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The two primary issues in choosing a computing system model are credibility of the model 
and cost of developing and solving the model Credibility is determined by 1) the experience 
and biases of the persons using the model, 2) the extent to which the model represents 
system features, and 3) the accuracy of the solution technique. Queuemg network models 
are widely used because they have proven effective and are inexpensive to solve. However, 
most queuemg network models make strong assumptions to assure an exact numerical 
solution. When such assumptions severely affect credibility, slmulatmn or other approaches 
are used, in spite of their relatively high cost. It is the contention of this paper tha t  queueing 
network models with credible assumptions can be solved approximately to provide credible 
performance estimates at low cost This contention is supported by examples of approximate 
solutions of queueing network models. Two major approaches to approximate solution, 
aggregation (decompositmn) and diffusion, are discussed 
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INTRODUCTION 

Computer systems analysts use models to 
gain insight into the behavior of systems 
and to aid in systems design. The analyst 
has several tools (programs) at his disposal 
to aid in estimating the performance of 
systems. These include queueing models, 
random-number or trace-driven simula- 
tions, and statistical models. The specific 
tool that an analyst uses depends upon the 
amount of error he can tolerate, the speed 
with which he wishes to get results, and 
perhaps most importantly, the amount of 
faith he has in the tool. In our experience 
computer center managers and systems an- 
alysts generally rank tools in increasing or- 
der of credibility in the following sequence: 
queueing models, discrete-event random 

number simulations, trace-driven simula- 
tions, monitoring systems running syn- 
thetic jobs, and measurements of a real 
workload on a real system. Unfortunately, 
the above ranking is generally also a rank- 
ing of tools in increasing order of cost {i.e., 
time used by the analyst and time used by 
the solution technique). 

We will frame our discussion of our ap- 
proximations in the context of analysts 
choosing between competing predictive 
tools, focusing attention on the three crite- 
ria of: 1) time used by the solution tech- 
nique (speed), 2) credibility, and 3) degree 
of accuracy required for the problem at 
hand. Credibility is a subjective criterion; it 
varies from analyst to analyst. Yet it is 
crucial to the understanding of how tools 
are used. In particular, it is fundamental to 
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the basic issue of this paper: How can ap- 
proximation methods be commonly used by 
systems analysts in the field? 

In keeping with most of the queueing 
network literature, we adopt the stochastic 
approach to approximation methods. All 
the systems considered in this paper are 
assumed to attain equilibrium; further- 
more, we restrict attention (with a few ex- 
ceptions) to predicting the performance of 
systems at equilibrium. In our experience 
systems analysts rarely use tools to predict 
transient behavior; however, this situation 
may change as tools become increasingly 
flexible. 

By analyzing a model  we mean running 
a computer program that estimates queue- 
length distributions for one or more queues 
in the model. Device utilizations, mean re- 
sponse times, and throughputs may be de- 
rived from the queue length distribution. 
We usually ignore the problem of comput- 
ing response time distributions. The prob- 
lems of estimating response time distribu- 
tions and their moments other than the 
mean are very difficult. The successful so- 
lutions have been limited to systems con- 
sisting of a single queue or a very restricted 
network of queues. 

We generally ignore the software aspects 
of queueing network modeling, even though 
software is of critical importance. Rarely 
will an analyst implement a special purpose 
program for a specific model. Rather, the 
analyst will rely on existing software, per- 
haps adding modifications or a #pecialized 
user interface. Reiser and Sauer discuss 
queueing network software with emphasis 
on solution techniques [REIs78]. Sauer and 
MacNair survey significant queueing soft- 
ware with a comprehensive view of the 
requirements specifically associated with 
queueing software [SAUE78]. In this paper 
we only discuss software of special signifi- 
cance. 

We put queueing network models into 
three categories: 

1) Tractable: those which can be ana- 
lyzed to give exact (as opposed to ap- 
proximate) solutions in an "ade- 
quately" short time. ("Adequately" is 
a subjective term that will be defined 
later in this section.) It should be em- 
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phasized that tractable models often 
do not represent reality faithfully; the 
analyst should not be lulled into false 
security by the exactness of the solu- 
tion. 

2) Intolerably slow: those which can be 
analyzed to get exact results but which 
cannot be analyzed in an adequately 
short time. 

3) Unsolved: those for which there is no 
known method of analysis guaranteed 
to give exact results. 

The vast majority of queueing network 
models used for estimating and predicting 
computer system performance are of the 
tractable category. Rather than attempting 
to use a queueing network model of the 
second or third categories, most analysts 
would resort to simulation. However, con- 
structing a simulation model with a conven- 
tional language may require a large amount 
of effort, and running a simulation may be 
computationally expensive. Thus there is a 
significant cost gap between queueing 
models and simulation models in the cred- 
ibility sequence described above. 

There have been three major approaches 
to bridging this gap: 

1) Using approximate solution tech- 
niques; 

2) Using a simple, tractable model to 
obtain bounds for performance mea- 
sures of a more complex model; and 

3) Using simulation tools specifically de- 
signed for solution of complex 
queueing models. 

The following example will help to clarify 
these terms and approaches. Consider a 
model of a CDC 6000 series machine; this 
model consists of a central server with a 
queue for Peripheral Processors (PPs) 
ahead of the disk queues (Figure 1). To 
carry out an I/O operation, a job needs 
both a peripheral processor and a disk. 
When a job completes a CPU service it 
joins the PP queue. Only after securing a 
PP does the job enter one of the disk 
queues. The PP is held while the job is 
waiting in the disk queue and while the job 
is being serviced by the disk. After comple- 
tion of disk service the job relinquishes its 
PP; the relinquished PP is immediately as- 
signed to a job in the PP queue, or, if the 

~o ooo, . /  ' I 

FIGURE 1. Central  server model  with peripheral  
processors. 

PP queue is empty, the relinquished PP 
joins the pool of available PPs. 

Consider a system with five disks, four 
PPs, and a level of multiprogramming of 
five. Assume that  the PP and disk queues 
have a first come first served (FCFS) 
queueing discipline and that  the CPU has 
a processor sharing (PS) discipline. (PS is 
defined as the limiting case of a no overhead 
round-robin discipline as the quantum goes 
to zero. It is used in queueing models be- 
cause it is much more mathematically 
tractable than round-robin.) Assume the 
CPU service time distribution is hyperex- 
ponential and that  the I/O service time 
distributions are exponential. (Service time 
distributions have a key impact on the 
tractability of queueing models. In Section 
1 we will discuss distribution representa- 
tions for those readers unfamiliar with this 
subject.) 

This model can be represented as a Mar- 
kov process and an exact numerical solution 
can be obtained [KELL76]. (Markov proc- 
esses are essential to the stochastic ap- 
proach to queueing networks. This is espe- 
cially true of exact solutions and specialized 
simulation techniques and less true of the 
aspects of approximation we discuss here. 
Section I gives a brief introduction to Mar- 
kov processes.) However, the time required 
to obtain this solution on a CDC 6600 is in 
the order of several minutes. We must con- 
clude that this model falls into the category 
of intolerably slow models because most 
analysts would prefer to use alternative 
methods or models. If the service time dis- 
tributions were arbitrary, and thus less 
tractable than hyperexponential and expo- 
nential forms, then this model would fall 
into the category of unsolved models. 

Approximate solution methods can be 
applied to the 4 PP model [KELL76]. There 
is no assurance, besides empirical results, 
that an approximation will give satisfactory 
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answers, but an approximation may give 
values very close to the exact values in less 
than a second of processor time. Thus the 
approximate solution is very attractive. Ap- 
proximations usually use heuristic solution 
techniques. The philosophy is very similar 
to that of artificial intelligence search strato 
egies: The methods are reasonable but, in 
general, it cannot be rigorously proven that 
the methods provide the desired solutions. 

Consider this model with five rather than 
four PPs. Since the degree of multipro- 
gramming is equal to the number of PPs, a 
job will never wait for a PP. Hence we can 
remove PPs from the model. The resulting 
model can be analyzed in less than a second 
on a CDC 6600, since the model satisfies 
product form (Section 1). This model falls 
into the tractable category. 

It is possible to approximate the 4 PP 
system by a 5 PP tractable model because 
we know from experience that the 5 PP 
model provides a tight upper bound to the 
throughput of the 4 PP system. This is an 
instance of a complex model being analyzed 
by obtaining bounds for performance mea- 
sures from a simpler model [SEvc77a]. 
Such an approach is extremely useful. How- 
ever, we do not consider such approaches 
in this paper because a general theory un- 
derlying such approaches is yet to be de- 
veloped; cases have to be treated individ- 
ually. A general theory in this area would 
be a breakthrough in systems modeling. 
One must proceed cautiously; for instance, 
it is tempting to hypothesize that systems 
with more regular arrival processes (i.e., 
processes with smaller coefficients of vari- 
ation of interarrival times, where the coef- 
ficient of variation is the standard deviation 
divided by the mean) may be analyzed to 
obtain lower bounds on the mean wait 
times of systems with more variable arrival 
processes, but this hypothesis is invalid 
[WOLF77]. 

Queueing network tools such as QSIM 
[FosT74] and RESQ [REIS78, SAtTE77c] al- 
low the user to easily specify and simulate 
complex queueing models of the intolerably 
slow and unsolved categories. (RESQ also 
provides numerical solutions for most 
models of the tractable category.) A simu- 
lation of the 4 PP model above would re- 

quire considerably less than a minute to 
obtain satisfactory results. Thus simulation 
would be a more reasonable method than 
exact numerical solution of that model. 

Thus one can conclude that both approx- 
imation and simulation are viable ap- 
proaches to solving this model. Though the 
approximation has a definite computational 
advantage, one must consider factors such 
as credibility and availability of software. 
For other models we may not have a choice; 
only one technique is viable. Our object 
here is to survey approximation methods 
for intolerably slow and unsolved models. 
There is no known rule for choosing be- 
tween simulation and approximation meth- 
ods, nor is there one for choosing among 
approximations. However, we feel it is im- 
portant to bring approximations to the at- 
tention of a larger audience. 

Before proceeding with approximations 
we should say a little about simulation. 
Simulations could be considered an approx- 
imation technique, since simulations do not 
provide exact results, but this is an unusual 
view. To clarify this point, consider a sim- 
ulation of a queueing network that has a 
tractable numerical solution. The numeri- 
cal solution is exact--if  a mean response 
time is estimated, then that value is correct 
for the queueing network (though not nec- 
essarily correct for the modeled computer 
system). A simulation estimate of mean 
response time will, hopefully, be near the 
correct value but will usually not be equal 
to the correct value. Two of the principal 
problems with simulation are: determining 
how close simulation estimates are to the 
correct values (for the model, not the 
modeled system), and determining how 
long to run the simulation in order to obtain 
estimates near the correct values. These 
problems are still difficult for arbitrary sim- 
nlations, but much progress has been made 
toward their solution for simulations of 
queueing networks. 

A general approach to the first problem 
is the estimation of confidence intervals. If 
a simulation run produces an estimate R 
for mean response time, then we produce a 
confidence interval estimate [R - ~, 
R + $] and say that the correct mean re- 
sponse time is in this interval with a certain 
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level of confidence, e.g., 90%. Suppose we 
run the same simulation model many times 
with different random number streams for 
each run, and estimate confidence intervals 
for mean response time on each run. Infor- 
mally, we could expect the fraction of runs 
with confidence interval including the cor- 
rect value, to be equal to the level of con- 
fidence. Note that  we are not saying that 
90% (or whatever the level of confidence) 
of the response times are in the interval; 
this is a common misinterpretation of the 
confidence interval. 

Though estimation of confidence inter- 
vals is difficult for arbitrary simulations, 
much progress has been made in rigorous 
estimation of confidence intervals for sto- 
chastic systems in equilibrium, e.g., 
queueing networks. The most rigorous ap- 
proach is the regenerative method. Laven- 
berg and Slutz give an excellent introduc- 
tion to this method [LAVE75], Iglehart gives 
a thorough survey of it [IGLE78], and Sauer 
and MacNair illustrate application of the 
method to general queueing networks 
[SAUE77C]. The regenerative method is not 
always practical; Kobayashi [KOBA78] and 
Sauer [SAUE77a] discuss alternative meth- 
ods for queueing models. 

The second problem can be handled by 
sequential stopping rules applied in con- 
junction with confidence interval estima- 
tion [LAVE77]. In brief, a sequential stop- 
ping rule allows the simulation to run for a 
while (a "sampling period") and then ex- 
amines the confidence intervals. If the in- 
tervals are "sufficiently narrow" then the 
simulation stops. Otherwise, additional 
sampling periods are run, with confidence 
intervals estimated after each period, until 
the intervals are sufficiently narrow. 
APLOMB, the simulation component of 
RESQ, provides several confidence interval 
methods and a sequential stopping rule. 

The remainder of the paper discusses 
approximations. Section 1 informally de- 
scribes the tractable category of models. 
Section 2 give examples of system models 
that are not in the tractable category but 
have been solved by approximations. Sec- 
tion 3 describes approximations based on 
aggregation of submodel results. Section 4 
considers techniques for improving the ac- 
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curacy of aggregation approximations. Sec- 
tion 5 briefly discusses use of aggregation 
in the management of modeling projects. 
Section 6 describes diffusion approxima- 
tions. Section 7 is an overview of approxi- 
mation techniques. 

1. TRACTABLE QUEUEING NETWORK 
MODELS 

Before giving a characterization of tractable 
models we informally review the concepts 
of arrival processes, service time distribu- 
tions, and Markov processes. A more thor- 
ough introduction is given by Drake 
[DRAK67]. 

Mathematicians have tried to make the 
representation of queueing systems as sim- 
ple as possible for the sake of tractability. 
They then studied more complex queueing 
systems because they are more represent- 
ative of actual systems, and because they 
are more mathematically interesting. To 
keep our discussion simple we will avoid 
unnecessary mathematics and therefore 
sacrifice some rigor and general applicabil- 
ity. 

First consider the arrival of jobs at a 
queue, a queue not connected to other 
queues. The simplest representation of the 
arrivals assumes that the arrivals are 
strictly independent of each other. To be 
more precise, we define a Poisson process 
for the arrivals: 1) observations of the ar- 
rivals during non-overlapping intervals of 
time are mutually independent; and 2) if we 
look at small enough intervals of time there 
will be at most one arrival per interval, and 
the probability of an arrival during the in- 
terval is equal to the overall rate of arrival 
times the length of the interval. The advan- 
tage of the Poisson representation of ar- 
rivals is that it is memoryless because of 
the first part of the definition; the proba- 
bility of an arrival during a sufficiently 
small interval of time is totally independent 
of arrivals or lack of arrivals in the preced- 
ing intervals. The Poisson process is often 
a realistic representation of actual arrival 
processes but is usually chosen for queueing 
models because of the resulting tractability. 
Corresponding to the process of arrivals 
during a time interval, there is a distribu- 
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tion of times between arrivals. For the Pois- 
son process the corresponding interarrival 
time distribution is the exponential distri- 
bution; "Poisson arrivals'and "independent 
identically distributed exponential arrivals" 
are equivalent. The exponential distribu- 
tion also has a memoryless property; the 
probability distribution for the time until 
the next arrival is independent of the time 
elapsed since the last arrival. Statements 
about arrivals and interarrival times can be 
applied to service completions and inter- 
departure times, respectively. 

Now consider a single isolated queue with 
FCFS discipline. It is not reasonable to 
describe the queue as a whole as memory- 
less; even if the arrival and service proc- 
esses are memoryless, the response time a 
job experiences will be dependent on the 
number of other jobs ahead of it. A Markov 
process has a limited amount of memory. 
This memory consists of distinct disjoint 
states. The time the process spends in a 
state is exponential; the memory consists 
only of the state distinctions. (We are con- 
sidering continuous time processes only, as 
is usually the case. Analogous statements 
can be made if time is represented as dis- 
crete units.) 

For the queue we have just described, 
the Markov states are uniquely determined 
by the number of jobs at the queue. The 
queue changes from one state to another 
when a job arrives or departs. To obtain a 
solution for this process means to solve for 
the equilibrium probabilities of each state. 
This is done by solving a set of linear equa- 
tions (balance equations) equating the rate 
at which the process leaves each state to 
the rate at which it enters the state. (A 
distinction is sometimes made between 
global and local balance equations. The 
equations just described are the global bal- 
ance equations. Local balance equations ig- 
nore some of the terms of the global balance 
equations without affecting the solution. 
This is only possible for special kinds of 
Markov processes.) 

Before returning to queueing networks, 
let us consider generalization of service 
time distributions. The same approach may 
be used with interarrival time distributions, 
but this is not often done with queueing 

networks. In addition to the memoryless 
property, the exponential distribution also 
has the characteristic that the standard 
deviation is equal to the mean. If we want 
to represent a distribution with standard 
deviation greater than the mean but still 
retain as little memory as possible, we can 
use the hyperexponential form of Figure 2. 
An individual service time will be exponen- 
tially distributed with mean S~ with prob- 
ability pl and exponentially distributed 
with mean $2 with probabilityp2. The figure 
represents a special case of the hyperexpo- 
nential distribution; it will have coefficient 
of variation greater than one if pl ~ p2. S is 
the mean service time. 

On the other hand, if we want to repre- 
sent a distribution with coefficient of vari- 
ation less than one, we can use the hypoex- 
ponential form of Figure 3. In this case a 
service time consists of the sum of several 
exponential service times. Both the hyper- 
exponential and hypoexponential forms are 
special cases of the method of (exponential) 
stages [Cox55]. The method of stages al- 
lows us to closely represent most service 
time distributions with the only memory 
introduced being the distribution stage of a 
service time in progress. For example, if we 
substitute a hyperexponential service time 
in our single queue example, then we distin- 
guish Markov states of the process by the 
distribution stage of the job in service as 
well as by the number of jobs at the queue. 
For a discussion of equivalence of various 
forms of the method of stages, problems 
with low coefficient of variation, and a heu- 

$1 : S..//(2p I) 

S 2 = S//(2 p2 ) 

FIGURE 2. Hyperexponential form. 

5d " S/D 
i- / 7  d '~ '  

! 
! 

u.._ .] 

FIGURE 3. Hypoexponential form. 
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ristic solution to those problems see 
[SAUE75a]. For most of the remainder of 
the paper we assume time distributions rep- 
resented by the method of stages. 

Having discussed the necessary back- 
ground, we now characterize tractable 
queueing networks. A queueing network 
will have a tractable solution if one or more 
of the following conditions are met: 

1) State Space Size: The balance equa- 
tions can be mechanically generated 
and numerically solved in an ade- 
quately short amount of time. 

2) State Transition Structure: The state 
transitions are such that recursive 
techniques may be used to obtain the 
probabilities of a few states, and then 
the queue length distributions can be 
expressed in terms of these states 
[Herz75, SAUE75a]. 

3) Product Form: The equilibrium state 
probability distribution consists of 
factors representing the states of the 
individual queues, i.e., P(S~ . . . . .  S~) 
ffi (l/G) P(S~) . . .  P (SK) where P(S,) 
is the probability that the ith queue is 
in state S, and P(S1 . . . . .  SK) is the 
probability that the network is in state 
( $1, . . .  ,SK). ( G is a normalizing con- 
stant chosen so that the probabilities 
sum to one.) 

Though in all three cases we can obtain 
performance measures such as throughput 
from the state probabilities, this is usually 
computationally inappropriate. For exam- 
ple, throughput can be obtained directly 
from normalizing constants without explicit 
consideration of state probabilities 
[DENN78a]. (See pp. 225-261, this issue.) 
With each of these conditions one can as- 
sociate programs written to solve networks 
meeting that condition. 

The best known program corresponding 
to the first condition is RQA [WALL66]. 
Experience with this program indicates 
that it is useful with models having not 
more than a few thousand states. Unfortu- 
nately, many models will have much larger, 
perhaps infinite, state spaces. Though there 
have been recent results on generating bal- 
ance equations [GAVE76] and on numerical 
methods for this problem [STEW78], there 
is no indication that significantly larger 
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state spaces will be accommodated. Note 
that the generality of the technique is lim- 
ited only by algorithm complexity and ma- 
chine resources. 

The method of [HERZ75] corresponding 
to the second condition has only been ap- 
plied to cyclic queue models (Figure 4) con- 
sisting of two queues with a fixed popula- 
tion of jobs. This technique is attractive 
because exact answers may be obtained 
rapidly for a variety of interesting queueing 
disciplines [SAUE75a]. A drawback is that 
a different procedure is required for each 
combination of queueing disciplines in the 
recursive method (as opposed to RQA). On 
the whole, this method is beneficial and is 
the basis of some of the approximations in 
Section 3. It has also been used directly in 
the parametric analysis of multiprocessing 
systems [SAuE77b]. 

The most important tractable models are 
those corresponding to the third condition, 
i.e., those having a product form solution. 
The exponential networks of [GORD67 and 
JACK63] have such a solution. Recent ef- 
forts [BASK75, CHAN72, DENN78, REIS75] 
have shown that many other networks have 
a product form solution. Programs such as 
ASQ [KELL73] and RESQ [REIs78] can 
analyze large product form networks in an 
adequately short time. In the remainder of 
this section we describe an important sub- 
set of the networks with product form so- 
lutions. The reader should be aware that 
this description is incomplete and should 
refer to the cited original works for formal 
and complete descriptions. 

A queueing network of this subset con- 
sists of a set of jobs, a set of queues, an 
infinite source of jobs, a sink, and a set of 
routing rules. The jobs are partitioned into 
groups called "routing chains," or simply, 
"chains," by the routing rules. All jobs of a 

CPU I/O 

FIGURE 4. Cyclic queue model. 
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given chain are identical in their behavior. 
A chain is open if it is connected to the 
source and sink, and closed if it is not 
connected to these. (Thus a closed chain 
has a fixed population of jobs.) A network 
is mixed if it has both kinds of chains. The 
arrival process of jobs from the source is 
Poisson. 

A queue consists of a set of devices, a 
queueing discipline, and a set of "local" 
classes. Two alternate, functionally equiv- 
alent representations of job classes have 
appeared in the literature. One considers 
classes to be global in the sense that a job 
belongs to that class unless it explicitly 
changes class. The other approach, the one 
we adopt, consists of classes local to queues 
and explicitly partitioned by routing chains. 
This representation facilitates implemen- 
tation of solution packages [REIS78] and is 
often more convenient for model formula- 
tion. Global classes must also be partitioned 
into chains for non-simulation solutions; 
this is often ignored. 

We will use Figure 5 to illustrate the 
concept of chains, local classes, and global 

I class ~ II0 Device 2 I 

FICuRE 5. Single routing chain with fodr classes. 

Terminals 
c l a s s ~  

classes. This figure shows three queues and 
four local classes. The four classes form a 
single routing chain because a job of one 
class will eventually join any other class. If 
we represented this network using global 
classes, we would need two global classes. 
For example, let global class A consist of 
local classes 1 and 2 and let global class B 
consist of local classes 3 and 4. When a job 
leaves device 1 it changes from (global) 
class A to class B; a job leaving device 2 
changes from class B to class A. 

If a job of a certain chain is to be routed 
to a given queue, then that queue must 
have one or more classes associated with 
the chain. The different classes of a queue 
may have distinct routing and, under con- 
ditions described below, may have distinct 
service time distributions. However, differ- 
ent priorities may not be assigned to the 
classes if a network is to retain a product 
form solution. 

Consider the example of Figures 6, 7, and 
8. They represent a computer system serv- 
ing a set of terminals and also supporting a 

Source Sink 

Disk Queue 

FIGURE 7 Open chain (batch load). 

Disk Oueue 

/_,, 
fcl ass 2 '~ ~ss.~2 ~/ Drum Oueue \ 

. . . .  2 

FICURE 6. Closed chain (terminal load). 
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FIGURE 8. Central server model with terminal and 
batch loads. 

batch workload. There are two routing 
chains: a closed chain representing the in- 
teractive load and consisting of classes 1 
through 4, and an open chain representing 
the batch load and consisting of classes 5, 
6, and 7. Assume the closed chain popula- 
tion is equal to the number of terminals. As 
this example illustrates, we consider the 
routing to be from class to class rather than 
from queue to queue. Where alternate rout- 
ings are possible we must specify the rela- 
tive frequency associated with each path. 

For a certain class of queueing disci- 
plines, which we shall call product form 
disciplines [CHAN77], different classes of a 
queue may have different service time dis- 
tributions. The two most common in- 
stances of product form disciplines are 1) 
processor sharing, and 2) when the number 
of jobs at the device never exceeds the 
number of devices (the "infinite server" 
queue). The service time distributions at 
queues with product form disciplines may 
be non-exponential. 

If a queue has a FCFS queueing disci- 
pline (and fewer devices than the possible 
queue length) then all classes of the queue 
must have the same exponential service 
time distribution. The service times may be 
"load (queue length) dependent. 

2. EXAMPLES OF SYSTEMS THAT ARE 
ANALYZED VIA APPROXIMATION 

We have attempted to motivate the reader 
to consider the use of approximations (In- 
troduction) and we have outlined the class 
of models that can be analyzed without 
resorting to approximations. Models that 
require the use of approximation tech- 
niques usually represent reality more faith- 
fully than models that do not. The question 
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is--which is preferable: approximate solu- 
tions to relatively faithful models, or exact 
solutions to relatively unfaithful (tractable) 
models? The question cannot be answered 
without empirical evidence. However, if a 
model ignores the existence of a resource, 
that model cannot be used to design or 
schedule the ignored resource. For example, 
if peripheral processors are ignored in a 
central server model, we cannot use that 
model to determine the effect of the num- 
ber of PPs on performance, and then ap- 
proximations, simulation, or measurement 
are the only alternatives. 

In this section we discuss problems that 
force the use of  approximations, because 
tractable models fail to represent key as- 
pects of these problems. Our goal in this 
section is to introduce the reader to a wide 
variety of such problems and to the litera- 
ture describing successful approximate so- 
lutions to these problems. 

Distributions and Disciplines 

If service time distributions in a model have 
high coefficients of variation, and if the 
corresponding queueing disciplines are not 
product form disciplines (for example, 
FCFS), then the values of performance 
measures obtained from the model may be 
substantially different from values obtained 
assuming product form [SAUE75a]. For ex- 
ample, consider a cyclic queue model (Fig- 
ure 4) with a single CPU, a single I/O 
device, and three jobs. If the mean CPU 
service is 40 ms., the coefficient of variation 
of CPU service time 5, and the mean I/O 
service time 40 ms. with an exponential 
distribution, then the CPU utilization with 
FCFS queueing at the CPU will be 64.9%. 
If we assume a product form CPU queueing 
discipline, e.g., PS, then the utilization will 
be 75.0%--a relative error of 15.6%. 

Priority queueing disciplines usually give 
significantly different results than FCFS 
and PS. Networks of queues with priority 
disciplines have been solved approximately 
[CHAN75b, REIS76, SAUE75b, SEVC77a]. 

Multiple Resource Holding 

A job may hold more than one resource at 
a time as in the peripheral processor ex- 
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ample. In the example in the Introduction, 
a PP  does not have a service time associ- 
ated with it; the length of time that a PP is 
held depends upon other devices such as 
disks. Main memory is another example of 
an important resource that does not have 
a service time associated with it, though 
jobs need main memory to use other de- 
vices such as the CPU. Resources that do 
not have service times associated with 
them, but limit the population of jobs that 
may utilize other devices, are called passive 
resources [FoST74]. Busses and switches in 
multiprocessing architectures are examples 
of critical resources that are passive. 
Models with passive resources have been 
analyzed approximately [BRow77, 
BRow75, D~,NN76, KELL76, SEKI71]. 

Blocking 

Most models with passive resources allow 
an arbitrarily long queue for the passive 
resource. Thus, the passive resource serves 
only to limit the population of jobs in cer- 
tain systems; for example PPs limit the 
population of jobs in the disk subsystem. It 
is usually assumed that a device will serve 
jobs whenever there are jobs in that de- 
vice's queue. However, in models of packet 
or message-switching systems, a device may 
be blocked (Figure 9), i.e., prevented from 
serving "jobs" in its queue because a queue 
elsewhere in the network is full to its ca- 
pacity and cannot accept any more jobs. In 
some communication systems a job at- 
tempting to enter a queue that is filled to 
capacity may be lost, i.e., disappear from 
the system. In some systems a device may 
expect an acknowledgment that a job 
(packet) has safely entered the next queue; 
if it does not get an acknowledgment in a 
specified period of time it may re-serve the 
job, i.e., retransmit the message. Queueing 
network models with blocking, lost mes- 
sages, or acknowledgments do not satisfy 
product form. However, such models have 

Finite t~altin 9 Roo~ 

D -  iJJ...li  -C} 
Source Queue 1 ~ Queue 2 Sink 

\ 
Server 8locked When Queue 2 
~elttn9 RO0~ Full 

FIGURE 9 Blocking. 

been analyzed approximately [IRLA75, 
LAM76]. 

Schedulers 

In many systems the processes that act as 
schedulers are not always active. Thus a 
job waiting for memory may have to wait, 
after memory becomes available, until the 
memory scheduler is activated. 

The length of time that a job must wait 
for schedulers to become activated to allo- 
cate resources to it may comprise a signifi- 
cant part of the overall delay experienced 
by ,the job, especially in systems with a 
significant degree of process communica- 
tion. Schedulers are clearly a scarce re- 
source in this context. However, they are 
different from other resources such as 
CPUs and disks because 1) a scheduler is a 
program that  requires the CPU to run, and 
hence a job needs two resources to get 
service: the CPU and the scheduler, and 2) 
a scheduler, once it is activated, may serve 
several jobs in a relatively short time, in 
which case it is incorrect to model the ser- 
vice time of a scheduler as the length of 
time between scheduler activations, 
whereas it is equally incorrect to model the 
service time as the length of time required 
for the scheduler to handle a single job after 
it has been activated. Systems with sched- 
ulers have been modeled approximately 
[BROW77]. 

Parallelism: Forks and Joins 

Some systems allow jobs to fork, spawning 
new tasks that can be processed in parallel. 
For instance, CPU:I/O overlapped process- 
ing has been modeled by means of prece- 
dence graphs showing forks and joins 
[Tows75]. In the CPU:I/O overlap model, 
a job is assumed to make several cycles 
where each cycle is modeled as a prece- 
dence graph (Figure 10). Each cycle in this 
example consists of three tasks; at the start 
of the cycle a CPU task must be performed. 
This task might set up the buffers for an 
I/O operation. After this task has been 
completed the job forks, creating two tasks 
that may proceed in parallel. One of the 
tasks requires an I/O device while the other 
requires the CPU. Only after all the tasks 
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in a cycle have been completed can the next 
cycle be initiated. This model does not sat- 
isfy product form. Relatively complex over- 
lap models have been solved by approxi- 
mation methods [Tows75]. Similar prob- 
lems appear in communication networks 
[SAuE77C]. 

Routing 

Most queueing network models assume 
that the frequency at which a job will join 
class j after leaving class i is a constant qu, 
independent of the state of the system. 
However, there are systems in which the 
route that a job takes through a network of 
queues is designed to depend upon the state 
of the system. For instance, a job requiring 
the use of a computing system in a multi- 
computer network may be allowed to use 
any one of a pool of computers. In this case 
a reasonable scheduling policy is to direct 
the job towards that computer with the 
least expected delay; thus the job's path 
depends upon the relative congestion at 
different computers. Such load balancing 
models do not generally satisfy product 
form. 

However, Towsley has defined a class of 
load balancing strategies for closed net- 
works that do satisfy product form 
[Tows75]. Foschini has studied load bal- 
ancing (also called dynamic routing) by 
means of diffusion approximations 
[Fosc77]. A general approach to approxi- 
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mation methods for dynamic job routing is 
yet to be devised. 

Summary 

The above problems are some of the char- 
acteristics that preclude tractable solutions. 
They are discussed in roughly descending 
order of importance, based on the amount 
of attention each has received in the com- 
puting literature. We do not believe a strict 
ordering can be given; importance of these 
characteristics varies from system to sys- 
tem. For example, it is generally assumed 
that CPU:I/O overlap is not significant, but 
individual systems may have a high degree 
of overlap, sufficient to make overlap more 
important than distributions, disciplines, or 
multiple resource holding. 

3. AGGREGATION (DECOMPOSITION) 
APPROXIMATIONS 

Perhaps the most important approximation 
strategy in queueing networks is that of 
aggrega t ion:  one solves portions of the 
model in isolation ("offline") and gathers 
the results together ("online") to produce 
a solution of the whole model. This ap- 
proach has also been referred to as decom-  
pos i t i on .  One can view the strategy alter- 
nately as decomposition of the whole model 
or as aggregation of portions of the model. 
The choice of terminology is primarily a 
matter of emphasis and personal taste. Sim- 
ilar methods have been used for a long time 
in combinatorics, systems theory, and arti- 
ficial intelligence. Indeed, the motivation 
for such methods in queueing networks 
came from similar approaches in general 
systems theory and in electrical networks. 

These methods can be shown to give 
exact solutions for queueing networks with 
product form solutions [CHAN75a]. Though 
aggregation is computationally advanta- 
geous in parametric analysis of product 
form networks [CHAN75a], our interest will 
be in networks without tractable solutions. 
In these cases the strategy wi l l  cause  s o m e  
error  because the aggregation process does 
not totally capture the interaction between 
the individual portions. The bulk of this 
section will be concerned with the represen- 
tation of interfaces between portions. 
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There is another very important justifi- 
cation for the aggregation strategy 
[COUR75, COUR77]: loose coupling of sub- 
networks. This is in addition to the justifi- 
cation based on results for product form 
networks. We will discuss the loosely cou- 
pled justification later in this section. 

Flow-Equivalent Methods 

A basic approach is to replace a subnetwork 
of queues by a single ("composite") queue 
which is flow-equivalent to the subnetwork, 
i.e., the job flow through the composite 
queue is equal to the job flow through the 
subnetwork. This can be done repeatedly, 
replacing subnetworks (including those 
with composite queues) by flow-equivalents 
until the solution of the resulting network 
is tractable. There may be additional con- 
straints on the aggregation process, e.g., if 
we need to find performances measures for 
a particular queue, this queue should ap- 
pear explicitly in the network after aggre- 
gation. 

Determination of the flow-equivalent is 
not obvious. In this section we will discuss 
exact flow-equivalents and approximations 
based on variations on exact flow-equiva- 
lents proposed for other networks. In Sec- 
tion 4 we discuss methods for estimating 
the amount of error introduced and taking 
appropriate corrective action. 

We assume, for the time being, that the 
subnetwork has a single routing chain and 
that there is a single input path to the 
subnetwork and a single output path from 
the subnetwork. We primarily discuss 
closed networks since most of the research 
and application of fiow-equivalent methods 
has concerned closed networks. (It should 
be pointed out that flow-equivalents also 
apply to open and mixed networks.) 

First we must determine the mean ser- 
vice time for the composite queue. One 
obvious estimate would be the expected 
time spent in service in the subnetwork. 
However, this estimate may be much too 
low if all jobs in the composite queue re- 
ceive parallel service; if only one composite 
queue job receives service the estimate is 
high if several jobs may be in service si- 
multaneously in the subnetwork. Thus we 
must let the composite queue service times 

be load dependent (dependent on the 
queue length of the composite queue). 

A method for determining composite 
queue service times that gives exact results 
for product form networks [CHAN75a] is 
the following: Consider the subnetwork 
with the output fed back to the input, i.e., 
consider the subnetwork offline. Determine 
the throughput, X(n), along this feedback 
path for each possible job population size n 
in the subnetwork. Set S(n), the mean ser- 
vice time of the composite queue given n 
jobs in the queue, to 1/X(n). In other words, 
if the network satisfies product form, then 
the online behavior of the subnetwork is 
identical to its offline behavior. 

Passive Queue Flow-Equivalents 

To illustrate an approximation using a 
flow-equivalent method consider the 4 PP 
example of the Introduction. Let the sub- 
network be the PP and disk queues (Figure 
11). From [CHAN75a, DENI~78] we know 
that X(n), n = 1,2,3,4 will be G(n-1)/G(n), 
ignoring the PP queue. Further X(5) must 
be the same as X(4) since there will never 
be more than 4 jobs in the disk queues. 
Replacing a subnetwork with the load-de- 
pendent composite queue (Figure 12) re- 
sults in a network that satisfies product 
form and is easily solved. Since the 4 PP 
model violates product form conditions, we 

~11ocate PP ~ ~  Release PP 

FIGURE 11 PP/disk subnetwork with output con- 
nected to input. 

CPU Composite Queue 

s(1) = l/x(1) 
I = I , . . . ,5  

FIGURE 12. 4PP model with subnetwork replaced by 
flow-equivalent. 
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cannot expect performance measures of the 
network of Figure 12 to be the same as the 
corresponding measures of the original net- 
work. But the difference is very small 
[KELL76], and the aggregation is both rea- 
sonable and economical. 

As a numerical example, consider a PP 
model with parameters chosen for ease of 
solution and exposition. Let there be a de- 
gree of multiprogramming of 3, 2 PPs, and 
2 disks. Let the mean service time at the 
CPU and each disk be exponential with 
mean 40 ms. Assume all queueing disci- 
plines are FCFS. The routing frequencies 
to each disk are equal. {Remember that this 
network does not satisfy product form.) 

The exact value for CPU utilization is 
82.6% [KELL76]. If we consider the PP-disk 
subnetwork offiine with the output fed back 
to the input, we find X(1), the completion 
rate with 1 job in the offline system, to be 
25 jobs per second. X(2) is 33.3 jobs per 
second and X(3) is also 33.3 since at most 2 
jobs can be in the disk queues. (Without 
this restriction X(3) would be 37.5.) Substi- 
tuting this offline behavior in the CPU- 
composite queue network we give the com- 
posite queue a mean service time of 40 ms. 
with load (queue length) 1 and 30 ms. with 
load 2 or 3. Solving this two queue (product 
form) network for CPU utilization we get a 
value of 83.0%. Thus the error in this case 
is small. If we solve a similar model with 3 
PPs to get an upper bound on CPU utili- 
zation, this bound would be 84.6%. 

Note that this replacement of subnet- 
works by flow-equivalents may be repeated. 

9[  

Allocate /~mory CPU PP/DlSkS Releise ffemory 

FIGURE 14 Network to be replaced with flow-eqmv- 
alent 

Consider the model of Figure 13. Here the 
4 PP model is embedded in a network also 
representing memory contention and ter- 
minal think times. After making the above 
aggregation of the PP and disk queues, we 
can construct a flow-equivalent of the mem- 
ory, CPU, and composite PP/disk queue in 
a similar manner (Figure 14). We are as- 
suming that each job has the same fixed 
memory requirement. The more realistic 
case in which jobs require variable amounts 
of memory has been treated using flow- 
equivalents [BRow77]. 

Flow-Equivalents with Non-Exponential 
Distributions 

As mentioned earlier, another situation 
where approximations succeed is the case 
of FCFS queues with non-exponential dis- 
tributions. The 4 PP model had processor 
sharing as the CPU queueing discipline, but 
now suppose it was FCFS. Since the CPU 
service time distribution was given as hy- 
perexponential, the model corresponding to 
Figure 12 would not be solvable by product 
form methods. However, the recursive 
method of [HERz75] (the second condition 
in Section 1) is well suited to this new two 

Computing Surveys, Vol. 10, No. 3, September 1978 



294 K. M. Chandy and C. H. Sauer 

queue model, and again we get results close 
to the correct solution with little computa- 
tional effort [KELL76]. 

Let us now consider a traditional central 
server model (without peripheral proces- 
sors) in which all service times may be non- 
exponential and all queueing disciplines are 
FCFS. Again a reasonable approach is to 
isolate the I /O queues and try to find a 
flow-equivalent composite queue represen- 
tation. Pictorially this would correspond to 
Figures 1, 11, and 12 without the passive 
queues. As we explain below, the solution 
of the I /O subnetwork and the composite 
queue representation are more difficult is- 
sues than with the 4 PP network that was 
similar to a product form network. Though 
this problem has received considerable at- 
tention, the known approaches must be 
considered heuristic, since they are sup- 
ported primarily by intuition and empirical 
studies rather than rigorous proofs. 

Presumably we still want to use a load- 
dependent queue as an approximate flow- 
equivalent of the I /O subnetwork because 
it represents reality more realistically. 
Three key issues must be faced: 

1) How do we estimate the mean service 
times S(n) for the (approximately) 
flow-equivalent system? This seems 
to be the most crucial issue. There are 
several ways of estimating the 
throughputs in the subnetwork; unfor- 
tunately, the better the estimation, 
the more expensive the method. 

2) How do we choose the service time 
distributions in the flow-equivalent 
system? The emphasis in this work 
has been on selecting variances 
[SAUE75b, SEvc77b], though there 
has been an increasing realization that 
percentiles are very important 
[Bux77, LAZO77]. 

3) How do we select the queueing disci- 
pline in the flow equivalent system? 

Issue 1: Selecting mean service times S(n) 
for the flow-equivalent system. (All of the 
following methods extend to general net- 
works.) 

Method  1: Figure 15 shows the network 
obtained by feeding the output of the I /O 
system back on itself. This corresponds to 

taking the I /O system "offiine." If any one 
of the I /Os has non-exponential service 
times, it does not satisfy the conditions of 
product form, and therefore the system 
may be very time-consuming to analyze. 
However, the most accurate solution is to 
model this subnetwork as a discrete-state 
Markov process and to then determine 
steady-state probabilities numerically, and 
thus compute the exact mean service times 
of the flow-equivalent. 

Method 2: [ZAHO77] If there are many 
I /Os then the number of states in the Mar- 
kov model of the subnetwork may be so 
large as to make the problem intractable. 
Suppose we have a technique to determine, 
relatively rapidly, the steady state proba- 
bilities for a network with J I/O devices. 
We may determine the approximate flow- 
equivalent composite I /O in several steps. 

S tep  1: We may group together the 
first J I /O devices and represent this group 
by a flow-equivalent system with exact 
rather than approximate service rates. We 
may then group together the next J devices 
and determine the flow-equivalent system 
for this group and so on. We may choose to 
have exponential or non-exponential ser- 
vice times for the flow-equivalent system. 

S tep  2: If the flow-equivalent systems 
in the first step are given non-exponential 
service times, in the second step we may 
determine the flow-equivalent for a group 
of J flow-equivalent systems obtained in 
the first step; thus in the second step we 
determine the approximate flow-equivalent 
for j2 devices, and we proceed in this fash- 
ion until we have an approximate flow- 
equivalent for the entire I /O system. This 
process takes logjM steps, where M is the 
number of I/Os. 

If the flow-equivalents obtained in the 
first step are given exponential service 

I1[ 
FmvnE 15 I / O  subnetwork.  
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times,, in the second step we have a network 
of systems each of which satisfies product 
form conditions, and hence we may deter- 
mine the approximate flow-equivalent for 
the entire' I /O system in two steps. This 
method will usually be less accurate than 
the previous method. 

Method 3: We may make the assump- 
tion that all I /O devices have exponential 
service times, in which case the subnetwork 
has product form, allowing us to compute 
the subnetwork throughputs and the mean 
service rates in the approximate flow-equiv- 
alent directly. This method is very quick 
but probably not very accurate. 

I s sue  2: Selecting service time distribu- 
tions for the flow-equivalent system. 

The emphasis has been on selecting the 
most appropriate second moment. There 
has been no work on the potentially valua- 
ble method of using percentiles of the in- 
dividual service distributions to determine 
the percentiles of the service distribution of 
the composite system. 

The simplest solution is to assume that 
the service times of the composite system 
are exponential (as in Method 3 above). 
However, this solution can result in consid- 
erable error. A more realistic solution is to 
estimate the second moment of the com- 
posite system from the second moments of 
its component parts. 

Let C V  be the coefficient of variation of 
the service time, and let a -- CV2-1. Thus 
a is negative for hypoexponentials, positive 
for hyperexponentials, and zero for expo- 
nentials. Use the subscript C for the com- 
posite system and the subscript i for the ith 
I /O device. Let p, be the routing frequency 
for a job entering the I/O system going to 
the ith I /O device. Sauer and Chandy pro- 
pose the following heuristic formula for the 
coefficient of variation of the composite 
system [SAUE75b]: 

e v e  ffi Z p, CV,. 

Sevcik, et al. propose a more accurate for- 
mula [SEvc77b]: 

ac ffi Z P, 2a, 

for heavy load conditions and also the fol- 
lowing complex, but more accurate, equa- 
tion: 
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where M, is the mean service time of the 
ith I /O device and Mc the mean time a job 
is in service in the subnetwork. 

The general problem of estimating sec- 
ond moments of job inter-arrival times at 
different points in general networks has 
received considerable attention, though the 
focus has been on networks with a single 
chain of jobs, one job class per queue, and 
FCFS queueing disciplines. Considerable 
work remains to be done in the area of 
networks with priority and other multi- 
class disciplines. Sevcik, et al. [SEvc77b] 
has the most comprehensive treatment of 
this issue, based in part, on earlier work 
[DISN74, GELE76, KOBA74, REIS74]. 

A summary of the results in [SEvc77b] is 
presented in Figures 16, 17, and 18. Once 

Branch 

Total ~ ~ ~ R o u t i n g  Frequency P 

a(Branch) = p.a(TOTAL) 

FIGURE 16. Estimating second moment ofspilt flow. 
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FIGURE 17 Estimatmg second moment of interde- 
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the coefficient of variation is computed, the 
conventional approach is to represent the 
service time as a sequence of exponential 
stages (see Section 1). 

Issue 3: Queueing disciplines. 
The queueing discipline of the composite 

system does affect performance measures 
in the CPU-composite I/O network. Unfor- 
tunately, there has been very little work in 
the area of selecting queueing disciplines. 
Queueing disciplines have been selected 
more to reduce computational complexity 
than to better model the composite system. 
If there are many chains in the network, 
the assumption of processor sharing at each 
queue results in the simplest state-transi- 
tion diagram. Usually, PS gives the same 
results for non-exponential distributions as 
exponentials, thus discarding efforts to 
characterize distribution form. Processor 
sharing allows a job to enter the I /O sub- 
system after another job B, but to leave 
before B leaves. For this reason we might 
choose a FCFS discipline for the flow- 
equivalent system for a sequence of FCFS 
queues in series. However, it must be em- 
phasized that such arguments are merely 
educated guesses, and much empirical work 
needs to be done in this area. 

In summary, the specification of flow- 
equivalent systems is still an art. However, 
empirical simulation work and case studies 
of real systems are leading to a better un- 
derstanding of this problem. 

General Closed Networks (Multiple Chains) 

So far we have been assuming a single 
routing chain. The approximation tech- 
niques can be extended to multiple chains, 
but relatively little has been done in this 
area. The ease or difficulty of the extension 
depends on the similarity between the 
chains and on the number of chains. 

Suppose we have a central server model 
with two chains. The chains are parallel in 
their routing (Figure 19), and the only 
queue that violates product form conditions 
is the CPU queue. We can determine a 
flow-equivalent of the I/O subnetwork in a 
manner analogous to the single chain case 
by connecting the output of each chain to 

the input of that chain, i.e., once again 
studying offline behavior. From considera- 
tions similar to the single chain case we 
determine the throughput Xc(nl, n 2 )  for 
each chain (c ffi 1, 2) for nc = 1 . . . .  , Nc and 
n 3 - c  = 0 . . . .  , N3-~. This computation is 
similar to the single chain case, e.g., 
Xl(nl, n2) ffi G(nl - 1, n2)/G(nl, n2) 
[CHAN75a]. However, the choice of 
queueing discipline for the composite queue 
encounters the same sort of problems as 
those discussed in the previous subsection. 
One possible approach to specifying the 
queueing discipline is given in [SAUE75b]: 
Each chain has a dedicated device in the 
composite queue. Jobs of a chain are ser- 
viced FCFS by the dedicated device with 
load dependent service times SAn1, n2) = 
1/X~(nl, n2). This discipline was chosen as 
being generally reasonable, but there are 
cases where it would be unrealistic, e.g., 
when the I /O subsystem consists of a single 
FCFS queue. 

Even after replacement of the I/O sub- 
system by the approximate flow equivalent, 
the network consisting of the CPU queue 
and composite queue may be difficult to 
solve. For example, the CPU queue may 
violate product form by having a FCFS 
queueing discipline with different service 
time distributions for the classes of the 
different chains. The solution of the CPU 
and composite queue model must take into 
consideration the possible orderings of jobs 
of the different chains, and this increases 
the state space size drastically. Thus the 
solution quickly becomes unmanageable 
with even moderate chain populations. 

Other important cases violating product 
form allow priorities among the different 
classes at the CPU queue. Because priori- 
tie~ eliminate many of the possible order- 
ings of jobs, the FCFS ordering problem 
will be. reduced by priorities, possibly even 
eliminated, depending on preemption rules. 

~ - - -  i i_j - J  ~ _ 1  

FXGURE 19. C e n t r a l  s e r v e r  m o d e l  w i t h  two  cha ins .  
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But these cases also become unmanageable 
with moderate numbers of chains (e.g., 
five). 

When the CPU-composite queue net- 
work becomes unmanageable because of 
chain populations and/or numbers of 
chains, one can attempt aggregation of 
chains as well as aggregation of queues. In 
aggregation of queues one replaces several 
queues by a composite queue that is ap- 
proximately flow-equivalent as far as the 
remaining jobs are concerned. In aggrega- 
tion of chains one replaces several chains 
by a single chain that is approximately 
equivalent as far as the remaining jobs are 
concerned. The approach used in 
[SAuE75b) is first to solve a central server 
model identical to the given model, except 
that the CPU queue with disciplines violat- 
ing product form is treated as a processor- 
sharing queue. The service times at the I/O 
queues are the same for all chains, assuming 
FCFS disciplines at those queues. For the 
chain-dependent values (the CPU service 
time distributions and the routing frequen- 
cies) the "composite chain" values are de- 
termined as a weighted sum of those values 
for the componen t chains. The weights 
used in [SAuE75b] are the throughputs of 
the component chains divided by the sum 
of the throughputs of the component 
chains. Other weights may be used, e.g., the 
number of jobs of the component chains 
divided by the total population of the com- 
ponent chains [MAcN75]. 

These techniques extend to networks 
with more complex routing structures than 
the central server model; the appendix con- 
tains an example. 

Flow-Equivalents in Simulation 

Some of the subsystem flow-equivalents 
could be constructed from simulations, i.e., 
by simulating a subnetwork. We could also 
use simulation to analyze the model with 
the flow-equivalents. Note that flow-equiv- 
alent methods are totally general because 
the technique used in constructing flow- 
equivalents (e.g., simulation, queueing the- 
ory, regression analysis) is left unspecified. 
See [CHIU78, SAUE76, and SCHW78] for fur- 
ther discussion of this approach. 
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Justification of Aggregation 

We informally described the class of prod- 
uct form networks in Section 1. At the 
beginning of this section we stated that 
aggregation was exact for product form net- 
works, i.e., one can determine the flow- 
equivalent of a product form subnetwork 
and use the flow-equivalent in a product 
form network as if it were the given sub- 
network. This should be plausible to the 
reader, since the state of a product form 
network factors into components represent- 
ing the states of the queues of the network. 
Informally, aggregation of the queues cor- 
responds to association of the factors. For 
a more formal discussion see [CHAN75a]. 

The primary justification we have im- 
plicitly used for aggregation approximation 
is the exact aggregation of product form 
networks. This justification becomes less 
credible as the network to be solved be- 
comes "less similar" to a product form net- 
work. Examples include the number of 
queues violating product form conditions 
(e.g., distributions and disciplines) increas- 
ing, an individual queue tending to deviate 
greatly from product form conditions (e.g., 
service times at an FCFS queue having very 
small or very large coefficients of variation), 
and conditions such as multiple resource 
holding becoming dominant. There is an- 
other justification, loosely coupled subnet- 
works [CouR75, COUR77], which is inde- 
pendent of product form conditions. The 
product form justification holds regardless 
of the degree of coupling of subnetworks; 
the loosely coupled justification holds re- 
gardless of product form conditions. 

We illustrate degree of coupling by an 
example. Consider a closed queueing net- 
work with two subnetworks A] and A2 (Fig- 
ure 20). A job leaving a subnetwork is fed 
back to the input of the same subnetwork 
with frequency p, and goes to the other 

FmURE 20. Two loosely coupled subnetworks, p ffi 1. 
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subnetwork with frequency 1 - p. Consider 
the limiting behavior of this network as p 
tends to 1, but p < 1. The rate of flow of 
jobs between the subnetworks decreases as 
p increases, which implies that the times 
between subnetwork interactions (job tran- 
sitions) increase. In the limiting case of p 
arbitrarily close to but less than 1, each 
subnetwork may be assumed to reach equi- 
librium between subnetwork interactions. 
This key idea will be developed further. 

If p = 1 the network decouples into two 
closed networks BI a n d  B2 (Figure 21) 
where B,, i = 1,2 is the network obtained 
by feeding the output of A, back to its input 
(Figure 20). Let there be C chains in the 
network and let Xc(nl, . . . ,  nc) be the equi- 
librium throughput of chain c jobs in Be 
when the population of B2 is n], ..., nc for 
chains 1 . . . .  , C, respectively. Suppose we 
wish to study the detailed behavior of jobs 
within A]. Then we may replace A2 by a 
composite queue that has a mean service 
time of 1/((1 - p)Xc(n] . . . . .  nc)) for class c 
jobs (at a device dedicated to class c) when 
the queue population is nl . . . .  , nc. (The 
service distributions may be set to the in- 
terdeparture distribution in B2. It can be 
shown that as p approaches one the inter- 
departure distribution becomes exponen- 
tial.) Decoupling works as p tends to 1. 

Summary 

The key concept in aggregation is to replace 
a subnetwork by a simpler one, ignoring the 
interactions of subnetwork components not 
of interest to us. In the terminology of 
Denning and Buzen [DENN78], we are as- 
suming that the subnetwork's offline be- 
havior is identical to its online behavior. 
The basic problem is to 1) develop a frame- 
work for characterizing the offline behavior, 
2) solve the subnetwork to estimate these 
characteristics, and 3) aggregate the behav- 

FIGURE 21. Decoupled subnetworks. 

ior of subnetworks until we obtain a net- 
work with a tractable solution. We have 
assumed the concept of flow-equivalence as 
a solution to the first part of the problem 
and have illustrated approaches to the sec- 
ond and third parts by examples. 

4. IMPROVEMENTS OF FLOW- 
EQUIVALENCE 

The goal of flow-equivalence approxima- 
tions is to simplify network analysis by 
replacing a subnetwork by a single compos- 
ite queue that behaves in approximately 
the same way as the subnetwork. Further- 
more, the composite queue must have sim- 
ple queueing disciplines and distributions 
to keep the computation manageable. In 
this section we shall survey methods that 
attempt to reduce the inaccuracies result- 
ing from simplistic representations of sub- 
networks. Rather than attempting to rep- 
resent a subnetwork accurately, these 
methods carry out the computation assum- 
ing simplistic subnetwork representation 
and later attempt to correct for the inac- 
curacy in subnetwork representation. We 
survey two such methods: iteration and 
product form. We next discuss the common 
aspects of these methods and then discuss 
the methods in detail. The key concepts 
used in the two methods can be combined. 

An Overview of the Approaches 

We partition a network A into subsystems 
S1 . . . . .  S• in some suitable manner. Since 
we analyze each subsystem in turn, we 
would like to keep the number M of sub- 
systems small. On the other hand, we do 
not want a subsystem to be so complex that 
analyzing it by itself becomes an unman- 
ageable problem. We analyze each subsys- 
tem S,, i = 1, ..., M in the following way. 
Define (7,, the complement of S,, to be the 
subnetwork obtained by removing S~ from 
network A. C, is the system "seen" by S,. 
Represent each system C, by a single com- 
posite queue F,. Analyze the network con- 
sisting of S, and F, by some suitable 
method; the specific method selected de- 
pends upon the complexity of S, and F,. If 
a simple service rate structure (such as 
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rates proportional to the number of jobs in 
the system) is assumed for the flow-equiv- 
alent system, it may be possible to get exact 
closed form formulas for the performance 
measures of the F, - S~ network; indeed, 
such simple solutions are the motivation 
for simple (approximate) rate structures for 
F,. For general service rate structures, the 
F, - S, network may be modeled as a Mar- 
kov process and analyzed by a recursive 
method, by sparse matrix techniques, or by 
simulation. Since the F, are approximations 
to the C,, the results of the analyses of the 
F, - S, networks will generally be inaccur- 
ate; informally speaking, the less accurate 
the representation of the C, by the single 
queues F,, the greater the error. 

One consequence of this error is that the 
estimates of the performance measures for 
Sl, . . . ,  SM computed from the F, - S, 
analyses may not be compatible with each 
other. For instance, assume that we com- 
pute the rate of flow of jobs through each 
subsystem S, by analyzing the F, - S, net- 
work. By multiplying the flow rate through 
S, by the probability that a job leaving S, 
will enter S~, we compute the rate of job 
flow from S, to Sj. We may now compute 
the total flow entering Sj by summing the 
flows over all paths into Sj. If the analysis 
were free from error the flow rate into Sj 
must equal the flow rate through S~. How- 
ever due to the approximations inherent in 
the analysis of each subsystem, the com- 
puted flow rates into S~ may not equal the 
computed flow rates through Sj. 

We can use several rules to check the 
compatibility of the computed performance 
measures for S~, ..., SM. The more checks 
we use, the greater will be our faith in the 
compatibility of the results. However we 
may not wish to spend a great deal of 
computing time on the checking process. It 
must be emphasized that even though the 
computed subsystem performance mea- 
sures satisfy some compatibility tests, there 
may still be errors in the computed mea- 
sures. 

The fundamental problem with comput- 
ing performance measures for S~, ..., SM by 
the method discussed above is that the 
independent subsystem analyses emphasize 
the local view; i.e., the subsystem itself is 
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modeled in detail while everything else is 
modeled in a gross fashion. The compati- 
bility checks take a global  network view. 
Product form methods attempt to correct 
for the local views emphasized in the inde- 
pendent subsystem analyses by taking the 
specific global network view discussed next. 
Let p,(s~) be the value computed for the 
equilibrium probability that  subsystem S, is 
in state s~ by analyzing the F, - S, network; 
note that thep,(s,)  are probabilities local to 
subsystem S, - -  the rest of the network is 
ignored. Letp(s l , . . . ,  SM) be the equilibrium 
that subsystem S, is in state s, for i ffi 1, 
.... M; note that p(sl . . . .  , SM) takes a global  
network view because it is concerned with 
all the subsystems in the network. Product 
form methods assume that 

1 
p(s, . . . . .  SM) = ~ n p,(s,) all s, . . . . .  SM 

where G is a normalizing constant. Thus 
the local subsystem analyses are forced into 
the global mold of the product form. Per- 
formance measures are now computed from 
the network probabilities, p(s l  . . . . .  SM) 
rather than from the subsystem probabili- 
ties p,(s,). 

Product form methods are often com- 
bined with iterative methods; examples are 
provided later. 

Iteration methods take the global view 
by making compatibility checks of the re- 
suits of subsystem analyses. If the checks 
are not satisfied, the single queue models 
(iv,) of the complements (C,) are modified; 
the specific method of modification de- 
pends upon the specific iteration method 
used. In the next iteration, the improved 
single queue models are used in the F, - S, 
analyses. The process of making compati- 
bility checks and modifying composite 
queue models is repeated until the compat- 
ibility checks are satisfied. 

There are two difficulties with this 
method. First, satisfying the compatibility 
checks is no guarantee of the correctness of 
the results. Second, there is no guarantee 
that the iterations will terminate. Yet, (per- 
haps surprisingly) iteration methods seem 
to work satisfactorily much of the time 
[CHAN75b, LAM76]. We discuss some spe- 
cific iteration methods next. 
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Iteration Methods 

The questions we shall focus attention on 
are 

• What are the subsystems that a net- 
work is decomposed into? 

# What laws are used to check whether 
the subsystem analyses are compati- 
ble? 

• What flow-equivalent models are used? 
• How are the independent subsystem 

analyses adjusted if the results from 
these analyses are incompatible? 

The laws that  we use in checking the com- 
patibility of the computed subsystem mea- 
sures are called i n v a r i a n t s .  We now discuss 
three different cases where iterative meth- 
ods have been used. 

General Closed Queueing Networks 

We summarize the method described in 
[CHAN75b]. Two invariants are used in this 
method. 

1) The rate of flow of chain c jobs into a 
subsystem must equal the rate of flow 
of chain c jobs out of that subsystem. 

2) If chain c is a closed chain, the sum of 
the mean number of chain c jobs in 
subsystem S,, summed over all i, must 
equal the total number of chain c jobs 
in the network. 

We now present some details of the al- 
gorithm assuming a closed network with a 
single closed chain of jobs. Extending the 
method to multiple job chains is straight- 
forward. {Examples of a closed network 
with two job chains and of an open network 
are presented later in this section.) Let it, 
be the mean queue length of queue i. Com- 
pute a set of numbers y,, which we call 
relative throughputs, where 

M 
yj ffi ~ Y,q,J 

t m l  

Note that  the y,  are unique up to a normal- 
izing constant. Let tj be the throughput 
through the j th  queue. Since the flow into 
queue j is equal to the flow out of queue j, 

tj = ~, t,q,j. Invariant I; Flow Invariant 
1 

Hence we have 
t j f a y ~  for allj, 

where a is a constant. Set 
t /  ffi t f f  yj ; 

we refer to the t /  as the n o r m a l i z e d  
throughputs. An equivalent formula for the 
first invariant is 

t]' ffi t2' ffi . . .  ffi tM' ffi t' Flow Invariant 

where 
t '  = Z t , ' / M  

i 

is the average value of the normalized 
throughput computed by analyzing all the 
queues independently. 

The second invariant is 

Y~ ri, ffi N Invariant lI; Population Invariant 
I 

where N is the population of jobs. 

T h e  C o m p o s i t e  Q u e u e  F,  

We construct F, in the following way. 
Ideally, we would like F, to be the flow- 
equivalent of C,. However, to determine the 
flow-equivalent for C, we have to analyze 
C,. Analyzing C, may be a very expensive 
computational procedure if C, does not sat- 
isfy product form. Hence, we are forced to 
settle for making F, an a p p r o x i m a t m n  to 
the flow-equivalent of C,. This approxima- 
tion is obtained by computing the flow- 
equivalent for C, a s s u m i n g  (generally in- 
correctly) that  C~ satisfies product form. 

Note that  we use two levels of approxi- 
mation here. First, the F~ are not the true 
flow-equivalents. Second, even if the F, are 
the true flow-equivalents for C,, this heuris- 
tic may not yield correct answers. 

I t e r a t i o n  

On the kth iteration the service rates of 
F, are set equal to the service rates of the 
flow-equivalent of the complement of 
queue i in an auxiliary network S ~k). The 
auxiliary network is identical to the given 
network except that: 

1) The service rates in the auxiliary net- 
work are different; and 

2) The queueing disciplines in the auxil- 
iary network are such that the net- 
work satisfies product form. Hence 
the flow-equivalents for the comple- 
ment of any queue in the network can 
be readily computed. 

The goal of the iteration is to adjust the 
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flow rates of the auxiliary network (which 
results in adjustments to the F~ and conse- 
quent changes in queue statistics), so as to 
force the individual queue statistics to- 
wards satisfying the invariants. The details 
of this adjustment are not presented here; 
they may be found in [CHAN75b]. If the 
invariants are not satisfied the results of 
the iterative method are incorrect; how- 
ever, if the invariants are satisfied it does 
not necessarily mean that the solutions are 
correct. Nevertheless, this approach has 
been validated by comparing the results 
obtained by this method with results ob- 
tained from simulations for several cases. 
Networks with several chains of jobs and a 
variety of queueing disciplines (including 
priority disciplines) were analyzed by this 
method. For details regarding the algo- 
rithm, its accuracy, and execution times, 
the reader is referred to [CHAN75b]. 

A Case Study for VM/370 Using IteraUve 
Methods 

We next discuss an iterative scheme pro- 
posed for modeling scheduling strategies for 
interactive computers [BARD77]. This work 
is important for several reasons. The 
scheme itself is very simple, and therefore 
appealing. Furthermore, the method has 
been used to model the effects of workload 
and configuration changes for a widely used 
complex interactive operating system, VM/ 
370. It has been incorporated into a per- 
formance package for configuring VM/370 
systems as discussed in [BARD78] (See pp. 
333-342, this issue). 

We shall summarize the results in 
[BARD77], restricting attention to the prin- 
ciples of constructing an iterative method. 

A user is assumed to make transitions 
between states in a cyclic fashion: 
THINK - MEMORY-WAIT - ACTIVE- 
THINK-. . . ,  or equivalently 1, 2, 3, 1 . . . . .  

For purposes of exposition assume that 
there are only two job chains: 

Chain 1: trivial jobs 
Chain 2: non-trivial jobs. 

A trivial job is assumed to be immediately 
admitted to service, i.e., it is assumed to 
spend no time in the MEMORY-WAIT 
state. Thus its state transitions are 
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THINK-ACTIVE-THINK, ..., or 1,2,1, 
. . . .  A non-trivial job may have to spend 
time in the MEMORY-WAIT state. The 
diagram for the overall system is shown in 
Figure 22. 

Model inputs: We are given the num- 
ber of jobs N, in chain i; the mean main 
memory requirement (resident set size) W, 
for jobs in chain i; T,, 1, the mean think time 
(i.e., time in state 1 for chain i jobs), and S, 
the total amount of main memory available. 
We are also given details regarding the visit 
counts and mean service times at the CPU 
and I/O devices for both chains. 

Model outputs: We are required to 
compute T,, 2 and 7',,3, the mean times 
spent by chain i jobs in state 2 
(MEMORY-WAIT) and state 3 (AC- 
TIVE). We shall also compute N,.k, the 
average number of chain i jobs in state k, k 
= 1, 2, 3, and St the mean amount of main 
store occupied by all the chain i jobs to- 
gether. 

Aggrega t ion :  The model is analyzed into 
two stages. In the first stage the computer 
subsystems representing jobs in the active 
state (Figure 23) is analyzed. The mean 
time T,. 3 spent by chain i jobs in the active 
state is computed from this submodel (see 
below). 

The overall model is analyzed in the sec- 
ond stage (Figure 24). Note that in this 
stage, the computer subsystem is repre- 
sented as a flow-equivalent server with in- 
finitely many servers, which is equivalent 
to a delay of T~, 3 time units. 

Invariants: The probability P~k that a 
random chain i job (i = 1, 2 for trivial, non- 
trivial) is in state k (k ffi 1, 2, 3 for think, 
memory-wait, and active) is proportional 
to the time spent by that job in that state, 
i.e., 

T~,k 
P,k = for all ~, k 

T~.I+ T,.2+ T~,3 

Hence the mean number of chain i jobs in 
state k is 

Invariant 1 

N,.kffiN, P ,h fN ,  
T,,~+ T,,~+ T,,3" 
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THINK STATES 

Chain 2: 

Non- 
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I 
A1 locate Memory 

J 
Rel ease Memory 

FICURE 22. Interactive system. 

FmURE 23. Computer subsystem. 

lnvariant 2 
T h e  mean amount  of main storage used 

by chain i jobs (S,) is the product  of the 
average number  of chain i jobs in main 
storage (N,, 3) and the average amount  of 
main storage required per job (W,). 

S, ffi N,,3. W,. 

Note  tha t  T~, 2, the t ime spent  by a trivial 
job in the memory-wa i t  state, is 0 {zero). 
Hence 

Tl, a $1 ffi Wl Nl. 
T1.1+ T1,3" 

Note  tha t  we are given N1, W1 and T~, 1. If 
we are given T~, 3 then  we may  compute  S~ 

from the above equation. If  $1 -< S then  
there  is enough main store to accommodate  
trivial jobs, and our  assumption of T1, 2 = 0 
is reasonable; if $1 :> S the system is satu- 
ra ted by trivial jobs, and we must  stop our  
analysis. 

T h e  above arguments  are not  strictly cor- 
rect  because they  are based entirely on 
mean  values, ra ther  than  distributions. 
Strict ly speaking, a trivial job will experi- 
ence memory-wa i t  if all of  main storage is 
filled with o ther  trivial jobs; the only case 
when this si tuation will never occur is when 

NI W I ~ S  

ra the r  than  
N1,3 Wl <-- S. 

However,  the goal here  is not  to come up 
with a mathemat ica l  model  but  ra ther  to 
develop a heuristic program tha t  seems to 
work most  of the time. Th e  only test  for 
such heuristics is validation. 

We may  develop a similar invariant  for 
chain 2 jobs. If  we assume T2, 2 ffi 0, i.e., the 
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time spent by a non-trivial job in 
memory-wait is 0, then the average amount 
of main store occupied by non-trivial jobs 
is 

T2,3 
W2.N2,3 ffi W2.N2 T2.1 + T2.3 

If this value does not exceed S - S~ (the 
average amount of main store not occupied 
by trivial jobs) then our assumption that 
T2, 2 = 0 is reasonable (though not strictly 
correct). If this value exceeds S - S~ then 
T2, 2 must be positive, and we have 

S - S 1 =  W2 N2,3 

ffi W2"N2 T2,3 
T~ , l+  T2.2+ T2.3 

or equivalently 
W2 N2 T2, 3 

T~. 2 = T2,1 -- T~,3. 
S -  $1 

I n v a r i a n t  3 

The computing system (consisting of 
CPU and I/Os, see Figure 22) is modeled 
by a queueing network that is assumed to 
satisfy product form. Given the population 
N,, 3 of chain i jobs in the computing system, 
the visit rates at each device and mean 
service times at each device, we compute 
the mean wait times at each device. Multi- 

plying the mean wait times at each device 
by the average number of visits made to 
that device by a chain i job on each inter- 
action and summing over all devices, we 
compute the mean time T,, 3 spent by a 
chain i job in the computing system. Thus, 
the mean time spent by a chain i job in the 
active state is related to the mean number 
of jobs in the active state; this relation 
between T,,3 and Ni,3 is invariant 3. 

The F low-Equiva len t  Sys tem 
Since the analysis is carried out in terms of 
mean values, the computer subsystem is 
represented by mean delays T,. 3. This is 
equivalent to representing the computing 
subsystem by an infinite number of servers, 
each of which has a mean service time of 
T,, 3 for chain i jobs. The choice of an infi- 
nite server queue for representing a 
queueing network is popular because what 
it lacks in accuracy, it makes up for in 
simplicity and consequent computational 
speed. 

The Iteration----Initialization: As- 
sume values for T,, 2 and T~, 3. 

Step 1: Use the assumed values for T,, 2 
and T,, 3 and invariant 1 to corn- 
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Step 2: 

Step 3: 

Step 4: 
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pute N,, 3, which is the job popu- 
lation assumed in the computer 
subsystem. 
Use the N,. 3 obtained in step 1 
with invariant 3 to recompute 
T~,3. 
Use T,, z obtained in step 2 with 
invariant 2 to recompute T,. 2. 
Return to step 1 with new values 
for T,. 2 and T,. 3, if there is a 
significant difference between 
the old and new values. Other- 
wise, stop. 

This method has been validated and is in 
use. It cannot be overemphasized that the 
credibility of a heuristic technique rests on 
empirical validation rather than on logical 
rigor. Bard's method [BARD77] is credible 
because it has worked for several practical 
cases, even though there is no guarantee of 
convergence and the analysis is informal, 
being based on mean values. Systems ana- 
lysts are also more likely to have faith in a 
model, such as Bard's, that considers key 
parameters, such as amount of main mem- 
ory, memory scheduling, different kinds of 
users, and the complex queueing structure 
of I/O channels. The method has a com- 
putation time favorable to that  of other 
methods (such as simulation) and satisfac- 
tory accuracy. There is no point in devel- 
oping an algorithm that invests a great deal 
of computer time in obtaining a degree of 
accuracy that is greater than is required for 
making the decisions at hand. 

An IteraUve Scheme for Open Network 
Models of Packet-Switching Systems 

We now discuss the use of iteration tech- 
niques in the analysis of communication 
networks [LAM76]. This discussion is im- 
portant for three reasons. First, communi- 
cation systems are important in themselves. 
Second, this section illustrates the use of 
heuristic approaches in modeling finite 
waiting rooms. Third, this section provides 
an example of approximation methods usecl 
to analyze open queueing network models. 
(See also [WONG78] pp. 343-351, this issue.) 

A job in this context is a "packet," which 
is a basic unit of communication. The sys- 
tem accepts packets at sources, routes them 

through communication lines and switches, 
and delivers packets to destinations. The 
resources in the system are communication 
lines, the switches which route packets 
along appropriate paths, and the memory 
(store and forward buffer) at each switch in 
which packets are stored until they can be 
shipped out along appropriate communi- 
cation lines. The servers in the queueing 
network model are the communication lines 
and the switches. However, since the actual 
service time of a switch is small compared 
to the service time at a communication line, 
we shall ignore switch service times. 

Associated with each packet is a source 
node and a destination node. A packet 
moves through the network from the source 
node to the destination node along a fixed 
route. The ith node of the network has a 
finite number N, of store and forward 
buffers, i.e., it has a finite waiting room. If 
there are N, packets in the ~th node when 
another node k tries to send one more 
packet J to the ith node, then the ith node 
refuses to accept J,  and J must be retrans- 
mitted by node k. In other words, a server 
at node k serves J, and if at the instant at 
which J completes service the waiting room 
for node i is full, then the server repeats J 's  
service, until eventually there is a vacant 
position in i's waiting room. 

Figure 25 is a queueing model of one node 
of the network {node i). This node is as- 
sumed to communicate directly with I other 
nodes, ~1, . . . ,  il. We also use one "dummy" 
node, /0, to represent users who send and 
receive packets directly from node i. We 
assume that  all lines are full-duplex, i.e., 
that packets can be transmitted in both 
directions simultaneously. There are I + 1 
parallel servers associated with node i, and 
the j th  such server, j ffi 0, 1 . . . .  , I models 
the communication line from r, ode i to node 
ij; this server serves those packets in the 
node i waiting room that have to go to node 
ij. Even if all service times are assumed to 
be independent exponential random vari- 
ables, this queueing network does not sat- 
isfy product form because of the finite wait- 
ing room and the consequent retransmis- 
sion (re-serving) of jobs. Hence we shall 
resort to iterative approximation methods. 

The network is partitioned into subsys- 
tems, one subsystem for each node. We 
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FIGURE 25. Network model  for node t. 

next discuss the key questions which arise 
in iterative methods. 

I n v a r i a n t s :  Let  hu be the apparent flow 
rate of packets (i.e., not  including retrans- 
missions) from node i to node ij. We can 
compute the hu from the rate at  which 
packets enter the network and the routes 
taken by packets as they travel from the 
source to the destination. Let r,j be the 
actual flow rate of packets (i.e., the appar- 
ent flow plus retransmissions) from node i 
to node ij Let  Bj be the probability that  the 
waiting room at node ij is full. Then 
r u. (fraction of time the node j 

waiting room is not full) = ,k,~ 

i.e., 
r u = ~u/(1 - B~) Invartant  1 

Let gu be the service rate of the channel 
from node i to node ij. Assume product 
form for the queue length distribution of 
each channel. This assumption is invalid 
due to the finite waiting rooms. However, 
we make this assumption to make the corn- 

putation manageable. The probability tha t  
there are qu packets at node i waiting to be 
shipped to node j is: 

Pu(q,~) = Pu(0) ' (r,Jpu)qu 

Now assume product form for the entire 
tth node. This is also an invalid assumption 
tha t  is made to make the problem manage- 
able. Then, the equilibrium probability tha t  
there are q,j packets at  node t going to node 
ij, j - 0, 1 . . . . .  I i s  

P,(q,o . . . . .  q,l) = H p,J(q,J) Invariant  2 
y 

Thus Invariant 2 is a relationship between 
actual flow rates and node state probabili- 
ties. 

I n v a r i a n t  3 

The probability B, tha t  the node i waiting 
room is full is the sum of the probabilities 
P, (q,.0, . . . ,  q,, ~) over all states with q,.0 + 
. . .  + q,.~ = N,. 

Thus  the blocking probability B, depends 
upon (Invariant 3) the state probabilities 
p,, which depend upon (Invariant 2) the 
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actual flow rates r,j, which depend upon 
(Invariant 1) the blocking probabilities Bj. 
In this formulation, the flow-equivalent of 
node i is defined in terms of the blocking 
probability B, and the flows ~j, and ~ , j  into 
and out of i. 

I t e ra t ion :  A simple iterative scheme is 
to assume a set of blocking probabilities Bj 
and to then use Invariants 1, 2, and 3 in 
that order to get a new set of blocking 
probabilities. This iteration is repeated un- 
til successive iterations do not produce a 
significant change in blocking probabilities. 

The networks described here may en- 
counter deadlocks. In this case the equilib- 
rium throughput is 0 (zero) and the above 
analysis is wrong. However, the results 
computed by the iterative method proposed 
here are meaningful (though not mathe- 
matically correct) if the probability of dead- 
lock is low. In this case, the performance 
measures predicted by the model should be 
taken to be the values that occur after the 
network has been in deadlock-free opera- 
tion for a long time. 

Product Form Methods 

Reiser and Kobayashi [REIs74] use product 
form approximations; their method is dis- 
cussed in Section 6 in connection with dif- 
fusion approximations. 

Shum and Buzen [SHUM77] couple the 
product form method with an iterative 
scheme in an interesting fashion. Their goal 
is to analyze closed queueing networks with 
general service time distributions and 
FCFS queueing disciplines. We shall dis- 
cuss their technique in the same format as 
other iterative techniques. 

Aggrega t ion :  Each queue is analyzed 
independently. The complement C, of the 
ith queue is represented by a single queue 
F, with a load independent service rate and 
exponential service times. This is obviously 
a very simplistic model for the complement. 
However, the product form and iterative 
prodecures attempt to correct for the inac- 
curacy in subsystem representation. 

As in all product form methods, the equi- 
librium state probabilities for the entire 
network are computed by taking the prod- 
uct of the state probabilities for each queue 

that are computed from analysis of the 
S, - F, networks. Performance measures 
are computed from the state probabilities 
of the entire network (rather than from 
subsystem state probabilities). 

Invariants: The first invariant used in 
[CHAN75b] is alSO used here: flow rate into 
a queue must equal flow rate out of that 
queue. This scheme uses a single invariant. 

Iteration: The algorithm iteratively ad- 
justs service rates of the composite queues 
F, until the flow invariant is satisfied. The 
flow invariant states that all queues must 
have the same normalized throughput (see 
4, General Closed Queueing Networks). Let 
t', be the normalized throughput of queue 
i. The flow invariant is satisfied when 

t ' l  - -  t ' 2  . . . . .  t'K. 
To measure how closely the normalized 
throughputs computed at any point in the 
algorithm satisfy the flow invariant, the 
following error function is used. 

K 

L = T. (y , / /L , )  • ( t ' ,  - t * )  2 
i l l  

where y, is the relative visit rate into queue 
i. p, is the service rate of queue i and hence 
y,/#, is proportional to the utilization of 
queue i. t* is the normalized throughput of 
the queue with the highest utilization. The 
above error function is used because the 
"bottleneck queue" (i.e., the one with the 
highest utilization) plays a crucial part in 
calculating queue statistics. The error func- 
tion also gives greater weight to queues 
with greater utilization. 

Let k, be the service rate of the composite 
queue F,. Let 

~, = ky, a n i  

where k is an (unknown) constant. Assume 
an initial value for k and at each step of the 
iteration adjust k to minimize the error 
function L. 

Summary 

Two questions must be asked about these 
iterative methods: 

1) Do these methods give more accurate 
estimates of key performance mea- 
sures than straightforward flow- 
equivalent approaches? 
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2) If these methods do give more accu- 
rate results, is the increased accuracy 
worth the additional computational 
effort? 

These questions cannot be answered cat- 
egorically. There are cases where a rela- 
tively straightforward flow-equivalent ap- 
proach is more accurate than the iterative 
methods, and cases where the iterative 
methods are more accurate. However, it is 
our opmton that the methods discussed in 
this section generally improve upon the 
results of direct flow-equivalent methods; 
this opinion is based upon case studies, 
including those surveyed in this section. 

The ubiquitous tradeoff of improved ac- 
curacy versus greater computational effort 
can only be resolved by studying the spe- 
cific requirements of the problem at hand 
and by comparison with alternate methods 
such as simulation. 

5. FLOW-EQUIVALENT SYSTEMS AND THE 
MANAGEMENT OF MODELING PROJECTS 

Performance modeling projects of actual or 
proposed systems are usually carried out 
under intense time pressure. The largest 
portion of time by far is spent on under- 
standing the system to be modeled: poring 
through documentation and talking to sys- 
tem designers. It is crucial to divide the 
work to allow several modelers to work 
together with minimum conflict. A solution 
used by Browne, et al. is based on the chief 
programmer-team approach used success- 
fully in the development of large programs 
[BROW75]. This discussion is a summary of 
their solution. 

The chief modeler (in analogy to the chief 
programmer) partitions the overall system 
model into logically consistent subsystem 
models and assigns each subsystem to a 
different member of the modeling team. 
Examples of subsystems in the study of the 
Air Force Logistics computing system in- 
clude the CPU subsystem, database man- 
agement, disk subsystem, and the tape sub- 
system. Each member of the modeling team 
is expected to become an expert on his 
subsystem, interact with the appropriate 
system designers, and eventually construct 
a flow-equivalent system model (or a range 
of such models) for his subsystem. 
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The chief modeler should partition the 
overall model into subsystems so that, as 
far as possible, the subsystems are indepen- 
dent of each other. For reasons of clarity it 
is helpful to focus attention first on subsys- 
tem disciplines (e.g., priorities) and later 
consider details about the job mix {e.g., 
map chains and job classes to priorities). 
The chief modeler is responsible for check- 
ing that the flow-equivalent models of the 
subsystems are reasonable, putting the sub- 
system models together, and evaluating the 
overall model. Browne, et al., refer to the 
models required to produce flow-equiva- 
lents as micro-models and to the overall 
model consisting of a network of flow- 
equivalents as a macro-model. Note that 
the complexity of the micro-model may be 
greater than that of the macro-model. 

A large simulation program was also con- 
structed in this parallel fashion by the chief 
modeler-team. Browne, et al. report good 
results from this management technique. 
Though they use a two-level hierarchy 
(chief modeler and his team) there is no 
reason that the method of flow-equivalents 
could not be used with a deeper hierarchy. 
The general question of how much error is 
introduced by this hierarchical technique is 
still open. 

The problem of managing large-scale 
modeling projects has received very little 
attention; this problem is likely to become 
acute. (See COUR77.) 

6. DIFFUSION APPROXIMATION 

Diffusion approximation methods use the 
theory of diffusion processes to analyze 
queueing problems. The reader need not be 
scared by the wealth of literature on diffu- 
sion processes, or by the apparently diffi- 
cult mathematics involved in the develop- 
ment of the theory of diffusion. Most users 
merely use formulas from the diffusion ap- 
proximation literature without understand- 
ing the detailed development of the for- 
mulas. Indeed, it is not necessary to under- 
stand the development of the formulas, pro- 
vided that empirical studies show that the 
formulas fit experience. The only cases in 
which the systems analyst needs a thorough 
understanding of the mathematics of dif- 
fusion is when attempting either to develop 
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better approximations [GELE75] or to ex- 
tend the approximations to new problems 
[Fosc77]. The following section is directed 
toward the large majority of analysts who 
need some understanding of diffusion ap- 
proximations, but who are unlikely to at- 
tempt research in the area. 

The organization of this section is as 
follows: we 1) discuss diffusion processes 
from a very informal point of view; 2) dis- 
cuss the problem of mapping queueing 
processes onto diffusion processes; 3) re- 
view studies on the accuracy of the diffu- 
sion process; and 4) finally attempt to see 
where diffusion approximation techniques 
fit into the general scheme of queueing 
network analysis. 

Why Bother with Diffusion Processes? 

To illustrate the need for diffusion approx- 
imations consider a GI/G/1 queue, i.e., a 
s!ngle server queue fed by a job source 
where service and interarrival times are 
independent random variables having ar- 
bitrary general distributions. {Note that  dif- 
fusion approximation methods are not re- 
stricted to GI/G/1 queues.) Let n(t) be the 
number of jobs in the queue at time t. n(t) 
can take on the values 0, 1, 2 . . . .  We may 
think of n(t) as the position of a particle d 
(for discrete) that makes a jump (of + 1) to 
the right when a job arrives and a jump (of 
- 1) to the left when a job departs (Figure 
26). In general, the probability that d will 

• ovement of  ~arttc~e d 

÷1 +1 *1 ~1 ~ (t) 

-1 -1 -1 -1  

m o v ~ n t  of na r t ; c l e  d • 

p] ice  d* ~fl 
o o s i t t o n  ~ ~ e n  

x 

i n te rva ls  

movesent of  p a r t i c l e  c (d i f f us ion )  

FmuRlg 26. Modeling p ~ m l e  d by particle d*. 

make a jump of + 1 or -1  in the next incre- 
mental time interval depends upon d's past 
behavior. For example, the length of time 
that d will stay in its current place (in 
general) depends upon the time since the 
last arrival or departure. 

Our goal is to deduce the probability of 
d's future behavior given its past behavior. 
A conventional approach is to represent 
(possibly approximately) the service time 
and the interarrival time by a finite collec- 
tion of exponential stages (Section 1). All 
the" relevant information in a queue's past 
behavior that  is required to predict the 
queue's future behavior is captured by the 
"state" of the queue. The state-transition 
(differential) equations may be solved to 
obtain state probabilities as a function of 
time from which we can compute the prob- 
ability that  particle d is in position n at 
time t. Since there are an infinite number 
of states, this computation is not carried 
out numerically; if it can be carried out at 
all the computation is done algebraically. If 
we are dealing with a finite job population 
it may be possible to carry out the compu- 
tation numerically, but we may prefer a less 
expensive approach such as the diffusion 
approximation. Thus we attempt to use d~f- 
fusion approximations only when numeri- 
cal and algebraic methods fail. 

The difficulty with predicting the behav- 
ior of particle d is that it has memory in 
addition to its current position, i.e., the 
state of the system is not merely the parti- 
cle's current position. (The analogy to the 
GI/G/1 queue tells us we must remember 
the residual service time.) In the diffusion 
approximation, we model the behavior of 
particle d approximately by the behavior of 
a particle c (for continuous) where c has no 
memory. 

Whereas d can only take on values 0, 1, 
2 , . . . ,  we let c take on all values on the non- 
negative real line. Let us now decide how c 
should move along the real line. Since we 
are used to dealing with discrete state 
spaces we shall treat the continuous state 
space of c as the limiting case of a discrete 
state space. The discussion here is an infor- 
mal treatment of material in Cox65. 

Assume that  particle c can only move at 
times 0, T, 2T, 3T, . . . .  where T is some 
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small constant time period, c can only take 
(small) steps of magnitude M. Thus if we 
take the limit as T and M approach 0, we 
see that  c moves continuously along the 
real time• In each time interval T we as- 
sume that the particle takes a step z where 
z ffi +M with probability p, and z -- - M  
with probability 1-p.  In time nT,  the total 
displacement of the particle will be the sum 
of n independent, identically distributed 
random variables, each with the same dis- 
tribution as z. As n gets large, the distri- 
bution of the displacement approaches that 
of a n o r m a l  random variable. We want the 
displacement per unit time to have a f in i te  
mean and variance so as to have a useful 
approximation to what actually happens 
with queue sizes--so we must take limits 
(as M and T approach 0) very carefully. 
Taking limits to ensure finiteness of mean 
and variance, we find that the particle c 
obeys the diffusion equation; this equation 
is discussed later in greater detail. We now 
discuss the mathematics of the diffusion 
equation in an informal manner. 

Consider a particle c moving along a 
straight line. Let its position at time t be 
x(t)  (see Figure 27)." Let the displacement 
of the particle in the interval t, t + d t  be, 
dx( t ) ,  where 

dx(t) = x(t + dt) - x(t) 

Assume that dx( t )  is normally distributed 
with mean fl • d t  and variance a •dt .  It is 
helpful to picture the process in one's mind; 
towards this end, imagine an arbitrarily 
large number of independent particles that 
move about according to the above assump- 
tions. Suppose all the particles are at a 
point y at time t (Figure 28). Then at time 
t + d t  the particles would have moved, 
some one way and some in the opposite 
direction. The function showing the density 
of particles around a given point at time t 
+ dt  has the familiar bell shape with a mean 
at y + fl " d t  and a variance of a" d t  (Figure 
29). Our particle is m e m o r y l e s s  in the sense 

~sltlon of oartlcle at t i m e  t + dt 

x(t) x(t* dr) 

FIGURE 27. A particle moving along a straight line. 
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that its future displacement, relative to its 
current position, is independent of the past. 

Let p(xo, x; t) be the density function for 
the process x(t), given that x(0) --- x0. We 
may picture p(xo, x; t) in the following way: 
consider an arbitrarily large number of par- 
ticles all of which start out at position xo at 
t ffi 0. The particles will be scattered along 
the real line at time t > O. p(xo, x; t) is a 
function in x and t that shows the density 
of particles around a point x at time t. This 
density function p(xo, x; t) obeys the Fok- 
ker-Planck diffusion equation [Cox65]. A 
great deal of work has been done on the 
diffusion equation. Our goal is to use this 
process to model a queueing network. 

To summarize our introduction to diffu- 
sion processes: particle d's position repre- 
sents the number of jobs in the G I / G / 1  
queue. Particle d takes discre te  jumps (of 
+1 or -1)  and (in general} d h a s  m e m o r y  
in addition to its current position. There is 
no method (at this time) to compute the 
probability distribution of n(t) ,  which is d's 
position at time t. We wish to deduce the 

A IIrge nLh~nber of /' 
partlcles, i11 at Dolnt 
y at tt~ t 

~rtlcles ~ve in 
d i f f e r e n t  d~rectlons 
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FIGURE 28. 
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behavior of d from the behavior of particle 
c that has simpler properties. Particle c 
moves along the con t inuous  real line. Fur- 
thermore, c has  no memory  (except its po- 
sition relative to the boundary). The posi- 
tion x(t) of c satisfies the diffusion equation, 
which has been studied in depth; methods 
exist to compute the probability distribu- 
tion of x(t) .  Note also that t rans ien t  {time 
dependent) analysis of the behavior of c is 
tractable. 

Mapping Between Queueing and Diffusion 
Processes 

We wish to deduce the behavior of particle 
d from the behavior of particle c. To do 
this, we shall simulate the behavior of d by 
a particle d* that also jumps between points 
0, 1, 2, . . .  but whose movement is driven 
by the movement of c, in the following way. 
Partition the real line into intervals; place 
d* in position i when c is in the ith interval. 
When c moves to the i - l t h  (or i+lth)  
interval, move d* to position i -1  (or i+1). 
Statistics regarding d* are said to be diffu- 
sion approximations of the corresponding 
statistics regarding d. 

The accuracy with which d* models d 
depends upon: 

1) How values are assigned to the param- 
eters a and fl that characterize the 
diffusion process (and hence charac- 
terize the movement of particle c). 

2) How the real line is partitioned into 
intervals (recollect d* is placed in the 
ith position when c is in the ith inter- 
val). 

3) How we place a boundary condition 
on the diffusion process; typically we 
want c to move on the non-negative 
real line just as d does. There are 
different conditions we might place at 
the boundary x ffi 0 so as to ensure 
x(t)  >_ 0 for all t. These boundary 
conditions affect the behavior of c and 
thus also the behavior of d*. 

We shall analyze each of these issues in 
turn. 

Setting a and f l  

To make the computation of a and fl tract- 
able we shall make the (invalid) assumption 

that the queue is never empty. This as- 
sumption is more reasonable in "heavy 
traffic" conditions when the server's utili- 
zation approaches i (one), and the diffusion 
approximation tends to give better results 
under heavy traffic conditions. 

Consider an incremental time interval [t, 
t + dt]. Let n(t)  be the queue length at time 
t. During this interval the expected number 
of jobs to arrive is k .  dt  where ?, is the 
arrival rate and the expected number of 
departures is g" dt, where/~ is the service 
rate. Hence 

E[n(t + dt) - n(t)] = (~ - #) •dt  

We want the position x(t) of particle c to 
reflect the queue length n(t).  Note from the 
earlier discussion that the incremental dis- 
placement x ( t  + dt) - x(t)  is a random 
variable with a mean of fl • dt. Hence, it is 
reasonable to set: 

f l f f i ~ - ~  

By similar (though more complex) argu- 
ments we set: 

a ffi c~ + ca# 

where ca and c, are the squared coefficients 
of variation of the interarrival and service 
times respectively. 

Selecting Intervals 

A reasonable heuristic is to place d* in the 
ith position when c is between i and i + 1 
(Figure 26). Using this method of selecting 
intervals, 

f ,+l 
P*(no, n;t) ffi P(xo, x;t)dx 

Boundary Conditions 

The reflective barr ier  is the bound- 
ary condition normally used [Cox65]. This 
boundary condition states that  the particle 
c must always be on the non-negative por- 
tion of the real line. 

fo ® t)dx ffi 1 p(xo, x; 

The diffusion equation with this boundary 
condition has been solved and we can com- 
pute p*(no, n; t). We are primarily inter- 
ested in the equilibrium queue length dis- 
tribution: 
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p*(n) = p*(n0, n, oo) 

Using the methods  discussed previously 
for setting a and fl, the boundary  condi- 
tion, and for selecting intervals, we get 
([GAVE68]) 

p*(n) = (1 -- ~)" ~n, n = 0, 1, 2 . . . .  (6.1) 

where ~ = exp {-2(1-p)/(c~ + cap)} and p 
is the utilization. Let  p(n) be the equilib- 
r ium probabil i ty of n jobs in queue. We 
know tha t  the fraction of t ime the server is 
idle is p(0) = l - p ,  whereas we have p*(0) 
= 1-~, which is erroneous. Hence a good 
heuristic is to use another  approximation: 

~b(n) = /1 - p if n = 0 (6.2) 
( p" (1 - ~) ~"-; if n_> 1 

Gelenbe uses a more reasonable bound- 
ary condition [GELE75]. He assumes that  
when particle c hits the boundary  x = 0, it 
sticks there  for an exponentially distr ibuted 
t ime after  which it jumps back instantane- 
ously into the region x > 0 with some 
probabil i ty density function. For  instance, 
we may  assume tha t  c makes an instanta- 
neous jump from x = 0 to the point  x = 1, 
representing the arrival of a new job. We 
may assume tha t  the mean  t ime the process 
remains at  the boundary  x = 0 is 1/2,, where 
h is the arrival rate. With these assumptions 
Gelenbe reports  improved results. 

Networks 

Consider a network with a single chain of 
jobs and K queues. Let  n, be the number  of 
jobs in queue i, i = 1, . . . ,  K, and let p(n], 
. . . .  nK) be the equilibrium probabil i ty ob- 
tained by the diffusion approximation tha t  
there  are n, jobs in queue i, i ffi 1 . . . .  , K. In 
the pioneering work on networks by Ko- 
bayashi it was shown that  given the usual 
assumptions for setting up the diffusion 
process, 

~(n~ . . . . .  nK) = ~ ~(r~) (6.3) 

where G is a normalization constant  for 
closed networks, and G = 1 open networks 
[KOBA74]. Note  the product  form of the 
network state probabilities. 

For  open networks we may  estimate the 
coefficients of variat ion of the arrival proc- 
ess into each queue by the methods  dis- 
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cussed earlier in Sect ion 3, and then  analyze 
each queue independent ly  assuming inde- 
pendent  interarrival  times with the esti- 
mated  coefficient of variat ion and the spec- 
ified arrival rate. Th e  flow-equivalent of the 
complement  is represented by a job source 
tha t  has independent  identically distrib- 
uted service times. 

For  closed networks, Reiser and Kobay- 
ashi [REIs74] use the product  form method  
discussed in Section 4. With this method  
we analyze each queue independent ly  as- 
suming a (simple) model for the comple- 
ment  of the queue, compute  ft,(n,), and then  
use equat ion (6.2) to compute  steady-state 
probabilities. We then  compute  network 
state probabilities assuming product  form. 
Performance est imates are computed  from 
the state probabilities ~6(nl . . . . .  nK) ra ther  
than  directly from the ti~(n,). For closed 
networks (unlike open networks), it is not  
possible to determine the arrival ra te  into 
a queue without  carrying out  a detailed 
analysis of the entire network. One solution 
is to est imate arrival rates  (or, equivalently, 
throughputs)  assuming exponential  service 
times, and hence product  form, and to then  
use the formula (6.2) for single server 
queues. 

An al ternative solution to estimating the 
arrival rates  is to assume tha t  the server 
with the highest utilization in the network 
is busy all the  t ime (i.e., its utilization is 1) 
and then  the th roughput  (arrival rate) of 
tha t  queue is equal to its service rate; the 
throughputs  for all o ther  queues can 
be computed  from any one throughput  
[DENN78]. This  al ternative method  for es- 
t imating arrival rates  is appropriate  when 
the number  of jobs in the network is very  
large. 

Other Applications of the Diffusion 
Approximation: an Example 

Foschini uses the diffusion approximation 
to solve routing problems [Fosc77]. Con- 
sider a system with a single source and two 
or more  parallel queues (Figure 30). An 
arriving job joins the shor ter  queue. This  
system has no simple analytic solutions. 
Foschini has an ingenious application of the 
diffusion approximation to this problem; 
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his paper is requ]red reading for those who 
want to apply diffusion approximations to 
atypical problems. 

The diffusion approximation is being ap- 
plied to an increasing variety of problems. 
Its greatest value is in analyzing open net- 
works with nonexponential service times in 
heavy traffic conditions because it is often 
difficult to use numerical techniques, other 
approximations, or simulations in those 
cases. A great deal of computing time is 
required in simulations to estimate equilib- 
rium performance measures in open net- 
works under heavy traffic conditions 
[LAVE75]. The other approximations are 
either not applicable to open networks, or 
assume exponential service times when 
used on open networks. 

Diffusion approximation formulas devel- 
oped for single queues will continue to be 
used in submodels within larger network 
models. The greatest barrier to increased 
usage of diffusion approximations is the 
difficulty in developing the mathematics of 
new problems. Sophisticated mathematics 
is not required for other techniques, such 
as flow-equivalence or iteration; any sys- 
tems analyst can try these techniques on a 
new problem and then find out empirically 
whether they work. New results on diffu- 
sion approximations will continue to be 
generated by a small number of researchers 
and these results will later be used by the 
modeling community. The greatest empha- 
sis in research is placed on models in which 
other methods fail. The solution of new 
problems based on diffusion approxima- 
tions is still research; new applications of 
the other techniques are becoming com- 
monplace. 

7. CONCLUSION 

A number of approximation methods for 
analysis of computing systems have been 
discussed here. New methods are being de- 
veloped at many research centers. Despite 
the wealth of proposed techniques, there 
are currently only a few fundamental ideas 
in this area; let us review them. 

Core 

1) 

Ideas 

Characteristics of networks with 
tractable solutions. What types of 
networks have tractable solutions? 
We answered this in terms of state 
space size, state transition structure, 
and product form conditions. We 
made a passing reference to simula- 
tion. 

2) Flow-equivalent systems. The con- 
cept of flow-equivalence plays a key 
role in approximations. The idea was 
defined and several examples were 
presented to illustrate the idea. 

3) The use of flow-equivalence tn ob- 
taining exact solutions. If a network 
satisfies product form then any sub- 
network can be replaced by its flow- 
equivalent without altering equilib- 
rium conditions. 

4) The use of flow-equwalence in ap- 
proximations. Several subsystems 
may be replaced by a single flow- 
equivalent to reduce the complexity 
of analyzing a given network. Critical 
questions are how to determine a) the 
service times, b) the service distribu- 
tions, and c) the queueing disciplines 
of the flow-equivalent. The literature 
was surveyed with regard to these 
questions. 

5) Iteratton. This method attempts 
to improve upon flow-equivalent 
schemes. Each queue in a network is 
analyzed independently by studying a 
simple 2-queue model consisting of 
the queue in question and a composite 
queue that represents the rest of the 
network. If the independent analyses 
mesh with each other, as determined 
by checking certain invariant proper- 
ties of the networks, then the itera- 
tion stops. Otherwise, the composite 
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queues are modified to ensure a better 
fit. 

6) Product form methods. This method 
also attempts to improve upon flow- 
equivalent schemes. The method 
works in three stages. In the first, each 
queue is analyzed independently, as 
above. In the second, the steady state 
probabilities of the entire network are 
computed by multiplying the state 
probabilities of the individual queues. 
In the third stage, the steady state 
probabilities of the network are 
summed appropriately to get esti- 
mates of the required performance 
measures. Product form and iterative 
methods may be combined. 

7) Diffusion approximations. In some 
cases it is helpful to model a non- 
Markovian discrete queueing system 
by a continuous Markov (diffusion) 
process. The key points in this method 
are a} obtaining the parameters of the 
diffusion process, b) setting appropri- 
ate boundary conditions, and c) map- 
ping the continuous process back onto 
the discrete process. 

A Comparison of Analysis Techniques 

The analyst should have a preferred ap- 
proach for every problem encountered. Un- 
fortunately, a set of recipes for cooking up 
the best solution to a problem does not now 
exist. The approach first attempted on a 
problem is a matter of personal preference; 
it also depends upon: 

1) The frequency with which the prob- 
lem is likely to recur, 

2) The number of configurations that 
need to be analyzed, 

3) The level of sophistication of the 
client {i.e., the person who uses the 
design--a designer or manager) in 
analysis methodology. (This is often 
the key factor), 

4) The computer-aided design tools (pro- 
gramming packages) available to the 
analyst, 

5) The time available to carry out the 
analysis, 

6) The number of analysts available, and 
7) The available data. 
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In our experience, the exigencies of the 
situation, rather than scientific methodol- 
ogy, dominate the selection of the ap- 
proach. Consider each of the seven factors 
in turn. 

Frequency of Occurrence 

A performance analysis package may be 
designed to aid in the configuration of a 
specific family of computing systems. This 
package may be used several times; for 
instance, if it is developed by the vendor, it 
may be used by systems engineers each 
time a bid is made. In such cases, new 
methods or variants of the methods pro- 
posed here are developed specifically for 
the family of interest. There is generally 
sufficient time to develop new techniques 
suited for the class of problems of concern, 
and a relatively sophisticated modeling 
study, in which several techniques are com- 
pared, can be undertaken. 

A systems analyst may be asked to ana- 
lyze a single installation. In such cases we 
favor the use of existing modeling program- 
ming packages. If the problem is such that 
existing packages cannot be used, we rec- 
ommend the direct use of flow-equivalence 
approximations, perhaps incorporated in 
the product form method. Flow-equiva- 
lence is an intuitive notion and is easily 
used. Product form methods are straight- 
forward, do not require much computer 
time, and may improve accuracy. Iterative 
methods are less straightforward and so 
take longer to develop; hence we do not 
recommend them in such cases. 

Number of Design Alternatives Considered 

Several (possibly thousands of) alternatives 
may have to be compared for a given de- 
sign. Very fast (and therefore relatively in- 
accurate) techniques must be used if the 
number of alternatives is large. The goal 
here is not to predict performance accu- 
rately, but to discard a large proportion of 
poor designs. When the number of options 
is small, simulation or measurement, if pos- 
sible, are the preferred approaches. Several 
methods may be used in evaluating a par- 
ticular design: relatively fast, inaccurate 
methods initially and slower, accurate 
methods later. 
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Client's Sophistication in Analysis Methods 

A systems analyst is effective only when he 
can convince the designer or manager of a 
computing system that the results of his 
models are correct. There are cases of com- 
puting systems installations where results 
of modeling studies have been ignored to 
the detriment of the installations. An ana- 
lyst's job does not stop with the analysis of 
a model; he must persuade the managers of 
the installation to make the decisions sug- 
gested by his analysis. A manager who has 
not been exposed to analytic models may 
not be convinced by analytic models, espe- 
cially if the results of the models suggest 
that the manager has made wrong deci- 
sions. The analyst may be forced to use 
expensive simulations to help persuade 
management of the correctness of his re- 
suits, even when the analyst himself would 
prefer to use other techniques. 

Analysis Tools 

The availability of programming packages 
plays a key role in the selection of methods, 
especially for problems that are not likely 
to recur. There are several packages for 
analyzing product form networks and two 
(RESQ [REIs78] and ASQ [INFO75] that 
couple product form methods with flow- 
equivalent approximations. Simulation lan- 
guages, such as RESQ, based on queueing 
network structural models are particularly 
helpful in modeling computing systems 
[SAUE77c]. 

Dme 

Most one-of-a-kind analysis problems that 
arise in systems design have to be carried 
out under intense time pressure. Further- 
more, the problem itself is generally a mov- 
ing target, since most designs evolve and 
design variables change. There is insuffi- 
cient time to develop special purpose ana- 
lytic methods. In such cases the analyst has 
to resort to existing programming packages. 
The authors have found flow-equivalent 
methods to be particularly useful in this 
environment, since changes in the design of 
one subsystem usually affect only the flow- 
equivalent of that subsystem. If the entire 
analysis is one monolithic block, then 

changes in the design of a single subsystem 
can ripple throughout the analysis. 

Number of Analysts 

In one-of-a-kind design problems the ur- 
gency of the problem may result in several 
analysts being assigned to solve a complex 
problem, with the expectation that the 
problem will be solved in short time. It is 
vitally important to partition the problem 
so as to allow many analysts to work in 
parallel. Flow-equivalence provides a nat- 
ural vehicle for partitioning. 

Available Data 

An analyst generally uses complex approx- 
imation methods or simulations because 
simpler models ignore some aspects of real 
systems. For instance, an analyst may de- 
cide that simple models that ignore service 
time distributions are inadequate. How- 
ever, there are cases where measurements 
that yield service time distributions are not 
available, though mean values are mea- 
sured. In these cases the only point in using 
more sophisticated models is to determine 
the sensitivity of the results to variations in 
the unknown service distribution. 

The Authors' Biases 

Ultimately, the selection of analysis tech- 
niques is a matter of personal preference; 
therefore, the reader should be aware of the 
authors' biases. In our opinion, analysis 
plays a role in the design process, but  it is 
only one of the many aspects of design. In 
the natural sciences one of the goals of 
theory is to predict natural phenomena 
very accurately. In computer systems anal- 
ysis, the goal is not to obtain a high degree 
of precision in prediciting phenomena, but 
rather to use analysis to recognize and dis- 
card poor design choices. The systems an- 
alyst must often rely on intuition, use meth- 
ods that are not rigorous, give priority to 
pragmatic and political considerations 
(rather than to scientific method) in ap- 
proaching problems, and realize that sys- 
tems analysis (and the development of ap- 
proximation methods in particular) is an 
art, not a science. 
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APPENDIX: An Example of a Complex Flow- 
Equivalent Queue 

Consider a network with 4 queues Q1, Q2, Q3, Q4, 
8 classes, and 2 closed chains, one consisting of 
classes {1, 2, 3, 4} and the other of classes {5, 6, 
7, 8}. Assume 1 job in each chain. Assume that 
Q1 and Q2 have processor sharing disciplines. 
Assume mean service times for classes 1 and 2 
are each 1 second, and for classes 5 and 6 are 
each 2 seconds; others are arbitrary. The class 
transition diagrams are shown in Figure A.1. 
The classes accepted and output by each queue 
are shown in Table A.I. Note that the classes 
output must match the classes input in the class 
transition diagram. 

Now let us construct a queue Q that  is flow- 
equivalent to the queue obtained by combining 
QI and Q2. The network obtained by feeding the 
output of Q1 and Q2 back to itself is shown in 
Figure A.3. Any queue Q' that accepts classes 1, 
5, and 6, and outputs classes 3, 7, and 8 at the 
same throughputs as Q in the same network 
(Figure 13) is flow-equivalent to Q. For example 
consider a system Q' that accepts a class 1 job, 
services it, and then outputs it as a class 3 job. 
Q' also accepts class 5 and 6 jobs, services them, 
and outputs them as class 7 or 8 jobs with equal 
probability. Let S,(n], n2) denote the mean ser- 
vice time to class i jobs, i = 1, 5, 6, in Q' when 
the number of jobs in chainj ,  j = 1, 2, is n~. Then 
set 

Sl(n], n2) = 1/xa(n], n2) 
Ss(nl, n2) ---- S~(n~, n2) 

= 1/((xT(nl, n2) + xs (nl, n2))) 

Let p,k be the frequency that a class i job 
becomes a class k job after receiving service from 
Q'. Then 

A p p r o x i m a t e  M e t h o d s  • 315 
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In a similar manner, flow-equivalence applies 
to arbitrary complex networks. 
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FIGURE A.1 Class tranmtlons. 

TABLE A I. 

Queue No. Classes Accepted Classes Output 

1 1,5 2,8,6 
2 2,6 3,5,7 
3 3,7 4,6,8 
4 4,8 1,7,5 

BRow77 

Bux77 
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