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A Recurrent Problem 

Edward  A. Bender  writes to correct  a 
p rob lem he discovered in one of Bruce 
Weide 's  " recurrences"  (recurrence rela- 
tions) as pr inted in "A survey of analysis 
techniques for discrete algori thms,"  COM- 
PUTING S U R V E Y S ,  9 ,  4 (December  1977), 
291-313. Bruce Weide repl ies . - -Ed.  

Bender's Comment 

Weide's  paper  seems to contain an error  
in the solution of a recursion. On the left 
side of page 303 appears  the equat ion 

T ( n )  = 2 T ( n / 2 )  + n log n (1) 
Weide observes tha t  if T ( n )  = c n  logan is 
used to replace T ( n / 2 )  in the right side of 
(1), then  

T ( n )  = c n  logan + 
(2) 

(1 - 2 c ) n  log n + cn.  

He then  says tha t  since 

(1 - 2 c ) n  log n + c n  = o ( n  log2n) (3) 

we may  conclude tha t  T ( n )  = O ( n  logZn), * 
and, since the coefficient of n log2n is c in 
(2), we have  the be t te r  result  T ( n )  = O ( n  
log2n). Although the conclusions are cor- 
rect, the a rgumen t  is invalid. To  see this, 
note tha t  with T ( n )  = c n  logrn and r > 1 in 
the r ight  side of (1) we obtain 

T ( n )  = c n  logrn + O ( n  log 'n)  (4) 
= c n  logrn + o ( n  logrn), 

where s = max(1 , r  - 1) < r. If  Weide 's  
a rgumen t  were correct,  we would have  T ( n )  
= O(n logan) for all r > 1, an obvious 
impossibility. 

How can this a rgument  be made  correct? 
The re  is little l i terature on a general ap- 
proach  to this type  of problem. However,  

* R e c a l l  t h a t  
f (n )  = O(g(n) )  m e a n s  f ( n ) / g ( n )  is  b o u n d e d  a s  n ---* ~ ,  
f i n )  = ~2(g(n)) m e a n s  g ( n ) / f ( n )  IS b o u n d e d  a s  n --* ~ ,  
f (n)  = o(g(n) )  m e a n s  f ( n ) / g ( n )  ---* O, a n d  
f (n)  = O ( n )  m e a n s  f (n)  = O(g(n))  a n d  f in )  --- ~2(g(n)) 

the following theorem describes a me thod  
commonly  used: 

THEOREM. Suppose  we are given tha t  T 
satisfies the recursion 

T ( n )  = R , , ( T ( n  - 1), . . . ,  T(1)) 
where, for sufficiently large n, all Ts tha t  
actual ly appear  are positive and R,, is a 
nondecreasing function of its arguments .  I f  
f ( n )  is posit ive and satisfies 

c f ( n )  >_ R ~ ( c f ( n  - 1), . . . ,  cf(1)) (5) 
for all sufficiently large c, and n, then  T ( n )  
= O ( f ( n ) ) .  I f g ( n )  is posit ive and satisfies 

c g ( n )  <_ R n ( c g ( n  - 1), - . . ,  cg(1)) (6) 
for all sufficiently small  posit ive c and all 
sufficiently large n,  then T ( n )  = ~ ( g ( n ) ) .  

The  theorem is easily proved by induc- 
tion. Suppose (5) holds. Let  m be such tha t  
R ,  is a nondecreasing function of its argu- 
men t s  whenever  n _> m. Let  c be the maxi- 
m u m  of T ( k ) / f ( k )  for k < m. T h e  induction 
hypothes is  s ta tes  tha t  T ( k ) / f ( k )  <_ c for k 
< n. By the definition of c, it holds for n --- 
m. Using the induction hypothes is  for n, 
(5), and the monotonic i ty  of R , ,  we have  

T ( n )  = R , ( T ( n  - 1), . . . ,  T(1)) 

<_ R , ( c f ( n  - 1), . . . ,  cf(1)) _< c f ( n ) .  

The  proof  when (6) holds is the same except  
tha t  inequalities are reversed and c is the 
m i n i mum of T ( k ) / f ( k )  for all k < m such 
tha t  T ( k )  actual ly appears  in some recur- 
sion R,, with n _> m .  This  added constra int  
on k insures tha t  c ~ 0. 

To  il lustrate the theorem,  consider again 
recursion (1). I t  clearly satisfies the as- 
sumpt ions  regarding R,, and the Ts .  We can 
see f rom (2) tha t  (5) holds whenever  c _> 1 
and n _> 3. Thus  T ( n )  -~ O ( n  log-'n). Also, 
(6) holds whenever  0 < c ~ 1/2 and n ~ 3. 
Thus  T ( n )  = ~t(n log2n). Combining these 
two results we have  T ( n )  -- O(n log2n). An 
examinat ion  of the derivat ion of the "big- 
oh"  t e rm  in (4) reveals  tha t  for sufficiently 
large n it is posit ive if r > 2 and negative if 
r < 2. Thus  we obtain  T ( n )  = O ( n  log rn) 
for r > 2 and T ( n )  = ~2(n logrn) for r < 2, 
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and thus eliminate the impossibility ob- 
tained earlier. 

EDWARD A. BENDER 
Mathemattcs Dept 

Universtty of Caltfornla, San Dtego 
La Jolla, Cahf 92093 

We/de's R e s p o n s e  

Bender ' s  t r ea tment  of recurrences is 
more rigorous than  it was my objective to 
use in the  paper. T h e  problem is tha t  I did 
not  ment ion how to deal with the possibility 
tha t  c = 0. The  technique I suggested is 
heuristic; it is intended to help one identify 
the proposed solution, which can then  be 
proved correct  by an inductive argument  
using the recursion for the inductive step. 

T h e  me thod  I proposed is simple. We 
make an initial guess of the order  of the 
solution, say T ( n )  = O( fo (n ) ) ,  and substi- 
tute  cofo(n) for T ( n )  on the right side of the 
recurrence.  This  may  result  in the intro- 
duction of lower-order terms f~(n), . . . ,  
f,,(n). We then  guess tha t  

T ( n )  = cofo(n) + c l f l (n )  + . . .  + c , , f , , (n) ,  

which we again subst i tute  on the right side 
of the recurrence.  We continue in this fash- 
ion until  no new functions appear. This  
process may  require an infinite sequence of 
functions f (n) ,  but  this causes no difficulty 
if we can find a closed-form expression for 
the infinite sum. Now if the f~(n) are linearly 
independent  (as they usually are for the 
recurrences commonly encountered),  we 
can solve the recurrence by equating coef- 
ficients of like terms. 

If  we can find coefficients c,, with Co ~ 0, 
we may  conclude correct ly tha t  T ( n )  = 
12(fo(n)) and, fur thermore,  tha t  

T ( n )  = ~, c , f ( n ) .  
l 

For  the simple example (Bender 's  equa- 
tion 1) with the initial guess T ( n )  = con 
log'n,  we must  have c, = 0 for all ~ whenever  
r < 2 or r is nonintegral  and larger than 2. 
This  shows tha t  tha t  guess cannot  be right. 
On the other  hand, the guess T ( n )  = con 
log*n for any integer k _> 2 produces c, = 0 
for terms n logkn in which the power of log 
n exceeds 2. This  demonst ra tes  tha t  the 
solution is T ( n )  = ~ ( n  log 'n)  as proposed. 
This  solution is proved formally by an in- 
ductive proof  based on the recurrence.  

I have not  proved tha t  this method  al- 
ways leads to a solution. However,  I have 
studied many  cases and the method  has 
never  failed. When it does work, it leads to 
a natural  inductive proof  tha t  the proposed 
solution is correct.  

BRUCE W WIEDE 
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The Real Costs of Software 

Irving Wendel  writes to inquire about  
differences between Zelkowitz's description 
of software development  costs [1] and con- 
clusions based on a different s tudy by Al- 
berts  [2]. Marvin  Zelkowitz repl ies .--Ed.  

Wendel's Comment 

Zelkowitz presents  an equation that  
tracks the cost of large scale software proj- 
ects over time. Th e  equation is t ranslated 
into a software life cycle graph on page 206. 
The  graph resembles a bell-shaped curve 
somewhat  skewed away from the develop- 
men t  phase and toward the maintenance 
phase. Th e  slope of the curve changes 
slowly along the entire graph. 

Zelkowitz's graph differs substantially 
from a composite software life cycle graph 
presented by Alberts [1]. Alberts 's graph is 
based on a 16-year program life cycle. Th e  
curve resides slightly above zero for six 
years of software conceptualization and 
specification, skyrockets  for almost  two 
years of expensive development,  and drops 
sharply to less than  50 percent  of its zenith 
as it enters  the maintenance phase, where 
it declines slowly but  steadily for the re- 
maining par t  of the program's  life cycle. 

Alberts characterizes the smoothly 
changing life-cycle graphs as "idealized," 
theoretical  in nature.  

Both  Alberts and Zelkowitz state tha t  
their  respective graphs are based on expe- 
rience. I should be interested to see an 
explanation of their  wide differences. 
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