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Figure 1: Left: A photo of a participant interacting with the robot presenter. Middle: het Vrolijke Huisgezin by Jan Steen (1668).
Right: Glorious Entry of the Duke of Anjou into Antwerp on the 19th of February 1582 by M.H.V.H. (undated, between 1584 and
1600)

ABSTRACT
An interesting application for social robots is to act as a presen-
ter, for example as a museum guide. In this paper, we present a
fully automated system architecture for building adaptive presenta-
tions for embodied agents. The presentation is generated from a
knowledge graph, which is also used to track the grounding state
of information, based on multimodal feedback from the user. We
introduce a novel way to use large-scale language models (GPT-3
in our case) to lexicalise arbitrary knowledge graph triples, greatly
simplifying the design of this aspect of the system. We also present
an evaluation where 43 participants interacted with the system.
The results show that users prefer the adaptive system and consider
it more human-like and flexible than a static version of the same
system, but only partial results are seen in their learning of the
facts presented by the robot.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
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1 INTRODUCTION
In a presentation, a presenter tries to convey some information to
one or more recipients. An important task for a presenter is to adapt
the presentation to the audience, a process called audience design
[9]. This adaptation can happen in real time, as the presentation is
going on [2, 17], and ahead of time, through rhetoric and planning
[46]. When adapting the presentation in real time, the presenter
has to continuously take in (positive or negative) feedback from
the audience and adapt the presentation accordingly. While cur-
rent digital tools for presentations (such as pre-recorded lectures)
are mostly non-adaptive, an intelligent presentation agent could
potentially process user feedback and adapt the presentation in a
human-like manner. A social robot, which is physically co-located
with the user(s), could further enhance the presentation in that it is
easier to perceive if the robot is attending to the user(s) or objects
in the environment. When social robots are used as presenters or
teachers, adaptation could serve to engage the audience [10], and
improve learning [15, 35].

In this paper, we present a fully autonomous system that allows
social robots to present information stored in a knowledge graph
and which adapts the presentation based on multimodal feedback
from the user, as illustrated in Figure 2. The scenario we use is the
presentation of paintings in a museum, and our experimental setup
can be seen on the left of Figure 1. The museum guide scenario
is interesting because it is not entirely clear if its goal should be
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Speaker Behaviour

Robot
"The commander of the French Army is called
Francois-Hercule in French and Frans
Hercules in Dutch."

Robot "Did you get that?"
User (nods) "Yes."

Robot "The commander of the French Army, born in 1556,
died in 1584 from malaria."

User (shakes head)

Robot "The Duke of Anjou was the commander of the French
Army."

Figure 2: An example of elicitation (first turn), adaptation to
positive grounding (second turn) and adaptation to negative
grounding (third turn) by our adaptive system (see Section
3).

teaching or entertainment. If the goal of the system is to entertain
its audience, then evaluating the system on subjective measures
makes sense, and a highly engaging system could be seen as a
success. If the goal is learning, then objective measures based on
learning outcomes should be part of the evaluation.

This paper has two main contributions. First, we present our
system architecture for creating fully automated presenter systems.
While several components of the system are based on our prior
work [5–7], theywere never evaluated in a fully autonomous system
interacting with real users. We also introduce a novel approach
for turning semi-logical representations of language into natural
language (lexicalisation) using GPT-3. Our secondmain contribution
is an evaluation that compares the fully automated system with
a non-adaptive version of the same system. We are interested in
understanding how the two versions compare by the following five
criteria:

(1) The perception of how competent and communicative the
robot presenter is.

(2) Which presenter the audience prefers.
(3) How much the audience actually learns from the presenta-

tion (objective learning).
(4) How much the audience thinks it learns from the presenta-

tion (subjective learning).
(5) How much feedback the audience gives to the robot.

2 BACKGROUND AND RELATEDWORK
2.1 Feedback and grounding
For a robot presenter to be able to reason about the reactions of its
audience, there must be a theoretical model of how to represent
those reactions. Feedback is communicative information that al-
lows parties in a conversation to know whether information has
been perceived, understood, and accepted [2]. This information can
flow on a main channel or on a back channel, where information
on the back channel (backchannels) can pass from the listener to
the speaker without taking the turn away from the speaker [50].

Common ground is the information shared by parties engaged
in a dialogue [20]. Grounding is the process by which a listener
signals, through various kinds of feedback, whether something is

integrated into the common ground [18]. Clark [17] defines four
levels to which feedback may be related: attention, hearing, un-
derstanding and acceptance. The polarity of feedback is either
positive or negative and can relate to any of these levels. An ex-
ample of feedback communicating positive understanding can be a
simple "Yes" or a nod, while negative hearing could be communi-
cated with a "Sorry?" or frowning, depending on the context [4].
Feedback on these levels is subject to the rules of upward com-
pletion, where negative feedback on a low level implies negative
feedback on all higher levels, and downward evidence, where pos-
itive feedback on any level implies positive feedback for all lower
levels. When humans interact, feedback at higher levels (acceptance
and understanding) is not required at every point; the level at which
feedbackmust currently be given is called the grounding criterion
[17]. This level is continuously agreed upon by the communicating
parties and depends on factors like how recently feedback has been
given and how important the currently presented information is
[17]. The process of updating the grounding criterion can be mod-
elled as a Bayesian process of considering past feedback together
with the present feedback [13].

If a speaker does not receive enough feedback from the listener,
the speaker can choose to elicit feedback, either by direct questions
("Do you follow?"), by gazing at the listener, or through prosodic
cues such as rising pitch. This can give rise to a temporary increase
in feedback given by the listener [49]. As dialogue partners become
used to interacting with each other, the amount of multimodal feed-
back signals can decrease as the partners optimise their feedback
behaviour to provide the signals they expect the partner to be able
to sense, a process referred to as alignment [17, 21]. Alignment
also extends to the modalities and types of signals used: for exam-
ple, gaze feedback is more common towards an agent that can also
produce gaze signals, as compared to smart speakers [36].

Information flow between dialogue partners is more effective
when more modalities can be used; for example, it is easier to
present information when two dialogue partners can see each other
than when they are talking over the phone [11]. In a model-building
experiment, it was shown that task performance increases as the
opportunities for the partners to give multimodal feedback to each
other increase [19].

2.2 Robots as presenters
An early example of a robot presenter that could adapt the timing of
its presentation to its audience (depending on for example laughter
volume) is the Japanese manzai comedy duo system by Hayashi
et al. [29]. When compared to a prerecorded video of human come-
dians, the in-person robot routine was rated higher on measures
of presence, but also overall preference and duration of laughter
[29]. The robot comedy scenario was also used by Katevas et al.
[33], who found that robot gestures timed with joke delivery and
aiming gaze at specific individuals in the audience could improve
audience happiness in the short term, similarly to methods used by
a human stand-up comedian.

Axelsson and Skantze [6] presented a scenario where the Furhat
robot, partially controlled by a Wizard of Oz, presented two paint-
ings, and one presentation adapted to the user’s feedback while the
other did not. Even though they were not told which presentation
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was adaptive, users preferred the adaptive mode over the static
mode on multiple measures of the Godspeed [8] scale. Masuta et al.
[39] set up a scenario where a social robot presented a university
lecture. A proportion of the audience was equipped with laptops
running a program that let them give feedback such as "interesting"
or "boring" to the ongoing presentation. The group of students with
access to the feedback program were more likely to respond posi-
tively to the question "Do you feel that your response is reflected
in [robot]’s lecture?" than those who did not have access to the
program.

In a museum setting, Shiomi et al. [43] compared three modes
of robot agents deployed in a museum; a mode where the robot
would take RFID tags carried by visitors into account to know
which objects they were interacting with, and two modes with-
out this interaction. The authors found that the RFID condition
was rated more highly in the category of "Experience of science &
technology" than the other two modes. Outside of social robotics,
Farmer et al. [28] showed that students preferred a learning plat-
form that responded to answers that students got wrong over one
that presented static content.

Competence is a dimension of how users perceive conversing
agents [24]. The perceived competence of a robotic agent is a com-
ponent of the commonly-used Godspeed scale [8], and is thus mea-
sured in many experiments involving social robots. Factors of agent
design and agent behaviour that play into increased perceived com-
petence include anthropomorphism [16] and whether the agent is
perceived as having emotions [44]. The context and place in which
the agent is found is also a factor in its perceived competence - a
teacher robot in a school is perceived differently from a teacher
robot in a summer camp setting [41].

2.3 Robots and learning
Subjective learning refers to howmuch a student or participant in
a learning scenario thinks they have learned. Stark et al. [45] found
that there was not necessarily a correlation between subjective and
objective learning in an economic scenario; students who had stud-
ied a scenario independently over-estimated their performance on
a task while students who had been guided through their teaching
under-estimated their performance on the same task. Koriat et al.
[37] found that the subjective learning and objective learning of
participants in a word-memorisation task diverged as more tests
were administered, with lower subjective learning compared to
objective results in later tests. Other factors that can play into sub-
jective learning, or judgment of learning, are the time the student
spent thinking about their answer [25], as well as previous task
performance and whether students know about their previous task
performance [3].

Evaluating objective learning outcomes from social robots
functioning as teachers or tutors appears to be difficult. Robots often
increase student engagement without any measurable increase in
performance [22, 34]. Additionally, school scenarios require long-
term learning results, which require long-term experiments of a
type that are challenging to set up. Even if a robotic system with
certain social behaviours promotes learning in the short term, it
does not necessarily follow that those learning results persist weeks
later [15]. In a language café scenario, where the goal is to facilitate

What to say

Where to look

Behaviour tree

Agenda &
knowledge graph

Microplanner

Properties currently 
being expressed

Grounding state

Lexicalised triples, 
 expressed text

GPT-3 expression
engine

Head movements  
(via gyro & accelerometer)

Positivity/negativity/neutrality Feedback classifier
(random forest)

Head
movement
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Head movement  
features

Speech 
activity 
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Figure 3: The components of our presenter system and how
they connect.

learning by getting participants to converse in a language they are
learning (i.e. the primary goal is engagement), Engwall et al. [27]
found that different factors of participant backgrounds (cultural,
gender, proficiency in the language, among others) affected which
style of robot conversation partner they preferred, and concluded
that adaptation would be required.

A positive effect on student learning was found by Ishino et al.
[32], who presented a comparison between a video recording of
a human presenting a university lecture, a robot presenting the
same lecture while reproducing body language generated by a
model, and a robot presenting the same lecture while replaying
the body language of the recorded human. The robot that created
body language using a model achieved higher learning results on a
post-lecture test than either of the others. No difference in learning
results was found between replaying the human presenter’s body
language and replaying a video of the human.

Konijn and Hoorn [35] showed that social behaviours in a Nao
robot could help students being taught multiplication tables. How-
ever, increasing the amount of social behaviours in the robot mostly
helped students who the authors categorise as "above-average",
while "below-average" students seemingly benefit from more neu-
tral, less social behaviour. Konijn and Hoorn note that there is
no baseline without a robot, making it hard to conclude that chil-
dren learned more than they would have by practicing the relevant
multiplication tables on their own or with a human teacher.

3 SYSTEM DESCRIPTION
A high-level overview of the system is presented in Figure 3. Cen-
tral to managing the interaction is a behaviour tree, which runs
at a frequency of 10 Hz. The tree structure, adapted from [6, 7]
coordinates reading data from other modules and executes actions
to make the robot gaze at the right target and speak at the right
moments. The presentation itself is stored in a knowledge graph
(see Section 3.1). As execution passes down the behaviour tree, the
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system chooses one or more properties from the knowledge graph
to present, and puts the logical representation of how it intends
to present the properties into a microplanner. It then converts
the logical representation of its planned utterance into text using
GPT-3 (see Section 3.3). This text is synthesized and spoken. The
behavior tree then makes the system wait for the user’s feedback,
classifying it with the feedback classifier (detailed in Section 3.2),
elicits feedback if it is not obtained in time, and then updates the
grounding state based on the feedback which was given. This
process is repeated until no more properties exist to present or time
has run out.

3.1 Presenting through knowledge graphs
Knowledge graphs, originally proposed by Minsky [40], are a
way to represent structured information in a way that can be easily
parsed, polled and stored by computers. The edges between nodes
in a knowledge graph are called properties, and the combination
of a property, its source and its target are a triple [30].

To track the grounding state, each property in the knowledge
graph is labelled with whether it has been positively or negatively
attended to, heard, understood and accepted by each user, an ap-
proach we previously presented in [7]. This is then used by the
system to select which new properties to present. For a property
to be be presented, it must be possible to create a referring expres-
sion to its source. In Figure 4, the system is able to present three
properties about the Duke of Anjou because it can refer to him
as the commander of the French army. This referring expression
is possible because the property that synthesises it, commander-
of from dukeOfAnjou to frenchArmy, is grounded with positive
understanding in the dialogue state, a consequence of an earlier
exchange where the system presented that this property held and
the user reacted positively. As the user reacts with positive or
negative grounding, properties in the graph become grounded or
ungrounded, giving the system the ability to refer to new facts
about previously grounded entities. Negative feedback can also
take away the system’s ability to use a referring expression; after
commander-of has been ungrounded in Figure 4, the system needs
to use another referring expression if it wishes to talk about the
Duke of Anjou. This is illustrated by the third robot line in Figure
2.

If the user has not provided positive or negative feedback match-
ing the grounding criterion by the time the robot takes the turn
back after it has spoken, the behaviour tree will make the agent
elicit feedback from the user. Attention is elicited by looking at
the user, and understanding is elicited by looking at the user and
saying Right?, Did you get that?, Did that make sense? or Did you
understand that? If this also fails to elicit behaviour that the feed-
back classifier can classify as either positive or negative before
the system takes the turn again, the user’s feedback is classified
as negative by default and the system moves on to another set of
properties to present.

3.2 Classifying and eliciting feedback
The feedback classifier is based on previous work [5], where we
collected data on robot-human presentations (similar to the setup
used here) and trained a classifier to classify feedback as positive,

negative or neutral. Various classifiers and combinations of input
modalities (head movements, speech, facial expressions, body pose
and gaze) were tested, and a random forest classifier focusing on
just head, speech and gaze yielded nearly optimal results. However,
whereas the classifier from [5] was trained on manually annotated
features, we re-implemented it using features that can be automati-
cally extracted in real time. To classify head movements (as single
or multiple nods, head shakes, and head tilts), we attached a Meta-
Motion S1 accelerometer and gyro sensor to the headset worn by
our participants, and trained a specific head gesture classifier using
a random forest classifier on head movement data we collected in
a pre-study. The random forest feedback classifier is then polled
for its classification (positive, negative or neutral) through two
dedicated leaves in the behaviour tree that run when the user or
the robot has the turn, respectively.

A limitation of the feedback classifier we presented in [5] is that
it is not capable of separating understanding, hearing or acceptance
by the definitions of Clark [17]. Users may expect different types of
adaptation depending on whether their feedback constitutes neg-
ative hearing or understanding [7]. As a simplifying solution, we
treat all feedback identified by our classifier as positive or negative
signs of understanding. Upon receiving an indication of positive
or negative understanding, our dialogue system adapts in multi-
ple ways, simultaneously addressing hearing and understanding.
Speech rate is lowered (by increments of 10%) down to a minimum
of 50% upon negative understanding, and raised to a maximum
of 100% upon positive understanding2. The number of knowledge
graph properties the system tries to present at a time is lowered
(for negative feedback) or raised (for positive feedback) by one. Ad-
ditionally, the properties to which the user is reacting are weighted
so that they are less (negative feedback) or more (positive feedback)
likely to be used in future referring expressions.

3.3 Natural language generation using GPT-3
Lexicalisation is the process of turning structured data into natu-
ral language [42]. Here, the structured data is the knowledge graph.
Lexicalisation can use neural approaches similar to machine trans-
lation [26, 38], or more or less advanced rule-based approaches
[7, 31, 42, 48].

All properties in our knowledge graph format are marked with
a human-readable label like has-name or father-of. Optionally, ad-
ditional labels can be added for use in referring expressions when
traversed forwards or backwards (referring either to the source
or the target of the property). This gives us a way to uniquely re-
fer to every possible triple in the graph, together with referring
expressions to the source and target.

As illustrated in Figure 4, the knowledge graph statement that
the Duke of Anjou was born in 1556 is written out as (commander-
of(frenchArmy), birth-year, 1556). When the behaviour tree decides
to present a new line, the knowledge graph that represents our
presentation is queried for ungrounded properties for which such
a representation can be created, and for which a reference to the

1https://mbientlab.com/store/metamotions/
2The speech rate numbers were arrived at by testing for the specific Amazon Polly
voice we used, and do not necessarily generalise to other speech synthesis or voices.
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(commander-of(frenchArmy),
death-year, 1584) 

The commander of the French
Army died in 1584. 

The commander of the French
Army, born in 1556, died in 1584

from malaria.
(commander-of(frenchArmy), died-

from, malaria)
The commander of the French

Army died from malaria.

Choose property to present, reference to source, reference to target

Speak

Grounding: negative understanding

Grounding: negative understanding

Multimodal
behaviour

classification

Speech

Head

Gaze
(shakes head)

Grounding: negative understanding

(commander-of(frenchArmy), birth-
year, 1556) 

Lexicalise
The commander of the French

Army was born in 1556. 

Lexicalise

Summarise

Summarise

frenchArmy
commander-of

died-from

dukeOfAnjou

1584
death-year

1556birth-year

malaria
(...)

frenchFury
died-in

(...)

Grounding: negative understanding

Figure 4: An illustration of how we use GPT-3 to convert knowledge graph triples into a paragraph of text. The example matches
the second turn from Figure 2. On the bottom, an excerpt from our knowledge graph on the Glorious Entry painting is shown.
On the right of the figure, the reaction to the participant’s response to the statement is illustrated. The head shake is classified
as negative understanding by our feedback classifier, and that negative grounding is mapped back to the knowledge graph
properties that were used to synthesise the utterance, in order to update their grounding status. The process for how properties
to present are chosen is described in Section 3.1.

source entity can be created based on currently grounded proper-
ties. All such properties are sorted by how similar they are to other
things that have been successfully presented to the user and posi-
tively grounded, and how on-topic they are. The sorting for topic
prioritises properties with the same source as things that have been
recently presented. One or more of the most suitable properties
are taken from this ranking, based on the number of properties
the system currently presents at a time, given recent positive or
negative feedback. To avoid the system presenting non-sequiturs,
presentation of multiple properties at a time is limited to properties
that share the same source. For example, all properties that are
co-presented in Figure 2 are sourced in the Duke of Anjou.

Each chosen knowledge graph property is passed to GPT-3[12]3
to turn it into text using a prompt. We generate a semi-lexical rep-
resentation of the chosen statements based on our human-readable
labels. Examples of this representation can be seen in the top left of
Figure 4. In the prompt passed to GPT-3, we give examples of how
this representation can be lexicalised (see Appendix B.1). This turns
commander-of(frenchArmy), birth-year, 1556 into The commander of
the French Army was born in 1556, as illustrated in Figure 4.

The lexicalisation step generally results in sentences that would
make sense to present on their own, and if the system is only
presenting one knowledge graph property, the lexicalisation is
spoken as-is. When multiple properties are presented at the same
time, saying the lexicalised sentences one after the other often
leads to redundancies where the same referring expressions are
used multiple times. To compress the line the system is about to
say, and remove these redundancies, we again use GPT-3 to shorten
the lexicalised text. This process, which corresponds to what Tiddi
et al. [48] calls condensing, is done via a different GPT-3 prompt
(see Appendix B.2) that consists of several examples of redundant
sentences being written up and summarised into a single sentence.

3https://openai.com/api/

An example of real GPT-3 output resulting from this procedure can
be seen in the top-middle of Figure 4.

4 EVALUATION
To evaluate the presenter system described in Section 3, we designed
a within-subject experiment, where the participants were asked to
take part in two presentations: one by the adaptive system and one
by a non-adaptive version of the system.

4.1 Participants
We recruited participants through self-signup by posters and email-
ing lists, and we thus did not have a sampling approach to balance
for ethnicity or gender. Participants were offered a 250 SEK gift card
as compensation for participating. In total, 46 participants were
recruited. Three participants had to be ignored - the first participant
filled in an incorrect version of our subjective scales, and the sixth
and ninth participant did not get the full adaptive presentation
because of a system malfunction. We thus ended up with 43 usable
participants. Of these, 17 participants self-reported as male, and 26
female. The average age was 25.5 years old (𝑆𝐷 = 4.11). All par-
ticipants signed an information sheet informing them of the right
to retract their consent to us storing their personally identifiable
data. Participants also optionally agreed to having their pictures
included in publications and presentations. All data was collected
and stored in accordance with local policy and laws.

4.2 Material and Procedure
Our robotics platform is a Furhat [1] robot. The robot was mounted
on a pedestal (see Figure 1) 145 cm to the right of the middle of
a 1-metre-wide printout of a painting. The painting was attached
to a cardboard sheet to make it possible to switch it out between
conditions (see Section 4.3). The user was allowed to stand wher-
ever they felt was natural and comfortable as long as they stayed
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within a 45-degree cone in front of the robot, marked with tape on
the ground; this was to avoid the robot’s camera losing track of
the participant. Before each presentation, participants calibrated
Tobii gaze-tracking glasses4. They were then informed that the
system would or would not (depending on the condition) change
the presentation in response to their feedback. They were told that
they were allowed to react to the static system, but that they could
think of it like a human presenter who has to read from a strict
script from which they cannot deviate. Before interacting with the
adaptive system, we gave them examples of the types of feedback
the system would expect, comparing it to the feedback users were
giving to the presenter giving them the instructions ("Nodding,
saying ’m-hm’, like you’re doing to me right now"). Recording was
then started on both the Tobii gaze-tracking glasses and a wall-
mounted GoPro camera, and the researcher left the room to start
the system from outside. The system then presented either until
it ran out of knowledge graph triples to choose from, or until 4
minutes had passed.

After each painting had been presented, users answered a ques-
tionnaire first asking for five answers on multiple-choice fact-based
questions about the contents of the presentation. The multiple-
choice questions and their answers are listed in Appendix A. The
first three questions concerned general information about the paint-
ing (the name of the painting and artist), and the final two were
about details specific to each painting. The order of the multi-choice
answers was shuffled for each user, but the questions themselves
were always in the same order.

Following the multiple-choice questions, users were asked to
rank the presenter agent on the 18-adjective pair Partner Mod-
elling Questionnaire (PMQ) scale [23, 24]. PMQ is a scale where
experiment participants rate (from 1 to 7) the agent they interacted
with through a number of pairs of adjectives. The pairs of adjectives
serve to explain the dimensions of the participant’s partner model
of the system with which they interacted [24]. In the 18-adjective
scale [23], 9 adjectives are linked to the dimension of communicative
competence and dependability, six are linked to human-likeness and
the remaining three to communicative flexibility. The rank in each
of these three measures is the average score on all of the adjective
pairs. In order for the PMQ scale to estimate the user’s partner
model, a large amount of adjective pairs were filtered down to 18
[23] to maximise correlation between the adjective pair and one of
the three dimensions, and to minimise correlation with the others,
while also minimising correlation between different adjective pairs
[24]. We chose to use the PMQ scale over the Godspeed [8] scales,
more commonly used in HRI settings, as the Godspeed scales eval-
uate many aspects of the agent that would not be different between
our two conditions, such as mechanical smoothness.

After the multi-choice questions and PMQ scales had been filled
in for the second presentation, users were finally asked which of the
two presenters they preferred (on a 1-7 scale, with one presenter on
either end), as well as how confident they felt about their answers
to the multiple choice questions on the first and the second presen-
tation, respectively (both 1-7 scales, with "very bad" on one end
and "very good" on the other). After each participant finished their
session, we gave them their gift card, and debriefed them by asking

4The Tobii gaze data was not used for the analysis presented in this paper.

if they had any comments or questions about the experiment. Some
of the comments given by users in the debriefing are discussed in
Section 6.

4.3 Experimental conditions
To evaluate the effects of adaptation in the presentation, we com-
pared an adaptive mode where the system would use the full
architecture described in Section 3 to take the user’s feedback into
consideration, against a static mode where the system would al-
ways perceive the user’s feedback as positive (even if they did not
provide any feedback at all). Additionally, the static mode was set
to always present three knowledge graph properties at most. The
choice of three knowledge graph properties for the static mode
came from pilot testing and does not necessarily extend to other
similar systems. The choice depends on how information-dense
the knowledge graph is, how many words are needed on average
to present a property in the graph, and how verbose the designers
want the system to be.

Two paintings, Glorious Entry of the Duke of Anjou into Antwerp
on the 19th of February of 1582 by an unknown artist known only by
the signature M.H.V.H, and Jan Steen’s Happy Family, were chosen
as objects for the system to present. The paintings can be seen in
Figure 1. To balance the order of the paintings and system modes
(adaptive or static), four conditions were set up, and we balanced
our participants across them. 11 participants were assigned to each
condition except adaptive Glorious Entry first, which had 10 partici-
pants.

Both paintings have WikiData5 articles, and the knowledge
graph data from these pages that was relevant to our scenario
was used as part of our presentation graphs. However, since the
data for our specific paintings was quite sparse, we manually com-
plemented the graphs with additional information. Because the
motifs of the two paintings were inherently different, the presenta-
tion about Glorious Entry focused more on the historical context
of the painting, while the presentation graph about Happy Family
focused more on the contents of the painting and details about the
painter.

5 RESULTS
5.1 PMQ scale and preference
Given that the PMQ scale should be interpreted as ordinal, we fitted
a Cumulative Link Mixed Model (CLMM) for each of the three mea-
sures of the PMQ scale: communicative competence and dependence
(based on nine of the adjective pairs), human-likeness (based on six
separate adjective pairs) and communicative flexibility (based on the
remaining three) [23]. The identity of the participant was treated
as a random factor. The order of the presentation (first or second),
the mode of the system (adaptive or static), and the painting being
presented (Happy Family or Glorious Entry) were treated as fixed
factors. For communicative competence and dependence, no factors
had a statistically significant effect. For human-likeness, only the
mode of the system was significant (𝜒2 (1) = 4.75, 𝑝 = .0292), such
that participants rated the adaptive system (𝑀 = 2.94, SD = 1.34) as
more human-like than the static system (𝑀 = 2.47, SD = 1.27). For

5https://www.wikidata.org
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Figure 5: The probability of correct answer (Y axis) depending
on whether the question was one of the first three (general)
or one of the final two (specific), presented as the X axis.

communicative flexibility, both the mode (𝜒2 (1) = 7.60, 𝑝 = .00583)
and order (𝜒2 (1) = 7.174, 𝑝 = .00740) were significant; participants
considered the adaptive system (𝑀 = 2.86, SD = 1.22) more flexible
than the static system (𝑀 = 2.35, SD = 1.20), but also considered
the second system they interacted with (𝑀 = 2.88, SD = 1.26) to be
more flexible than the first system (𝑀 = 2.33, SD = 1.14).

60% of the users preferred the adaptive over the static mode,
whereas 37% preferred the static mode, and one participant ranked
both equally. To further investigate this (taking the degree of pref-
erence into account), an equivalent CLMM model to the one above
was fitted for which presenter our participants preferred, with
the same random and fixed factors as the models fitted for the
PMQ scale. The order was significant (𝜒2 (1) = 11.7, 𝑝 = .000609)
such that participants preferred the second presenter over the first
(𝑀 = 4.77, SD = 2.18, where 1 is the first and 7 is the second). Which
painting was being presented was also a statistically significant
factor (𝜒2 (1) = 8.89, 𝑝 = .00286), such that participants preferred
the presenter that presented Happy Family (𝑀 = 4.62, SD = 2.22,
where 7 is Happy Family and 1 is Glorious Entry). The mode of
the system was also a statistically significant factor (𝜒2 (1) = 4.29,
𝑝 = .0383), such that participants preferred the adaptive mode
(𝑀 = 4.44, SD = 2.27, where 7 is the adaptive mode and 1 is the
static mode). The interaction between all three factors also held
strong significance (𝜒2 (1) = 21.5, 𝑝 < .0001).

5.2 Subjective and objective learning outcomes
A CLMM model with the same fixed and random factors as those
described in Section 5.1 was fitted for participants’ confidence in
their answers. The painting being presented was a significant factor
(𝜒2 (1) = 17.2, 𝑝 < .0005) such that participants had higher confi-
dence for Happy Family (𝑀 = 4.37, SD = 1.45) than for Glorious
Entry (𝑀 = 3.26, SD = 1.43). The order was strongly significant
(𝜒2 (1) = 14.3, 𝑝 < .0005) such that participants were more confi-
dent for the second presentation (𝑀 = 4.33, SD = 1.46) than for the
first (𝑀 = 3.30, SD = 1.46). Whether the mode of the system was
adaptive (𝑀 = 4.07, SD = 1.52) or static (𝑀 = 3.56, SD = 1.53) was
not a statistically significant factor (𝜒2 (1) = 3.53, 𝑝 = .0603).

To evaluate the participants’ performance on the multi-choice
questions, we fitted a binomial Generalized Linear Mixed Model
(GLMM) with one data point for each question answered by each
participant. The user’s identity was used as a random factor, and

whether they got the question right was used as the dependent
variable. As fixed factors we used (a) whether the presentation
was the first or the second, (b) whether the presentation was in
the adaptive or static mode, (c) which painting the presentation
was about, and (d) whether the question was one of the first three
(general or specific information).

The painting (𝜒2 (1) = 12.543, 𝑝 < .0005), question type (first
three or final two) (𝜒2 (1) = 7.61, 𝑝 = .00582), and the interaction
between the mode of the system (adaptive/static) and the question
type (𝜒2 (1) = 11.267, 𝑝 < .001) were significant factors. The signif-
icance of the painting is in line with the participants’ confidence
in their answers and actual performance on the multi-choice ques-
tions. To investigate the interaction effect between the systemmode
and the question type, we plot the outcome for these variables in
Figure 5. While the adaptive system has better learning outcomes
for the (first three) general questions, there is an opposite effect for
the (last two) specific questions.

5.3 Difference in feedback behaviour
To compare the distribution of positive and negative feedback sig-
nals between the adaptive and static modes, we extracted the output
of the feedback classifier detailed in Section 3.2 at each 10 Hz time
step of the presentations. We then compared the proportion of
positive and negative signals, respectively, between the adaptive
and static modes, for each participant, using a paired t-test. There
was no difference (𝑡 (42) = .605, 𝑝 = .548) in the proportion of
positive feedback for the adaptive mode (𝑀 = .129, SD = .0648)
compared to the static mode (𝑀 = .123, SD = .0746). There was also
no difference (𝑡 (42) = 0.250, 𝑝 = .804) in the proportion of negative
feedback for adaptive mode (𝑀 = .0598, SD = .108) compared to
the static mode (𝑀 = .0582, SD = .0953).

6 DISCUSSION
We will now return to the five questions posed in Section 1 and
discuss them based on our results.

Did adaptivity affect the participants’ perception of competence
and communicative ability? Our results show that the adaptive
presenter was seen as more human-like and flexible than the static
presenter, but not more competent. One explanation for this is that
although the static presentation did not take the audience reactions
into account, such presentations can still be seen as competent. It is
still possible to adapt a static presentation to an imagined audience,
a form of audience design Bell [9] refers to as referee design. The fact
that differences were found for human-likeness and communicative
flexibility indicates that users indeed felt that the adaptive system
was attending to their feedback more than the static system.

The static mode still performed relatively well on the measures
of the PMQ scale. One explanation of this might be that users inter-
preted the absence of elicitations from the system as establishing
a low grounding criterion by the definition of Clark [17]. Similar
results were seen previously by Chai et al. [14]. Social factors re-
lating to the peculiarities of the museum guide scenario may also
apply here. If a user treats the robot as mostly an entertainer and
less of a teacher, there is little incentive to interrupt the robot and
explain that the user has not understood something that the sys-
tem assumed they did understand. For future research, it could
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be interesting to implement presenter systems that can move be-
tween teaching and entertaining modes, and to identify from the
behaviour of users which of the two they expect and prefer.

Did the participants prefer the adaptive version? When asked to
indicate which version the participants preferred (and to what de-
gree), there was a significant preference for the adaptive version.
This matches earlier results for social robotics [6, 29, 39] and for
teaching in general [28]. However, there were also individual dif-
ferences and 37% of the participants actually preferred the static
version. In the post-experiment debriefing, several participants ex-
pressed a feeling of being stressed by the adaptive mode, and one
participant specifically said that the robot’s feedback elicitations
made him actively forget the last line presented by the robot. To
address participants for whom elicitations and adaptivity detract
from the experience of the system and objective learning, a possible
future direction is to create systems that sense the user’s preferred
level of adaptation and adapt to that, mirroring suggestions by En-
gwall et al. [27]. The adaptive system elicited feedback between 0
and 4 times, depending on the participant (𝑀 = 1.84, SD = 1.34).

Did adaptivity affect objective learning? Participants were more
likely to answer general questions about the painting correctly in
the adaptive mode than in the static mode, whereas the opposite
effect existed for specific questions, as seen in Figure 5. One possible
interpretation of this result is that the adaptive system performed
better on the general questions because it would restate basic infor-
mation about the painting as part of its referring expressions to the
sources of more complicated knowledge graph properties. Another
possible reason is that the adaptive system presented more proper-
ties at the same time, making it hard for users to focus in on one
thing the system said of many. We can conclude that the adaptivity
of the system does in fact affect users’ learning, but that to properly
explore this effect, an experiment would have to be designed where
the differences between objects being presented is minimised, and
ideally where there are more multi-choice questions. Going back
to the difference between a museum guide as an entertainer and
a museum guide as a teacher, mentioned in Section 1, results by
Peters et al. [41] have shown that the environment and setting
where a robot is found affects its perceived competence. The fact
that our experiment was not set up in a real museum, like earlier
work by Thrun et al. [47] and Yousuf et al. [51], could play into
how users approached the interaction. In future studies, it would
be interesting to evaluate the system in an actual museum, to help
participants approach the robot like they would approach a human
museum guide, whether that is for entertainment or for learning.

Did adaptivity affect subjective learning? The audience did not
significantly believe that their answers were better depending on
whether the system was adaptive or static. Instead, as described
in Section 5.2, there were two strong effects. Users thought they
learned more from the presentation of the Happy Family presenta-
tion than from the Glorious Entry presentation. The second effect
was that users thought their answers were better on the second
presentation than on the first, which actually did not match the
objective learning outcomes. While this effect appears to go against
earlier results by Koriat et al. [37], the fact that the questions on the
two presentations were slightly related in topic should affect our

results – participants would be prepared in the second presentation
that there would likely be general questions about the painting’s
title in Dutch and English, as well as the painter’s name.

Did adaptivity affect the amount of positive or negative feedback
given by participants? We were expecting participants to provide
significantly more positive or negative feedback in response to the
adaptive system than towards the static system, since we told them
before each presentation started that only one of the two modes
would change the presentation in response to the feedback. Despite
this, no difference was found between feedback given in the two
modes. It does not seem like perceived adaptivity is necessarily a
factor in what makes the audience provide multimodal feedback
towards a robot presenter. Kontogiorgos et al. [36] have shown that
the multimodal feedback signals used by people conversing with
a dialogue system partially match the capabilities of the robotic
agent with which they interact. Since our agent used the same
multimodal behaviours in the static mode as in the adaptive mode
(gazing back and forth between the painting and the user, as well as
raising the eyebrows and smiling when sensing user speech), this
could have served as an implicit elicitation of feedback, even if it
was disregarded by the system.

7 CONCLUSIONS
We have presented a system architecture that allows a robot to give
adaptive presentations to an audience. The presentation is based
on a knowledge graph, which stores the information that is to be
presented, but which is also used to track the grounding status of the
presented information. The user’s multimodal feedback (speech,
gaze and head movements) is classified as positive, negative or
neutral, and used to update the grounding status in the knowledge
graph, and thus affects the way the presentation proceeds. We
introduced a novel way to use large-scale language models (GPT-3
in our case) to lexicalise arbitrary knowledge graph triples, greatly
simplifying the design of this aspect of the system. We presented
an evaluation of the system, comparing it with a static version
that does not consider the user’s feedback. The results showed that
users generally preferred the adaptive system and perceived it as
more human-like and flexible. A retention test on some of the facts
presented showed that the adaptive version was better for some of
the test questions, but not all. We think it is promising to see that
these results can be achieved with a fully automated system, but
that future tests should be done in more realistic environments and
that the system should better detect to what extent users want the
system to be adaptive or not.
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