
SURVEYORS' FORUM

A Recurrent Problem

Edward A. Bender writes to correct a
p rob lem he discovered in one of Bruce
Weide 's " recurrences" (recurrence rela-
tions) as pr inted in "A survey of analysis
techniques for discrete algori thms," COM-
PUTING S U R V E Y S , 9 , 4 (December 1977),
291-313. Bruce Weide repl ies . - -Ed.

Bender's Comment

Weide's paper seems to contain an error
in the solution of a recursion. On the left
side of page 303 appears the equat ion

T (n) = 2 T (n / 2) + n log n (1)
Weide observes tha t if T (n) = c n logan is
used to replace T (n / 2) in the right side of
(1), then

T (n) = c n logan +
(2)

(1 - 2 c) n log n + cn.

He then says tha t since

(1 - 2 c) n log n + c n = o (n log2n) (3)

we may conclude tha t T (n) = O (n logZn), *
and, since the coefficient of n log2n is c in
(2), we have the be t te r result T (n) = O (n
log2n). Although the conclusions are cor-
rect, the a rgumen t is invalid. To see this,
note tha t with T (n) = c n logrn and r > 1 in
the r ight side of (1) we obtain

T (n) = c n logrn + O (n log 'n) (4)
= c n logrn + o (n logrn),

where s = max(1 , r - 1) < r. If Weide 's
a rgumen t were correct, we would have T (n)
= O(n logan) for all r > 1, an obvious
impossibility.

How can this a rgument be made correct?
The re is little l i terature on a general ap-
proach to this type of problem. However,

* R e c a l l t h a t
f (n) = O(g(n)) m e a n s f (n) / g (n) is b o u n d e d a s n ---* ~ ,
f i n) = ~2(g(n)) m e a n s g (n) / f (n) IS b o u n d e d a s n --* ~ ,
f (n) = o(g(n)) m e a n s f (n) / g (n) ---* O, a n d
f (n) = O (n) m e a n s f (n) = O(g(n)) a n d f in) --- ~2(g(n))

the following theorem describes a me thod
commonly used:

THEOREM. Suppose we are given tha t T
satisfies the recursion

T (n) = R , , (T (n - 1), . . . , T(1))
where, for sufficiently large n, all Ts tha t
actual ly appear are positive and R,, is a
nondecreasing function of its arguments . I f
f (n) is posit ive and satisfies

c f (n) >_ R ~ (c f (n - 1), . . . , cf(1)) (5)
for all sufficiently large c, and n, then T (n)
= O (f (n)) . I f g (n) is posit ive and satisfies

c g (n) <_ R n (c g (n - 1), - . . , cg(1)) (6)
for all sufficiently small posit ive c and all
sufficiently large n, then T (n) = ~ (g (n)) .

The theorem is easily proved by induc-
tion. Suppose (5) holds. Let m be such tha t
R , is a nondecreasing function of its argu-
men t s whenever n _> m. Let c be the maxi-
m u m of T (k) / f (k) for k < m. T h e induction
hypothes is s ta tes tha t T (k) / f (k) <_ c for k
< n. By the definition of c, it holds for n ---
m. Using the induction hypothes is for n,
(5), and the monotonic i ty of R , , we have

T (n) = R , (T (n - 1), . . . , T(1))

<_ R , (c f (n - 1), . . . , cf(1)) _< c f (n) .

The proof when (6) holds is the same except
tha t inequalities are reversed and c is the
m i n i mum of T (k) / f (k) for all k < m such
tha t T (k) actual ly appears in some recur-
sion R,, with n _> m . This added constra int
on k insures tha t c ~ 0.

To il lustrate the theorem, consider again
recursion (1). I t clearly satisfies the as-
sumpt ions regarding R,, and the Ts . We can
see f rom (2) tha t (5) holds whenever c _> 1
and n _> 3. Thus T (n) -~ O (n log-'n). Also,
(6) holds whenever 0 < c ~ 1/2 and n ~ 3.
Thus T (n) = ~t(n log2n). Combining these
two results we have T (n) -- O(n log2n). An
examinat ion of the derivat ion of the "big-
oh" t e rm in (4) reveals tha t for sufficiently
large n it is posit ive if r > 2 and negative if
r < 2. Thus we obtain T (n) = O (n log rn)
for r > 2 and T (n) = ~2(n logrn) for r < 2,

C o m p u t i n g Surveys , Vol 11, No 1, M a r c h 1979

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356757.356762&domain=pdf&date_stamp=1979-03-01

68 • S u r v e y o r s ' F o r u m

and thus eliminate the impossibility ob-
tained earlier.

EDWARD A. BENDER
Mathemattcs Dept

Universtty of Caltfornla, San Dtego
La Jolla, Cahf 92093

We/de's R e s p o n s e

Bender ' s t r ea tment of recurrences is
more rigorous than it was my objective to
use in the paper. T h e problem is tha t I did
not ment ion how to deal with the possibility
tha t c = 0. The technique I suggested is
heuristic; it is intended to help one identify
the proposed solution, which can then be
proved correct by an inductive argument
using the recursion for the inductive step.

T h e me thod I proposed is simple. We
make an initial guess of the order of the
solution, say T (n) = O(fo (n)) , and substi-
tute cofo(n) for T (n) on the right side of the
recurrence. This may result in the intro-
duction of lower-order terms f~(n), . . . ,
f,,(n). We then guess tha t

T (n) = cofo(n) + c l f l (n) + . . . + c , , f , , (n) ,

which we again subst i tute on the right side
of the recurrence. We continue in this fash-
ion until no new functions appear. This
process may require an infinite sequence of
functions f (n) , but this causes no difficulty
if we can find a closed-form expression for
the infinite sum. Now if the f~(n) are linearly
independent (as they usually are for the
recurrences commonly encountered), we
can solve the recurrence by equating coef-
ficients of like terms.

If we can find coefficients c,, with Co ~ 0,
we may conclude correct ly tha t T (n) =
12(fo(n)) and, fur thermore, tha t

T (n) = ~, c , f (n) .
l

For the simple example (Bender 's equa-
tion 1) with the initial guess T (n) = con
log'n, we must have c, = 0 for all ~ whenever
r < 2 or r is nonintegral and larger than 2.
This shows tha t tha t guess cannot be right.
On the other hand, the guess T (n) = con
log*n for any integer k _> 2 produces c, = 0
for terms n logkn in which the power of log
n exceeds 2. This demonst ra tes tha t the
solution is T (n) = ~ (n log 'n) as proposed.
This solution is proved formally by an in-
ductive proof based on the recurrence.

I have not proved tha t this method al-
ways leads to a solution. However, I have
studied many cases and the method has
never failed. When it does work, it leads to
a natural inductive proof tha t the proposed
solution is correct.

BRUCE W WIEDE
Dept. Computer

and Informatton Setence
Ohio State Unwerstty
Columbus, Ohio 43210

The Real Costs of Software

Irving Wendel writes to inquire about
differences between Zelkowitz's description
of software development costs [1] and con-
clusions based on a different s tudy by Al-
berts [2]. Marvin Zelkowitz repl ies .--Ed.

Wendel's Comment

Zelkowitz presents an equation that
tracks the cost of large scale software proj-
ects over time. Th e equation is t ranslated
into a software life cycle graph on page 206.
The graph resembles a bell-shaped curve
somewhat skewed away from the develop-
men t phase and toward the maintenance
phase. Th e slope of the curve changes
slowly along the entire graph.

Zelkowitz's graph differs substantially
from a composite software life cycle graph
presented by Alberts [1]. Alberts 's graph is
based on a 16-year program life cycle. Th e
curve resides slightly above zero for six
years of software conceptualization and
specification, skyrockets for almost two
years of expensive development, and drops
sharply to less than 50 percent of its zenith
as it enters the maintenance phase, where
it declines slowly but steadily for the re-
maining par t of the program's life cycle.

Alberts characterizes the smoothly
changing life-cycle graphs as "idealized,"
theoretical in nature.

Both Alberts and Zelkowitz state tha t
their respective graphs are based on expe-
rience. I should be interested to see an
explanation of their wide differences.

IRVING K. WENDEL
SWAK--Computer Software Engtneertng

P 0 Box 1440
Oakland, Cahf 94604

Computmg Surveys, Vol 11, No 1, March 1979

