystem to be so complex that
analyzing it by itself becomes an unman-
ageable problem. We analyze each subsys-
tem S,, i = 1, ..., M in the following way.
Define (7,, the complement of S,, to be the
subnetwork obtained by removing S~ from
network A. C, is the system "seen" by S,.
Represent each system C, by a single com-
posite queue F,. Analyze the network con-
sisting of S, and F, by some suitable
method; the specific method selected de-
pends upon the complexity of S, and F,. If
a simple service rate structure (such as

Computing Surveys, Vol. 10, No. 3, September 1978

rates proportional to the number of jobs in
the system) is assumed for the flow-equiv-
alent system, it may be possible to get exact
closed form formulas for the performance
measures of the F, - S~ network; indeed,
such simple solutions are the motivation
for simple (approximate) rate structures for
F,. For general service rate structures, the
F, - S, network may be modeled as a Mar-
kov process and analyzed by a recursive
method, by sparse matrix techniques, or by
simulation. Since the F, are approximations
to the C,, the results of the analyses of the
F, - S, networks will generally be inaccur-
ate; informally speaking, the less accurate
the representation of the C, by the single
queues F,, the greater the error.

One consequence of this error is that the
estimates of the performance measures for
Sl, . . . , SM computed from the F, - S,
analyses may not be compatible with each
other. For instance, assume that we com-
pute the rate of flow of jobs through each
subsystem S, by analyzing the F, - S, net-
work. By multiplying the flow rate through
S, by the probability that a job leaving S,
will enter S~, we compute the rate of job
flow from S, to Sj. We may now compute
the total flow entering Sj by summing the
flows over all paths into Sj. If the analysis
were free from error the flow rate into Sj
must equal the flow rate through S~. How-
ever due to the approximations inherent in
the analysis of each subsystem, the com-
puted flow rates into S~ may not equal the
computed flow rates through Sj.

We can use several rules to check the
compatibility of the computed performance
measures for S~, ..., SM. The more checks
we use, the greater will be our faith in the
compatibility of the results. However we
may not wish to spend a great deal of
computing time on the checking process. It
must be emphasized that even though the
computed subsystem performance mea-
sures satisfy some compatibility tests, there
may still be errors in the computed mea-
sures.

The fundamental problem with comput-
ing performance measures for S~, ..., SM by
the method discussed above is that the
independent subsystem analyses emphasize
the local view; i.e., the subsystem itself is

A p p r o x i m a t e M e t h o d s 299

modeled in detail while everything else is
modeled in a gross fashion. The compati-
bility checks take a global network view.
Product form methods attempt to correct
for the local views emphasized in the inde-
pendent subsystem analyses by taking the
specific global network view discussed next.
Let p,(s~) be the value computed for the
equilibrium probability that subsystem S, is
in state s~ by analyzing the F, - S, network;
note that thep,(s,) are probabilities local to
subsystem S, - - the rest of the network is
ignored. Letp(s l , . . . , SM) be the equilibrium
that subsystem S, is in state s, for i ffi 1,
.... M; note that p(sl , SM) takes a global
network view because it is concerned with
all the subsystems in the network. Product
form methods assume that

1
p(s, SM) = ~ n p,(s,) all s, SM

where G is a normalizing constant. Thus
the local subsystem analyses are forced into
the global mold of the product form. Per-
formance measures are now computed from
the network probabilities, p(s l SM)
rather than from the subsystem probabili-
ties p,(s,).

Product form methods are often com-
bined with iterative methods; examples are
provided later.

Iteration methods take the global view
by making compatibility checks of the re-
suits of subsystem analyses. If the checks
are not satisfied, the single queue models
(iv,) of the complements (C,) are modified;
the specific method of modification de-
pends upon the specific iteration method
used. In the next iteration, the improved
single queue models are used in the F, - S,
analyses. The process of making compati-
bility checks and modifying composite
queue models is repeated until the compat-
ibility checks are satisfied.

There are two difficulties with this
method. First, satisfying the compatibility
checks is no guarantee of the correctness of
the results. Second, there is no guarantee
that the iterations will terminate. Yet, (per-
haps surprisingly) iteration methods seem
to work satisfactorily much of the time
[CHAN75b, LAM76]. We discuss some spe-
cific iteration methods next.

Computing Surveys, Vol. 10, No 3, September 1978

300 K. M . C h a n d y a n d C. H . S a u e r

Iteration Methods

The questions we shall focus attention on
are

• What are the subsystems that a net-
work is decomposed into?

What laws are used to check whether
the subsystem analyses are compati-
ble?

• What flow-equivalent models are used?
• How are the independent subsystem

analyses adjusted if the results from
these analyses are incompatible?

The laws that we use in checking the com-
patibility of the computed subsystem mea-
sures are called i n v a r i a n t s . We now discuss
three different cases where iterative meth-
ods have been used.

General Closed Queueing Networks

We summarize the method described in
[CHAN75b]. Two invariants are used in this
method.

1) The rate of flow of chain c jobs into a
subsystem must equal the rate of flow
of chain c jobs out of that subsystem.

2) If chain c is a closed chain, the sum of
the mean number of chain c jobs in
subsystem S,, summed over all i, must
equal the total number of chain c jobs
in the network.

We now present some details of the al-
gorithm assuming a closed network with a
single closed chain of jobs. Extending the
method to multiple job chains is straight-
forward. {Examples of a closed network
with two job chains and of an open network
are presented later in this section.) Let it,
be the mean queue length of queue i. Com-
pute a set of numbers y,, which we call
relative throughputs, where

M
yj ffi ~ Y,q,J

t m l

Note that the y, are unique up to a normal-
izing constant. Let tj be the throughput
through the j th queue. Since the flow into
queue j is equal to the flow out of queue j,

tj = ~, t,q,j. Invariant I; Flow Invariant
1

Hence we have
t j f a y ~ for allj,

where a is a constant. Set
t / ffi t f f yj ;

we refer to the t / as the n o r m a l i z e d
throughputs. An equivalent formula for the
first invariant is

t]' ffi t2' ffi . . . ffi tM' ffi t' Flow Invariant

where
t ' = Z t , ' / M

i

is the average value of the normalized
throughput computed by analyzing all the
queues independently.

The second invariant is

Y~ ri, ffi N Invariant lI; Population Invariant
I

where N is the population of jobs.

T h e C o m p o s i t e Q u e u e F,

We construct F, in the following way.
Ideally, we would like F, to be the flow-
equivalent of C,. However, to determine the
flow-equivalent for C, we have to analyze
C,. Analyzing C, may be a very expensive
computational procedure if C, does not sat-
isfy product form. Hence, we are forced to
settle for making F, an a p p r o x i m a t m n to
the flow-equivalent of C,. This approxima-
tion is obtained by computing the flow-
equivalent for C, a s s u m i n g (generally in-
correctly) that C~ satisfies product form.

Note that we use two levels of approxi-
mation here. First, the F~ are not the true
flow-equivalents. Second, even if the F, are
the true flow-equivalents for C,, this heuris-
tic may not yield correct answers.

I t e r a t i o n

On the kth iteration the service rates of
F, are set equal to the service rates of the
flow-equivalent of the complement of
queue i in an auxiliary network S ~k). The
auxiliary network is identical to the given
network except that:

1) The service rates in the auxiliary net-
work are different; and

2) The queueing disciplines in the auxil-
iary network are such that the net-
work satisfies product form. Hence
the flow-equivalents for the comple-
ment of any queue in the network can
be readily computed.

The goal of the iteration is to adjust the

Comput ing Surveys , Vol 10, No 3, S e p t e m b e r 1978

flow rates of the auxiliary network (which
results in adjustments to the F~ and conse-
quent changes in queue statistics), so as to
force the individual queue statistics to-
wards satisfying the invariants. The details
of this adjustment are not presented here;
they may be found in [CHAN75b]. If the
invariants are not satisfied the results of
the iterative method are incorrect; how-
ever, if the invariants are satisfied it does
not necessarily mean that the solutions are
correct. Nevertheless, this approach has
been validated by comparing the results
obtained by this method with results ob-
tained from simulations for several cases.
Networks with several chains of jobs and a
variety of queueing disciplines (including
priority disciplines) were analyzed by this
method. For details regarding the algo-
rithm, its accuracy, and execution times,
the reader is referred to [CHAN75b].

A Case Study for VM/370 Using IteraUve
Methods

We next discuss an iterative scheme pro-
posed for modeling scheduling strategies for
interactive computers [BARD77]. This work
is important for several reasons. The
scheme itself is very simple, and therefore
appealing. Furthermore, the method has
been used to model the effects of workload
and configuration changes for a widely used
complex interactive operating system, VM/
370. It has been incorporated into a per-
formance package for configuring VM/370
systems as discussed in [BARD78] (See pp.
333-342, this issue).

We shall summarize the results in
[BARD77], restricting attention to the prin-
ciples of constructing an iterative method.

A user is assumed to make transitions
between states in a cyclic fashion:
THINK - MEMORY-WAIT - ACTIVE-
THINK-. . . , or equivalently 1, 2, 3, 1

For purposes of exposition assume that
there are only two job chains:

Chain 1: trivial jobs
Chain 2: non-trivial jobs.

A trivial job is assumed to be immediately
admitted to service, i.e., it is assumed to
spend no time in the MEMORY-WAIT
state. Thus its state transitions are

Approximate Methods 301

THINK-ACTIVE-THINK, ..., or 1,2,1,
. . . . A non-trivial job may have to spend
time in the MEMORY-WAIT state. The
diagram for the overall system is shown in
Figure 22.

Model inputs: We are given the num-
ber of jobs N, in chain i; the mean main
memory requirement (resident set size) W,
for jobs in chain i; T,, 1, the mean think time
(i.e., time in state 1 for chain i jobs), and S,
the total amount of main memory available.
We are also given details regarding the visit
counts and mean service times at the CPU
and I/O devices for both chains.

Model outputs: We are required to
compute T,, 2 and 7',,3, the mean times
spent by chain i jobs in state 2
(MEMORY-WAIT) and state 3 (AC-
TIVE). We shall also compute N,.k, the
average number of chain i jobs in state k, k
= 1, 2, 3, and St the mean amount of main
store occupied by all the chain i jobs to-
gether.

Aggrega t ion : The model is analyzed into
two stages. In the first stage the computer
subsystems representing jobs in the active
state (Figure 23) is analyzed. The mean
time T,. 3 spent by chain i jobs in the active
state is computed from this submodel (see
below).

The overall model is analyzed in the sec-
ond stage (Figure 24). Note that in this
stage, the computer subsystem is repre-
sented as a flow-equivalent server with in-
finitely many servers, which is equivalent
to a delay of T~, 3 time units.

Invariants: The probability P~k that a
random chain i job (i = 1, 2 for trivial, non-
trivial) is in state k (k ffi 1, 2, 3 for think,
memory-wait, and active) is proportional
to the time spent by that job in that state,
i.e.,

T~,k
P,k = for all ~, k

T~.I+ T,.2+ T~,3

Hence the mean number of chain i jobs in
state k is

Invariant 1

N,.kffiN, P ,h fN ,
T,,~+ T,,~+ T,,3"

Computing Surveys, Vol 10, No. 3, September 1978

302 K. M. Chandy and C. H. Sauer

THINK STATES

Chain 2:

Non-
Trivial
Jobs

Chain 1:

Memory Wait
Queue

, F
I

Tr i v i a l Jobs!

: Svstem~'~l
I ' '

i_ _J

I
A1 locate Memory

J
Rel ease Memory

FICURE 22. Interactive system.

FmURE 23. Computer subsystem.

lnvariant 2
T h e mean amount of main storage used

by chain i jobs (S,) is the product of the
average number of chain i jobs in main
storage (N,, 3) and the average amount of
main storage required per job (W,).

S, ffi N,,3. W,.

Note tha t T~, 2, the t ime spent by a trivial
job in the memory-wa i t state, is 0 {zero).
Hence

Tl, a $1 ffi Wl Nl.
T1.1+ T1,3"

Note tha t we are given N1, W1 and T~, 1. If
we are given T~, 3 then we may compute S~

from the above equation. If $1 -< S then
there is enough main store to accommodate
trivial jobs, and our assumption of T1, 2 = 0
is reasonable; if $1 :> S the system is satu-
ra ted by trivial jobs, and we must stop our
analysis.

T h e above arguments are not strictly cor-
rect because they are based entirely on
mean values, ra ther than distributions.
Strict ly speaking, a trivial job will experi-
ence memory-wa i t if all of main storage is
filled with o ther trivial jobs; the only case
when this si tuation will never occur is when

NI W I ~ S

ra the r than
N1,3 Wl <-- S.

However, the goal here is not to come up
with a mathemat ica l model but ra ther to
develop a heuristic program tha t seems to
work most of the time. Th e only test for
such heuristics is validation.

We may develop a similar invariant for
chain 2 jobs. If we assume T2, 2 ffi 0, i.e., the

Computing Surveys, Vol 10, No 3, September 1978

Chain 1 /

Trivial Jobs I /
Chain /
Non-
Trivial

Jobs J[=-

Memory Wait

FIGURE 24.

A p p r o x i m a t e M e t h o d s

Think State

, s
s

Service Time = Ti,3 x x

~..~) In f in i te ly Many Devices

Overall model B.

303

time spent by a non-trivial job in
memory-wait is 0, then the average amount
of main store occupied by non-trivial jobs
is

T2,3
W2.N2,3 ffi W2.N2 T2.1 + T2.3

If this value does not exceed S - S~ (the
average amount of main store not occupied
by trivial jobs) then our assumption that
T2, 2 = 0 is reasonable (though not strictly
correct). If this value exceeds S - S~ then
T2, 2 must be positive, and we have

S - S 1 = W2 N2,3

ffi W2"N2 T2,3
T~ , l+ T2.2+ T2.3

or equivalently
W2 N2 T2, 3

T~. 2 = T2,1 -- T~,3.
S - $1

I n v a r i a n t 3

The computing system (consisting of
CPU and I/Os, see Figure 22) is modeled
by a queueing network that is assumed to
satisfy product form. Given the population
N,, 3 of chain i jobs in the computing system,
the visit rates at each device and mean
service times at each device, we compute
the mean wait times at each device. Multi-

plying the mean wait times at each device
by the average number of visits made to
that device by a chain i job on each inter-
action and summing over all devices, we
compute the mean time T,, 3 spent by a
chain i job in the computing system. Thus,
the mean time spent by a chain i job in the
active state is related to the mean number
of jobs in the active state; this relation
between T,,3 and Ni,3 is invariant 3.

The F low-Equiva len t Sys tem
Since the analysis is carried out in terms of
mean values, the computer subsystem is
represented by mean delays T,. 3. This is
equivalent to representing the computing
subsystem by an infinite number of servers,
each of which has a mean service time of
T,, 3 for chain i jobs. The choice of an infi-
nite server queue for representing a
queueing network is popular because what
it lacks in accuracy, it makes up for in
simplicity and consequent computational
speed.

The Iteration----Initialization: As-
sume values for T,, 2 and T~, 3.

Step 1: Use the assumed values for T,, 2
and T,, 3 and invariant 1 to corn-

Computing Surveys, Vol. 10, No 3, September 1978

304

Step 2:

Step 3:

Step 4:

K. M. Chandy and C. H. Sauer

pute N,, 3, which is the job popu-
lation assumed in the computer
subsystem.
Use the N,. 3 obtained in step 1
with invariant 3 to recompute
T~,3.
Use T,, z obtained in step 2 with
invariant 2 to recompute T,. 2.
Return to step 1 with new values
for T,. 2 and T,. 3, if there is a
significant difference between
the old and new values. Other-
wise, stop.

This method has been validated and is in
use. It cannot be overemphasized that the
credibility of a heuristic technique rests on
empirical validation rather than on logical
rigor. Bard's method [BARD77] is credible
because it has worked for several practical
cases, even though there is no guarantee of
convergence and the analysis is informal,
being based on mean values. Systems ana-
lysts are also more likely to have faith in a
model, such as Bard's, that considers key
parameters, such as amount of main mem-
ory, memory scheduling, different kinds of
users, and the complex queueing structure
of I/O channels. The method has a com-
putation time favorable to that of other
methods (such as simulation) and satisfac-
tory accuracy. There is no point in devel-
oping an algorithm that invests a great deal
of computer time in obtaining a degree of
accuracy that is greater than is required for
making the decisions at hand.

An IteraUve Scheme for Open Network
Models of Packet-Switching Systems

We now discuss the use of iteration tech-
niques in the analysis of communication
networks [LAM76]. This discussion is im-
portant for three reasons. First, communi-
cation systems are important in themselves.
Second, this section illustrates the use of
heuristic approaches in modeling finite
waiting rooms. Third, this section provides
an example of approximation methods usecl
to analyze open queueing network models.
(See also [WONG78] pp. 343-351, this issue.)

A job in this context is a "packet," which
is a basic unit of communication. The sys-
tem accepts packets at sources, routes them

through communication lines and switches,
and delivers packets to destinations. The
resources in the system are communication
lines, the switches which route packets
along appropriate paths, and the memory
(store and forward buffer) at each switch in
which packets are stored until they can be
shipped out along appropriate communi-
cation lines. The servers in the queueing
network model are the communication lines
and the switches. However, since the actual
service time of a switch is small compared
to the service time at a communication line,
we shall ignore switch service times.

Associated with each packet is a source
node and a destination node. A packet
moves through the network from the source
node to the destination node along a fixed
route. The ith node of the network has a
finite number N, of store and forward
buffers, i.e., it has a finite waiting room. If
there are N, packets in the ~th node when
another node k tries to send one more
packet J to the ith node, then the ith node
refuses to accept J, and J must be retrans-
mitted by node k. In other words, a server
at node k serves J, and if at the instant at
which J completes service the waiting room
for node i is full, then the server repeats J 's
service, until eventually there is a vacant
position in i's waiting room.

Figure 25 is a queueing model of one node
of the network {node i). This node is as-
sumed to communicate directly with I other
nodes, ~1, . . . , il. We also use one "dummy"
node, /0, to represent users who send and
receive packets directly from node i. We
assume that all lines are full-duplex, i.e.,
that packets can be transmitted in both
directions simultaneously. There are I + 1
parallel servers associated with node i, and
the j th such server, j ffi 0, 1 , I models
the communication line from r, ode i to node
ij; this server serves those packets in the
node i waiting room that have to go to node
ij. Even if all service times are assumed to
be independent exponential random vari-
ables, this queueing network does not sat-
isfy product form because of the finite wait-
ing room and the consequent retransmis-
sion (re-serving) of jobs. Hence we shall
resort to iterative approximation methods.

The network is partitioned into subsys-
tems, one subsystem for each node. We

Computing Surveys, Vol. 10, No. 3, September 1978

source

A p p r o x i m a t e M e t h o d s 305

flow rejectant by i.~j due actual flow to to blockina _ ~ node ij

flow a c c e p ~
by node i 7 "

/ ~ . channel from i to ij

Dr~I~Y Bifl!w rejected

",
FIGURE 25. Network model for node t.

next discuss the key questions which arise
in iterative methods.

I n v a r i a n t s : Let hu be the apparent flow
rate of packets (i.e., not including retrans-
missions) from node i to node ij. We can
compute the hu from the rate at which
packets enter the network and the routes
taken by packets as they travel from the
source to the destination. Let r,j be the
actual flow rate of packets (i.e., the appar-
ent flow plus retransmissions) from node i
to node ij Let Bj be the probability that the
waiting room at node ij is full. Then
r u. (fraction of time the node j

waiting room is not full) = ,k,~

i.e.,
r u = ~u/(1 - B~) Invartant 1

Let gu be the service rate of the channel
from node i to node ij. Assume product
form for the queue length distribution of
each channel. This assumption is invalid
due to the finite waiting rooms. However,
we make this assumption to make the corn-

putation manageable. The probability tha t
there are qu packets at node i waiting to be
shipped to node j is:

Pu(q,~) = Pu(0) ' (r,Jpu)qu

Now assume product form for the entire
tth node. This is also an invalid assumption
tha t is made to make the problem manage-
able. Then, the equilibrium probability tha t
there are q,j packets at node t going to node
ij, j - 0, 1 I i s

P,(q,o q,l) = H p,J(q,J) Invariant 2
y

Thus Invariant 2 is a relationship between
actual flow rates and node state probabili-
ties.

I n v a r i a n t 3

The probability B, tha t the node i waiting
room is full is the sum of the probabilities
P, (q,.0, . . . , q,, ~) over all states with q,.0 +
. . . + q,.~ = N,.

Thus the blocking probability B, depends
upon (Invariant 3) the state probabilities
p,, which depend upon (Invariant 2) the

Computing Surveys, Vol. 10, No. 3, September 1978

306 K. M. Chandy and C. H. Sauer

actual flow rates r,j, which depend upon
(Invariant 1) the blocking probabilities Bj.
In this formulation, the flow-equivalent of
node i is defined in terms of the blocking
probability B, and the flows ~j, and ~ , j into
and out of i.

I t e ra t ion : A simple iterative scheme is
to assume a set of blocking probabilities Bj
and to then use Invariants 1, 2, and 3 in
that order to get a new set of blocking
probabilities. This iteration is repeated un-
til successive iterations do not produce a
significant change in blocking probabilities.

The networks described here may en-
counter deadlocks. In this case the equilib-
rium throughput is 0 (zero) and the above
analysis is wrong. However, the results
computed by the iterative method proposed
here are meaningful (though not mathe-
matically correct) if the probability of dead-
lock is low. In this case, the performance
measures predicted by the model should be
taken to be the values that occur after the
network has been in deadlock-free opera-
tion for a long time.

Product Form Methods

Reiser and Kobayashi [REIs74] use product
form approximations; their method is dis-
cussed in Section 6 in connection with dif-
fusion approximations.

Shum and Buzen [SHUM77] couple the
product form method with an iterative
scheme in an interesting fashion. Their goal
is to analyze closed queueing networks with
general service time distributions and
FCFS queueing disciplines. We shall dis-
cuss their technique in the same format as
other iterative techniques.

Aggrega t ion : Each queue is analyzed
independently. The complement C, of the
ith queue is represented by a single queue
F, with a load independent service rate and
exponential service times. This is obviously
a very simplistic model for the complement.
However, the product form and iterative
prodecures attempt to correct for the inac-
curacy in subsystem representation.

As in all product form methods, the equi-
librium state probabilities for the entire
network are computed by taking the prod-
uct of the state probabilities for each queue

that are computed from analysis of the
S, - F, networks. Performance measures
are computed from the state probabilities
of the entire network (rather than from
subsystem state probabilities).

Invariants: The first invariant used in
[CHAN75b] is alSO used here: flow rate into
a queue must equal flow rate out of that
queue. This scheme uses a single invariant.

Iteration: The algorithm iteratively ad-
justs service rates of the composite queues
F, until the flow invariant is satisfied. The
flow invariant states that all queues must
have the same normalized throughput (see
4, General Closed Queueing Networks). Let
t', be the normalized throughput of queue
i. The flow invariant is satisfied when

t ' l - - t ' 2 t'K.
To measure how closely the normalized
throughputs computed at any point in the
algorithm satisfy the flow invariant, the
following error function is used.

K

L = T. (y , / /L ,) • (t ' , - t *) 2
i l l

where y, is the relative visit rate into queue
i. p, is the service rate of queue i and hence
y,/#, is proportional to the utilization of
queue i. t* is the normalized throughput of
the queue with the highest utilization. The
above error function is used because the
"bottleneck queue" (i.e., the one with the
highest utilization) plays a crucial part in
calculating queue statistics. The error func-
tion also gives greater weight to queues
with greater utilization.

Let k, be the service rate of the composite
queue F,. Let

~, = ky, a n i

where k is an (unknown) constant. Assume
an initial value for k and at each step of the
iteration adjust k to minimize the error
function L.

Summary

Two questions must be asked about these
iterative methods:

1) Do these methods give more accurate
estimates of key performance mea-
sures than straightforward flow-
equivalent approaches?

Computing Surveys, Vol. 10, No. 3, September 1978

2) If these methods do give more accu-
rate results, is the increased accuracy
worth the additional computational
effort?

These questions cannot be answered cat-
egorically. There are cases where a rela-
tively straightforward flow-equivalent ap-
proach is more accurate than the iterative
methods, and cases where the iterative
methods are more accurate. However, it is
our opmton that the methods discussed in
this section generally improve upon the
results of direct flow-equivalent methods;
this opinion is based upon case studies,
including those surveyed in this section.

The ubiquitous tradeoff of improved ac-
curacy versus greater computational effort
can only be resolved by studying the spe-
cific requirements of the problem at hand
and by comparison with alternate methods
such as simulation.

5. FLOW-EQUIVALENT SYSTEMS AND THE
MANAGEMENT OF MODELING PROJECTS

Performance modeling projects of actual or
proposed systems are usually carried out
under intense time pressure. The largest
portion of time by far is spent on under-
standing the system to be modeled: poring
through documentation and talking to sys-
tem designers. It is crucial to divide the
work to allow several modelers to work
together with minimum conflict. A solution
used by Browne, et al. is based on the chief
programmer-team approach used success-
fully in the development of large programs
[BROW75]. This discussion is a summary of
their solution.

The chief modeler (in analogy to the chief
programmer) partitions the overall system
model into logically consistent subsystem
models and assigns each subsystem to a
different member of the modeling team.
Examples of subsystems in the study of the
Air Force Logistics computing system in-
clude the CPU subsystem, database man-
agement, disk subsystem, and the tape sub-
system. Each member of the modeling team
is expected to become an expert on his
subsystem, interact with the appropriate
system designers, and eventually construct
a flow-equivalent system model (or a range
of such models) for his subsystem.

Approximate Methods 307

The chief modeler should partition the
overall model into subsystems so that, as
far as possible, the subsystems are indepen-
dent of each other. For reasons of clarity it
is helpful to focus attention first on subsys-
tem disciplines (e.g., priorities) and later
consider details about the job mix {e.g.,
map chains and job classes to priorities).
The chief modeler is responsible for check-
ing that the flow-equivalent models of the
subsystems are reasonable, putting the sub-
system models together, and evaluating the
overall model. Browne, et al., refer to the
models required to produce flow-equiva-
lents as micro-models and to the overall
model consisting of a network of flow-
equivalents as a macro-model. Note that
the complexity of the micro-model may be
greater than that of the macro-model.

A large simulation program was also con-
structed in this parallel fashion by the chief
modeler-team. Browne, et al. report good
results from this management technique.
Though they use a two-level hierarchy
(chief modeler and his team) there is no
reason that the method of flow-equivalents
could not be used with a deeper hierarchy.
The general question of how much error is
introduced by this hierarchical technique is
still open.

The problem of managing large-scale
modeling projects has received very little
attention; this problem is likely to become
acute. (See COUR77.)

6. DIFFUSION APPROXIMATION

Diffusion approximation methods use the
theory of diffusion processes to analyze
queueing problems. The reader need not be
scared by the wealth of literature on diffu-
sion processes, or by the apparently diffi-
cult mathematics involved in the develop-
ment of the theory of diffusion. Most users
merely use formulas from the diffusion ap-
proximation literature without understand-
ing the detailed development of the for-
mulas. Indeed, it is not necessary to under-
stand the development of the formulas, pro-
vided that empirical studies show that the
formulas fit experience. The only cases in
which the systems analyst needs a thorough
understanding of the mathematics of dif-
fusion is when attempting either to develop

Computing Surveys, Vol. 10, No 3, September 1978

308 K. M. Chandy and C. H. Sauer

better approximations [GELE75] or to ex-
tend the approximations to new problems
[Fosc77]. The following section is directed
toward the large majority of analysts who
need some understanding of diffusion ap-
proximations, but who are unlikely to at-
tempt research in the area.

The organization of this section is as
follows: we 1) discuss diffusion processes
from a very informal point of view; 2) dis-
cuss the problem of mapping queueing
processes onto diffusion processes; 3) re-
view studies on the accuracy of the diffu-
sion process; and 4) finally attempt to see
where diffusion approximation techniques
fit into the general scheme of queueing
network analysis.

Why Bother with Diffusion Processes?

To illustrate the need for diffusion approx-
imations consider a GI/G/1 queue, i.e., a
s!ngle server queue fed by a job source
where service and interarrival times are
independent random variables having ar-
bitrary general distributions. {Note that dif-
fusion approximation methods are not re-
stricted to GI/G/1 queues.) Let n(t) be the
number of jobs in the queue at time t. n(t)
can take on the values 0, 1, 2 We may
think of n(t) as the position of a particle d
(for discrete) that makes a jump (of + 1) to
the right when a job arrives and a jump (of
- 1) to the left when a job departs (Figure
26). In general, the probability that d will

• ovement of ~arttc~e d

÷1 +1 *1 ~1 ~ (t)

-1 -1 -1 -1

m o v ~ n t of na r t ; c l e d •

p] ice d* ~fl
o o s i t t o n ~ ~ e n

x

i n te rva ls

movesent of p a r t i c l e c (d i f f us ion)

FmuRlg 26. Modeling p ~ m l e d by particle d*.

make a jump of + 1 or -1 in the next incre-
mental time interval depends upon d's past
behavior. For example, the length of time
that d will stay in its current place (in
general) depends upon the time since the
last arrival or departure.

Our goal is to deduce the probability of
d's future behavior given its past behavior.
A conventional approach is to represent
(possibly approximately) the service time
and the interarrival time by a finite collec-
tion of exponential stages (Section 1). All
the" relevant information in a queue's past
behavior that is required to predict the
queue's future behavior is captured by the
"state" of the queue. The state-transition
(differential) equations may be solved to
obtain state probabilities as a function of
time from which we can compute the prob-
ability that particle d is in position n at
time t. Since there are an infinite number
of states, this computation is not carried
out numerically; if it can be carried out at
all the computation is done algebraically. If
we are dealing with a finite job population
it may be possible to carry out the compu-
tation numerically, but we may prefer a less
expensive approach such as the diffusion
approximation. Thus we attempt to use d~f-
fusion approximations only when numeri-
cal and algebraic methods fail.

The difficulty with predicting the behav-
ior of particle d is that it has memory in
addition to its current position, i.e., the
state of the system is not merely the parti-
cle's current position. (The analogy to the
GI/G/1 queue tells us we must remember
the residual service time.) In the diffusion
approximation, we model the behavior of
particle d approximately by the behavior of
a particle c (for continuous) where c has no
memory.

Whereas d can only take on values 0, 1,
2 , . . . , we let c take on all values on the non-
negative real line. Let us now decide how c
should move along the real line. Since we
are used to dealing with discrete state
spaces we shall treat the continuous state
space of c as the limiting case of a discrete
state space. The discussion here is an infor-
mal treatment of material in Cox65.

Assume that particle c can only move at
times 0, T, 2T, 3T, where T is some

Computing Surveys, Vol 10, No 3, September 1978

small constant time period, c can only take
(small) steps of magnitude M. Thus if we
take the limit as T and M approach 0, we
see that c moves continuously along the
real time• In each time interval T we as-
sume that the particle takes a step z where
z ffi +M with probability p, and z -- - M
with probability 1-p. In time nT, the total
displacement of the particle will be the sum
of n independent, identically distributed
random variables, each with the same dis-
tribution as z. As n gets large, the distri-
bution of the displacement approaches that
of a n o r m a l random variable. We want the
displacement per unit time to have a f in i te
mean and variance so as to have a useful
approximation to what actually happens
with queue sizes--so we must take limits
(as M and T approach 0) very carefully.
Taking limits to ensure finiteness of mean
and variance, we find that the particle c
obeys the diffusion equation; this equation
is discussed later in greater detail. We now
discuss the mathematics of the diffusion
equation in an informal manner.

Consider a particle c moving along a
straight line. Let its position at time t be
x(t) (see Figure 27)." Let the displacement
of the particle in the interval t, t + d t be,
dx(t) , where

dx(t) = x(t + dt) - x(t)

Assume that dx(t) is normally distributed
with mean fl • d t and variance a •dt . It is
helpful to picture the process in one's mind;
towards this end, imagine an arbitrarily
large number of independent particles that
move about according to the above assump-
tions. Suppose all the particles are at a
point y at time t (Figure 28). Then at time
t + d t the particles would have moved,
some one way and some in the opposite
direction. The function showing the density
of particles around a given point at time t
+ dt has the familiar bell shape with a mean
at y + fl " d t and a variance of a" d t (Figure
29). Our particle is m e m o r y l e s s in the sense

~sltlon of oartlcle at t i m e t + dt

x(t) x(t* dr)

FIGURE 27. A particle moving along a straight line.

A p p r o x i m a t e M e t h o d s 309

that its future displacement, relative to its
current position, is independent of the past.

Let p(xo, x; t) be the density function for
the process x(t), given that x(0) --- x0. We
may picture p(xo, x; t) in the following way:
consider an arbitrarily large number of par-
ticles all of which start out at position xo at
t ffi 0. The particles will be scattered along
the real line at time t > O. p(xo, x; t) is a
function in x and t that shows the density
of particles around a point x at time t. This
density function p(xo, x; t) obeys the Fok-
ker-Planck diffusion equation [Cox65]. A
great deal of work has been done on the
diffusion equation. Our goal is to use this
process to model a queueing network.

To summarize our introduction to diffu-
sion processes: particle d's position repre-
sents the number of jobs in the G I / G / 1
queue. Particle d takes discre te jumps (of
+1 or -1) and (in general} d h a s m e m o r y
in addition to its current position. There is
no method (at this time) to compute the
probability distribution of n(t) , which is d's
position at time t. We wish to deduce the

A IIrge nLh~nber of /'
partlcles, i11 at Dolnt
y at tt~ t

~rtlcles ~ve in
d i f f e r e n t d~rectlons

• in Interval { t , t+dt]

Y

FIGURE 28.

I

standard devlat~on

• dt

!

y+B.dt

FmURE 29.

Computing Surveys, Vol 10, No. 3, September 1978

310 K. M. C h a n d y a n d C. H. S a u e r

behavior of d from the behavior of particle
c that has simpler properties. Particle c
moves along the con t inuous real line. Fur-
thermore, c has no memory (except its po-
sition relative to the boundary). The posi-
tion x(t) of c satisfies the diffusion equation,
which has been studied in depth; methods
exist to compute the probability distribu-
tion of x(t) . Note also that t rans ien t {time
dependent) analysis of the behavior of c is
tractable.

Mapping Between Queueing and Diffusion
Processes

We wish to deduce the behavior of particle
d from the behavior of particle c. To do
this, we shall simulate the behavior of d by
a particle d* that also jumps between points
0, 1, 2, . . . but whose movement is driven
by the movement of c, in the following way.
Partition the real line into intervals; place
d* in position i when c is in the ith interval.
When c moves to the i - l t h (or i+lth)
interval, move d* to position i -1 (or i+1).
Statistics regarding d* are said to be diffu-
sion approximations of the corresponding
statistics regarding d.

The accuracy with which d* models d
depends upon:

1) How values are assigned to the param-
eters a and fl that characterize the
diffusion process (and hence charac-
terize the movement of particle c).

2) How the real line is partitioned into
intervals (recollect d* is placed in the
ith position when c is in the ith inter-
val).

3) How we place a boundary condition
on the diffusion process; typically we
want c to move on the non-negative
real line just as d does. There are
different conditions we might place at
the boundary x ffi 0 so as to ensure
x(t) >_ 0 for all t. These boundary
conditions affect the behavior of c and
thus also the behavior of d*.

We shall analyze each of these issues in
turn.

Setting a and f l

To make the computation of a and fl tract-
able we shall make the (invalid) assumption

that the queue is never empty. This as-
sumption is more reasonable in "heavy
traffic" conditions when the server's utili-
zation approaches i (one), and the diffusion
approximation tends to give better results
under heavy traffic conditions.

Consider an incremental time interval [t,
t + dt]. Let n(t) be the queue length at time
t. During this interval the expected number
of jobs to arrive is k . dt where ?, is the
arrival rate and the expected number of
departures is g" dt, where/~ is the service
rate. Hence

E[n(t + dt) - n(t)] = (~ - #) •dt

We want the position x(t) of particle c to
reflect the queue length n(t). Note from the
earlier discussion that the incremental dis-
placement x (t + dt) - x(t) is a random
variable with a mean of fl • dt. Hence, it is
reasonable to set:

f l f f i ~ - ~

By similar (though more complex) argu-
ments we set:

a ffi c~ + ca#

where ca and c, are the squared coefficients
of variation of the interarrival and service
times respectively.

Selecting Intervals

A reasonable heuristic is to place d* in the
ith position when c is between i and i + 1
(Figure 26). Using this method of selecting
intervals,

f ,+l
P*(no, n;t) ffi P(xo, x;t)dx

Boundary Conditions

The reflective barr ier is the bound-
ary condition normally used [Cox65]. This
boundary condition states that the particle
c must always be on the non-negative por-
tion of the real line.

fo ® t)dx ffi 1 p(xo, x;

The diffusion equation with this boundary
condition has been solved and we can com-
pute p*(no, n; t). We are primarily inter-
ested in the equilibrium queue length dis-
tribution:

Computing Surveys, Vol. 10, No. 3, September 1978

p*(n) = p*(n0, n, oo)

Using the methods discussed previously
for setting a and fl, the boundary condi-
tion, and for selecting intervals, we get
([GAVE68])

p*(n) = (1 -- ~)" ~n, n = 0, 1, 2 (6.1)

where ~ = exp {-2(1-p)/(c~ + cap)} and p
is the utilization. Let p(n) be the equilib-
r ium probabil i ty of n jobs in queue. We
know tha t the fraction of t ime the server is
idle is p(0) = l - p , whereas we have p*(0)
= 1-~, which is erroneous. Hence a good
heuristic is to use another approximation:

~b(n) = /1 - p if n = 0 (6.2)
(p" (1 - ~) ~"-; if n_> 1

Gelenbe uses a more reasonable bound-
ary condition [GELE75]. He assumes that
when particle c hits the boundary x = 0, it
sticks there for an exponentially distr ibuted
t ime after which it jumps back instantane-
ously into the region x > 0 with some
probabil i ty density function. For instance,
we may assume tha t c makes an instanta-
neous jump from x = 0 to the point x = 1,
representing the arrival of a new job. We
may assume tha t the mean t ime the process
remains at the boundary x = 0 is 1/2,, where
h is the arrival rate. With these assumptions
Gelenbe reports improved results.

Networks

Consider a network with a single chain of
jobs and K queues. Let n, be the number of
jobs in queue i, i = 1, . . . , K, and let p(n],
. . . . nK) be the equilibrium probabil i ty ob-
tained by the diffusion approximation tha t
there are n, jobs in queue i, i ffi 1 , K. In
the pioneering work on networks by Ko-
bayashi it was shown that given the usual
assumptions for setting up the diffusion
process,

~(n~ nK) = ~ ~(r~) (6.3)

where G is a normalization constant for
closed networks, and G = 1 open networks
[KOBA74]. Note the product form of the
network state probabilities.

For open networks we may estimate the
coefficients of variat ion of the arrival proc-
ess into each queue by the methods dis-

Approxtmate Methods 311

cussed earlier in Sect ion 3, and then analyze
each queue independent ly assuming inde-
pendent interarrival times with the esti-
mated coefficient of variat ion and the spec-
ified arrival rate. Th e flow-equivalent of the
complement is represented by a job source
tha t has independent identically distrib-
uted service times.

For closed networks, Reiser and Kobay-
ashi [REIs74] use the product form method
discussed in Section 4. With this method
we analyze each queue independent ly as-
suming a (simple) model for the comple-
ment of the queue, compute ft,(n,), and then
use equat ion (6.2) to compute steady-state
probabilities. We then compute network
state probabilities assuming product form.
Performance est imates are computed from
the state probabilities ~6(nl nK) ra ther
than directly from the ti~(n,). For closed
networks (unlike open networks), it is not
possible to determine the arrival ra te into
a queue without carrying out a detailed
analysis of the entire network. One solution
is to est imate arrival rates (or, equivalently,
throughputs) assuming exponential service
times, and hence product form, and to then
use the formula (6.2) for single server
queues.

An al ternative solution to estimating the
arrival rates is to assume tha t the server
with the highest utilization in the network
is busy all the t ime (i.e., its utilization is 1)
and then the th roughput (arrival rate) of
tha t queue is equal to its service rate; the
throughputs for all o ther queues can
be computed from any one throughput
[DENN78]. This al ternative method for es-
t imating arrival rates is appropriate when
the number of jobs in the network is very
large.

Other Applications of the Diffusion
Approximation: an Example

Foschini uses the diffusion approximation
to solve routing problems [Fosc77]. Con-
sider a system with a single source and two
or more parallel queues (Figure 30). An
arriving job joins the shor ter queue. This
system has no simple analytic solutions.
Foschini has an ingenious application of the
diffusion approximation to this problem;

Computing Surveys, Vol. 10, No 3, September 1978

312

r

K. M. Chandy and C. H. Sauer

v v

P o l "~ cy

FIGURE 30

Joln Shortest Queue

Dynamic routing

his paper is requ]red reading for those who
want to apply diffusion approximations to
atypical problems.

The diffusion approximation is being ap-
plied to an increasing variety of problems.
Its greatest value is in analyzing open net-
works with nonexponential service times in
heavy traffic conditions because it is often
difficult to use numerical techniques, other
approximations, or simulations in those
cases. A great deal of computing time is
required in simulations to estimate equilib-
rium performance measures in open net-
works under heavy traffic conditions
[LAVE75]. The other approximations are
either not applicable to open networks, or
assume exponential service times when
used on open networks.

Diffusion approximation formulas devel-
oped for single queues will continue to be
used in submodels within larger network
models. The greatest barrier to increased
usage of diffusion approximations is the
difficulty in developing the mathematics of
new problems. Sophisticated mathematics
is not required for other techniques, such
as flow-equivalence or iteration; any sys-
tems analyst can try these techniques on a
new problem and then find out empirically
whether they work. New results on diffu-
sion approximations will continue to be
generated by a small number of researchers
and these results will later be used by the
modeling community. The greatest empha-
sis in research is placed on models in which
other methods fail. The solution of new
problems based on diffusion approxima-
tions is still research; new applications of
the other techniques are becoming com-
monplace.

7. CONCLUSION

A number of approximation methods for
analysis of computing systems have been
discussed here. New methods are being de-
veloped at many research centers. Despite
the wealth of proposed techniques, there
are currently only a few fundamental ideas
in this area; let us review them.

Core

1)

Ideas

Characteristics of networks with
tractable solutions. What types of
networks have tractable solutions?
We answered this in terms of state
space size, state transition structure,
and product form conditions. We
made a passing reference to simula-
tion.

2) Flow-equivalent systems. The con-
cept of flow-equivalence plays a key
role in approximations. The idea was
defined and several examples were
presented to illustrate the idea.

3) The use of flow-equivalence tn ob-
taining exact solutions. If a network
satisfies product form then any sub-
network can be replaced by its flow-
equivalent without altering equilib-
rium conditions.

4) The use of flow-equwalence in ap-
proximations. Several subsystems
may be replaced by a single flow-
equivalent to reduce the complexity
of analyzing a given network. Critical
questions are how to determine a) the
service times, b) the service distribu-
tions, and c) the queueing disciplines
of the flow-equivalent. The literature
was surveyed with regard to these
questions.

5) Iteratton. This method attempts
to improve upon flow-equivalent
schemes. Each queue in a network is
analyzed independently by studying a
simple 2-queue model consisting of
the queue in question and a composite
queue that represents the rest of the
network. If the independent analyses
mesh with each other, as determined
by checking certain invariant proper-
ties of the networks, then the itera-
tion stops. Otherwise, the composite

Comput ing Surveys, Vol 10, No. 3, September 1978

queues are modified to ensure a better
fit.

6) Product form methods. This method
also attempts to improve upon flow-
equivalent schemes. The method
works in three stages. In the first, each
queue is analyzed independently, as
above. In the second, the steady state
probabilities of the entire network are
computed by multiplying the state
probabilities of the individual queues.
In the third stage, the steady state
probabilities of the network are
summed appropriately to get esti-
mates of the required performance
measures. Product form and iterative
methods may be combined.

7) Diffusion approximations. In some
cases it is helpful to model a non-
Markovian discrete queueing system
by a continuous Markov (diffusion)
process. The key points in this method
are a} obtaining the parameters of the
diffusion process, b) setting appropri-
ate boundary conditions, and c) map-
ping the continuous process back onto
the discrete process.

A Comparison of Analysis Techniques

The analyst should have a preferred ap-
proach for every problem encountered. Un-
fortunately, a set of recipes for cooking up
the best solution to a problem does not now
exist. The approach first attempted on a
problem is a matter of personal preference;
it also depends upon:

1) The frequency with which the prob-
lem is likely to recur,

2) The number of configurations that
need to be analyzed,

3) The level of sophistication of the
client {i.e., the person who uses the
design--a designer or manager) in
analysis methodology. (This is often
the key factor),

4) The computer-aided design tools (pro-
gramming packages) available to the
analyst,

5) The time available to carry out the
analysis,

6) The number of analysts available, and
7) The available data.

Approximate Methods 313

In our experience, the exigencies of the
situation, rather than scientific methodol-
ogy, dominate the selection of the ap-
proach. Consider each of the seven factors
in turn.

Frequency of Occurrence

A performance analysis package may be
designed to aid in the configuration of a
specific family of computing systems. This
package may be used several times; for
instance, if it is developed by the vendor, it
may be used by systems engineers each
time a bid is made. In such cases, new
methods or variants of the methods pro-
posed here are developed specifically for
the family of interest. There is generally
sufficient time to develop new techniques
suited for the class of problems of concern,
and a relatively sophisticated modeling
study, in which several techniques are com-
pared, can be undertaken.

A systems analyst may be asked to ana-
lyze a single installation. In such cases we
favor the use of existing modeling program-
ming packages. If the problem is such that
existing packages cannot be used, we rec-
ommend the direct use of flow-equivalence
approximations, perhaps incorporated in
the product form method. Flow-equiva-
lence is an intuitive notion and is easily
used. Product form methods are straight-
forward, do not require much computer
time, and may improve accuracy. Iterative
methods are less straightforward and so
take longer to develop; hence we do not
recommend them in such cases.

Number of Design Alternatives Considered

Several (possibly thousands of) alternatives
may have to be compared for a given de-
sign. Very fast (and therefore relatively in-
accurate) techniques must be used if the
number of alternatives is large. The goal
here is not to predict performance accu-
rately, but to discard a large proportion of
poor designs. When the number of options
is small, simulation or measurement, if pos-
sible, are the preferred approaches. Several
methods may be used in evaluating a par-
ticular design: relatively fast, inaccurate
methods initially and slower, accurate
methods later.

Computing Surveys, VoL 10, No. 3, September 1978

314 If. M. Chandy and C. H. Sauer

Client's Sophistication in Analysis Methods

A systems analyst is effective only when he
can convince the designer or manager of a
computing system that the results of his
models are correct. There are cases of com-
puting systems installations where results
of modeling studies have been ignored to
the detriment of the installations. An ana-
lyst's job does not stop with the analysis of
a model; he must persuade the managers of
the installation to make the decisions sug-
gested by his analysis. A manager who has
not been exposed to analytic models may
not be convinced by analytic models, espe-
cially if the results of the models suggest
that the manager has made wrong deci-
sions. The analyst may be forced to use
expensive simulations to help persuade
management of the correctness of his re-
suits, even when the analyst himself would
prefer to use other techniques.

Analysis Tools

The availability of programming packages
plays a key role in the selection of methods,
especially for problems that are not likely
to recur. There are several packages for
analyzing product form networks and two
(RESQ [REIs78] and ASQ [INFO75] that
couple product form methods with flow-
equivalent approximations. Simulation lan-
guages, such as RESQ, based on queueing
network structural models are particularly
helpful in modeling computing systems
[SAUE77c].

Dme

Most one-of-a-kind analysis problems that
arise in systems design have to be carried
out under intense time pressure. Further-
more, the problem itself is generally a mov-
ing target, since most designs evolve and
design variables change. There is insuffi-
cient time to develop special purpose ana-
lytic methods. In such cases the analyst has
to resort to existing programming packages.
The authors have found flow-equivalent
methods to be particularly useful in this
environment, since changes in the design of
one subsystem usually affect only the flow-
equivalent of that subsystem. If the entire
analysis is one monolithic block, then

changes in the design of a single subsystem
can ripple throughout the analysis.

Number of Analysts

In one-of-a-kind design problems the ur-
gency of the problem may result in several
analysts being assigned to solve a complex
problem, with the expectation that the
problem will be solved in short time. It is
vitally important to partition the problem
so as to allow many analysts to work in
parallel. Flow-equivalence provides a nat-
ural vehicle for partitioning.

Available Data

An analyst generally uses complex approx-
imation methods or simulations because
simpler models ignore some aspects of real
systems. For instance, an analyst may de-
cide that simple models that ignore service
time distributions are inadequate. How-
ever, there are cases where measurements
that yield service time distributions are not
available, though mean values are mea-
sured. In these cases the only point in using
more sophisticated models is to determine
the sensitivity of the results to variations in
the unknown service distribution.

The Authors' Biases

Ultimately, the selection of analysis tech-
niques is a matter of personal preference;
therefore, the reader should be aware of the
authors' biases. In our opinion, analysis
plays a role in the design process, but it is
only one of the many aspects of design. In
the natural sciences one of the goals of
theory is to predict natural phenomena
very accurately. In computer systems anal-
ysis, the goal is not to obtain a high degree
of precision in prediciting phenomena, but
rather to use analysis to recognize and dis-
card poor design choices. The systems an-
alyst must often rely on intuition, use meth-
ods that are not rigorous, give priority to
pragmatic and political considerations
(rather than to scientific method) in ap-
proaching problems, and realize that sys-
tems analysis (and the development of ap-
proximation methods in particular) is an
art, not a science.

Computing Surveys, Vol 10, No. 3, September 1978

APPENDIX: An Example of a Complex Flow-
Equivalent Queue

Consider a network with 4 queues Q1, Q2, Q3, Q4,
8 classes, and 2 closed chains, one consisting of
classes {1, 2, 3, 4} and the other of classes {5, 6,
7, 8}. Assume 1 job in each chain. Assume that
Q1 and Q2 have processor sharing disciplines.
Assume mean service times for classes 1 and 2
are each 1 second, and for classes 5 and 6 are
each 2 seconds; others are arbitrary. The class
transition diagrams are shown in Figure A.1.
The classes accepted and output by each queue
are shown in Table A.I. Note that the classes
output must match the classes input in the class
transition diagram.

Now let us construct a queue Q that is flow-
equivalent to the queue obtained by combining
QI and Q2. The network obtained by feeding the
output of Q1 and Q2 back to itself is shown in
Figure A.3. Any queue Q' that accepts classes 1,
5, and 6, and outputs classes 3, 7, and 8 at the
same throughputs as Q in the same network
(Figure 13) is flow-equivalent to Q. For example
consider a system Q' that accepts a class 1 job,
services it, and then outputs it as a class 3 job.
Q' also accepts class 5 and 6 jobs, services them,
and outputs them as class 7 or 8 jobs with equal
probability. Let S,(n], n2) denote the mean ser-
vice time to class i jobs, i = 1, 5, 6, in Q' when
the number of jobs in chainj , j = 1, 2, is n~. Then
set

Sl(n], n2) = 1/xa(n], n2)
Ss(nl, n2) ---- S~(n~, n2)

= 1/((xT(nl, n2) + xs (nl, n2)))

Let p,k be the frequency that a class i job
becomes a class k job after receiving service from
Q'. Then

A p p r o x i m a t e M e t h o d s • 315

I # 5

: l 3,

(Class) I

!
I

I

--- 4

FIGURE A.2. Gwen network.

6 =- Q

FIGURE A.3.

Nueue 3

Oueue 4

Offlme system.

Oueue 1

P13 ~ 1
1)57 = P67 = 1/2 and
P~ ffi P ~ = 1/2

In a similar manner, flow-equivalence applies
to arbitrary complex networks.

BARD77

A D 7 8

BASK75

BROW75
FIGURE A.1 Class tranmtlons.

TABLE A I.

Queue No. Classes Accepted Classes Output

1 1,5 2,8,6
2 2,6 3,5,7
3 3,7 4,6,8
4 4,8 1,7,5

BRow77

Bux77

REFERENCES

BARD, Y. "The modeling of some sched-
uling strategies for an interactive com-
puter system," in Computer performance,
K. M Chandy and M. Reiser (Eds.), El-
sevier North-Holland, Inc., New York,
1977, pp. 113-138.
BARD, Y "The UM/370 performance pre-
dictor," Comput. Surv. 10, 3 (Sept. 1978),
333-342.
BASKETT, F., CHANDY, K.M., MUNTZ,
R.R.; AND PALACIOS-GOMEZ, F. "Open,
closed and mixed networks of queues with
different classes of customers," J. ACM
22, 2 (April 1975), 248-260
BROWNE, J. C.; CHANDY, K. M.; BROWN,
R. M.; KELLER, T. W., TOWSLEY, D. F.,
AND DlSSLEY, C W. "Hierarchical tech-
tuques for development of reahstic models
of complex computer systems," Proc.
IEEE 63, (June 1975), 966-975
BROWN, R. M.; BROWNE, J. C.; AND
CHANDY, K. M. "Memory management
and response time," Commun. ACM 20, 3
(March 1977), 153-165.
Bux, W.; AND HERZOG, U. "The phase
concept: approximation of measured data

Computing Surveys, Vol. 10, No. 3, September 1978

316

CHAN72

CHAN75a

CHAN75b

CHAN77

CHIU78

COUR75

COUR77

Cox55

Cox65

DENN76

DENN78

DISN74

DRAK67

FOSC77

FOST74

GAVE68

K. M. Chancly and C. H. Sauer

and performance analysis," in Computer
performance, K.M. Chandy and M. Reiser
(Eds.), Elsevier North-Holland, Inc., New GAVE76
York, 1977, pp. 23-38.
CHANDY, K. M. "The analysis and solu-
tions for general queueing networks," m
Proe. 6th Annual Princeton Conf Infor-
mation Science and Systems, 1972, pp. GELE75
224-228.
CHANDY, K. M.; HERZOG, U.; AND Woo, L
S. "Parametric analysis of queuemg net- GELE76
works," IBM J. Res Dev 19, (Jan. 1975),
36-42.
CHANDY, K. M , HERZOG, U , AND Woo, L.
S. "Approximate analysis of general GORD67
queueing networks," IBM J. Res Dev. 19,
(Jan. 1975), 43-49.
CHANDY, K M.; HOWARD, J H.; AND
TOWSLEY, D F. "Product form and local HERZ75
balance in queueing networks," J ACM
24, 2 (April 1977), 250-263.
CHIU, W. W.; AND CHOW, W. M. A hybrid
hwrarchical model of a multiple wrtual IGLE78
storage (MVS) operating system, RC-
6947, IBM Research, Yorktown Heights,
N.Y., Jan. 1978.
COURTOIS, P. J. "Decomposability, insta-
bilities and saturatmn in multlprogram-
mmg systems," Commun. ACM 18, 7 (July
1975), 371-376 INFO75
COURTOIS, P J. Decomposabdzty
queueing and computer system apphca-
ttons, Academic Press, Inc, New York, IRLA75
1977.
COX, D. R. "A use of complex probabilitms
m the theory of stochastm processes,"
Proc. Cambridge Phdos. Soc. 51, (1955), JACK63
313-319
Cox, D R., AND MILLER, H. D. The theory
of stochastic processes, John Wiley and KELL73
Sons, Inc., New York, 1965.
DENNING, P. J., AND KAHN, K. C. "An L
= S criterion for optimal multiprogram- KELL76
ming," in Proc Int Syrup. Computer Per-
formance Modeling, Measurement and
Evaluatmn, 1976, P.P.S. Chen and M. KOBA74
Franklin (Eds), ACM, New York, and
IFIP, Geneva, pp. 219-229.
DENNING, P J., AND BUZEN, J. P. "The
operational analysis of queueing network KOBA78
models," Comput. Surv. 10, 3 (Sept 1978),
225-261.
DISNEY, R. L ; AND CHERRY, W. P "Some
topics in queuemg network theory," in LAM76
Mathematwal methods m queueing the-
Dry, A. B. Clarke (Ed.), Springer-Verlag
New York, Inc., New York, 1974.
DRAKE, A W. Fundamentals of apphed LAVE75
probabdtty theory, McGraw-Hill, Inc,
New York, 1967
FOSCHINI, G. J. "On heavy traffic diffusion
analysis and dynamic routing in packet LAVE77
switched networks," in Computer perform.
ance, K.M. Chandy and M. Reiser (Eds.),
Elsevier North-Holland, Inc., New York,
1977, pp. 419-514. LAZO77
FOSTER, D. V.; MCGEHEARTY, P. F.,
SAUER, C. H.; AND WAGGONER, C. N. "A
language for analysm of queueing models,"
in Proc. F~flh Annual P~ttsburgh Model-
mg and Simulation Conf., 1974, pp.
381-386.
GAVER, D. P. "Diffusion approxlmattons

MACN75

and models for certain congestion prob-
lems," J. Appl. Probab. 5, (1968), 607-623.
GAVER, D. P.; AND HUMFELD, G. "Multi-
type multiprogramming probability
models and numerical procedures," Com-
puter performance, Elsevmr North-Hol-
land, Inc., New York 1976, pp. 38-43
GELENBE, E. "On approximate computer
system models," J. ACM 22, 2 (April
1975), 261-269.
GELENBE, E.; AND PUJOLLE, G "The be-
havior of a single queue in a general
queueing network," Acta Inf 7, (1976),
123-136.
GORDON, W. J.; AND NEWELL, G F.
"Closed queuemg networks with exponen-
tial servers," Oper. Res. 15, (1967),
254-265.
HERZOG, U., Woo, L S.; AND CHANDY, K.
M "Solution of queuemg problems by a
recurmve technique," [BM J. Res Dev. 19,
(May 1975), 295-300.
IGLEHART, D. L "The regeneratwe
method for simulation analysis," in Cur-
rent trends m programming methodology,
Vol. III software modeling and ~ts impact
on performance, K. M. Chandy and R. T.
Yeh (Eds.), Prentme-Hall, Inc., Englewood
Cliffs, N J., 1978, pp 52-71.
INFORMATION RESEARCH ASSOCIATES,
User's manual for the ASQ system, I R A,
Austin, Texas. 1975.
IRLAND, M. "Queuelng analysm of a buffer
aUocatlon scheme for a packet switch," m
Proc. National Telecommumcattons
Conf., IEEE, New York, 1975, p 24
JACKSON, J R "Jobshop-hke queuemg
systems," Manage. Sc~ 10, (1963), 131-
142
KELLER, T W. ASQ user's manual, TR-
27, Computer Science Dept., Umv Texas
at Austin, Texas, 1973.
KELLER, T. W "Computer systems
models with passwe resources," PhD The-
sis, Umv. Texas at Austin, 1976.
KOBAYASHI, H "Application of the diffu-
sion approximation to queuemg networks
I: equilibrium queue distributions," J.
ACM 21, 2 (April 1974), 316-328.
KOBAYASHI, H. Modelling and analysts
an mtroductmn to system performance
evaluation methodology, Addison-Wesley
Publ Co, Reading, Mass, 1978, Ch 4
LAM, S. S. "Store-and-forward buffer re-
qmrements in a packet switching net-
work," IEEE Trans Commun 24, (April
1976), 394-403.
LAVENBERG, S. S , AND SLUTZ, D R. "In-
troduction to regenerative slmulat,on,"
IBM J. Res. Dev 19, (Sept 1975),
458-463.
LAVENBERG, S S, AND SAUER, C H. "Se-
quential stopping rules for the regenera-
twe method of slmulatmn," IBM J Res
Dev. 21, (Nov. 1977), 545-558
LAZOWSKA, E D. "The use of percentiles
in modeling CPU servwe tm~e distribu-
tions," m Computer performance, K.M.
Chandy and M Reiser (Eds.), Elsevmr
North-Holland, Inc., New York, 1977, pp.
53-66.
MACNAIR, E. A ; AND Woo, L S. Prwate
communication, 1975.

Computing Surveys, Vol. 10, No. 3, September 1978

Approxtmate Methods 317

REIS74

REIS75

REIS76

REIS78

SAUE75a

SAUE75b

SAUE76

SAUE77a

SAUE77b

SAUE77C

SAUE78

SCHW78

REISER, M., AND KOBAYASHI, H. "Accu-
racy of the dlffumon approximation for
some queuelng systems," IBM J. Res Dev. SEKI71
18, {1974).
REISER, M., AND KOBAYASHI, H.
"Queuemg networks with multiple closed
chains theory and computational algo- SEvc77a
rlthms," IBM J Res. Dev 19, 3 {May
1975), 283-294.
REISER, M "Interactive modehng of com-
puter systems," IBM Syst J 15, (1976),
309-327. SEVc77b
REISER, M ; AND SAVER, C H. "Queuemg
network models methods of solution and
theft program implementation," in Cur-
rent trends m programmtng methodology,
Vol. III software modehng and tts tmpact
on performance, K. M Chandy and R. T.
Yeh (Eds.), Prentice-Hall, Inc., Englewood SHUM77
Cliffs, N J , 1978, pp. 115-167.
SAVER, C. H. "Configuration of computing
systems: an approach using queueing net-
work models," PhD Thesis, Umv Texas
at Austin, May 1975.
SAUER, C. H, AND CHANDY, K. M "Ap-
proximate analysis of central server
models," IBM J. Res. Dev 19, (May 1975), STEW78
301-313
SAVER, C H., Woo, L S , AND CHANG, W
Hybrtd analysts/stmulatmn" dtstr~buted Tows75
networks, RC-6341, IBM Research, York-
town Heights, N Y., June 1976
SAUER, C H. Confidence intervals for WALL66
queuemg stmulattons of computer syst-
terns, RC-6669, IBM Research, Yorktown
Heights, N.Y, July 1977
SAUER, C. H , AND CHANDY, K M. The
tmpact of dtstrtbutions and dtsctphnes on
multtpleprocessor systems, RC-6621, IBM WOLF77
Research, Yorktown Heights, N Y, July
1977. Also to appear m Commun. ACM
SAUER, C H., AND MACNAIR, E A. Com-
puter/communtcatton system modehng
with extended queuetng networks, RC- WONG78
6654, IBM Research, Yorktown Heights,
N Y., July 1977.
SAUER, C H, AND MACNAIR, E A ZAHO77
Queuemg network software of systems
modehng, RC-7143, IBM Research, York-
town Heights, N.Y, May 1978.
SCHWETMANN, H. D "Hybrid slmulatmn

models of computer systems," to appear m
Commun. ACM, 1978.
SEKINO, A Performance evaluatton of
multtprogrammed trine-shared computer
systems, Proj. MAC TR-103, MIT, Cam-
bridge, Mass., Sept 1971
SEVCIK, K C "Priority scheduling dlso-
phnes In queueing network models of com-
puter systems," in Proc IFIP Congress
77, North-Holland Publ. Co., Amsterdam,
pp. 565-570
SEVCIK, K C., LEVY, A I., TRIPATHI, S.
K., AND ZAHORJAN, J L. "Improving ap-
proxlmattons of aggregated queuemg net-
work subsystems," In Computer perform-
ance, K.M Chandy and M. Reiser (Eds.),
Elsevmr North-Holland Inc., New York,
1977, pp. 1-22
SHUM, A., AND BUZEN, J. P. "The EPF
techmque, a method for obtaining approx-
imate solutions to closed queueing net-
works with general service times," m Mea.
surmg modehng & evaluating computer
systems, H. Beilner and E. Gelenbe (Eds.),
North-Holland Publ. Co, Amsterdam,
1977, pp. 201-220.
STEWART, W. J "A comparison of numer-
Ical techniques in Markov modeling,"
Commun. ACM 21, (Feb. 1978), 144-151.
TOWSLEY, D. F. "Local balance models of
computer systems," PhD Thesis, Univ
Texas at Austin, Dec. 1975.
WALLACE, V. L., AND ROSENBERG, R. S
"Markovlan models and numerical analy-
sis of computer system behavior," in Proa
1966 AFIPS Spring Jr. Computer Conf.,
Vol 28, Spartan Books, Washington, D C.,
pp 141-148
WOLFF, R W. "The effect of servme time
regularity on system performance," m
Computer performance, K.M. Chandy and
M. Remer (Eds.), Elsevier North-Holland,
Inc, New York, 1977, p~. 297-304.
WONG, J W. Queuemg network modeling
of computer communication networks,"
Comput. Surv 10, 3 (Sept. 1978), 343-351.
ZAHORJAN, J. L. "Iterative aggregation
with global balance," ProJect SAM Notes,
Univ. of Toronto, Toronto, Ont , Canada,
Feb 1977.

RECEIVED FEBRUARY 6, 1978; FINAL REVISION ACCEPTED JUNE 7, 1978

CompuUag Surveys, Vol 1O, No. 3, September 1978

