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Database query processing requires algorithms for duplicate removal, grouping, and aggregation. Three algo-
rithms exist: in-stream aggregation is most efficient by far but requires sorted input; sort-based aggregation
relies on external merge sort; and hash aggregation relies on an in-memory hash table plus hash partition-
ing to temporary storage. Cost-based query optimization chooses which algorithm to use based on several
factors, including the sort order of the input, input and output sizes, and the need for sorted output. For exam-
ple, hash-based aggregation is ideal for output smaller than the available memory (e.g., Query 1 of TPC-H),
whereas sorting the entire input and aggregating after sorting are preferable when both aggregation input
and output are large and the output needs to be sorted for a subsequent operation such as a merge join.

Unfortunately, the size information required for a sound choice is often inaccurate or unavailable during
query optimization, leading to sub-optimal algorithm choices. In response, this article introduces a new algo-
rithm for sort-based duplicate removal, grouping, and aggregation. The new algorithm always performs at
least as well as both traditional hash-based and traditional sort-based algorithms. It can serve as a system’s
only aggregation algorithm for unsorted inputs, thus preventing erroneous algorithm choices. Furthermore,
the new algorithm produces sorted output that can speed up subsequent operations. Google’s F1 Query uses
the new algorithm in production workloads that aggregate petabytes of data every day.
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1 INTRODUCTION

There is a wide variety of algorithms for duplicate removal, e.g., in SQL queries like “select distinct
A, B from. . . .” Most of these algorithms are also suitable for grouping and aggregation, e.g., in SQL
queries like “select A, B, count (*), sum (X), avg (Y), min (Z). . . from. . . group by A, B.” If the data in
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Fig. 1. Optimization opportunity in sorting and grouping.

the “from” clause are already sorted on “A, B” or something equivalent, then in-stream grouping
and aggregation is very simple and very efficient. If the input is sorted on a prefix of the required
sort key, e.g., only on “A,” then the algorithms below apply one segment at a time, e.g., for grouping
on “B” within segments defined by distinct values of “A.” Otherwise, if the output size is such that in-
memory computation suffices, avoiding any need for temporary storage on external devices, then
the concerns and techniques below apply to data movement between CPU caches and system mem-
ory, even if discussed here only for system memory and temporary external storage. If the input
size and its storage location are such that parallel computation is desirable, then partitioning per-
mits local and independent computation of the query result, e.g., partitioning on “hash(A,B).” If re-
partitioning (shuffle, exchange) is required, then best-effort in-memory duplicate removal, group-
ing, and aggregation can reduce the communication effort. What remains is the need for an efficient
sequential algorithm for duplicate removal, grouping, and aggregation of large unsorted inputs.

Figure 1 illustrates the principal optimization opportunity in a sequential grouping algorithm for
unsorted inputs. The input and output may be stored files (as shown) or they may be transient data
streams. More importantly here, the sizes of input and output are fixed and their costs cannot be
avoided or reduced by optimizing the grouping algorithm. The biggest optimization opportunity
within the grouping operation is avoiding or reducing the need for temporary storage. If both input
and output are larger than the available memory, then pipeline-breaking “stop-and-go” algorithms
cannot avoid temporary storage altogether. The question is whether requirements for temporary
storage equal the output size, equal the input size, or exceed both sizes, e.g., due to multi-level
partitioning or merging.

For unsorted inputs, there are two kinds of grouping algorithms, partitioning and merging. Both
are classic divide-and-conquer designs. The first kind of algorithm hash-partitions the data into
disjoint subsets, either in memory, usually as buckets in a hash table, or on temporary storage, of-
ten called partitions or overflow files. The second kind of algorithm sorts the data on all columns
(fields, attributes) for duplicate removal or on the grouping columns for grouping and aggregation.
The standard sort algorithm is an external merge sort with a variety of optimizations for perfor-
mance and for graceful degradation, e.g., an incremental transition from in-memory sorting to
external sorting. Some implementations employ a mixed approach, e.g., a hash table in memory
and merge sort as external algorithm. For example, Boncz et al. [5] mention “hash-based early ag-
gregation in a sort-based spilling approach.” Another example for this mixed approach is the initial
implementation of duplicate removal, grouping, and aggregation in Google’s F1 Query [34, 37].

If the output is smaller than the available memory, i.e., when an in-memory hash table can
accumulate the entire output, then this is regarded as the algorithm of choice. TPC-H Query 1 with
four output rows for any table size (benchmark scale factor) is a prototypical example. However, if
a sort order aids not only duplicate removal but also subsequent grouping or join operations, also
known as interesting orderings [35], then a sort-based algorithm can reduce the total execution
cost of the entire query plan. Unfortunately, due to errors in compile-time cardinality estimation,
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Fig. 2. In-stream duplicate removal after sort (red) vs. in-sort duplicate removal within runs (blue).

this choice is difficult and error-prone. Rather than introduce new query optimization ideas, we
strive to render interesting orderings versus efficient aggregation a false choice.

Sort- and hash-based query processing are more similar than commonly recognized [14]. To
wit, Müller et al. [30] offer the insight that “hashing is in fact equivalent to sorting by hash value.”
They err, however, in “hashing allows for early aggregation while sorting does not.” Perhaps they
learned this erroneous understanding from Reference [14, 16]. One of the techniques introduced
in the present article eliminates this misunderstanding.

Sorting and duplicate removal are not new research topics, of course. For example, Härder [24]
summarizes that “eliminating duplicates can be achieved by a single sort” (not after a sort). In
a footnote, Bitton and DeWitt [4] credit System R (and thus Härder) with duplicate elimination
in intermediate runs. Neither of these papers explicitly mentions the similarity of algorithms for
duplicate elimination, for grouping and aggregation, and for minimizing the invocation frequency
of expensive operations [25], e.g., of fetching rows by row identifiers, of index searches in index
nested-loops join also known as look-up join, of nested queries, and of user-defined functions.

Figure 2 illustrates the beneficial effects of duplicate removal within runs [4, 24]. This small
example assumes that input and memory sizes force 18 initial runs on temporary storage and
that memory and page sizes limit the merge fan-in to 6. On the top, after a traditional external
merge sort generates and merges runs, it pipelines the output of the final merge step into an in-
stream aggregation operation. The result of the sort is just as large as the unsorted input; only
the subsequent in-stream aggregation reduces the data volume. On the bottom, duplicate removal
within runs reduces the data volume on temporary storage. Intermediate runs are never larger than
the final result, which the final merge step computes. Duplicate removal reduces the output size of
any merge step with the combined size of the merge inputs larger than the operation’s final output.

The present article introduces two new techniques. Both improve external merge sort in the con-
text of duplicate removal, grouping, and aggregation; and both employ in-memory indexes where
traditional designs employ priority queues. The first new technique, early aggregation, improves
run generation or the input phase of external merge sort. It matches a commonly cited advantage
of hash-based duplicate removal, grouping, and aggregation for unsorted input and in-memory re-
sults, e.g., for TPC-H Query 1. The second new technique, wide merging, improves the final merge
step or the output phase of external merge sort. Together, these two techniques ensure that sort-
based duplicate removal, grouping, and aggregation is competitive with hash-based algorithms for
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Table 1. Traditional Decision Procedure

Condition Query Optimization Choice
Sorted Input? In-stream aggregation
Output < Memory

Hash aggregation
Unsorted output ok?
Input/Output < fan-in Traditional in-sort aggregation
Otherwise Hash aggregation + sort

Table 2. Decision Procedure with the
New Algorithm

Condition Query Optimization Choice
Sorted input? In-stream aggregation

Otherwise New in-sort aggregation

Fig. 3. Motivating performance example from Google’s F1 Query.

any input size and any output size. Of course, sort-based query processing has other advantages
commonly known as interesting orderings [35]. These advantages also apply to other sort-based
dataflow environments, e.g., MapReduce [9] and its many successors.

A single algorithm for duplicate removal, grouping, and aggregation with robust performance
(matching the best prior algorithms in all operating conditions) is more than an intellectual curios-
ity for the algorithm enthusiast. In many practical ways, it benefits any production system, not
only in terms of code volume and effort for code maintenance but also in terms of query optimiza-
tion complexity and uncertainty in algorithm choices. Other benefits apply to query execution
policies, e.g., the complexity of memory management, and to physical database design, applica-
tion tuning, data center monitoring, and user education. “Generalized join” [17, 19] represents the
same intention focused on binary operations.

Tables 1 and 2 illustrate this point using the decision procedures that select algorithms for dupli-
cate removal, grouping, and aggregation. In the traditional context (Table 1), two of the decisions
hinges on cardinality estimation and resource availability, i.e., the relative sizes of input, output,
and memory. However, cardinality estimates are notoriously unreliable, in particular after prior
join operations. With the proposed algorithm, the decision procedure becomes rather simple and
it relies only on information about sort order (Table 2), which is usually readily available during
database query optimization.

In the implementation of Google’s F1 Query [34, 37], hash join applies recursive partitioning
using a sequence of hash functions whereas hash aggregation resolves overflow by external merge
sort. Adding hash partitioning to the existing in-memory hash aggregation suggests itself, but it
turns out that sort-based duplicate removal, grouping, and aggregation can always be as fast—and
much faster when interesting orderings [35] matter.

Figure 3 compares the performance of duplicate removal in F1 Query for an unsorted input of
6,000,000 rows, memory for 1,000,000 rows, and a variety of output sizes. All algorithms are im-
plemented and tuned for production. A traditional external merge sort with subsequent in-stream
aggregation is the most expensive option in all cases. Traditional hash aggregation performs very
well if the output fits in memory, and it degrades somewhat gracefully for outputs larger than mem-
ory, spilling an entire partition at a time. Of course, it does not produce sorted output for the next
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operation, e.g., a join focusing on the same foreign key as the grouping operation, which is a fairly
common query pattern. In-sort aggregation with the new techniques performs slightly worse than
hash aggregation for small outputs and somewhat better than hash aggregation for large outputs.
Given competitive performance, more graceful degradation (spilling the minimal count of rows),
and the ability to produce output in interesting orderings, in-sort aggregation seems suitable as
the only algorithm for duplicate removal, grouping, and aggregation for unsorted inputs. Google’s
F1 Query uses the new algorithm in production workloads that aggregate petabytes of data every
day [2].

To summarize our contributions this article

(1) introduces two techniques that speed up sort-based duplicate removal, grouping, and
aggregation;

(2) analyzes and compares CPU effort and overflow I/O volumes of hash-based algorithms and
improved sort-based algorithms;

(3) reports on their implementation in Google’s F1 Query and on their performance; and
(4) enables competitive SQL database query processing with only a single algorithm for dupli-

cate removal, grouping, and aggregation over unsorted inputs.

Among the following sections, the next one reviews related prior work. Section 3 introduces
sort-based early aggregation while consuming unsorted inputs, i.e., long before writing initial
runs to temporary storage [4]. Section 4 introduces wide merging in the final merge step, i.e.,
with a fan-in much higher than traditional merging. Section 5 analyzes and compares sort- and
hash-based algorithms for duplicate removal in light of these new algorithm improvements.
Section 6 details performance measurements, with Section 6.1 providing some background on our
product implementation. Section 7 summarizes and offers a few conclusions.

2 RELATED PRIOR WORK

This section reviews prior work on query processing in relational databases, in particular sorting,
hashing, and grouping algorithms.

2.1 Interesting Orderings

From early relational database management systems, sort-based algorithms and sort order have
been central to query processing engines. Early research into query evaluation and grouping algo-
rithms [11] discussed duplicate removal within sort operations and in-stream grouping for sorted
inputs: “. . . first project the needed domains and then sort on the by-list being careful not to re-
move duplicates . . . Since the tuples are sorted in order of the by-list, each tuple read will have
either the same by-list as the previous tuple, or it will be an entirely new by-list and there will be
no more references to any previous by-lists.” The same research also considered grouping using
in-memory hash indexes: “. . . the assumption that B ≥ P [memory size ≥ output size] is commonly
true in practice. To the extent that this holds, the best structure to use is hash, and sorting does
not help. If B < P and U [output row count] is large, then sorting clearly wins.”

Early research into query optimization crystallized the concept of interesting orderings and
their effect on query evaluation plans [35]. Sort-based algorithms such as merge join have obvious
positive interactions with sorted storage structures such as b-tree indexes as well as queries with
“order by” clauses. Multiple joins on the same primary key and foreign keys are common in re-
assembly of complex objects after relational normalization in the database. Grouping on foreign
keys is common, because it computes an aggregate property of the larger entity, e.g., the total
value of all line items in a purchasing order. Thus, grouping operations before or after primary
key-foreign key joins are found in many queries and query evaluation plans.
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In queries with a single “select. . . from. . . where. . . group by. . . ” block, the default evaluation plan
executes grouping and aggregation after all joins. It has long been understood that query optimiza-
tion may modify this sequence order in many queries, e.g., to reduce join input sizes [40]. Another
advantage might be pushing the grouping and aggregation logic into the sort required for the join
algorithm. While an important and powerful set of optimizations, the present article focuses on
run-time efficiency and ignores these and many other query planning techniques.

2.2 Applications of Sort-based Grouping and Aggregation

The algorithms discussed in this article support sort-based duplicate removal, grouping, and ag-
gregation. These discussions go beyond earlier descriptions of sorting and duplicate removal in
relational database management systems [4, 11, 16, 24]. A related operation avoids redundant invo-
cations of expensive operations such as (correlated) nested queries and user-defined functions [25].

A typical example of a large duplicate removal operation is counting distinct users in a popular
web service. Logs generated by web servers may produce billions of log records per day. A dataflow
pipeline or a SQL query extracts user identifiers and then removes duplicates, i.e., multiple log
records pertaining to the same user. For a popular web service, this reduces many billions of rows
to many millions of rows.

If counts are desired per hour or per country, then the required grouping operation can use
the same algorithm. In hash-based query processing, one operation (with hash table and hash-
partitioning to overflow files on temporary external storage) removes duplicate user ids and an-
other operation (with its own hash table and hash-partitioning) counts users per hour and country.
In sort-based query processing, a single sort operation (on country, hour, and user identifier) serves
both duplicate removal and subsequent grouping. Queries of the form “select count (distinct...)...
group by...,” i.e., the combination of duplicate removal and grouping, can always benefit from in-
teresting orderinga but should, of course, also benefit from the most efficient available algorithms
for duplicate removal and grouping.

“Integrated join” [15, 20] and “group-join” [31] use a single hash table for both grouping and join.
They are particularly effective when grouping and joining on the same foreign key. Due to their
asymmetry, they inhibit role reversal, whereas in sort-based query processing, in-stream grouping
naturally applies to both inputs of merge join as well as its output. For unsorted join inputs, the
sort logic can apply duplicate removal, grouping, and aggregation.

“Generalized join” [17, 19] includes merge logic that consumes many runs with a single buffer
page, using most of memory for an in-memory index. In that sense, it is similar to wide merging
(Section 4). The prior work [19] stipulates an algorithm for duplicate removal, grouping, and ag-
gregation based on generalized join with output candidate rows serving as build input and input
rows as probe input, whereas wide merging does not distinguish between build and probe inputs.
Nonetheless, wide merging as implemented in F1 Query may be interpreted as a first industrial im-
plementation and deployment of “generalized distinct.” Similarly, early aggregation (Section 3) may
be seen as an implementation of the input phase or of a hybrid phase of generalized distinct. Due
to a lack of understanding and appreciation of offset-value coding, those earlier attempts might
achieve competitive I/O volumes, i.e., overflow partitions in hash join and runs in external merge
sort, but they do not achieve equivalent column value accesses and thus CPU effort (Section 5.1).

Rollup functionality has existed for a long time in programming environments such as Cobol
and been suggested for database queries [14]. Sort-based aggregation can compute multiple levels
of aggregation with a single sort operation, e.g., for a query of the form “select . . . group by rollup
(year, month, day).” In contrast, hash-based aggregation requires separate computations for each
level of aggregation. Each level requires a hash table and possibly partitioning to temporary
storage.
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Log-structured merge-forests and stepped-merge forests [27, 32] are nearly ubiquitous in key-
value stores. In this context, runs are often called deltas and merging is often called compaction,
because merging includes aspects of aggregation and compression. The individual merge steps
are similar to those of external merge sort, but their merge policies (what to merge when) are
quite different for multiple reasons. First, their input is assumed endless. For example, it is not
possible to delay merging until run generation is complete; merging must be concurrent to run
generation. Second, inputs include traditional insertions, which are mapped to append operations,
as well as updates, which are mapped to insertions of replacement rows, and deletions, which are
mapped to insertions of “tombstone” rows. The merge logic aggregates insertions, updates, and
deletions either into a final state or into a history of versions, including removal of out-of-date
versions (also known as garbage collection). Third, individual runs are formatted as b-trees, not
flat files, to permit search and queries over recent as well as historical information. Alternative
formats include a single partitioned b-tree, with runs mapped to partitions. Bit vector filters can
enable a query to skip some partitions and thus improve performance. Fourth, the merge fan-in
and the frequency of merge steps are controlled not by the memory size but by the desire for good
query performance, i.e., searching few partitions. Many designs and deployments of log-structured
merge-forests employ low-fan-in merge steps, even binary merging.

Decades ago, Gray suggested sorting recovery log records on the database page identifier to
which they pertain [22]: “This compressed redo log is called a change accumulation log. Since it is
sorted by physical address, media recovery becomes a merge of the image dump of the object and
its change accumulation tape.” It seems a small step from sorting recovery log records to building
b-tree indexes, another step to building indexes incrementally and continuously (in the manner
of log-structured merge-forests), and yet another small step to using such indexes for page-by-
page incremental, on-demand, seemingly instant recovery from single-page failures, from system
failures (software crashes), and from media failures [21].

2.3 Optimizing “Group by” and “Order by”

Functional dependencies enable many interesting optimizations for “group by” and “order by”
queries [38]. Functional dependencies are implied by primary key integrity constraints and by
prior “group by” operations.

More specifically, a “group by” clause requires a set of columns (expressions) and an “order by”
clause requires a list of columns. Functionally dependent columns can be removed anywhere in a
set but only in subsequent positions within a list. For example, in two database tables for purchase
orders and their line items, with o_orderdate functionally dependent on o_orderkey, the first three
among the following four clauses permit simplification but the last one does not:

(1) “. . . group by o_orderkey, o_orderdate,”
(2) “. . . order by o_orderkey, o_orderdate,”
(3) “. . . group by o_orderdate, o_orderkey,”
(4) “. . . order by o_orderdate, o_orderkey.”

Below is a (first) example of using functional dependencies in an unusual way. The first query
seems to require grouping and aggregation after the join, but the second and third queries are es-
sentially equivalent to the first one due to the functional dependency of order date on the grouping
key. Adding a functionally dependent column to a “group by” clause applies the insights of Ref-
erence [38] in the reverse direction. As grouping key and join key are the same, order date is a
constant within each group of line items. The fourth query variant is equivalent to the first query
and most conducive to efficient execution. Note that the many-to-one join changes into a one-to-
one join.
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(1) select o_orderkey, avg (l_shipdate - o_orderdate)
from orders, lineitem
where o_orderkey = l_orderkey
group by o_orderkey

(2) select o_orderkey, o_orderdate,
avg (l_shipdate - o_orderdate)

from orders, lineitem
where o_orderkey = l_orderkey
group by o_orderkey, o_orderdate

(3) select o_orderkey, o_orderdate,
avg (l_shipdate) - o_orderdate

from orders, lineitem
where o_orderkey = l_orderkey)
group by o_orderkey, o_orderdate

(4) select o_orderkey, avg_shipdate - o_orderdate
from orders,

(select l_orderkey,
avg (l_shipdate) as avg_shipdate

from lineitem
group by l_orderkey) as a

where o_orderkey = l_orderkey

In many queries, query rewriting such as this example is required to enable integrated join or
group-join. In integrated join, optimizing grouping and join on the same column (set) applies only
to the build input; in group-join, it applies only to the probe input. In sort-based query processing,
grouping and join on the same column (set) enjoy the benefits of interesting orderings if grouping
is applied to either of the two join inputs, or even to the join output. In other words, interesting
orderings benefit query performance whether or not query optimization applies all kinds of clever
and uncommon rewrites.

In sum, sort-based duplicate removal, grouping, and aggregation can benefit from proper use of
functional dependencies, because they permit optimizations of both grouping and ordering, but
it seems that sort-based query evaluation plans are somewhat more forgiving and flexible than
hash-based query execution.

2.4 Optimizations of Sort Operations

High-performance sorting requires efficiency, scalability, and robustness of performance. Effi-
ciency may benefit from tree-of-losers priority queues, normalized keys, offset-value coding,
and hardware support. Among the techniques mentioned, normalized keys encode key values
in order-preserving strings such that all subsequent key comparisons use intrinsics or hardware
instructions for binary strings. Further hardware support may focus on tree-of-losers priority
queues and offset-value coding in normalized keys, e.g., the UPT “update tree” instruction and
the CFC “compare and form codeword” instruction [26]. Iyer [26] sums up that “Together, the
UPT and CFC instructions do the bulk of sorting in IBM’s commercial DBMS DB2 running on
z/Architecture processors.”

Offset-value coding [7] encodes one row’s key value relative to another row’s key value that
is earlier in the sort sequence. Offset and value are combined into an integer such that a single
machine instruction can compare two offset-value codes and decide a comparison of two rows
encoded relative to the same base row. Offset-value codes can decide many comparisons in tree-
of-losers priority queues.

Table 3 illustrates the derivation of descending and ascending offset-value codes in a stream of
rows in ascending sort order on all columns. With four sort columns, the arity of the sort key is 4;
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Table 3. Offset-value Codes in a Sorted File or Stream

Rows and their Descending OVC Ascending OVC
column values offset domain −value OVC arity - offset value OVC
5 7 3 9 0 95 95 4 5 405
5 7 3 12 3 88 388 1 12 112
5 8 4 6 1 92 192 3 8 308
5 9 2 7 1 91 191 3 9 309
5 9 2 7 4 — 400 0 — 0
5 9 3 4 2 97 297 2 3 203
5 9 3 7 3 93 393 1 7 107

the example assumes that the domain of each column is 0. . . 99. Descending offset-value codes
take the actual offset but the negative of the column value. Ascending offset-value codes take
the negative offset but the actual column value. Table 3 ignores that small key domains permit
encoding multiple key columns together.

Finally, a tree-of-losers priority queue [13, 28], also known as a tournament tree, embeds a
balanced binary tree in an array, with the tree’s unary root in array slot 0. It is efficient due to
leaf-to-root passes with one comparison per tree level; root-to-leaf passes with two comparisons
per tree level are not required. Run generation and merging with tree-of-losers priority queues
can guarantee sort operations with near-optimal comparison counts.

Scalability is principally about parallelism—twice the resources should process the same data in
half the time (also known as speed-up) or twice the data in the same time (scale-up). Robustness
of performance is about performance cliffs and graceful degradation—for example, the transition
from an in-memory quicksort to an external merge sort should be gradual rather than a binary
switch, such that a single additional byte or input row cannot force spilling the entire memory
contents. The techniques introduced in Sections 3 and 4 are orthogonal to both scalability and
robustness of performance: the new techniques do not offer improvements in those directions but
they also do not impede or hinder existing or future techniques for scalability and for graceful
degradation.

2.5 Early Results in Join-by-grouping

Complementing optimizations of sort-based grouping, there is a join algorithm based on grouping.
It requires that the implementation of external merge sort can interleave multiple record types
within memory and within each run on temporary storage. Sorting a mixed stream of records on
join key values produces mixed “value packets” [29], i.e., sets of rows with equal sort keys. In the
context here, equal sort keys means equal join keys. Forming or combining value packets is a kind
of aggregation. The join output is computed from the final sorted stream by computing a cross
product within each mixed value packet. Alternatively, when the sort and merge logic forms or
combines mixed value packets, it can produce join results as an immediate side effect. In other
words, early aggregation in this context enables early and incremental join results. Variants of this
algorithm can compute semi-join, anti-semi-join, all forms of outer join, set and bag intersection
and difference (e.g., “intersect all” in SQL). Anti-semi-join and equivalent result rows of outer joins
cannot be produced early.

Figure 4 illustrates one merge step within this algorithm applied to an inner join. Two unsorted
input tables (far left top and bottom) are joined on column A. Rows from both inputs are scanned
concurrently and run generation creates initial sorted runs (center left). These runs contain mul-
tiple record types, one for each join input. Merging runs (from center left to center right) relies
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Fig. 4. Join-by-grouping.

on the standard merge logic known from external merge sort. As a side effect, this merge step
combines value packets (in this example, for A = 13) and produces new join results (far right top).
Before this merge step, when run generation assembled the merge inputs (center left), it produced
early join results (far right middle and bottom) while forming the value packets in these runs.

Once two records have been joined, they remain in the same value packet until the sort finishes.
Hence, there is no danger of duplicate (redundant, wrong) output. For example, in Figure 4, the two
original inputs (far left) contain 3 and 2 rows with key value A = 13 for 3 × 2 = 6 rows in the join
result; the three partial results (far right top to bottom) contain precisely these 6 rows. When the
sort finishes, the final value packets are dropped; the operation’s output is the join result computed
incrementally as side effect of forming and combining mixed value packets.

This join algorithm is an alternative to more complex sort-based join algorithms with early
output [10]. Its output rate and memory requirements mirror those of symmetric hash join [39] if
early aggregation and wide merging are enabled, which are the topics of the next two sections.

2.6 Summary of Related Work

To summarize our observations on related prior work, duplicate removal, grouping, and aggrega-
tion occur in a large variety of contexts, from data warehouse queries and business intelligence
to analysis of web logs. Substantial research and development effort have been invested in both
query optimization and query execution specifically for duplicate removal, grouping, and aggrega-
tion. A remaining thorny problem is that traditional sort- and hash-based algorithms are optimal
in different circumstances (relative sizes of input, output, and memory; sort orders interesting for
subsequent operations), rendering a choice during compile-time query optimization difficult and
error-prone. Instead, the next two sections offer a single algorithm that, assuming equal care in
algorithm implementation, always matches the best traditional algorithm for duplicate removal,
grouping, and aggregation, at least in terms of data movement (including I/O) and of column ac-
cesses and comparisons.

3 EARLY AGGREGATION DURING RUN GENERATION

Techniques for early duplicate removal, grouping, and aggregation are particularly valuable for
queries with small results, i.e., duplicate removal or aggregation with many input rows and few
output rows. More specifically, if the output fits in the memory allocation available for the grouping
operation but the input is unsorted and large (such that expensive spilling to temporary storage is
required in a traditional sort algorithm), then early aggregation improves the performance of sort-
based aggregation. In fact, early aggregation ensures that sort-based aggregation spills no more
data to temporary storage than hash-based aggregation and sometimes a little bit less.
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Fig. 5. In-memory aggregation.

Fig. 6. Run generation using an ordered in-memory index.

Early aggregation pertains to the input phase of an external merge sort, i.e., run generation.
Traditional run generation employs read-sort-write cycles or replacement selection. The former
uses an internal sort algorithm such as quicksort for initial runs as large as memory; the latter uses
a priority queue and can produce initial runs twice as large as memory for truly random input, as
large as memory in the worst case, and as large as the entire input in the very best case.

In contrast, early aggregation eschews both quicksort and priority queues; instead, it uses an
ordered in-memory index, e.g., an in-memory b-tree. Such an index enables both read-sort-write
cycles and replacement selection. More importantly, an index enables immediate discovery of du-
plicate key values, just like a hash table. If the output size is smaller than the memory size, then
early aggregation avoids all I/O to spill intermediate data to temporary storage. Figure 5 illustrates
this case.

Figure 6 illustrates run generation using an ordered in-memory index. Due to insertions of rows
and key values from the unsorted input, the index grows continuously as new key values create
new index entries. However, key values equal to ones already in the index are absorbed by ag-
gregation. In the ideal case, the entire input can be absorbed within memory. Otherwise, a scan
thread evicts keys and rows from leaf pages, either occasionally in read-sort-write cycles or con-
tinuously in replacement selection, and writes them to runs on temporary storage, where they
form a forest (of many trees) or a partitioned b-tree (of many partitions). Early aggregation does
not prescribe a choice between read-sort-write cycles and replacement selection—this choice is
left to the implementer’s preference, e.g., for simple space management even with variable-sized
rows, or to considerations beyond the discussion here, e.g., techniques for memory-adaptive query
execution [33].

3.1 Example 1

As an archetypal example of a grouping query with a small output, consider Query 1 of the TPC-H
benchmark [1]. In scale factor SF = 1 of the benchmark, the query scans a database table of about
6M rows, selects about 90% of those, and then reduces them to four rows with counts, sums, and
averages. For scale factor SF = 1,000, the query reduces 6B rows to four output rows. Clearly, an
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Fig. 7. Predicted spill volume.

external merge sort of 6M or even 6B rows with subsequent grouping and aggregation, i.e., the
two techniques of Figure 2, cannot compete with an algorithm that uses a hash table to simply
accumulate the final query result within a small memory allocation of 4 rows.

There are many real-world queries in which a grouping result fits within the readily available
memory allocation. For example, if each operator within a query evaluation plan is allotted 100 MB
by default, then any grouping operation with a result smaller than 100 MB should remain an in-
memory operation and algorithm. This is, of course, true for hash aggregation but it can also be
true for sort-based duplicate removal, grouping, and aggregation.

Figure 5 illustrates this case. The in-memory index can grow until it fills memory. Skew in the
key value distribution does not matter as an ordered index adapts to the actual distribution. Only
if the output size exceeds the available memory, spilling to runs on temporary storage as shown
in Figure 6 is required.

3.2 Example 2

As another example, imagine the “group by” clause of Example 1 extended such that the final
output is larger than memory, i.e., O > M or more specifically O = 2M . Even with early duplicate
removal, grouping, and aggregation, this example requires runs on temporary storage. As key
values in the in-memory index are unique, the in-memory index immediately matches and
absorbs a fraction of the input rows. With run generation by replacement selection and memory
always full, about M/O = 1

2 of all input rows are absorbed immediately. Ignoring the effects
of an in-memory run for graceful degradation from in-memory sorting to external merge sort,
the total size of all initial runs is about M + (1 − M/O ) × I (for input size I ) or in the specific
example M + 1

2 I . With only unique key values in the in-memory index, the traditional logic for
duplicate removal, grouping, and aggregation [4] while writing runs on temporary storage is not
required.

Figure 7 shows the predicted spill volume for input size I = 1,000,000 rows and memory size
M = 100,000 rows. For the left-most point, the output size equals the memory size (O = M) and no
spilling is required. If the output is many times larger than the available memory allocation, then
practically all input rows spill. The calculation in this prediction assumes replacement selection
using an in-memory index, even though our implementation uses read-sort-write cycles. (Recall
that replacement selection is usually implemented using a priority queue and for random input
produces runs twice the size of memory, whereas read-sort-write cycles are usually implemented
using quicksort and produce runs the size of memory; recall also that an ordered in-memory index
permits either read-sort-write cycles or replacement selection, according to the implementer’s
preference.)
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3.3 Algorithms and Data Structures

One design combining in-memory run generation with early aggregation uses two data structures.
For example, Boncz et al. [5] mention “hash-based early aggregation in a sort-based spilling ap-
proach.” If the in-memory hash table fails to absorb (i.e., to aggregate) an input row, then the row
is added to both in-memory data structures, i.e., the hash table as well as an array for quicksort or
a priority queue for replacement selection.

An alternative design employs a single data structure for two purposes, searching and sorting.
A suitable data structure is an ordered in-memory index, e.g., an in-memory b-tree [3, 18]. Note
that comparisons are required only during the search. If no match is found, then the search for a
match has already found the insertion point as a side effect.

If the search employs a binary search within each tree node, then the count of comparisons
per input row is equal to that in a tree-of-losers priority queue, which is 10–20% lower than the
count of comparisons in quicksort and very close to the theoretical minimum. (Sorting N items is
equivalent to selecting one of N ! permutations, which requires log2 (N !) comparisons.)

Interpolation search within each tree node is even more efficient if the key value distribution is
nearly uniform, which is likely the case if the sort key is a hash value. Note that sorting on hash
values permits exploiting interesting orderings if other algorithms and storage structures also sort
on hash values. Merge joins and b-trees on hash values are attractive for database columns with
no real-world “<” comparison, e.g., practically all artificial identifiers and thus many primary keys
and foreign keys in real-world databases.

The row format within the in-memory index is the same as in runs on temporary storage. It may
differ from the row formats in both the input and the output. For example, in addition to a grouping
key, input rows may contain a value, intermediate rows a sum and a count, and output rows an
average. Similar considerations apply when computing variance, standard deviation, co-variance,
correlation, regression slope and intercept, and so on.

In traditional run generation, read-sort-write cycles may use quicksort to produce runs the size
of memory. Run generation by replacement selection using a priority queue can produce runs the
size of memory or, with an additional comparison for each new input row as well as a flag within
each row in memory, twice the size of memory. Run generation using an in-memory index can
produce runs twice the size of memory without an additional comparison and without a flag in
each row in memory. Eviction from memory to temporary storage repeatedly scans the in-memory
index as shown in Figure 6. Advancing the scan evicts rows and frees index nodes whenever the
in-memory index needs to split a node and thus allocate a free node.

3.4 Analysis

Three questions suggest themselves for analysis:

(1) How many comparisons are required in early aggregation, i.e., run generation with an in-
memory index? How does that compare to run generation with read-sort-write cycles, e.g.,
quicksort, and with replacement selection, i.e., a tree-of-losers priority queue?

(2) How many column accesses are required to enable these comparisons?
(3) If the output size is a small multiple of the memory size, what fraction of input rows are

absorbed immediately in the in-memory index, and how many rows are spilled to runs on
temporary storage?

In run generation using an efficient tree-of-losers priority queue, the count of comparisons per
input record is log2 (M/R) for memory size M and record size R. This is correct for run size equal to
memory size M ; one additional comparison is required for expected run size 2M . Using quicksort,
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the expected count of comparisons is 10–25% higher; the worst case for quicksort is much higher.
In run generation using an in-memory index with binary search, the count of comparisons per
input record is again log2 (M/R). Using interpolation search or batches of search keys, it can be
substantially lower.

If the final output fits in memory, i.e.,O ≤ M , then the count of comparisons per input record is
log2 (O/R). Again, it can be substantially lower with interpolation search or batches of search keys.
Linear interpolation is effective if the key value distribution in the output is practically uniform.
This is probable if the keys are hash values, i.e., when sorting and grouping on hash values, at least
as the leading sort key.

In a striking similarity, hash aggregation requires a search in the hash table for each input
record, i.e., a hash calculation plus a scan through a hash bucket. Those are comparable to the
interpolation calculation and the local search near the interpolated position. If memory remains
full all the time during run generation, then each input row has a probability of M/O (memory size
over output size) of finding a matching key value in memory and of being absorbed in the index
without insertion. If M ≥ O , then this probability is a certainty and spilling to runs on temporary
storage is not required. If this probability is very small, then practically all input rows spill into
runs on temporary storage.

While the count of comparisons is a traditional metric of algorithm complexity, it is neither
the only metric nor the most meaningful one in practice. For example, in a table with 10 or 100
columns, hash-based duplicate removal must locate, access, decompress, and hash every column
in every row to compute hash values, whereas sort-based duplicate removal might never access
more than the first few columns if those are sufficient to decide comparisons. Section 5.1 analyses
these effects in more detail.

3.5 Summary of Early Aggregation

To summarize, early aggregation uses an in-memory index to match and absorb input rows during
run generation in duplicate removal, grouping, and aggregation. In the ideal case, it entirely avoids
spilling rows to temporary storage. A typical example is TPC-H Query 1 with only four output
rows even for very large databases and input tables.

The in-memory index can be a simple b-tree or it can be optimized in many ways. A binary
search guarantees log2 (M ) comparisons per input row. Replacement selection can produce runs
twice as large as memory. An alternative design combines an in-memory hash table (for immediate
detection of duplicates) with a priority queue (for replacement selection). This alternative suffers
from twice the space overhead and twice the maintenance effort as well as the complexity of
coordinated incremental insertions and deletion of rows, e.g., during graceful degradation from an
in-memory operation to an external algorithm spilling to temporary storage.

Whatever the algorithm for run generation, runs require merging with the traditional merge
logic known from external merge sort or, in many cases, an optimized merge logic to be known as
wide merging. Interestingly, both early aggregation and wide merging replace priority queues, the
traditional data structure of choice for sorting, with ordered in-memory indexes, e.g., in-memory
b-trees.

4 WIDE MERGING IN THE FINAL MERGE STEP

For complete performance parity with hash aggregation, in-sort grouping and duplicate removal
requires a final merge step with a merge fan-in potentially higher than a traditional merge step
with the same memory allocation and page size (unit of I/O).

In contrast to traditional merging in an external merge sort, wide merging is not limited to a spe-
cific fan-in. Traditional merging uses its memory allocation for page buffers for the merge inputs.
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Fig. 8. The effect of wide merging (green).

Fig. 9. Wide merging using an ordered in-memory index.

A page for each input limits the fan-in to the quotient of memory size and page size. Wide merging
instead uses a single buffer page for all its inputs (or maybe two to implement double-buffering).
The central in-memory data structure is an index mapping grouping columns to candidate output
rows, similar to the index used in Section 3 for early aggregation. Processing one page at a time
from the runs containing aggregation input, the algorithm accumulates input rows into the index.
When processing many runs in a single merge step, wide merging can be much more efficient than
traditional aggregation within sort, e.g., saving entire intermediate merge levels.

Figure 8 extends the illustrations of Figure 2 with a third merge strategy for sort-based duplicate
removal, grouping, and aggregation from unsorted input data. Wide merging can consume and
aggregate many more runs than it has memory pages, e.g., 18 runs with merely 6 memory pages.
This is possible if memory can hold and index a key range equal to the key range of one page
in the merge inputs on temporary storage. Wide merging uses only one input buffer shared by
all runs. After reading a page, wide merging absorbs the page contents into its in-memory index
before reading the next page, typically from a different input run.

Figure 9 illustrates the flow of data in wide merging. Using a priority queue, the algorithm
chooses an input run from which to read the next page. Once that page is in the input buffer, the
key values on that page are found in the in-memory index. If a key value exists, then the input
row is absorbed without growing the index. If the key value does not exist, then a new entry is
required in the index. In this way, the ordered in-memory index absorbs all rows and key values
from all runs on the temporary storage device. As the merge logic progresses through the domain
of key values, the active key range in the in-memory index turns over continuously. The left edge
of the in-memory index produces final output and the right edge adds new key values from the
merge inputs.
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A priority queue guides the page consumption sequence during wide merging. It has an entry
for each of its input runs, e.g., 18 entries in the example of Figure 8. It is similar to the priority queue
used in traditional external merge sort for guiding read-ahead within the merge input, also known
as forecasting [28]. From each of the input runs, it tracks the highest key value already read; the
next read operation targets the run with the lowest of these key values. If implemented as a tree-
of-losers priority queue, then one leaf-to-root traversal in the priority queue is required for each
page in the runs on temporary storage, or log2 (18) ≈ 4 comparisons in the example of Figure 8.
The highest key value in the first page of each run initializes this priority queue. Alternatively, if
the sort operation retains minimum and maximum key values of each run, e.g., for the purpose of
concatenating runs with disjoint key ranges [16, 24], the retained minimum key values initialize
this priority queue.

4.1 Example 3

Consider a specific example of wide merging and its benefits: single-threaded duplicate removal
with input size I = 750,000 rows, memory size M = 1,000 rows, partitioning fan-out and merge
fan-in (in traditional merge logic) and partitioning fan-out F = 6, and final output size O = 32,000
rows. Importantly, the memory is much smaller than the final output and the final output is much
smaller than the original input, or M � O � I .

In this example, hash aggregation invokes L = 2 partitioning levels to divide all input rows into
F 2 = 36 partitions of about I/F 2 = 21,000 rows each. During these partitioning steps, the output
buffers are too small to enable much early (opportunistic) duplicate removal. After two partitioning
levels, each partition contributes about O/F 2 rows to the final output. As the output per partition
is smaller than memory (O/F 2 = 900 < 1,000 = M), duplicate removal can occur in memory in
spite of input partitions much larger than memory (I/F 2 = 21,000 > 1,000 = M). The total size of
all temporary partitions in both partitioning levels is 2I = 1,500,000 rows, each written and read
once. More generally, hash aggregation can aggregate the remaining partitions in memory after
L ≥ log

F
(O/M ) partitioning levels, which is here log6 (32) = 2 partitioning levels.

In contrast, in-sort duplicate removal, grouping, and aggregation starts with run generation by
replacement selection. Each run holds about 2M = 2,000 rows; thus, this example requires about
I/(2M ) = 376 runs. The first merge level produces 376/F = 63 runs of about F × 2,000 = 12,000
rows. The second merge level produces 63/F = 11 runs. Aggregation within runs [4] cuts their size
from F ×12,000 = 72,000 rows toO = 32,000 rows. The penultimate merge step combines 6 of these
11 runs into another run of O = 32,000 rows and the last merge step produces the final output.
The total size of all runs spilled to temporary storage during run generation, full merge, optimized
merge, and partial merge is 750,000+ 750,000+ 11× 32,000+ 32,000 = 1,884,000 rows, each written
and read once. This is about 25% more than the temporary partitions in hash aggregation.

Wide merging enables further savings. In this example, a single final merge step can aggregate
the 63 runs after the first merge level. Merging 63 runs with memory for only a few input buffers
requires an in-memory index for immediate duplicate removal.

A traditional merge step merging 6 of these 63 runs has its output cut to O = 32,000 rows. This
is true whether the merge logic uses traditional single-page buffers and a priority queue or an
in-memory index for wide merging. If such an index holds practically all distinct key values over
the course of the merge step, then it can (with the appropriate pacing and I/O schedule) absorb
rows and key values not only from 6 but any number of runs, e.g., all 63 runs in this example.

With wide merging, i.e., the final merge step immediately after run generation and one full
merge level, the total size of all temporary runs is 750,000 + 750,000 = 1,500,000 rows and thus
perfectly competitive with hash aggregation. As in the cost calculation for hash aggregation, the
size of the original input determines the cost of each partitioning or merge level yet the size of the
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Fig. 10. Index expansion and contraction during wide merging.

final output (together with memory size and partitioning fan-out or merge fan-in) determines the
count of required partitioning or merge levels.

Wide merging with duplicate removal, grouping, and aggregation using an in-memory index
proceeds inO/M steps. Each step produces a memory load of candidate output rows, with gradual
progression from one step to the next. The runs being merged must have more than O/M data
pages such that the key range of each data page is no larger than the key range of the in-memory
index. After run generation, in each row’s first temporary run on storage, the size of runs is M
or 2M . In each merge level, the size increases by the fan-in F . The count of merge levels L must
ensure that F L ≥ O/M or L ≥ log

F
(O/M ), in a striking similarity to the expression for partitioning

levels required in hash aggregation.
Figure 10 illustrates this gradual progress through the key domain as required for wide merging

as shown in Figure 9. A priority queue guides the page reads. For key values earlier than the top
value of the priority queue, aggregates such as counts and sums are final. These can be produced
as final output and removed from the in-memory index. As additional pages are read and their key
values are inserted, the in-memory index grows, mostly on the right edge but occasionally also
elsewhere.

4.2 Example 4

Perhaps a similar example might clarify further. Compared to Example 3, this example uses more
realistic values for memory size, merge fan-in, and partitioning fan-out: duplicate removal with
input size (per thread) I = 100,000,000 rows, memory size (per thread)M = 100,000 rows, partition-
ing fan-out and (traditional) merge fan-in F = 100, and final output size (per thread)O = 8,000,000
rows. Despite more realistic values for M and F (compared to Example 3), it remains true that
M < O < I .

Hash aggregation starts with a full partitioning level, which produces 100 partitions of about
1,000,000 rows each. Each partition contributes about 80,000 rows to the final output, which can be
aggregated entirely in memory. The total spill volume (partitions on temporary storage) is equal to
the input size or 100,000,000 rows. The algorithm requires practically the entire available memory
throughout, i.e., during both partitioning and in-memory aggregation. Actually, 90% of memory
would suffice: memory size M = 90,000 rows and partitioning fan-out F = 90 suffice if the hash
value distribution is perfectly uniform.

In-sort duplicate removal, grouping, and aggregation starts with run generation, which produces
about 500 runs of about 200,000 rows each. Traditional merging requires five intermediate merge
steps to reduce the count of runs from 500 to 100 as required for the final merge step.1 The output
size of these steps is limited to the final output size O = 8,000,000 rows. Thus, the total spill
volume is I + 1 × 1,000,000 + 4 × 8,000,000 = 133,000,000 rows, which is 33% worse than the total

1Of these, the first merge step uses fan-in 5 and the other ones use fan-in 100. These merge steps reduce the run count
from 500 to 496, 397, 298, 199, and finally 100 runs.
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spill volume in hash aggregation. Nonetheless, the algorithm requires the entire available memory
throughout, i.e., during run generation, intermediate merge steps, and the final merge step.

In contrast, wide merging can merge and aggregate the initial 500 runs in a single step (even
if memory and page sizes limit traditional merging to fan-in 100). Thus, the spill volume is equal
to the input size or 100,000,000 rows, matching the performance of hash aggregation. In this algo-
rithm, run generation requires the entire available memory (M = 100,000 rows) but the final (wide)
merge step and its in-memory index require only about 40,000 rows (40% of M).

Alternatively, a memory allocation for run generation of M = 64,000 rows reduces the size of
initial runs to about 128,000 rows and produces about 782 runs. Wide merging can combine all
these runs in a single final merge step using a memory allocation of about 63,000 rows. In other
words, wide merging permits sort-based duplicate removal, grouping, and aggregation with equal
I/O volume but with a lower memory allocation than hash aggregation.

4.3 When to Apply Wide Merging

In most practical situations, hash-aggregation can process its input in memory either immediately
or after one level of partitioning. In the same cases and situations, wide merging can process its
initial runs, no matter their count, without the in-memory index exceeding its size limit. In other
words, the situation of Section 4.2 is much more frequent than that of Section 4.1. If, however, the
in-memory index with candidate output rows occupies fraction p of its maximal permissible size,
then this index and its existing rows absorb the fraction q of rows in pages read from runs, and if
q < p, then wide merging cannot absorb all rows within its memory limit.

In those cases, traditional merge steps are required before wide merging, because wide merging
only applies to the final merge step. Those merge steps use their page buffers in the traditional way
(one per merge input) and traditional limits on the fan-in apply. Instead of an in-memory index, the
recommended in-memory data structure for these merge steps is a tree-of-losers priority queue.

Pang et al. [33] investigated and experimented with techniques that let an external merge sort
react gracefully to growing and shrinking memory grants. For shrinking during the merge phase,
their principal technique interrupts the current merge step and introduces a preliminary merge
step that reduces the count of remaining runs and thus permits resuming the interrupted merge
step with a lower fan-in and thus with fewer buffers. This technique also applies to wide merging:
If wide merging is not yet applicable, either from the start of a merge step or merely for a key
range, then a preliminary merge step can reduce the run count.

In contrast to the situations Pang et al. investigated, wide merging in the final merge step does
not require reducing the run count to the buffer count during the final merge step. Instead, it is
sufficient to enable wide merging. A preliminary merge should focus on the smallest runs, which
is also the cheapest way to reduce the run count. In the context of wide merging, the significant
effect of this policy is to increase the smallest size among the remaining runs, to increase the count
of pages in the smallest remaining run, and thus to decrease the key range of those pages. Those
smaller key ranges per page enable wide merging, i.e., an in-memory b-tree smaller than the per-
missible memory might suffice for immediate duplicate removal or aggregation. Preliminary merge
steps are required until this becomes possible. As mentioned above, however, this problem should
be rare, in fact precisely as rare as hash-aggregation with recursive or multi-level partitioning.

4.4 Analysis

A few questions suggest themselves for further analysis.

(1) Is wide merging or an in-memory index useful in external merge sort without duplicate
removal, grouping, and aggregation?
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(2) How many traditional merge levels are required before wide merging applies and becomes
effective?

(3) Should those earlier merge levels use priority queues (like traditional external merge sort)
or should they use an in-memory index (like wide merging)?

(4) What is the relationship between traditional early aggregation [4] and wide merging?
(5) For quickest application of wide merging, what policy should guide early merging in external

merge sort for duplicate removal, grouping, and aggregation?

In response, it seems that run generation and final merge step using an in-memory index offer
performance advantages only in queries that require duplicate removal, grouping, or aggregation.
Ordinary sorting, e.g., for “order by” queries and for merge join operations, does just as well with
traditional algorithms and data structures, e.g., quicksort or tree-of-losers priority queues.

Wide merging is useful only in the final merge step; it might require earlier merge levels like
traditional external merge sort. The number of traditional merge levels is a function of initial run
size (memory size), merge fan-in, and final output size. All merge steps in which the step’s total
input size is smaller than the operation’s final output size should use traditional merge logic. This
analysis assumes that a merge step’s individual inputs are of similar size.

Wide merging applies when merging with a traditional fan-in processes effectively all distinct
key values, i.e., when the total merge input is larger than the operation’s final output. This is pre-
cisely the first merge step (or merge level) in which traditional early aggregation [4] first becomes
effective. The difference is that wide merging immediately produces the operation’s final output by
consuming all remaining runs, whereas traditional early aggregation still might require multiple
merge steps and levels.

If traditional merge steps are required prior to wide merging in sort-based duplicate removal,
grouping, and aggregation, then these merge steps must create runs at least as large as the oper-
ation’s final output divided by the fan-in of traditional merge steps (O/F ). It appears that there
is little benefit in creating larger intermediate runs. Runs of size O/F enable traditional early ag-
gregation [4] and, better yet, wide merging. In other words, wide merging replaces (rather than
augments) traditional early aggregation. Creating runs of size O/F requires log

F
(O/M ) − 1 merge

levels after run generation creates runs of memory size M. With the final merge step (merge level)
using wide merging, sort-based duplicate removal, grouping, and aggregation requires log

F
(O/M )

merge levels.

4.5 Combining Early Aggregation and Wide Merging

If the final output is only somewhat larger than the available memory, e.g., O = 2M or O = 3M ,
then early aggregation during run generation and its in-memory index can absorb some of the
input rows without growing the index or spilling rows from memory to runs on temporary storage.
For example, if O = 2M , then the rows in memory can absorb half of all input rows; if O = 3M ,
then the in-memory index matches and absorbs a third of all input rows; and so on. Nonetheless, a
large input can force many runs on temporary storage. In those cases, wide merging can eliminate
one or even two merge levels. In other words, a single sort can benefit from both early aggregation
and wide merging. With those two techniques and their combined effects, sort-based duplicate
removal, grouping, and aggregation always performs very similarly to hash-based alternatives, as
discussed further in Section 6.

4.6 Example 5

For another example that differs from Example 4 only in the final output size, consider duplicate
removal with input size (per thread) I = 100,000,000 rows, memory size (per thread) M = 100,000
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rows, (traditional) merge fan-in and partitioning fan-out F = 100, and final output size (per thread)
O = 150,000 rows. In other words, I � O = 1.5M .

In hash aggregation with hash-partitioning, about half of all input rows find a match in memory:
hybrid hashing [36] is quite effective in this case. However, the total spill volume is about 1

2 I =
50,000,000 rows. Sort-based aggregation with early aggregation matches the same fraction of input
rows during creation of the initial runs. With replacement selection and a run size of about 2M =
200,000 rows, about 250 initial runs are required. With run generation in read-sort-write cycles
and a run size of M = 100,000 rows, about 500 initial runs are required. This is too much for
traditional merging with fan-in F = 100, but nonetheless wide merging can finish the aggregation
in a single merge step. Thus, this example benefits from both early aggregation and wide merging;
with these techniques, sort-based aggregation can match the spill volume and performance of hash
aggregation.

4.7 Summary of Wide Merging

To summarize, wide merging uses its in-memory index and a single input buffer for all runs on
temporary storage. It enables the final merge step in duplicate removal, grouping, and aggregation
to consume and to combine many more runs than a traditional merge step using an input buffer
for each run. Wide merging applies when traditional merging would produce runs larger than
the final output of the grouping operation. Matching the performance and I/O volume of hash
aggregation in all cases requires both early aggregation and wide merging.

5 ANALYTICAL COMPARISONS OF ALGORITHMS FOR DUPLICATE REMOVAL

Early aggregation and wide merging substantially change the competition between sort- and hash-
based duplicate removal, grouping, and aggregation. These changes are pronounced both in CPU
effort, often dominated by accesses to columns in rows or fields in records, and in I/O effort, which
can be measured in the total size of all overflow from memory to temporary storage. The present
section analyzes these two metrics, column accesses and spilling, with some surprising results.
For example, sort-based duplicate removal often accesses far fewer column values than a hash-
based algorithm. The subsequent section reports experimental performance measurements and
comparisons.

5.1 Column Accesses

Common wisdom holds that operations on hash values are faster than equivalent operations on
complex sort keys. For example, comparing two hash values is much faster than comparing two
rows with multi-column keys, in particular if some of these columns are strings or even interna-
tional strings with specific locales and their sort order.

Offset-value coding [7, 16, 26] applied to columns can put this common wisdom into question,
however. On the one hand, offset-value codes are integer values compiled into the system’s source
code just like hash values, meaning that a comparison of two offset-value codes is precisely as fast
as a comparison of two hash values. On the other hand, sort-based query execution algorithms
sometimes require far fewer column accesses than equivalent hash-based algorithms. For example,
in duplicate removal for a table with K = 20 or even K = 200 columns, computing the hash values
for a table of many rows, e.g., N = 106 rows, must access all N × K column values. In contrast,
sort-based duplicate removal and its many comparisons access only the leading columns required
to distinguish each row from its neighbors in the final output. In an extreme case, if the first
column happens to be unique, sort-based duplicate removal never accesses the remaining K − 1
columns. Thus, in this extreme case, sort-based duplicate removal accesses K times fewer column
values than any hash-based equivalent. In another extreme case, if all rows differ from their
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Table 4. Counts of Column Accesses in Extreme Cases

Algorithmic approach
Output size [rows]

1 N

Hash-based 3N × K N × K
Sort-based 2N × K 2N to 2N × K
Saving by sorting [factor] 1.5 0.5 to K/2

With further optimization:
Sort-based w/cache N × K N to N × K
Saving by sorting [factor] 3 1 to K

neighbors only in the last (Kth) key column, the count of column accesses in sort-based duplicate
removal is twice that of hash-based duplicate removal. In other words, with offset-value coding,
the count of column accesses in a sort-based algorithm is at worst twice that of a hash-based
algorithm but possibly K times lower.

Another extreme case has no distinct rows, e.g., the output of duplicate removal is a single row.
In that case, a hash-based algorithm computes a hash value for each row and then compares all
columns with the one and only row in the hash table. This requires 3K column accesses for each
input row after the first one. An equivalent sort-based algorithm performs N −1 row comparisons,
each with 2K column accesses, or less than a hash-based algorithm by a factor of 1.5.

Table 4 summarizes these extreme cases. Common cases fall in between these extreme examples.
Note that N − 1 was simplified to (approximated as) N in Table 4. Note also that the analysis of
column accesses in Table 4 does not account for hash collisions, i.e., different rows mapping to
the same hash value. More importantly, the sort order can be chosen freely; otherwise, hash-based
algorithms would not apply. If columns with many distinct values are assigned to early positions
in the sort key, then hash-based duplicate removal requires more column value comparisons and
column value accesses than sort-based duplicate removal. This difference is close to a factor ofK/2,
which is a substantial difference for K = 20 or even K = 200 columns. Previous analyses of sort-
and hash-based query execution algorithms have not considered the column count as a significant
variable although Table 4 shows that it is.

The analysis of sort-based duplicate removal in Table 4 permits another improvement by a factor
two, summarized at the bottom of Table 4. If each row has a cache of all offset-value codes ever
computed for that row, i.e., if no offset-value codes are ever computed redundantly, then only
N × K offset-value codes can ever be computed and the maximum number of column accesses in
sort-based duplicate removal is N × K , i.e., equal to the minimum number of column accesses in
hash-based duplicate removal due to the calculation of hash values.

If, due to offset-value coding, most comparisons in a sort-based algorithm are as fast as compar-
ing hash values, then the efforts to locate, access, extract, decompress, and decode K = 20 or even
K = 200 column values in each row dwarf the effort to perform loд2 (1,000,000) = 20 comparisons
for each row. In other words, the loд2N component in the formula of comparison-based sorting
matters little, because the count of column accesses dominates the overall performance of dupli-
cate removal. Of course, as in any comparison-based sort, there are O (NloдN ) row comparisons,
but many or most of the row comparisons are decided by offset-value codes alone, with compar-
isons as simple and fast as comparisons of hash values. In fact, with offset-value coding applied to
columns, the number of column value comparisons is bounded to N × K , i.e., it is linear in both
the row count and the column count. (The alternative applies offset-value coding to bytes within
a normalized key [26], i.e., the entire key encoded in a single order-preserving binary string. Com-
puting such a normalized key is just as expensive as computing a hash value from all key columns,
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although bytes in a normalized key could conceivably be computed on demand even if that is not
possible for hash values.)

5.2 Spilling in a Memory Hierarchy

In addition to comparisons of rows, keys, and column values, the other significant cost in duplicate
removal, grouping, and aggregation is moving intermediate rows up and down within the mem-
ory hierarchy. The traditional case in point is spilling from memory to temporary storage—terms
commonly used in this context are external devices and external algorithms, e.g., external sort-
ing. In many modern query execution engines and their deployments, very similar considerations
and optimizations apply to spilling to memory from CPU caches, usually the second- or last-level
cache.

As in all external algorithms, the pertinent questions include when to spill, what to spill, how
much to spill at a time, and how much spillage is required altogether. Of course, a particularly
interesting question is about the conditions for no spillage at all, i.e., when an external algorithm
is not required because an internal algorithm suffices. The principal parameters in the relevant
formulas are the input size I , the output size O , the memory size M , and the partitioning fan-out
or merge fan-in F (when using the entire memory) or f (when using partial memory, e.g., in hybrid
algorithms such as hybrid hash join [36]).

The analysis below pursues these questions in detail. It omits spillage (partitioning and merg-
ing) in deep (multi-level) memory hierarchies, e.g., CPU cache–memory–external storage devices,
memory–flash storage–disk storage, or CPU cache–memory–local storage–disaggregated (dis-
tributed, remote) storage. The analysis below also omits parallel algorithms including opportunis-
tic pre-aggregation before a shuffle step (opportunistic = best effort, in-memory only; shuffle = ex-
change, partitioning). These omitted topics require merely straightforward extensions or repeated
application of the analysis below.

The analysis below proceeds in three steps. The first step works out conditions for internal
algorithms with no spillage at all. The second step assumes incredibly large inputs and outputs
that require external algorithms with recursive partitioning or multi-level merging. This step is
closest to a traditional “big O” complexity analysis but adds approximate constants. The third step
focuses on conditions and cost functions for hybrid algorithms that divide memory between an
internal algorithm for some of the input and an external algorithm for the remainder of the input.
Like this last sentence, the analysis focuses on spilling from memory to external devices.

5.2.1 No Spilling. When a hash table is used in duplicate removal, grouping, and aggregation,
only the output size governs the choice between internal and external algorithm: if the operation’s
final output fits in memory, then there is no need for spilling and an external algorithm. More
formally, internal hash aggregation requires that O ≤ M , independent of input size. For example,
TPC-H Query 1 has four output rows for any scale factor of the database; thus, the grouping
operation requires a hash table with four entries and the query is more a test of scan bandwidth
than a test of the performance of duplicate removal, grouping, and aggregation.

Traditional sort-based grouping first sorts all input rows and then accumulates counts, sums,
and so on, for output rows. Thus, internal sorting suffices if the entire input fits in memory, or if
I ≤ M . Even with traditional early aggregation [4], sort-based duplicate removal without spilling
requires that the input fits in memory. For TPC-H Query 1, traditional early aggregation might
limit the size of each run on external storage to four rows but it still writes those runs and merges
them over multiple merge steps and merge levels.

In contrast, the early aggregation technique proposed in Section 3 accumulates counts, sums,
and so on, immediately as input rows arrive, much in the style of hash aggregation but using an
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Table 5. Conditions for In-memory Operations

Method Condition for in-memory operation

Hash aggregation O ≤ M
Sort with separate aggregation I ≤ M
Sort with traditional early aggregation [4] I ≤ M
New in-sort aggregation O ≤ M

alternative format for the in-memory index. Thus, the proposed algorithms avoid spillage in the
memory hierarchy under the same conditions as hash aggregation, namely, if the operation’s final
output fits in memory or O ≤ M , independent of input size.

Table 5 summarizes those differences. The reader should consider two cases: a size reduction
factor I/O of 0.999 (hardly any duplicate rows in the input) and of 1,000 (lots of duplicate rows, e.g.,
after a projection on a few columns with small domains). With few duplicate rows, all algorithms
require spilling at about the same operating point. With many duplicate rows in the input, tradi-
tional sort-based duplicate removal is not competitive with hash-based duplicate removal. With
the new techniques for early duplicate removal (Section 3), sort-based duplicate removal spills in
precisely the same cases as hash-based duplicate removal.

5.2.2 Spilling for Incredibly Large Inputs and Outputs. The cost calculations here assume per-
fectly uniform hash values. Cost is measured as the total size of all partitions (in partitioning
algorithms) or of all runs (in merging algorithms). Each of these runs or partitions is written once
and read once, i.e., the total I/O volume is twice the costs calculated below. Note that partition-
ing algorithms employ random writes and sequential reads whereas merging algorithms employ
random reads and sequential writes—the cost analysis below ignores any effects of this difference.

For extremely large inputs, hash aggregation partitions its input recursively. Each partitioning
level moves the entire input; each partitioning step moves data from one input to multiple outputs.
The number of outputs from a single input is the partitioning fan-out F ; with memory used for
buffers such that multiple rows can be moved in efficient units of reading and writing, the fan-out
is limited by the available memory size divided by the sizes of pages or units of data movement
within the memory hierarchy, i.e., F = M/P for page size P .

With uniform hash values, each partitioning level reduces partition sizes by a factor F . Parti-
tioning continues until each partition can be processed in memory. It is not required that the par-
tition fit in memory, only that the output after duplicate removal, grouping, and aggregation be
smaller than memory. Thus, the number of partitioning levels for a very large input is loдF (O/M ),
independent of input size. The size of all partitions over all recursive partitioning levels is thus
loдF (O/M ) × I . The output size governs the count of partitioning levels; the input size governs the
cost of each partitioning level.

As mentioned earlier, some implementations of hash aggregation use partitioning only in mem-
ory, e.g., a hash table accumulates counts, sums, and so on, immediately as input arrives, but exter-
nal merge sort is used for spilling. The sort key may or may not include the hash value; if it does,
the hash value typically is an artificial leading key column. Nonetheless, the total cost of spilling
is determined by sort-based algorithms and merging, as analyzed next.

In traditional external merge sort with subsequent duplicate removal, the input size determines
the total cost of spilling as the product of the count of merge levels and the cost per merge level. The
merge fan-in F is the same as the partitioning fan-out in recursive partitioning, i.e., the available
memory size divided by the size of pages or units of data movement within the memory hierarchy,
i.e., F = M/P .
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Table 6. Total Spill Volumes

Method Total spill volume [bytes]

Hash aggregation with partitioning loдF (O/M ) × I
Sort with separate aggregation loдF (I/M ) × I or loдF (1 + I/(2M )) × I
Sort with traditional early aggregation loдF (O/M ) × I + (I −O )/(F − 1)
New in-sort aggregation loдF (O/M ) × I or loдF (1 +O/(2M )) × I

Once the merge fan-in is set, the total size of all runs on external storage is loдF (I/M )× I . When
duplicate removal is a separate step applied only after sorting, the output size of duplicate removal
has no effect on the cost of sorting.

External merge sort with traditional early duplicate removal [4] requires separating initial merge
levels and remaining optimized merge steps (note the distinction of merge levels versus merge
steps). The transition occurs when merged runs could be larger than the final output O but are
limited to O by traditional early duplicate removal. The size of individual runs is M after run
generation and M × F L after L merge levels. This size exceeds the final output size O after L ≥
loдF (O/M ) initial merge levels. The total size of all runs created in these initial merge steps is
loдF (O/M )× I , because each initial merge level moves the entire input. Note the similarity of these
initial merge costs to the total costs of recursive hash partitioning.

In duplicate removal, the average count of duplicate rows equals the quotient of input and output
sizes, i.e., I/O . When I/O runs remain, traditional early duplicate removal ensures that all further
merge steps have output size O . Each merge step reduces the count of runs by F − 1; the goal is to
reduce the number of remaining runs from I/O to 1, which requires (I/O − 1)/(F − 1) merge steps
with fan-in F and output size O . The total size of all runs created in these remaining merge steps
is (I/O − 1)/(F − 1) ×O = (I −O )/(F − 1). The combined cost of full merge levels plus optimized
merge steps is loдF (O/M ) × I + (I −O )/(F − 1).

Wide merging as proposed in Section 4 performs the same initial merge levels but condenses
all remaining merging into a single step with a fan-in of I/O and thus exceeding F . Wide merging
applies when an additional input run does not increase the output size or, equivalently, when an
F -way merge produces all key values. For example, if the memory size is M = 1 (i.e., memory size
is the unit to measure other sizes), the merge fan-in is F = 10, and each input run size is 1

8O , then

the merge output size is equal to the operation’s final output size O , not 10 × 1
8 × O = 1 1

4 × O .
Importantly, the output size is O no matter how many additional runs the merge step consumes,
i.e., the actual merge fan-in may far exceed the traditional maximal fan-in F . Thus, with wide
merging, the total size of all runs created is loдF (O/M ) × I .

The analysis above of sort-based duplicate removal, grouping, and aggregation assumes run
generation with initial runs of size equal to memory M , which is typical for run generation using
read-sort-write cycles and quicksort. Replacement selection produces longer runs, typically twice
as large as memory [12], with about one additional run due to start-up and shut-down of the
replacement selection logic. Thus, the expected run count is I/(2M ) + 1 and the merge cost in
external merge sort is loдF (1 + I/(2M )) × I . With wide merging, the expected merge cost is
loдF (1+O/(2M )) × I . The savings are about loдF (2) = 1/loд2 (F ) merge levels, which is a meaning-
ful difference only for a fairly small value of the merge fan-in, e.g., F = 8. It is negligible for typical
contemporary choices for the maximal merge fan-in, e.g., 100 or even 1,000. Run generation by
replacement selection might be interesting, however, for hybrid algorithms as analyzed below.

Table 6 summarizes the spilling costs for duplicate removal with input and output incredibly
large. The simplest formula applies to sorting with separate, subsequent duplicate removal: it is
the traditional NloдN formula well known for divide-and-conquer algorithms such as multi-level
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Table 7. Condition for Hybrid Operation

Method Actual fan-out or fan-in Condition for hybrid operation

Hash aggregation with partitioning f = �(O −M )/(M − P )	 M < O ≤ F ×M = M2/P
Sort with separate aggregation f = �(I −M )/(M − P )	 M < I ≤ F ×M = M2/P
New in-sort aggregation f = �(O −M )/(M − P )	 M < O ≤ F ×M = M2/P

external merge sort. The cost formulas for sorting with separate duplicate removal assume run
generation with either read-sort-write cycles (e.g., using quicksort) or replacement selection (e.g.,
using a priority queue); the latter produces almost half as many initial runs on temporary storage.
The cost formula for hash aggregation with partitioning is the same as external merge sort ex-
cept that the output size, not the input size, determines the count of partitioning levels. Duplicate
removal by sorting with traditional early aggregation spills as much as hash aggregation with par-
titioning before the optimized merge step, which adds no more than a fraction of the original input
size. Wide merging (Section 4) eliminates even that—thus, the cost for spilling and moving data
up and down within the memory hierarchy is the same as in hash aggregation with partitioning.
The remaining difference in database query processing is, of course, interesting orderings with its
advantages in complex query execution plans. With run generation by replacement selection, du-
plicate removal by sorting with wide merging gains a slight edge over all other methods, including
hash aggregation.

5.2.3 Hybrid Algorithms. Hybrid algorithms, e.g., hybrid hash join and hybrid hash aggrega-
tion [36], divide memory between an internal algorithm for some of the input and an external
algorithm for the remainder of the input. For example, if half the build input of a hybrid hash join
fits in memory, then half of both inputs does not require any spilling. Similarly, if half the output
of a hybrid hash aggregation fits in memory, then half of the input does not require any spilling.
In sort-based duplicate removal, half of memory might use an in-memory index for immediate
duplicate removal, while the other half of memory is used for run generation using quicksort, a
priority queue, or an in-memory index.

In all cases, the hybrid approach is promising only if the spilled data can be processed efficiently,
i.e., without recursive partitioning or multi-level merging. Thus, hybrid algorithms are limited to
input size less than “the square of memory” [36]. More precisely, hybrid hash join applies if the
build input size is less than M2/P = F × M for page size P and partitioning fan-out F . Hybrid
hash aggregation applies if the operation’s final output size is less than “M2” or, more precisely,
O ≤ F ×M . Table 7 summarizes the “hybrid” considerations for hash aggregation with partitioning,
sort with separate aggregation, and sort with early aggregation and wide merging.

More specifically, if hash-based duplicate removal employs a fan-out of f , with 1 ≤ f ≤ F , then
the fraction f /F of memory is used as output buffer for f partitions on external storage. The goal
is to create partitions that each produce output volume M in a single step such that this output can
be accumulated using an in-memory hash table. Each output partition of size M corresponds to an
input volume of M × I/O . The total spill volume is f ×M × I/O ; the total final output volume from
all spilled partitions is f ×M . The remaining memory holds a hash table. This hash table produces
(1 − f /F ) ×M of the output O after absorbing input volume (1 − f /F ) ×M × I/O . Thus, f should
be the smallest integer such thatO ≤ f ×M + (1− f /F )×M orO/M −1 ≤ f − f /F = f (1−1/F ) or
f ≥ (O/M −1)/(1−1/F ) = (O −M )/(M −P ). Alternatively, f must be chosen such that I ≤ f ×M
× I/O + (1− f /F ) ×M × I/O or I/(M × I/O ) ≤ f + (1− f /F ) or O/M − 1 ≤ f − f /F = f (1− 1/F )
or f ≥ (O/M − 1)/(1 − 1/F ) = (O − M )/(M − P ). Pragmatically, the actual partitioning fan-out
should be set to f = �(O −M )/(M − P )	. This value falls into the permissible range f ≤ F if the
output size satisfies O ≤ F ×M .
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For a specific example, assume I = 275M , F = 10, O = 2 3
4M , and thus I/O = 100 and f = 2.

In other words, the fraction f /F = 2/10 of memory is used as partitioning output buffer and the
remaining 8/10 of memory for an in-memory hash table. With final output size 2 3

4 = 11/4 of the
memory size and the hash table 4/5 of memory size, the hash table can accumulate (4/5)/(11/4) ≈
3/11 of the output whereas the external partitions temporarily store∼8/11 of the input or∼200×M .

The extreme examples of hybrid hash aggregation, i.e., f = 0 or f = F , may be considered not
hybrid at all. IfO ≤ M , then in-memory duplicate removal suffices, which could be seen as “hybrid”
hash aggregation with the actual fan-out f = �(O −M )/(M − P )	 = 0. If (F − 1)×M < O ≤ F ×M ,
f = �(O −M )/(M − P )	 = F is not a true hybrid but full partitioning with maximal fan-out F and
no immediate in-memory duplicate removal.

For duplicate removal, grouping, and aggregation based on or built into external merge sort,
hybrid run generation divides memory into an in-memory index to detect and remove duplicate
rows immediately and a workspace to prepare sorted runs on temporary storage for a single, final
merge step. Actually, a single in-memory index can serve both purposes. This choice requires
assigning some key values (or ranges) to remain in memory and the remainder to spill to runs on
temporary storage.

Hybrid run generation may use the same division of memory as found optimal in hash aggrega-
tion: the memory fraction f /F is used for run generation, whereas the remaining memory fraction
1− f /F supports an index for immediate in-memory duplicate removal. This in-memory index pro-
duces (1− f /F )×M of the output, i.e., it absorbs input volume (1− f /F )×M × I/O . These fractions
equal those determined above for hybrid hash aggregation. With run generation using fraction
f /F of memory, each run is of size f /F ×M .

Wide merging can merge more than F runs in a single merge step. If F + 1 runs produce no
more output (after duplicate removal) than F runs, then wide merging applies and can merge
any number of runs. This consideration applies to any key range; thus, the fact that hybrid run
generation has absorbed some key range during the input phase is irrelevant. In other words, wide
merging as a single, final merge step applies if F runs of size M produce the entire output of size
O , i.e., O ≤ F ×M . This is precisely the same condition required for hybrid hash aggregation.

Using the prior example with F = 10,O = 2 3
4 ×M , I = 100×O , and f = 2, hybrid run generation

uses 8/10 of memory for an in-memory index and 2/10 of memory for run generation. The in-
memory index accumulates 3/11 of the output whereas the external runs temporarily store 8/11
of the input. With I = 275 × M , total spilling is 200 × M , and with an expected average run size
f /F ×M = 0.2M , there will be 1,000 runs. Traditional merging with fan-in F = 10 requires three
merge levels and 111 merge steps. With O ≤ F × M , however, a single wide merge step suffices.
Thus, the total data volume moved up and down within the memory hierarchy is the same for
hybrid hash aggregation and for hybrid run generation followed by wide merging.

With run generation by replacement selection (rather than read-sort-write cycles), the expected
run size is twice the memory dedicated to run generation. The combination of replacement selec-
tion and wide merging permits hybrid run generation and a single wide merge step in additional
cases, namely, wheneverO ≤ F × 2M . Thus, there are cases in which this combination can process
its entire input by spilling each input row once whereas hash aggregation needs to spill some of
its input twice.

5.3 Summary of Analytical Comparisons

To summarize, this analysis and comparison of sort- and hash-based algorithms for duplicate re-
moval, grouping, and aggregation considers both CPU effort and I/O effort. With respect to CPU ef-
fort, sort-based algorithms require more row comparisons than equivalent hash-based algorithms
but often fewer column comparisons. Moreover, with offset-value coding, they often require far
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fewer column accesses. In fact, if all offset-value codes are cached once computed, the worst-case
count of column accesses in sort-based duplicate removal equals the best-case count of column ac-
cesses in hash-based duplicate removal, and the best-case count of column accesses in sort-based
duplicate removal is substantially better. With respect to I/O effort, sort-based algorithms, with the
new techniques for early aggregation and wide merging, require no more spilling to temporary
external storage than equivalent hash-based algorithms. Thus, this algorithm analysis justifies our
belief that a single algorithm is sufficient for all cases of grouping rows from unsorted inputs.

6 EXPERIMENTAL COMPARISONS

The present section reports on the performance of the new sort-based grouping algorithm in
F1 Query to support or refute our expectations and hypotheses about the new in-sort group-
ing techniques. With no innovation in parallel query execution, all experiments here report lo-
cal or single-threaded efficiency, scalability, and robustness or reliability of performance. There
are four groups of performance results. The first group of experiments replicates earlier examples.
The second group focuses on early aggregation using an in-memory index for run generation.
The third group focuses on wide merging using an in-memory index during the final merge step.
The fourth group of performance results replicate and augment an earlier comparison of sort- and
hash-based duplicate removal, grouping, and aggregation. All algorithms are implemented and
tuned for production. All experiments below ran on a workstation with a fast local storage device;
details are omitted on purpose.

6.1 Product Implementation

This section briefly summarizes the implementation of the new in-sort aggregation techniques for
Google’s F1 Query [34, 37]. F1 Query is a federated query processing platform that executes SQL
queries against data stored in different storage systems at Google, e.g., BigTable [6], Spanner [8],
Mesa [23], and others. Before this work, F1 Query had two aggregation operators. First, for sorted
input, in-stream aggregation requires little CPU effort and hardly any memory. The F1 Query
optimizer chooses in-stream aggregation whenever possible based on interesting orders in the
input [35]. Second, for unsorted input, hash-based aggregation relies on an in-memory hash
table. This hash-based operator relies on external merge sort when the output is larger than the
available memory allocation.

The new in-sort aggregation algorithm reuses the row-plus-row accumulation component of
hash-based and in-stream aggregation. A new order-based indexing component is used for detect-
ing duplicates and groups. For each input batch, the operator first sorts the batch, usually within
the CPU cache as these batches are small, to detect duplicates within a batch. Only distinct key
values within a batch are looked up in the ordered index with the guided search technique. When
running out of memory, the ordered index guides the sequence of rows spilled to intermediate
storage, creating sorted runs. These runs are eventually merged and aggregated using wide merg-
ing. Contrary to our initial design, the current implementation uses read-sort-write cycles, not
replacement selection; therefore, the size of initial runs equals the memory size, even if each run
might have absorbed substantially more input with replacement selection in duplicate removal
and grouping.

As the new in-sort aggregation produces sorted output as a byproduct of using the ordered
index, an optimizer can take advantage of this property. For example, in queries with a “group
by” clause followed by an “order by” clause with the sort keys matching the grouping keys, the
F1 Query optimizer avoids redundant sorting. Before our new operator, F1 Query planned such
aggregation queries using either a hash aggregation followed by a sort or a sort followed by an
in-stream aggregation. Plan choices can be sub-optimal due to missing or inaccurate cardinality
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Fig. 11. In-memory grouping using a b-tree index. Fig. 12. Spill volume to runs on temp. storage.

Fig. 13. Multiple merge levels. Fig. 14. Effect of wide merging.

information. The new in-sort aggregation operator overcomes this problem by always enabling
the optimal plan.

6.2 Validation of Examples

Example 1 (Section 3.1) focuses on TPC-H Q1, i.e., a grouping query with a final output smaller
than the available memory allocation (O ≤ M). Figure 11 shows the performance of in-memory
grouping and aggregation using an in-memory b-tree index. From left to right, the output size
varies from 4 to 30,000 rows. The input size is constant 6,000,000 rows. As is readily apparent, the
CPU effort is low and fairly consistent, because any effects due to the logarithmic depth of the
ordered index vanishes compared to other CPU efforts in the query evaluation plan.

Example 2 (Section 3.2) also varies TPC-H Q1 with output sizes beyond memory size (O > M but
O < F ×M). Figure 12 compares the total size of initial runs to a model that assumes run generation
with replacement selection and computes the spill volume as M + (1 − M/O ) × I . In contrast,
our implementation relies on run generation by read-sort-write cycles. Given this difference, the
distance between these curves seems acceptable.

Example 3 (Section 4.1) assumes tiny memory, merge fan-in, and partitioning fan-out. Therefore,
all algorithms incur multiple partitioning or merge levels. In contrast to traditional sorting and
merging, wide merging limits the merge depth log

F
(O/M ) versus log

F
(I/M ). Figure 13 shows the

performance advantage of wide merging over aggregation while writing runs [4] as baseline: entire
merge levels can be avoided, whereas earlier method merely reduce the size of intermediate runs
on temporary storage.

Example 4 (Section 4.2) assumes realistic memory size, merge fan-in, and partitioning fan-out.
Therefore, a single level of merging suffices if wide merging is available. Figure 14 shows that even
for modest input sizes, traditional early aggregation (the baseline) requires multiple merge levels.
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Fig. 15. Performance of in-memory indexes. Fig. 16. Performance of run generation. “PQ1”
and “PQ2” use tree-of-losers priority queues opti-
mized with offset-value coding and normalized keys,
respectively.

Note that an algorithm can spill more rows than its input size only if it spills some rows multiple
times. In contrast, each input row spills only once when wide merging combines all runs in the
first (and only) merge step immediately after run generation.

Example 5 (Section 4.6) shows that in some cases, early aggregation and wide merging are both
required for best performance of sort-based duplicate removal, grouping, and aggregation. The
experiment in Figure 18 (Section 6.4) confirms the example calculations.

In summary, the examples and the related experiments demonstrate that early aggregation and
wide merging, by using in-memory ordered indexes instead of the traditional priority queues, de-
rive substantial benefits for duplicate removal, grouping, and aggregation.

6.3 Early Aggregation During Run Generation

The next set of experiments and diagrams focuses on the hypotheses that, for any input size, output
size, row size, page size, and memory size:

(1) an ordered in-memory index can be as efficient as a hash table;
(2) an in-memory index permits run generation as efficient as quicksort and priority queues;

and
(3) requirements for temporary storage are the same for an ordered index and run generation

as for hash table and hash partitioning.

The experiments cannot claim to cover all sizes and key values distributions, but they may nonethe-
less helpful in understanding the performance and scalability of in-sort aggregation with early
aggregation during run generation.

Figure 15 shows the performance of in-memory aggregation using either a hash table (hash
aggregation) or a b-tree (in-sort aggregation). None of these experiments spill to temporary stor-
age. As is readily apparent, the performance of hash table and in-memory b-tree, both properly
optimized, is quite similar. Their remaining performance differences are so minor that other
query execution costs such as aggregation arithmetic dominate them. In that sense, in-memory
b-trees in sort-based grouping are as fast as hash tables in hash-based grouping, supporting
Hypothesis 1.

Figure 16 shows the performance of three implementations of run generation. Two of these use
tree-of-losers priority queues; one of them is optimized with normalized keys for fast comparisons
and poor man’s normalized keys for cache efficiency [16]; the other priority queue is optimized
with offset-value coding [7]. The third implementation of run generation uses an in-memory b-tree.
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Fig. 17. Count of runs spilled from memory to tem-
porary storage.

Fig. 18. Spill volume.

Again, other query execution costs such as aggregation arithmetic dominate these differences and
the experiment supports Hypothesis 2.

Figure 17 shows the number of initial runs spilled to temporary storage. Each run is the size of
memory, either a hash table sorted and written as run or a b-tree written in total when memory
is full. Recall that the hash aggregation in F1 Query uses what Boncz et al. [5] call “hash-based
early aggregation in a sort-based spilling approach,” which sorts rows in an overflowing hash table,
writes them as initial runs on temporary storage, merges those runs, and applies duplicate removal,
grouping, and aggregation only during the final merge step. Recall also that our implementation of
in-sort aggregation uses its in-memory index for run generation in read-sort-write cycles, not re-
placement selection. Thus, the counts of initial runs are practically equal, supporting Hypothesis 3.

6.4 Wide Merging in the Final Merge Step

The next experiments test the hypotheses that, for any input size, output size, row size, page size,
and memory size:

(4) wide merging combines many more runs than traditional merging and thus can avoid entire
merge levels from traditional sort-based algorithms for duplicate removal, grouping, and
aggregation;

(5) sorting after aggregation can be as expensive as the aggregation such that in cases of equal
“group by” and “order by” lists, sort-based aggregation can cost half of hash aggregation plus
sorting;

(6) sort-based aggregation can process a “count (A), count (distinct A)” query with grouping
in a single sort using both early aggregation and wide merging, whereas hash-based query
processing requires two hash aggregation operations—the performance difference can equal
a factor two.

Figure 18 reports on the total size of all runs for the experiment of Figure 17. Note that this ex-
periment compares optimized in-sort aggregation with the original hash aggregation of F1 Query.
Both algorithms spill from memory to sorted runs on temporary storage. The two algorithms
achieve the same amount of in-memory aggregation during this phase, and thus merging in the
two algorithms starts with the same counts and sizes of partially aggregated runs. The original
algorithm of F1 Query relies on traditional merging, which requires multiple merge steps with
intermediate merge results. Thus, the total spill volume exceeds the input size for all input sizes in
Figure 18. In contrast, the new algorithm employs wide merging for duplicate removal, grouping,
and aggregation. A single merge step suffices and no intermediate merge steps create any addi-
tional spill volume. For all input sizes in Figure 18, the total spill volume is much less than the
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Fig. 19. Cost of sorting after aggregation. Fig. 20. Cost of “count” and “count distinct” queries.

Fig. 21. Sort-based plan for “intersect distinct.” Fig. 22. Cost of “intersect distinct.”

input. One of the data points precisely matches Example 5 (Section 4.6) and all data points support
Hypothesis 4.

Figure 19 shows the cost of a query with matching “group by” and “order by” clauses over a table
of I = 6,000,000 rows. If the output of an initial duplicate removal is small, in particular no larger
than memory M = 1,000,000 rows, then the cost of a subsequent sort operation barely matters. If,
however, the intermediate result is large, then satisfying both clauses with a single operation is
very beneficial, supporting Hypothesis 5.

Figure 20 shows the cost of duplicate removal with subsequent grouping. With hash-based al-
gorithms, two hash tables (and possibly overflow to temporary storage) are required. With a sort-
based algorithm, a single sort can perform the duplicate removal using an interesting ordering for
the subsequent grouping. Thus, only one memory-intensive operation is required with savings up
to a factor of two, supporting Hypothesis 6.

6.5 Effects of Interesting Orderings

The next experiment tests the hypotheses that:

(7) interesting orderings are important not only for b-tree scans and merge joins but also for
query evaluation plans with duplicate removal, grouping, and aggregation; and

(8) SQL set operations such as “intersect” can be much faster using sort-based query plans than
using hash-based query plans.

Figure 21 shows a query evaluation plan for a very simple SQL query computing the intersection
of two tables, e.g., “select B from T1 intersect select B from T2.” If column B is not a primary
key in tables T1 and T2, then correct execution requires duplicate removal for each input plus
a join algorithm to find intersection result. Without the work described in this article, F1 Query
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Fig. 23. Prior algorithm comparison [14].

chooses a hash-based physical plan with three blocking operators: two hash aggregation operators
for duplicate removal and the hash join for set intersection. In contrast, with the new in-sort
aggregation operator, F1 Query chooses a sort-based plan physical plan with only two blocking
operators: both are in-sort aggregation operators for duplicate removal. Since the output of in-
sort aggregation operators are sorted on column B, F1 Query exploits interesting ordering and
uses merge join for set intersection, supporting Hypothesis 7.

Figure 22 shows the performance of sort- and hash-based plans for this query. Each input table
has I = 100,000,000 rows; the memory for each operator is M = 10,000,000 rows. In the hash-based
plan, both duplicate removal operations and the join might spill to temporary storage; each input
row is spilled twice. In contrast, the sort-based plan spills each input row at most once. Thus, the
effort for spilling is cut in half due to interesting orderings, supporting Hypothesis 8. With in-sort
aggregation, set intersection and its most efficient query evaluation plans benefit not only users’
“intersect” queries but also star queries and snowflake queries in relational data warehousing.

6.6 A Belated Correction

Section 4.4 and Figure 11 of Reference [14] compare sort- and hash-based duplicate removal, group-
ing, and aggregation. The overall conclusions are that sorting the input for subsequent in-stream
aggregation is not competitive and that both sort- and hash-based aggregation exploit strong data
reduction and small output sizes.

Figure 23 is a copy of Figure 11 of Reference [14]. As perhaps appropriate at the time, the ex-
perimental parameters are input size I = 100 MB, memory size M = 100 KB, page size P = 8 KB,
merge fan-in and partitioning fan-out F = 10, and output size O varying from 100 MB to 100 KB,
or from input size I to memory size M . The “group size or reduction factor” is the quotient of input
and output sizes, I ÷O . “Early aggregation” in this diagram means duplicate removal within runs
on temporary storage [4]. The I/O volume reflects both writing and reading on temporary storage,
i.e., the values in Figure 23 are 2× higher than the “total run size” metric used in the present article.

Figure 24 augments Figure 23 and maybe should replace Figure 11 of Reference [14], if that
were possible. Compared to Figure 23, Figure 24 omits the curves for sorting without early ag-
gregation and for hash aggregation without hybrid hashing, but it reproduces two of the curves
using the same cost functions and parameters as in earlier work [14]. In addition to sorting with
traditional early aggregation [4] and hash aggregation with hybrid hashing, Figure 24 shows a new
curve for sort-based aggregation with both early aggregation (run generation using an in-memory
index—Section 3) and wide merging (a final merge step using an in-memory index—Section 4). The
essential observation is that the gap between sort- and hash-based aggregation, clearly visible in
Figure 23, practically disappears in Figure 24. The curves are particularly close in the operating
range towards the right with only a single merge or partitioning step. With today’s memory sizes,
most grouping operations in production workloads require only one merge or partitioning step.
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Fig. 24. Revised algorithm comparison.

Put differently, sort- and hash-based aggregation algorithms perform very similarly for unsorted
inputs. While a single diagram cannot prove it, this is true for any combination of input and out-
put sizes. Moreover, sort-based aggregation is less susceptible to skew in the key value distribution
than hash aggregation is to skew in the hash value distribution.

6.7 Summary of Hypotheses and Observations

Together, our experiments confirm the calculations in our earlier examples, support our claims
and hypotheses about the effectiveness of sort-based aggregation with early aggregation and
wide merging, and belatedly correct an algorithm comparison published a quarter century ago.

7 SUMMARY AND CONCLUSIONS

In summary, traditional sort-based algorithms for duplicate removal, grouping, and aggregation
are not quite competitive with hash-based query execution. Reflecting the current common wis-
dom, Müller et al. [30] state that “hashing allows for early aggregation while sorting does not.”
The techniques introduced in Sections 3 and 4 correct this deficiency, as shown in Sections 5 and 6.
Our analysis focuses on column accesses as dominant CPU cost and I/O as dominant data move-
ment cost, reflecting our experience with industrial systems and correlating with our performance
measurements. For small outputs, early aggregation uses an in-memory index during run genera-
tion using read-sort-write cycles or replacement selection, spilling to temporary storage the same
amount of data in the same cases as hash-based aggregation. For large outputs, wide merging uses
an in-memory index during the final merge step to combine many more runs than a traditional
merge step. These two new techniques ensure that sort-based duplicate removal, grouping, and
aggregation is always competitive with hash-based query execution; it is superior if interesting
orderings matter.

In conclusion, a single algorithm for duplicate removal, grouping, and aggregation provides
multiple benefits in a query execution engine. Most obviously, it reduces the code volume and
maintenance burden for query execution. Perhaps more importantly, it eliminates from query op-
timization the danger of mistaken algorithm choices (at least for duplicate removal, grouping, and
aggregation). It also eliminates unwelcome performance surprises, unhappy users due to unpre-
dictable algorithm choices, and engineering time wasted on analyzing execution traces. Predictable
performance, in particular when combined with graceful degradation, permits more smoothly run-
ning applications, more responsive dashboards, and more productive users.
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