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We study search problems that can be solved by performing Gradient Descent on a bounded convex polytopal domain and show

that this class is equal to the intersection of two well-known classes: PPAD and PLS. As our main underlying technical contribution,

we show that computing a Karush-Kuhn-Tucker (KKT) point of a continuously differentiable function over the domain [0, 1]2 is
PPAD∩ PLS-complete. This is the first non-artificial problem to be shown complete for this class. Our results also imply that the class

CLS (Continuous Local Search) – which was defined by Daskalakis and Papadimitriou as a more “natural” counterpart to PPAD∩ PLS
and contains many interesting problems – is itself equal to PPAD∩ PLS.

1 INTRODUCTION

It is hard to overstate the importance of Gradient Descent. As noted by Jin et al. [39], “Machine learning algorithms

generally arise via formulations as optimization problems, and, despite a massive classical toolbox of sophisticated

optimization algorithms and a major modern effort to further develop that toolbox, the simplest algorithms—gradient

descent, which dates to the 1840s [13] and stochastic gradient descent, which dates to the 1950s [51]—reign supreme in

machine learning.” Jin et al. [39] continue by highlighting the simplicity of Gradient Descent as a key selling-point, and

the importance of theoretical analysis in understanding its efficacy in non-convex optimization.

In its simplest form, which we consider in this paper, Gradient Descent attempts to find a minimum of a continuously

differentiable function 𝑓 over some domain 𝐷 , by starting at some point 𝑥0 and iterating according to the update rule

𝑥𝑘+1 ← 𝑥𝑘 − 𝜂∇𝑓 (𝑥𝑘 )

where 𝜂 is some fixed step size. The algorithm is based on the fundamental fact that for any point 𝑥 the term −∇𝑓 (𝑥)
points in the direction of steepest descent in some sufficiently small neighbourhood of 𝑥 . However, in the unconstrained

setting—where the domain is the whole space—it is easy to see that Gradient Descent can at best find a stationary

point. Indeed, if the gradient is zero at some point, then there is no escape. Note that a stationary point might be a local

minimum, but it could also be a saddle point or even a local maximum. Similarly, in the constrained setting—where the

domain 𝐷 is no longer the whole space—Gradient Descent can at best find a point 𝑥 that satisfies the Karush-Kuhn-

Tucker (KKT) optimality conditions. Roughly, the KKT conditions say that the gradient of 𝑓 is zero at 𝑥 , or if not, 𝑥 is

on the boundary of 𝐷 and any further local improvement would take us outside 𝐷 .

In this paper we investigate the complexity of finding a point where Gradient Descent terminates—or equivalently,

as we will see, a KKT point—when the domain is bounded. It is known that a global or even a local minimum cannot be

found in polynomial time unless P =NP [3, 48]. Indeed, even deciding whether a point is a local minimum is already

co-NP-hard [48]. In contrast, it is easy to check whether a point satisfies the KKT conditions. In general, finding a KKT

point is hard, since even deciding whether a KKT point exists is NP-hard in the unconstrained setting [2]. However,

when the domain is bounded, a KKT point is guaranteed to exist! This means that in our case, we are looking for

something that can be verified efficiently and that necessarily exists. Intuitively, it seems that this problem should

be more tractable. This intuition can be made formal by noting that these two properties place the problem in the
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complexity class TFNP of total search problems in NP: any instance has at least one solution, and a solution can be

checked in polynomial time. A key feature of such problems is that they cannot be NP-hard unless NP= co-NP [44].

TFNP problems have been classified via certain “syntactic subclasses” of TFNP, of which PPAD and PLS are two of the

most important ones.

1.1 NP total search classes: PPAD, PLS, and CLS

As discussed by Papadimitriou [50], TFNP is unlikely to have complete problems, and various syntactic subclasses have

been used to classify the many diverse problems that belong to it. Among them, the classes PPAD and PLS (introduced

by Papadimitriou [50] and Johnson et al. [40] respectively) have been hugely successful in this regard. Each of these

classes has a corresponding computationally inefficient existence proof principle, one that when applied in a general

context, does not yield a polynomial-time algorithm.
1
In the case of PPAD this is the parity argument on a directed graph,

equivalent to the existence guarantee of Brouwer fixpoints: a Brouwer function is a continuous function 𝑓 : 𝐷 → 𝐷

where 𝐷 is a convex compact domain, and Brouwer’s fixed point theorem guarantees a point 𝑥 for which 𝑓 (𝑥) = 𝑥 .
PPAD has been widely used to classify problems of computing game-theoretic equilibria (a long line of work on Nash

equilibrium computation beginning with Chen et al. [17], Daskalakis et al. [20], and market equilibria, e.g., Chen et al.

[15]). PPAD also captures diverse problems in combinatorics and cooperative game theory [41].

PLS, for “Polynomial Local Search”, captures problems of finding a local minimum of an objective function 𝑓 , in

contexts where any candidate solution 𝑥 has a local neighbourhood within which we can readily check for the existence

of some other point having a lower value of 𝑓 . Many diverse local optimization problems have been shown complete

for PLS, attesting to its importance. Examples include searching for a local optimum of the TSP according to the

Lin-Kernighan heuristic [49], and finding pure Nash equilibria in many-player congestion games [29].

The complexity class CLS (“Continuous Local Search”) was introduced byDaskalakis and Papadimitriou [21] to classify

various important problems that lie in both PPAD and PLS. PPAD and PLS are believed to be strictly incomparable—one

is not a subset of the other—a belief supported by oracle separations [10, 11, 47]. It follows from this that problems

belonging to both classes cannot be complete for either one of them. CLS is seen as a strong candidate for capturing the

complexity of some of those important problems, but, prior to this work, only two problems related to general versions

of Banach’s fixed point theorem were known to be CLS-complete [23, 30]. An important result—supporting the claim

that CLS-complete problems are hard to solve—is that the hardness of CLS can be based on various cryptographic

assumptions such as indistinguishability obfuscation [36], the soundness of the Fiat-Shamir heuristic applied to the

sumcheck protocol [18], or the assumption that Learning With Errors (LWE) is sub-exponentially hard [38]. Prior to

the present paper, it was generally believed that CLS is a proper subset of PPAD ∩ PLS, as conjectured by Daskalakis

and Papadimitriou [21].

1.2 Our contribution and its significance

As our main result, we show that finding a point where Gradient Descent on a continuously differentiable function

terminates—or equivalently a KKT point—is PPAD ∩ PLS-complete, when the domain is a bounded convex polytope.

This continues to hold even when the domain is as simple as the unit square [0, 1]2. The PPAD ∩ PLS-completeness

result applies to the “white box” model, where functions are represented as arithmetic circuits.

1
The other well-known such classes, less relevant to the present paper, are PPA and PPP; it is known that PPAD is a subset of PPA and also of PPP. These

set-theoretic containments correspond directly to the strength, or generality, of the corresponding proof principles.
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ComputationalHardness. As an immediate consequence, our result provides convincing evidence that the problem

is computationally hard. First of all, there are reasons to believe that PPAD ∩ PLS is hard simply because PPAD and

PLS are believed to be hard. Indeed, if PPAD ∩ PLS could be solved in polynomial time, then, given an instance of a

PPAD-complete problem and an instance of a PLS-complete problem, we would be able to solve at least one of the two

instances in polynomial time. Furthermore, since CLS ⊆ PPAD ∩ PLS, the above-mentioned cryptographic hardness of

CLS applies automatically to PPAD ∩ PLS, and thus to our problem of interest. Note that our result says that finding

a stationary point (or, to be more precise, a KKT point) is computationally hard, not only for the Gradient Descent

algorithm, but for any algorithm.

Continuous Local Search. Since Gradient Descent is just a special case of continuous local search, our hardness
result implies that

CLS = PPAD ∩ PLS

which disproves the widely believed conjecture by Daskalakis and Papadimitriou [21] that the containment is strict.

Our result also allows us to resolve an ambiguity in the original definition of CLS by showing that the high-dimensional

version of the class reduces to the 2-dimensional version of the class (the 1-dimensional version is computationally

tractable, so no further progress is to be made). Equality to PPAD ∩ PLS also applies to a linear version of CLS analogous

to the class Linear-FIXP of Etessami et al. [27].

PPAD ∩ PLS. Perhaps more importantly, our result establishes PPAD ∩ PLS as an important complexity class that

captures the complexity of interesting problems. It was previously known that one can construct a problem complete for

PPAD ∩ PLS by gluing together two problems, one for each class (see Section 2.2), but the resulting problem is highly

artificial. In contrast, the Gradient Descent problem we consider is clearly natural and of separate interest. Some TFNP

classes can be characterized as the set of all problems solved by some type of algorithm, where “solved” is interpreted

as “solved eventually, without any efficiency requirement”. For instance, PPAD is the class of all problems that can be

solved by “path-following” algorithms such as the Lemke-Howson algorithm. PLS is the class of all problems that can

be solved by general local search methods. Analogously, one can define the class GD containing all problems that can

be solved by the Gradient Descent algorithm on a bounded domain, i.e., that reduce to our Gradient Descent problem in

polynomial time. Our result shows that GD=PPAD ∩ PLS. In other words, the class PPAD ∩ PLS, which is obtained by

combining PPAD and PLS in a completely artificial way, turns out to have a very natural characterization:

PPAD ∩ PLS is the class of all problems that can be solved

by performing Gradient Descent on a bounded domain.

Our new characterization has already been very useful in the context of Algorithmic Game Theory, where it was recently

used by Babichenko and Rubinstein [5], to show PPAD ∩ PLS-completeness of computing mixed Nash equilibria of

congestion games.

1.3 Further related work

Following the definition of CLS by Daskalakis and Papadimitriou [21], two CLS-complete problems were identified:

Banach [23] and MetametricContraction [30]. Banach is a computational presentation of Banach’s fixed point

theorem in which the metric is presented as part of the input (and could be complicated). Banach fixpoints are unique,

but CLS problems do not in general have unique solutions, and the problem Banach circumvents that obstacle by
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allowing certain “violation” solutions, such as a pair of points witnessing that 𝑓 is not a contraction map. Metamet-

ricContraction is a generalisation of Banach, where the metric is replaced by a slightly relaxed notion called a

meta-metric.

Chatziafratis et al. [14] showed that online gradient descent can encode general PSPACE computations. In contrast,

our result provides evidence that the problem itself (which gradient descent attempts to solve) is hard. (Although, our

result does not automatically apply to the specific machine learning setting of [14].) The distinction between these two

types of statements is most clearly apparent in the case of linear programming, where the simplex method can encode

arbitrary PSPACE computations [1, 25, 33], while the problem itself can be solved in polynomial time.

Daskalakis et al. [22] study nonlinear min-max optimization, namely the optimization problem: min𝑥 max𝑦 𝑓 (𝑥,𝑦)
where (𝑥,𝑦) ∈ R𝑑1 × R𝑑2 is constrained to lie in a polytope P and 𝑓 is a smooth function. They define an appropriate

notion of approximate local solution for this setting and prove that computing such a solution is PPAD-complete, for

a suitable regime of parameters. A contrasting aspect here is that our hardness result requires inverse-exponential

parameters, whereas Daskalakis et al. [22] achieve hardness with inverse-polynomial parameters—for us the inverse-

exponential parameters are a necessary evil, since the problem can otherwise be solved in polynomial time, even in high

dimension (by running Gradient Descent, see Lemma C.4). Furthermore, the PPAD-hardness of Daskalakis et al. [22]

requires P to be a carefully chosen subset of the unit hypercube, whereas for us, the feasible region is the unit square.

Finally, note that in contrast to our hardness result, in the special case of convex optimization our problem can

be solved efficiently, even in high dimension and with inverse-exponential precision. Related work in nonlinear

optimization is covered in Section 3.2.1.

2 OVERVIEW

In this section we give a condensed and informal overview of the concepts, ideas, and techniques of this paper. We

begin by providing informal definitions of the problems of interest and the complexity classes. We then present an

overview of our results, along with the high-level ideas of our main reduction.

2.1 The problems of interest

The motivation for the problems we study stems from the ultimate goal of minimizing a continuously differentiable

function 𝑓 : R𝑛 → R over some domain 𝐷 . As mentioned in the introduction, this problem is known to be intractable,

and so we instead consider relaxations where we are looking for a point where Gradient Descent terminates, or for

a KKT point. Our investigation is restricted to bounded domains, namely we consider the setting where the domain

𝐷 is a bounded convex polytope defined by a collection of linear inequalities. Furthermore, we also assume that the

function 𝑓 and its gradient ∇𝑓 are Lipschitz-continuous over 𝐷 , for some Lipschitz constant 𝐿 provided in the input.

Let 𝐶1

𝐿
(𝐷,R) denote the set of continuously differentiable functions 𝑓 from 𝐷 to R, such that 𝑓 and ∇𝑓 are 𝐿-Lipschitz.

In order to define our Gradient Descent problem, we need to specify what we mean by “a point where Gradient

Descent terminates”. We consider the following two stopping criteria for Gradient Descent: (a) stop when we find a

point such that the next iterate does not improve the objective function value, or (b) stop when we find a point such

that the next iterate is the same point. In practice, of course, Gradient Descent is performed with some underlying

precision parameter 𝜀 > 0. Thus, the appropriate stopping criteria are: (a) stop when we find a point such that the next

iterate improves the objective function value by less than 𝜀, or (b) stop when we find a point such that the next iterate

is at most 𝜀 away. Importantly, note that, given a point, both criteria can be checked efficiently. This ensures that the

resulting computational problems lie in TFNP. The totality of the problems follows from the simple fact that a local
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minimum must exist (since the domain is bounded) and any local minimum satisfies the stopping criteria. The first

stopping criterion has a local search flavour and so we call the corresponding problem GD-Local-Search. The second

stopping criterion is essentially asking for an approximate fixed point of the Gradient Descent dynamics, and yields the

GD-Fixpoint problem.

Since we are performing Gradient Descent on a bounded domain, we have to ensure that the next iterate indeed lies

in the domain 𝐷 . The standard way to achieve this is to use so-called Projected Gradient Descent, which computes the

next iterate as usual and then projects it onto the domain. Define Π𝐷 to be the projection operator, that maps any point

in 𝐷 to itself, and any point outside 𝐷 to its closest point in 𝐷 (under the Euclidean norm). The two Gradient Descent

problems are defined as follows.

GD-Local-Search and GD-Fixpoint (informal)

Input: 𝜀 > 0, step size 𝜂 > 0, domain 𝐷 , 𝑓 ∈ 𝐶1

𝐿
(𝐷,R) and its gradient ∇𝑓 .

Goal: Compute any point where (projected) gradient descent for 𝑓 on 𝐷 terminates. Namely, find 𝑥 ∈ 𝐷 such

that 𝑥 and its next iterate 𝑥 ′ = Π𝐷 (𝑥 − 𝜂∇𝑓 (𝑥)) satisfy:

• for GD-Local-Search: 𝑓 (𝑥 ′) ≥ 𝑓 (𝑥) − 𝜀, (𝑓 decreases by at most 𝜀)

• for GD-Fixpoint: ∥𝑥 − 𝑥 ′∥ ≤ 𝜀. (𝑥 ′ is 𝜀-close to 𝑥)

In a certain sense, GD-Local-Search is a PLS-style version of Gradient Descent, while GD-Fixpoint is a PPAD-style

version.
2
We show that these two versions are computationally equivalent by a triangle of reductions (see Figure 3).

The other problem in that triangle of equivalent problems is the KKT problem, defined below.

KKT (informal)

Input: 𝜀 > 0, domain 𝐷 , 𝑓 ∈ 𝐶1

𝐿
(𝐷,R) and its gradient ∇𝑓 .

Goal: Compute any 𝜀-KKT point of the minimization problem for 𝑓 on domain 𝐷 .

A point 𝑥 is a KKT point if 𝑥 is feasible (it belongs to the domain 𝐷), and 𝑥 is either a zero-gradient point of 𝑓 , or

alternatively 𝑥 is on the boundary of 𝐷 and the boundary constraints prevent local improvement of 𝑓 . “𝜀-KKT” relaxes

the KKT condition so as to allow inexact KKT solutions with limited numerical precision. For a formal definition of

these notions see Section 3.2.1.

Representation of 𝒇 and ∇𝒇 . We consider these computational problems in the “white box” model, where some

computational device computing 𝑓 and ∇𝑓 is provided in the input. In our case, we assume that 𝑓 and ∇𝑓 are presented
as arithmetic circuits. In more detail, following Daskalakis and Papadimitriou [21], we consider arithmetic circuits

that use the operations {+,−,×,max,min, <}, as well as rational constants.3 Another option would be to assume that

the functions are given as polynomial-time Turing machines, but this introduces some extra clutter in the formal

definitions of the problems. Overall, the definition with arithmetic circuits is cleaner, and, in any case, the complexity

of the problems is the same in both cases.

2
A very similar version of GD-Fixpoint was also defined by Daskalakis et al. [22] and shown to be equivalent to finding an approximate local minimum

(which is essentially the same as a KKT point).

3
A subtle issue is that it might not always be possible to evaluate such a circuit efficiently, because the ×-gates can be used to perform “repeated squaring”.

To avoid this issue, we restrict ourselves to what we call well-behaved arithmetic circuits. See Section 3.1.3 of the preliminaries for more details.
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Fig. 1. Example of an End-of-Line instance for 𝑛 = 3. The 2
𝑛
(= 8) vertices are represented by circular nodes and the directed edges

by arrows. Note that the graph is not provided explicitly in the input, but is only represented implicitly by a successor and predecessor

circuit. In this example, the End-of-Line solutions are the vertices 3, 7 and 8. In more detail, vertices 3 and 8 are sinks, while vertex 7

is a source. Note that the “trivial” source 1 is not a solution. Finally, the isolated vertex 5 is also not a solution.

Promise-version and total-version. Given an arithmetic circuit for 𝑓 and one for ∇𝑓 , we know of no easy way of

checking that the circuit for ∇𝑓 indeed computes the gradient of 𝑓 , and that the two functions are indeed 𝐿-Lipschitz.

There are two ways to handle this issue: (a) consider the promise version of the problem, where we restrict our

attention to instances that satisfy these conditions, or (b) introduce “violation” solutions in the spirit of Daskalakis

and Papadimitriou [21], i.e. allow as a solution a witness of the fact that one of the conditions is not satisfied. The

first option is more natural, but the second option ensures that the problem is formally in TFNP. Thus, we use the

second option for the formal definitions of our problems in Section 3.2. However, we note that our “promise-preserving”

reductions ensure that our hardness results also hold for the promise versions of the problems.

2.2 Complexity classes

In this section we provide informal definitions of the relevant complexity classes, and discuss their key features. The

formal definitions can be found in Section 3.1, but the high-level descriptions presented here are intended to be sufficient

to follow the overview of our main proof in Section 2.4.

PPAD. The complexity class PPAD is defined as the set of TFNP problems that reduce in polynomial time to the

problem End-of-Line.

End-of-Line (informal)

Input: A directed graph on the vertex set [2𝑛], such that every vertex has in- and out-degree at most 1, and

such that vertex 1 is a source.

Goal: Find a sink of the graph, or any other source.

Importantly, the graph is not provided explicitly in the input, but instead we are given Boolean circuits that efficiently

compute the successor and predecessor of each vertex. This means that the size of the graph can be exponential with

respect to its description length. A problem is complete for PPAD if it belongs to PPAD and if End-of-Line reduces in

polynomial time to that problem. Many variants of the search for a fixed point of a Brouwer function turn out to be

PPAD-complete. This is essentially the reason why GD-Fixpoint, and thus the other two equivalent problems, lie in

PPAD. See Figure 1 for an example of an instance of End-of-Line.
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1 2 3 4 5 6 7 8

Fig. 2. Example of an Iter instance𝐶 for 𝑛 = 3. The 2
𝑛
(= 8) nodes are represented by squares. The arrows indicate the mapping

given by the circuit𝐶 . In this example, nodes 2, 6 and 8 are the fixed points of𝐶 . Any node that is mapped by𝐶 to a fixed point is a

solution to the Iter instance. Thus, in this example, the solutions are nodes 3 and 7.

PLS. The complexity class PLS is defined as the set of TFNP problems that reduce in polynomial time to the problem

Localopt.

Localopt (informal)

Input: Functions 𝑉 : [2𝑛] → R and 𝑆 : [2𝑛] → [2𝑛].

Goal: Find 𝑣 ∈ [2𝑛] such that 𝑉 (𝑆 (𝑣)) ≥ 𝑉 (𝑣).

The functions are given as Boolean circuits. A problem is complete for PLS if it belongs to PLS and if Localopt

reduces in polynomial time to that problem. PLS embodies general local search methods where one attempts to optimize

some objective function by considering local improving moves. Our problem GD-Local-Search is essentially a special

case of local search, and thus lies in PLS. In this paper we make use of the problem Iter, defined below, which is known

to be PLS-complete [47].

Iter (informal)

Input: A function 𝐶 : [2𝑛] → [2𝑛] such that 𝐶 (𝑣) ≥ 𝑣 for all 𝑣 ∈ [2𝑛], and 𝐶 (1) > 1.

Goal: Find 𝑣 such that 𝐶 (𝑣) > 𝑣 and 𝐶 (𝐶 (𝑣)) = 𝐶 (𝑣).

For this problem, it is convenient to think of the nodes in [2𝑛] as lying on a line, in increasing order. Then, any node

is either a fixed point of 𝐶 , or it is mapped to some node further to the right. We are looking for any node that is not a

fixed point, but is mapped to a fixed point. It is easy to see that the condition 𝐶 (1) > 1 ensures that such a solution

must exist. See Figure 2 for an example of an instance of Iter.

PPAD ∩ PLS. The class PPAD ∩ PLS contains, by definition, all TFNP problems that lie in both PPAD and in PLS.

Prior to our work, the only known way to obtain PPAD ∩ PLS-complete problems was to combine a PPAD-complete

problem 𝐴 and a PLS-complete problem 𝐵 as follows [21].
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Either-Solution(𝐴,𝐵)

Input: An instance 𝐼𝐴 of 𝐴 and an instance 𝐼𝐵 of 𝐵.

Goal: Find a solution of 𝐼𝐴 or a solution of 𝐼𝐵 .

In particular, the problem Either-Solution(End-of-Line,Iter) is PPAD ∩ PLS-complete, and this is the problem we

reduce from to obtain our results.

CLS. Noting that all known PPAD ∩ PLS-complete problems looked very artificial, Daskalakis and Papadimitriou

[21] defined the class CLS ⊆ PPAD ∩ PLS, which combines PPAD and PLS in a more natural way. The class CLS is

defined as the set of TFNP problems that reduce to the problem 3D-Continuous-Localopt.

3D-Continuous-Localopt (informal)

Input: 𝜀 > 0, 𝐿-Lipschitz functions 𝑝 : [0, 1]3 → [0, 1] and 𝑔 : [0, 1]3 → [0, 1]3.

Goal: Compute any approximate local optimum of 𝑝 with respect to 𝑔. Namely, find 𝑥 ∈ [0, 1]3 such that

𝑝 (𝑔(𝑥)) ≥ 𝑝 (𝑥) − 𝜀.

This problem is essentially a special case of the Localopt problem, where we perform local search over a continuous

domain and where the functions are continuous. The formal definition of 3D-Continuous-Localopt includes violation

solutions for the Lipschitz-continuity of the functions. We also consider a more general version of this problem, which

we call General-Continuous-Localopt, where we allow any bounded convex polytope as the domain.

2.3 Results

The main technical contribution of this work is Theorem 4.1, which shows that the KKT problem is PPAD ∩ PLS-hard,
even when the domain is the unit square [0, 1]2. The hardness also holds for the promise version of the problem, because

the hard instances that we construct always satisfy the promises. We present the main ideas needed for this result in

the next section, but we first briefly present the consequences of this reduction here.

A chain of reductions, presented in Section 5 and shown in Figure 3, which includes the “triangle” between the three

problems of interest, establishes the following theorem.

Theorem 5.1. The problems KKT,GD-Local-Search,GD-Fixpoint and General-Continuous-Localopt are PPAD ∩
PLS-complete, even when the domain is fixed to be the unit square [0, 1]2. This hardness result continues to hold even if one

considers the promise-versions of these problems, i.e., only instances without violations.

These reductions are domain-preserving—which means that they leave the domain 𝐷 unchanged—and promise-

preserving—which means that they are also valid reductions between the promise versions of the problems. As a result,

the other problems “inherit” the hardness result for KKT, including the fact that it holds for 𝐷 = [0, 1]2 and even for

the promise versions.

Consequences for CLS. The PPAD ∩ PLS-hardness of General-Continuous-Localopt on domain [0, 1]2, and
thus also on domain [0, 1]3, immediately implies the following surprising collapse.

Theorem 6.1. CLS = PPAD ∩ PLS.
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PPAD ∩ PLS KKT

GD-Fixpoint

GD-Local-Search

General-

Continuous-

Localopt

PPAD ∩ PLS
Theorem 4.1

Prop. 5.3

Prop. 5.4

Prop. 5.2

Prop. 5.5

Prop. 5.6

Fig. 3. Our reductions. The main one (Theorem 4.1) is on the left; note that the other reductions are all domain- and promise-preserving.

As a result, it also immediately follows that the two known CLS-complete problems [23, 30] are in fact PPAD ∩ PLS-
complete.

Corollary 6.2. Banach and MetametricContraction are PPAD ∩ PLS-complete.

Our results also show that the definition of CLS is robust to various modifications. The fact that our hardness result

holds on domain [0, 1]2 implies that the 𝑛-dimensional variant of CLS is equal to the two-dimensional version, a

fact that was not previously known. Furthermore, since our results hold even for the promise version of General-

Continuous-Localopt, this implies that the definition of CLS is robust with respect to the removal of violations

(promise-CLS =CLS). Finally, we also show that restricting the circuits to be linear arithmetic circuits (that compute

piecewise-linear functions) does not yield a weaker class, i.e., 2D-Linear-CLS =CLS. This result is obtained by showing

that linear circuits can be used to efficiently approximate any Lipschitz-continuous function with arbitrary precision

(Appendix E), which might be of independent interest. All the consequences for CLS are discussed in detail in Section 6.

In that section, we also define a Gradient Descent problem where we do not have access to the gradient of the function

(which might, in fact, not even be differentiable) and instead use “finite differences” to compute an approximate gradient.

We show that this problem remains PPAD ∩ PLS-complete.

2.4 Proof overview for Theorem 4.1

In this section we provide a brief overview of our reduction from the PPAD ∩ PLS-complete problem Either-Solution

(End-of-Line,Iter) to the KKT problem on domain [0, 1]2. We note that the proof can be simplified using subsequent

work by Göös et al. [35]. See Section 7 for more details on this.

Given an instance 𝐼EOL of End-of-Line and an instance 𝐼 ITER of Iter, we construct an instance 𝐼KKT = (𝜀, 𝑓 ,∇𝑓 , 𝐿)
of the KKT problem on domain [0, 1]2 such that from any 𝜀-KKT point of 𝑓 , we can efficiently obtain a solution to

either 𝐼EOL or 𝐼 ITER. The function 𝑓 and its gradient ∇𝑓 are first defined on an exponentially small grid on [0, 1]2, and
then extended within every small square of the grid by using bicubic interpolation. This ensures that the function is

continuously differentiable on the whole domain. The most interesting part of the reduction is how the function is

defined on the grid points, by using information from 𝐼EOL, and then, where necessary, also from 𝐼 ITER.

Embedding 𝑰 EOL. The domain is first subdivided into 2
𝑛 × 2𝑛 big squares, where [2𝑛] is the set of vertices in 𝐼EOL.

The big squares on the diagonal (shaded in Figure 4) represent the vertices of 𝐼EOL and the function 𝑓 is constructed

so as to embed the directed edges in the graph of 𝐼EOL. If the edge (𝑣1, 𝑣2) in 𝐼EOL is a forward edge, i.e, 𝑣1 < 𝑣2, then

there will be a “green path” going from the big square of 𝑣1 to the big square of 𝑣2. On the other hand, if the edge
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1

2

3

4

5

6

7

8

PLS

PLS

Fig. 4. A high-level illustration of our construction. The shaded squares on the diagonal correspond to vertices of the graph represented

by 𝐼EOL, in this case corresponding to the graph in Figure 1. The green and orange arrows encode the directed edges of the graph. The

positions where 𝐼 ITER is encoded, i.e., the PLS-Labyrinths, are shown as boxes labelled “PLS”. They are located at points where the

embedding of 𝐼EOL would introduce false solutions, and their purpose is to hide those false solutions by co-locating any such solution

with a solution to 𝐼 ITER.

(𝑣1, 𝑣2) in 𝐼EOL is a backward edge, i.e., 𝑣1 > 𝑣2, then there will be an “orange path” going from the big square of 𝑣1

to the big square of 𝑣2. These paths are shown in Figure 4 for the corresponding example instance of Figure 1. The

idea of embedding the vertices on the diagonal, in a “staircase embedding”, was introduced by Hubáček and Yogev

[36]. However, their work only required the embedding of forward edges, whereas we have to be able to implement

backward edges as well.

The function 𝑓 is constructed such that when we move along a green path the value of 𝑓 decreases. Conversely,

when we move along an orange path the value of 𝑓 increases. Outside the paths, 𝑓 is defined so as to decrease towards

the origin (0, 0) ∈ [0, 1]2, where the green path corresponding to the source of 𝐼EOL starts. As a result, we show that an

𝜀-KKT point can only occur in a big square corresponding to a vertex 𝑣 of 𝐼EOL such that (a) 𝑣 is a solution of 𝐼EOL, or

(b) 𝑣 is not a solution of 𝐼EOL, but its two neighbours (in the 𝐼EOL graph) are both greater than 𝑣 , or alternatively both

less than 𝑣 . Case (b) exactly corresponds to the case where a green path “meets” an orange path. In that case, it is easy

to see that an 𝜀-KKT point is unavoidable.

The PLS-Labyrinth. In order to resolve the issue with case (b) above, we use the following idea: hide the (unavoid-

able) 𝜀-KKT point in such a way that locating it requires solving 𝐼 ITER! This is implemented by introducing a gadget,
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Fig. 5. High-level illustration of the PLS-Labyrinth corresponding to the Iter example of Figure 2. Shaded squares on the diagonal

correspond to the nodes of Iter. Colours of lines determine how 𝑓 is constructed at these points. The horizontal blue lines (pointing

left) correspond to the 3 edges in Figure 2 that go out from non-solutions, and we do not use similar lines going out from solutions

(nodes 3 and 7).

that we call the PLS-Labyrinth, at the point where the green and orange paths meet (within some big square). An

important point is that the PLS-Labyrinth only works properly when it is positioned at such a meeting point. If it is

positioned elsewhere, then it will either just introduce additional unneeded 𝜀-KKT points, or even introduce 𝜀-KKT

points that are easy to locate. Indeed, if we were able to position the PLS-Labyrinth wherever we wanted, this would

presumably allow us to show PLS-hardness, which as we noted earlier we do not expect. In Figure 4, the positions

where a PLS-Labyrinth is introduced are shown as grey boxes labelled “PLS”.

Every PLS-Labyrinth is subdivided into exponentially many medium squares such that the medium squares on the

diagonal (shaded in Figure 5) correspond to the nodes of 𝐼 ITER. The point where the green and orange paths meet,

which lies just outside the PLS-Labyrinth, creates an “orange-blue path” which then makes its way to the centre of the

medium square for node 1 of 𝐼 ITER. Similarly, for every node 𝑢 of 𝐼 ITER that is a candidate to be a solution (i.e., with

𝐶 (𝑢) > 𝑢), there is an orange-blue path starting from the orange path (which runs along the PLS-Labyrinth) and going

to the centre of the medium square corresponding to 𝑢. Sinks of orange-blue paths introduce 𝜀-KKT points, and so for

those 𝑢 that are not solutions of 𝐼 ITER, the orange-blue path of 𝑢 turns into a “blue path” that goes and merges into

the orange-blue path of 𝐶 (𝑢). This ensures that sinks of orange-blue paths (that do not turn into blue paths) exactly

correspond to the solutions of 𝐼 ITER. An interesting point to note is that sources of blue paths do not introduce 𝜀-KKT

points. This allows us to handle crossings between paths in a straightforward way. Figure 5 shows an overview of the

PLS-Labyrinth that encodes the Iter example of Figure 2.
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Bicubic interpolation. In our construction, we specify how the objective function 𝑓 behaves within the “small

squares” of [0, 1]2. At this stage, we have values of 𝑓 and ∇𝑓 at the corners of the small squares, and we then need

to smoothly interpolate within the interior of each square. We use bicubic interpolation to do this. It constructs a

polynomial over every small square given values for 𝑓 and ∇𝑓 at the square’s corners, in such a way that putting all

these pieces together yields a continuously differentiable function over the whole domain [0, 1]2. We note that the

simpler bilinear interpolation, which was used by Hubáček and Yogev [36], yields a continuous function, but not a

continuously differentiable function over the whole domain. Since Hubáček and Yogev [36] reduce to continuous local

search, it is sufficient in their case to construct two continuous functions 𝑝 and 𝑔. However, in our case we reduce to a

gradient descent problem, so we have to construct a single continuously differentiable function 𝑓 .

We must prove that using bicubic interpolation does not introduce any 𝜀-KKT points within any small square, unless

that small square corresponds to a solution of 𝐼 ITER or 𝐼EOL. Each individual small square leads to a different class

of polynomials, based on the color-coding of the grid point, and the direction of the gradient at each grid point. Our

construction uses 101 distinct small squares, and we must prove that no unwanted solutions are introduced in any of

them. By making use of various symmetries we are able to group these 101 squares into just four different cases for

which we can directly verify that the desired statement holds: an 𝜀-KKT point can only appear in a small square that

yields a solution of 𝐼 ITER or 𝐼EOL.

3 PRELIMINARIES

Let 𝑛 ∈ N be a positive integer. Throughout this paper we use ∥ · ∥ to denote the standard Euclidean norm in 𝑛-

dimensional space, i.e., the ℓ2-norm in R𝑛 . The maximum-norm, or ℓ∞-norm, is denoted by ∥ · ∥∞. For 𝑥,𝑦 ∈ R𝑛 ,
⟨𝑥,𝑦⟩ := ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 denotes the inner product. For any non-empty closed convex set 𝐷 ⊆ R𝑛 , let Π𝐷 : R𝑛 → 𝐷 denote

the projection onto 𝐷 with respect to the Euclidean norm. Formally, for any 𝑥 ∈ R𝑛 , Π𝐷 (𝑥) is the unique point 𝑦 ∈ 𝐷
that minimizes ∥𝑥 − 𝑦∥. For 𝑘 ∈ N, let [𝑘] := {1, 2, . . . , 𝑛}.

3.1 Computational model, classes and arithmetic circuits

We work in the standard Turing machine model. Rational numbers are represented as irreducible fractions, with the

numerator and denominator of the irreducible fraction given in binary. Note that given any fraction, it can be made

irreducible in polynomial time using the Euclidean algorithm. For a rational number 𝑥 , we let size(𝑥) denote the number

of bits needed to represent 𝑥 , i.e., the number of bits needed to write down the numerator and denominator (in binary)

of the irreducible fraction for 𝑥 .

3.1.1 NP total search problems and reductions.

Search Problems. Let {0, 1}∗ denote the set of all finite length bit-strings and let |𝑥 | be the length of 𝑥 ∈ {0, 1}∗. A
computational search problem is given by a relation 𝑅 ⊆ {0, 1}∗ × {0, 1}∗, interpreted as the following problem: given

an instance 𝑥 ∈ {0, 1}∗, find𝑤 ∈ {0, 1}∗ such that (𝑥,𝑤) ∈ 𝑅, or return that no such𝑤 exists.

The search problem 𝑅 is in FNP (search problems in NP), if 𝑅 is polynomial-time computable (i.e., (𝑥,𝑤) ∈ 𝑅 can

be decided in polynomial time in |𝑥 | + |𝑤 |) and polynomially-balanced (i.e., there exists some polynomial 𝑝 such that

(𝑥,𝑤) ∈ 𝑅 =⇒ |𝑤 | ≤ 𝑝 ( |𝑥 |)). Intuitively, FNP contains all search problems where all solutions have size polynomial

in the size of the instance and any solution can be checked in polynomial time. (The solution 𝑤 is thought-of as a

witness.) The class of all search problems in FNP that can be solved by a polynomial-time algorithm is denoted by FP.

The question FP vs. FNP is equivalent to the P vs. NP question.
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The class TFNP (total search problems in NP) is defined as the set of all FNP problems 𝑅 that are total, i.e., every

instance has at least one solution. Formally, 𝑅 is total, if for every 𝑥 ∈ {0, 1}∗ there exists𝑤 ∈ {0, 1}∗ such that (𝑥,𝑤) ∈ 𝑅.
In a certain sense,

4
TFNP lies between FP and FNP.

Note that the totality of TFNP problems should not rely on any promise. Instead, there is a syntactic guarantee of

totality: for any instance, there is a solution. It is easy to see that a TFNP problem cannot be NP-hard, unless NP =

co-NP. Furthermore, it is also believed that no TFNP-complete problem exists. For more details on this, see [44].

Reductions between TFNP problems. Let 𝑅 and 𝑆 be two TFNP problems. We say that 𝑅 reduces to 𝑆 if there

exist polynomial-time computable functions 𝑓 : {0, 1}∗ → {0, 1}∗ and 𝑔 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, for all

𝑥,𝑤 ∈ {0, 1}∗,
(𝑓 (𝑥),𝑤) ∈ 𝑆 =⇒ (𝑥,𝑔(𝑥,𝑤)) ∈ 𝑅

Intuitively, this says that for any instance 𝑥 of 𝑅, if we can find a solution𝑤 to instance 𝑓 (𝑥) of 𝑆 , then 𝑔(𝑥,𝑤) gives us
a solution to instance 𝑥 of 𝑅. In particular, note that if 𝑆 is polynomial-time solvable, then so is 𝑅.

3.1.2 The classes PPAD, PLS and PPAD ∩ PLS. Since TFNP problems likely cannot be NP-hard, or TFNP-complete,

one instead attempts to classify the problems inside TFNP. Various subclasses of TFNP have been defined and natural

problems have been proved complete for these subclasses. In this section we formally define the subclasses PPAD and

PLS, which have both been very successful in capturing the complexity of interesting problems.

The most convenient way to define these classes is using problems on Boolean circuits. A Boolean circuit 𝐶 :

{0, 1}𝑛 → {0, 1}𝑛 with 𝑛 inputs and 𝑛 outputs, is allowed to use the logic gates ∧ (AND), ∨ (OR) and ¬ (NOT), where

the ∧ and ∨ gates have fan-in 2, and the ¬ gate has fan-in 1. For ease of notation, we identify {0, 1}𝑛 with [2𝑛].

PPAD. The class PPAD is defined as the set of all TFNP problems that reduce to the problem End-of-Line [20, 50].

Definition 1. End-of-Line:

Input: Boolean circuits 𝑆, 𝑃 : [2𝑛] → [2𝑛] with 𝑃 (1) = 1 ≠ 𝑆 (1).
Goal: Find 𝑣 ∈ [2𝑛] such that 𝑃 (𝑆 (𝑣)) ≠ 𝑣 or 𝑆 (𝑃 (𝑣)) ≠ 𝑣 ≠ 1.

The successor circuit 𝑆 and the predecessor circuit 𝑃 implicitly define a directed graph on the vertex set [2𝑛]. There
is an edge from 𝑣1 to 𝑣2 if 𝑆 (𝑣1) = 𝑣2 and 𝑃 (𝑣2) = 𝑣1. Every vertex has at most one outgoing edge and at most one

incoming edge. Since the vertex 1 has one outgoing edge and no incoming edge, it is a source. The goal is to find another

end of line, i.e., another source, or a sink of the graph. Note that such a vertex is guaranteed to exist. The condition

𝑃 (1) = 1 ≠ 𝑆 (1) can be enforced syntactically, so this is indeed a TFNP problem and not a promise problem. See Figure 1

for an example of an End-of-Line instance.

PLS. The class PLS is defined as the set of all TFNP problems that reduce to the problem Localopt [21, 40].

Definition 2. Localopt:

Input: Boolean circuits 𝑆,𝑉 : [2𝑛] → [2𝑛].
Goal: Find 𝑣 ∈ [2𝑛] such that 𝑉 (𝑆 (𝑣)) ≥ 𝑉 (𝑣).

4
Clearly, TFNP ⊆ FNP, but with a slight abuse of notation we can also say that FP ⊆ TFNP. Indeed, any problem 𝑅 in FP can be turned into a TFNP

problem by including a pair (𝑥,NO) in 𝑅 for each instance 𝑥 that does not have a solution, where NO is some dedicated bit-string. Note that despite this

minor modification, the search problem remains essentially the same.
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This problem embodies local search over the node set [2𝑛]. The output of the circuit𝑉 represents a value and ideally

we would like to find a node 𝑣 ∈ [2𝑛] that minimises 𝑉 (𝑣). The circuit 𝑆 helps us in this task by proposing a possibly

improving node 𝑆 (𝑣) for any 𝑣 . We stop our search, when we find a 𝑣 such that 𝑉 (𝑆 (𝑣)) ≥ 𝑉 (𝑣), i.e., 𝑆 no longer helps

us decrease the value of 𝑉 . This is local search, because the circuit 𝑆 represents the search for an improving node in

some small (polynomial-size) neighbourhood.

In this paper, we also make use of the following PLS-complete problem [47].

Definition 3. Iter:

Input: Boolean circuit 𝐶 : [2𝑛] → [2𝑛] with 𝐶 (1) > 1.

Goal: Find 𝑣 such that either

• 𝐶 (𝑣) < 𝑣 , or
• 𝐶 (𝑣) > 𝑣 and 𝐶 (𝐶 (𝑣)) = 𝐶 (𝑣).

In this problem, it is convenient to think of the nodes in [2𝑛] as lying on a line from left to right. Then, we are

looking for any node 𝑣 that is mapped to the left by 𝐶 , or any node 𝑣 that is mapped to the right and such that 𝐶 (𝑣) is
a fixed point of 𝐶 . Since 𝐶 (1) > 1, i.e., node 1 is mapped to the right, it is easy to see that such a solution must exist

(apply𝐶 repeatedly on node 1). Note that the condition𝐶 (1) > 1 can be enforced syntactically, so this is indeed a TFNP

problem and not a promise problem. See Figure 2 for an example of an Iter instance.

PPAD ∩ PLS. The class PPAD ∩ PLS is the set of all TFNP problems that lie in both PPAD and in PLS. A problem in

PPAD ∩ PLS cannot be PPAD- or PLS-complete, unless PPAD ⊆ PLS or PLS ⊆ PPAD. Neither of these two containments

is believed to hold, and this is supported by oracle separations between the classes [10, 11, 47]. It is easy to construct

“artificial” PPAD ∩ PLS-complete problems from PPAD- and PLS-complete problems.

Proposition 3.1 (Daskalakis and Papadimitriou [21]). For any TFNP problems 𝐴 and 𝐵, let Either-Solution(𝐴,𝐵)

denote the problem: given an instance 𝐼𝐴 of 𝐴 and an instance 𝐼𝐵 of 𝐵, find a solution of 𝐼𝐴 or a solution of 𝐼𝐵 . If 𝐴 is

PPAD-complete and 𝐵 is PLS-complete, then Either-Solution(𝐴,𝐵) is PPAD ∩ PLS-complete.

As a result, we obtain the following corollary, which we will use to show our main PPAD ∩ PLS-hardness result.

Corollary 3.2. Either-Solution(End-of-Line,Iter) is PPAD ∩ PLS-complete.

Prior to our work, the problems Either-Solution(𝐴,𝐵), where 𝐴 is PPAD-complete and 𝐵 is PLS-complete, were the

only known PPAD ∩ PLS-complete problems.

3.1.3 Arithmetic circuits and the class CLS. Noting that PPAD ∩ PLS only seemed to have artificial complete problems,

Daskalakis and Papadimitriou [21] defined a subclass of PPAD ∩ PLS with a more natural definition, that combines

PPAD and PLS nicely in a single problem. Unlike PPAD and PLS, CLS is defined using arithmetic circuits.

Arithmetic circuits. An arithmetic circuit representing a function 𝑓 : R𝑛 → R𝑚 is a circuit with 𝑛 inputs and𝑚

outputs, and every internal node is a gate with fan-in 2 performing an operation in {+,−,×,max,min, >} or a rational
constant (modelled as a gate with fan-in 0). The comparison gate >, on input 𝑎, 𝑏 ∈ R, outputs 1 if 𝑎 > 𝑏, and 0 otherwise.

For an arithmetic circuit 𝑓 , we let size(𝑓 ) denote the size of the circuit, i.e., the number of bits needed to describe the

circuit, including the rational constants used therein. Obviously, there are various different ways of defining arithmetic

circuits, depending on which gates we allow. The definition we use here is the same as the one used by Daskalakis and
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Papadimitriou [21] in their original definition of CLS. Many variants are equivalent to this definition, for example <, ≤,
and ≥ can be implemented using the given operations.

These circuits are very natural, but they suffer from a subtle issue that seems to have been overlooked in some prior

works. Using the multiplication gate, such an arithmetic circuit can perform repeated squaring to construct numbers

that have exponential representation size with respect to the size of the circuit and the input to the circuit. In other

words, the circuit can construct numbers that are doubly exponential (or the inverse thereof). Thus, in some cases, it

might not be possible to evaluate the circuit on some input efficiently, i.e., in time polynomial in the size of the circuit

and the given input. Indeed, evaluating the circuit is at least as hard as solving the PosSLP problem (of checking whether

the output of a given straight-line program is positive) introduced by Allender et al. [4], which is not believed to be

polynomial-time solvable.

This subtle issue was recently also noticed by Daskalakis and Papadimitriou, who proposed a way to fix it in a

corrigendum
5
to the definition of CLS. Their modification consists in having an additional input 𝐾 (in unary) provided

as part of the input such that the evaluation of the arithmetic circuit—purportedly—only involves numbers of bit-size

at most 𝐾 · size(𝑥) on input 𝑥 . Any point 𝑥 where the arithmetic circuit fails to satisfy this property is accepted as a

solution.

In this paper, we use an alternative way to resolve the issue. We restrict our attention to what we call well-behaved

arithmetic circuits. An arithmetic circuit 𝑓 is well-behaved if, on any directed path that leads to an output, there are at

most log(size(𝑓 )) true multiplication gates. A true multiplication gate is one where both inputs are non-constant nodes

of the circuit. In particular, note that we allow our circuits to perform multiplication by a constant as often as needed

without any restriction. Indeed, these operations cannot be used to do repeated squaring.

It is easy to see that given an arithmetic circuit 𝑓 , we can check in polynomial time whether 𝑓 is well-behaved.

Furthermore, these circuits can always be efficiently evaluated.

Lemma 3.3. Let 𝑓 be a well-behaved arithmetic circuit with 𝑛 inputs. Then, for any rational 𝑥 ∈ R𝑛 , 𝑓 (𝑥) can be computed

in time poly(size(𝑓 ), size(𝑥)).

We provide a proof of this Lemma in Appendix A.

Using well-behaved arithmetic circuits, instead of the solution proposed by Daskalakis and Papadimitriou, has the

advantage that we do not need to add any additional inputs, or any additional violation solutions to our problems. Indeed,

the restriction to well-behaved circuits can be enforced syntactically. Furthermore, we note that our problems defined

with well-behaved circuits easily reduce to the versions using the solution proposed by Daskalakis and Papadimitriou

(see Remark 1 below). Thus, this restriction only makes our hardness results stronger. In fact, for CLS we show

that restricting the circuits even further to only use gates {+,−,max,min,×𝜁 } and rational constants (where ×𝜁 is

multiplication by a constant), so-called linear arithmetic circuits (representing piecewise linear functions), does not

make the class any weaker (see Section 6.2).

For the problems we consider, it is quite convenient to use arithmetic circuits instead of, say, polynomial-time Turing

machines to represent the functions involved. Indeed, the problems could also be defined with polynomial-time Turing

machines, but that would introduce some technical subtleties in the definitions (the polynomial used as an upper bound

on the running time of the machines would have to be fixed). The important thing to note is that the Turing machine

variants of the problems would continue to lie in PPAD ∩ PLS. Thus, using arithmetic circuits just makes our hardness

5
http://people.csail.mit.edu/costis/CLS-corrigendum.pdf

http://people.csail.mit.edu/costis/CLS-corrigendum.pdf
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results stronger. Note also that in the hard instances we construct, the arithmetic circuits only perform a constant

number of true multiplications (see the proof of Lemma 4.2).

Remark 1. The proof of Lemma 3.3 (in Appendix A) shows that if we evaluate a well-behaved arithmetic circuit 𝑓

on some input 𝑥 , then, the value 𝑣 (𝑔) at any gate 𝑔 of the circuit will satisfy size(𝑣 (𝑔)) ≤ 6 · size(𝑓 )3 · size(𝑥). As a
result, it immediately follows that problems with well-behaved arithmetic circuits can be reduced to the versions of the

problems with the modification proposed by Daskalakis and Papadimitriou in the corrigendum of the CLS paper. Indeed,

it suffices to let 𝐾 = 6 · size(𝑓 )3, which can be written down in unary. In particular, this holds for the definition of CLS.

Remark 2. Our definition of well-behaved circuits is robust in the following sense. For any 𝑘 ∈ N, say that a circuit 𝑓

is 𝑘-well-behaved if, on any path that leads to an output, there are at most 𝑘 · log(size(𝑓 )) true multiplication gates. In

particular, a circuit is well-behaved if it is 1-well-behaved. It is easy to see that for any fixed 𝑘 ∈ N, if we are given a

circuit 𝑓 that is 𝑘-well-behaved, we can construct in time poly(size(𝑓 )) a circuit 𝑓 ′ that is well-behaved and computes

the same function as 𝑓 . This can be achieved by adding (size(𝑓 ))𝑘 dummy gates to the circuit 𝑓 , i.e., gates that do not

alter the output of the circuit. For example, we can add gates that repeatedly add 0 to the output of the circuit.

Lipschitz-continuity. Note that even well-behaved arithmetic circuits might not yield continuous functions, be-

cause of the comparison gate. Some of our problems require continuity of the function, and the most convenient type

of continuity for computational purposes is Lipschitz-continuity. A function 𝑓 : R𝑛 → R𝑚 is Lipschitz-continuous on

the domain 𝐷 ⊆ R𝑛 with Lipschitz-constant 𝐿, if for all 𝑥,𝑦 ∈ 𝐷

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ 𝐿 · ∥𝑥 − 𝑦∥ .

Violations and promise-preserving reductions. There is no known way of syntactically enforcing that an

arithmetic circuit be Lipschitz-continuous. Thus, to ensure that our problems indeed lie in TFNP, we allow any well-

behaved circuit in the input, together with a purported Lipschitz-constant 𝐿, and also accept a pair (𝑥,𝑦) witnessing a

violation of 𝐿-Lipschitz-continuity as a solution. This “trick” was also used by Daskalakis and Papadimitriou [21] for

the definition of CLS.

One might wonder whether defining a problem in this way, with violations, makes it harder than the (more natural)

promise version, where we only consider inputs that satisfy the promise (namely, 𝐿-Lipschitz-continuity). We show

that for our problems, the promise versions are just as hard. Indeed, the hard instances we construct for the KKT

problem satisfy the promises and we then obtain this for the other problems “for free”, because all of our reductions are

promise-preserving, as defined in [31, Definition 7]. A reduction (𝑓 , 𝑔) from problem 𝑅 to problem 𝑆 is promise-preserving,

if for any instance 𝑥 of 𝑅, for any violation solution 𝑦 of instance 𝑓 (𝑥) of 𝑆 , it holds that 𝑔(𝑥,𝑦) is a violation solution

of instance 𝑥 of 𝑅. Informally: any violation solution of 𝑆 is mapped back to a violation solution of 𝑅.

CLS. The class CLS is defined as the set of all TFNP problems that reduce to 3D-Continuous-Localopt.

Definition 4. Continuous-Localopt:

Input:

• precision/stopping parameter 𝜀 > 0,

• well-behaved arithmetic circuits 𝑝 : [0, 1]𝑛 → [0, 1] and 𝑔 : [0, 1]𝑛 → [0, 1]𝑛 ,
• Lipschitz constant 𝐿 > 0.
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Goal: Compute an approximate local optimum of 𝑝 with respect to 𝑔. Formally, find 𝑥 ∈ [0, 1]𝑛 such that

𝑝 (𝑔(𝑥)) ≥ 𝑝 (𝑥) − 𝜀.

Alternatively, we also accept one of the following violations as a solution:

• (𝑝 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ [0, 1]𝑛 such that |𝑝 (𝑥) − 𝑝 (𝑦) | > 𝐿∥𝑥 − 𝑦∥,
• (𝑔 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ [0, 1]𝑛 such that ∥𝑔(𝑥) − 𝑔(𝑦)∥ > 𝐿∥𝑥 − 𝑦∥.

For 𝑘 ∈ N, we let 𝑘D-Continuous-Localopt denote the problem Continuous-Localopt where 𝑛 is fixed to be

equal to 𝑘 .

Continuous-Localopt is similar to Localopt, in the sense that we are looking for a minimum of 𝑝 over the domain

[0, 1]𝑛 using the help of a function 𝑔. The membership of the problem in PLS and in PPAD is easy to show [21]. The

membership in PPAD follows from the observation that 𝑔 is a Brouwer function and that every (approximate) fixed

point of 𝑔 also yields a solution to the Continuous-Localopt instance.

Note that the original definition of Continuous-Localopt in [21] uses arithmetic circuits without the “well-behaved”

restriction. As argued above, these circuits cannot always be evaluated efficiently, and so we instead use well-behaved

arithmetic circuits, to ensure that the problem lies in TFNP. The interesting problems shown to lie in CLS by Daskalakis

and Papadimitriou [21] still reduce to Continuous-Localopt even with this restriction on the circuits. It also turns

out that this restriction does not make the class any weaker, since we show that 2D-Continuous-Localopt with

well-behaved arithmetic circuits is PPAD ∩ PLS-hard.
For some applications it is convenient to allow more general domains than just [0, 1]𝑛 and so we also define a more

general version of Continuous-Localopt.

Definition 5. General-Continuous-Localopt:

Input:

• precision/stopping parameter 𝜀 > 0,

• (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 defining a bounded non-empty domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏},
• well-behaved arithmetic circuits 𝑝 : R𝑛 → R and 𝑔 : R𝑛 → R𝑛 ,
• Lipschitz constant 𝐿 > 0.

Goal: Compute an approximate local optimum of 𝑝 with respect to 𝑔 on domain 𝐷 . Formally, find 𝑥 ∈ 𝐷 such

that

𝑝
(
Π𝐷 (𝑔(𝑥))

)
≥ 𝑝 (𝑥) − 𝜀.

Alternatively, we also accept one of the following violations as a solution:

• (𝑝 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ 𝐷 such that |𝑝 (𝑥) − 𝑝 (𝑦) | > 𝐿∥𝑥 − 𝑦∥,
• (𝑔 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ 𝐷 such that ∥𝑔(𝑥) − 𝑔(𝑦)∥ > 𝐿∥𝑥 − 𝑦∥.

Note that given (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 , it is easy to check whether the domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} is bounded and

non-empty by using linear programming.

We use the projection Π𝐷 in this definition, because it is not clear whether there is some syntactic way of ensuring

that 𝑔(𝑥) ∈ 𝐷 . Namely, it is unclear whether Π𝐷 can be computed inside our arithmetic circuits. However, Π𝐷 can

be computed efficiently by a Turing machine, since it can be formulated as a convex quadratic program, known to
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be solvable in polynomial time [43]. To be more precise, given a rational vector 𝑥 ∈ R𝑛 , Π𝐷 (𝑥) can be computed

exactly in time poly(size(𝑥), size(𝐴), size(𝑏)). Note that when 𝐷 = [0, 1]𝑛 , the projection Π𝐷 can easily be computed

by arithmetic circuits, so Π𝐷 is not needed in the definition of Continuous-Localopt. Indeed, when 𝐷 = [0, 1]𝑛 , we
have [Π𝐷 (𝑥)]𝑖 = min{1,max{0, 𝑥𝑖 }} for all 𝑖 ∈ [𝑛] and 𝑥 ∈ R𝑛 .

The definition of CLS using 3D-Continuous-Localopt, instead of 2D-Continuous-Localopt, Continuous-

Localopt, or General-Continuous-Localopt, leaves open various questions about whether all these different ways

of defining it are equivalent. We prove that this is indeed the case. We discuss this, as well as the robustness of the

definition of CLS with respect to other modifications in Section 6.

3.2 Computational problems from nonlinear optimization

In this section we formally define our three problems of interest. We begin by a brief introduction to nonlinear

optimization.

3.2.1 Background on nonlinear optimization. The standard problem of nonlinear optimization (also called nonlinear

programming) can be formulated as follows:

min

𝑥 ∈R𝑛
𝑓 (𝑥)

s.t. 𝑔𝑖 (𝑥) ≤ 0 ∀𝑖 ∈ [𝑚]
(1)

where 𝑓 : R𝑛 → R is the objective function to be minimised, and 𝑔1, . . . , 𝑔𝑚 : R𝑛 → R are the inequality constraint

functions. It is assumed that 𝑓 , 𝑔𝑖 are 𝐶
1
, i.e., continuously differentiable. Throughout this paper we consider the

minimisation problem, but our results also apply to the maximisation problem, since we consider function classes that

are closed under negation.

Global minimum. Unfortunately, solving the optimization problem (1), namely computing a global minimum, is

intractable, even for relatively simple objective functions and constraints ([48] in the context of quadratic programming,

[8] in the context of neural networks).

Local minima. The most natural way to relax the requirement of a global minimum, is to look for a local minimum

instead. A point 𝑥 ∈ R𝑛 is a local minimum of (1), if it satisfies all the constraints, namely 𝑥 ∈ 𝐷 , where 𝐷 = {𝑦 ∈
R𝑛 | 𝑔𝑖 (𝑥) ≤ 0∀𝑖 ∈ [𝑚]}, and if there exists 𝜀 > 0 such that

𝑓 (𝑥) ≤ 𝑓 (𝑦) ∀𝑦 ∈ 𝐷 ∩ 𝐵𝜀 (𝑥) (2)

where 𝐵𝜀 (𝑥) = {𝑦 ∈ R𝑛 | ∥𝑦 − 𝑥 ∥ ≤ 𝜀}.
However, while the notion of a local minimum is very natural, an important issue arises when the problem is

considered from the computational perspective. Looking at expression (2), it not clear how to efficiently check whether

a given point 𝑥 is a local minimum or not. Indeed, it turns out that deciding whether a given point is a local minimum is

co-NP-hard, even for simple objective and constraint functions [48]. Furthermore, it was recently shown that computing

a local minimum, even when it is guaranteed to exist, cannot be done in polynomial time unless P = NP [3], even for

quadratic functions where the domain is a polytope.

Necessary optimality conditions. In order to avoid this issue, one can instead look for a point satisfying some

so-called necessary optimality conditions. As the name suggests, these are conditions that must be satisfied for any local
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minimum, but might also be satisfied for points that are not local minima. Importantly, these conditions can usually be

checked in polynomial time. For this reason, algorithms attempting to solve (1), usually try to find a point that satisfies

some necessary optimality conditions instead.

KKT points. The most famous and simplest necessary optimality conditions are the Karush-Kuhn-Tucker (KKT)

conditions. The KKT conditions are first-order conditions in the sense that they only involve the first derivatives (i.e.,

the gradients) of the functions in the problem statement. Formally, a point 𝑥 ∈ R𝑛 satisfies the KKT conditions if it is

feasible, i.e., 𝑥 ∈ 𝐷 = {𝑦 ∈ R𝑛 | 𝑔𝑖 (𝑥) ≤ 0∀𝑖 ∈ [𝑚]}, and if there exist 𝜇1, . . . , 𝜇𝑚 ≥ 0 such that

∇𝑓 (𝑥) +
𝑚∑︁
𝑖=1

𝜇𝑖∇𝑔𝑖 (𝑥) = 0

and 𝜇𝑖𝑔𝑖 (𝑥) = 0 for all 𝑖 ∈ [𝑚]. This last condition ensures that 𝜇𝑖 > 0 can only occur if 𝑔𝑖 (𝑥) = 0, i.e., if the 𝑖th

constraint is tight. In particular, if no constraint is tight at 𝑥 , then 𝑥 is a KKT point if ∇𝑓 (𝑥) = 0 (in other words, if it is

a stationary point). A point 𝑥 that satisfies the KKT conditions is also called a KKT point. Note that given access to

∇𝑓 (𝑥), 𝑔𝑖 (𝑥) and ∇𝑔𝑖 (𝑥), one can check in polynomial time whether 𝑥 is a KKT point, since this reduces to checking

the feasibility of a linear program.

Every local minimum of (1) must satisfy the KKT conditions, as long as the problem satisfies some so-called

regularity conditions or constraint qualifications. In this paper, we restrict our attention to linear constraints (i.e.,

𝑔𝑖 (𝑥) = ⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖 ). In this case, it is known that every local minimum is indeed a KKT point.

𝜺-KKT points. In practice, but also when studying the computational complexity in the standard Turing model

(because of issues of representation), it is unreasonable to expect to find a point that exactly satisfies the KKT conditions.

Instead, one looks for an approximate KKT point. Given 𝜀 ≥ 0, we say that 𝑥 ∈ R𝑛 is an 𝜀-KKT point if 𝑥 ∈ 𝐷 and if

there exist 𝜇1, . . . , 𝜇𝑚 ≥ 0 such that 




∇𝑓 (𝑥) + 𝑚∑︁
𝑖=1

𝜇𝑖∇𝑔𝑖 (𝑥)





 ≤ 𝜀

and 𝜇𝑖𝑔𝑖 (𝑥) = 0 for all 𝑖 ∈ [𝑚].6 In particular, if no constraint is tight at 𝑥 , then 𝑥 is an 𝜀-KKT point if ∥∇𝑓 (𝑥)∥ ≤ 𝜀
(i.e., if 𝑥 is an 𝜀-stationary point). Since ∥ · ∥ denotes the ℓ2-norm, we can check whether a point is an 𝜀-KKT point

in polynomial time by using a convex quadratic program, which can be solved efficiently [43]. If we instead use the

ℓ∞-norm or the ℓ1-norm in the definition of 𝜀-KKT point, then we can check whether a point is an 𝜀-KKT point in

polynomial time by solving a linear program.

Since we focus on the case where 𝐷 = {𝑦 ∈ R𝑛 |𝐴𝑦 ≤ 𝑏}, (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 , we can rewrite the KKT conditions

as follows. A point 𝑥 ∈ R𝑛 is an 𝜀-KKT point if 𝑥 ∈ 𝐷 and if there exist 𝜇1, . . . , 𝜇𝑚 ≥ 0 such that


∇𝑓 (𝑥) +𝐴𝑇 𝜇


 ≤ 𝜀
and ⟨𝜇,𝐴𝑥 − 𝑏⟩ = 0. Note that this exactly corresponds to the earlier definition adapted to this case. In particular, the

condition “𝜇𝑖 [𝐴𝑥 −𝑏]𝑖 = 0 for all 𝑖 ∈ [𝑚]” is equivalent to ⟨𝜇,𝐴𝑥 −𝑏⟩ = 0, since 𝜇𝑖 ≥ 0 and [𝐴𝑥 −𝑏]𝑖 ≤ 0 for all 𝑖 ∈ [𝑚].
It is known that if there are no constraints, then it is NP-hard to decide whether a KKT point exists [2]. This implies

that, in general, unless P = NP, there is no polynomial-time algorithm that computes a KKT point of (1). However,

6
This is the usual definition of an 𝜀-KKT point [26, 53]. A weaker notion where the complementary slackness condition is relaxed to 𝜇𝑖𝑔𝑖 (𝑥) ≥ −𝜀 can
also be considered [26]. Our hardness result holds for this weaker notion as well. Indeed, it is easy to check that an 𝜀-KKT point can be obtained by

first computing a “weak” 𝜀′-KKT point 𝑥 ∈ [0, 1]2 (for some 𝜀′ efficiently computable given 𝜀 and the other parameters of the problem), and by then

“rounding” 𝑥𝑖 to 0 or to 1 if it is sufficiently close to 0 or 1, respectively.
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this hardness result does not say anything about one very important special case, namely when the feasible region

𝐷 is a compact set (in particular, when it is a bounded polytope defined by linear constraints). Indeed, in that case, a

KKT point is guaranteed to exist—since a local minimum is guaranteed to exist—and easy to verify, and thus finding a

KKT point is a total search problem in the class TFNP. In particular, this means that, for compact 𝐷 , the problem of

computing a KKT point cannot be NP-hard, unless NP = co-NP [44]. In this paper, we provide strong evidence that the

problem remains hard for such bounded domains, and, in fact, even when the feasible region is as simple as 𝐷 = [0, 1]2.
The problem of finding an 𝜀-KKT point has primarily been studied in the “black box” model, where we only have

oracle access to the function and its gradient, and count the number of oracle calls needed to solve the problem. Vavasis

[53] proved that at least Ω(
√︁
𝐿/𝜀) calls are needed to find an 𝜀-KKT point of a continuously differentiable function

𝑓 : [0, 1]2 → R with 𝐿-Lipschitz gradient. It was recently shown by Bubeck and Mikulincer [9] that this bound is tight

up to a logarithmic factor. For the high-dimensional case, Carmon et al. [12] showed a tight bound of Θ(1/𝜀2), when
the Lipschitz constant is fixed.

3.2.2 The KKT problem. Given the definition of 𝜀-KKT points in the previous section, we can formally define a

computational problem where the goal is to compute such a point. Our formalisation of this problem assumes that 𝑓

and ∇𝑓 are provided in the input as arithmetic circuits. However, it is unclear if, given a circuit 𝑓 , we can efficiently

determine whether it corresponds to a continuously differentiable function, and whether the circuit for ∇𝑓 indeed

computes its gradient. Thus, one has to either consider the promise version of the problem (where this is guaranteed to

hold for the input), or add violation solutions like in the definition of Continuous-Localopt. In order to ensure that

our problem is in TFNP, we formally define it with violation solutions. However, we note that our hardness results also

hold for the promise versions.

The type of violation solution that we introduce to ensure that ∇𝑓 is indeed the gradient of 𝑓 is based on the following
version of Taylor’s theorem, which is proved in Appendix B.2.

Lemma 3.4 (Taylor’s theorem). Let 𝑓 : R𝑛 → R be continuously differentiable and let 𝐷 ⊆ R𝑛 be convex. If ∇𝑓 is

𝐿-Lipschitz-continuous (w.r.t. the ℓ2-norm) on 𝐷 , then for all 𝑥,𝑦 ∈ 𝐷 we have��𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩�� ≤ 𝐿

2

∥𝑦 − 𝑥 ∥2 .

We are now ready to formally define our KKT problem.

Definition 6. KKT:

Input:

• precision parameter 𝜀 > 0,

• (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 defining a bounded non-empty domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏},
• well-behaved arithmetic circuits 𝑓 : R𝑛 → R and ∇𝑓 : R𝑛 → R𝑛 ,
• Lipschitz constant 𝐿 > 0.

Goal: Compute an 𝜀-KKT point for the minimization problem of 𝑓 on domain 𝐷 .

Formally, find 𝑥 ∈ 𝐷 such that there exist 𝜇1, . . . , 𝜇𝑚 ≥ 0 such that


∇𝑓 (𝑥) +𝐴𝑇 𝜇


 ≤ 𝜀
and ⟨𝜇,𝐴𝑥 − 𝑏⟩ = 0.
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Alternatively, we also accept one of the following violations as a solution:

• (𝑓 or ∇𝑓 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ 𝐷 such that

|𝑓 (𝑥) − 𝑓 (𝑦) | > 𝐿∥𝑥 − 𝑦∥ or ∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ > 𝐿∥𝑥 − 𝑦∥,

• (∇𝑓 is not the gradient of 𝑓 ) 𝑥,𝑦 ∈ 𝐷 that contradict Taylor’s theorem (Lemma 3.4), i.e.,��𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩�� > 𝐿

2

∥𝑦 − 𝑥 ∥2 .

Note that all conditions on the input of the KKT problem can be checked in polynomial time. In particular, we can

use linear programming to check that the domain is bounded and non-empty. With regards to a solution 𝑥 ∈ 𝐷 , there is
no need to include the values 𝜇1, . . . , 𝜇𝑚 as part of a solution. Indeed, given 𝑥 ∈ 𝐷 , we can check in polynomial time

whether there exist such 𝜇1, . . . , 𝜇𝑚 by solving the following convex quadratic program:

min

𝜇∈R𝑚


∇𝑓 (𝑥) +𝐴𝑇 𝜇

2

s.t. ⟨𝜇,𝐴𝑥 − 𝑏⟩ = 0

𝜇 ≥ 0

If the optimal value of this program is strictly larger than 𝜀2, then 𝑥 is not an 𝜀-KKT point. Otherwise, it is an 𝜀-KKT

point and the optimal 𝜇1, . . . , 𝜇𝑚 certify this. If we use the ℓ∞-norm or the ℓ1-norm instead of the ℓ2-norm for the

definition of 𝜀-KKT points, then we can check whether a point is an 𝜀-KKT point using the same approach (except

that we do not take the square of the norm, and we simply obtain a linear program). Whether we use the ℓ2-norm, the

ℓ∞-norm or the ℓ1-norm for the definition of 𝜀-KKT points has no impact on the complexity of the KKT problem defined

above. Indeed, is is easy to reduce the various versions to each other.

Note that 𝜀 and 𝐿 are provided in binary representation in the input. This is important, since our hardness result in

Theorem 4.1 relies on at least one of those two parameters being exponential in the size of the input. If both parameters

are provided in unary, then the problem can be solved in polynomial time on the domain [0, 1]𝑛 (see Lemma C.4).

3.2.3 Gradient Descent problems. In this section we formally define our two versions of the Gradient Descent problem.

Since we consider Gradient Descent on bounded domains 𝐷 , we need to ensure that the next iterate indeed lies in 𝐷 .

The standard way to handle this is by using so-called Projected Gradient Descent, where the next iterate is computed

using a standard Gradient Descent step and then projected onto 𝐷 using Π𝐷 . Formally,

𝑥 (𝑘+1) ← Π𝐷

(
𝑥 (𝑘) − 𝜂∇𝑓

(
𝑥 (𝑘)

) )
where 𝜂 > 0 is the step size. Throughout, we only consider the case where the step size is fixed, i.e., the same in

all iterations. Our first version of the problem considers the stopping criterion: stop if the next iterate improves the

objective function value by less than 𝜀.

Definition 7. GD-Local-Search:

Input:

• precision/stopping parameter 𝜀 > 0,
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• step size 𝜂 > 0,

• (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 defining a bounded non-empty domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏},
• well-behaved arithmetic circuits 𝑓 : R𝑛 → R and ∇𝑓 : R𝑛 → R𝑛 ,
• Lipschitz constant 𝐿 > 0.

Goal: Compute any point where (projected) gradient descent for 𝑓 on domain𝐷 with fixed step size𝜂 terminates.

Formally, find 𝑥 ∈ 𝐷 such that

𝑓

(
Π𝐷

(
𝑥 − 𝜂∇𝑓 (𝑥)

) )
≥ 𝑓 (𝑥) − 𝜀.

Alternatively, we also accept one of the following violations as a solution:

• (𝑓 or ∇𝑓 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ 𝐷 such that

|𝑓 (𝑥) − 𝑓 (𝑦) | > 𝐿∥𝑥 − 𝑦∥ or ∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ > 𝐿∥𝑥 − 𝑦∥,

• (∇𝑓 is not the gradient of 𝑓 ) 𝑥,𝑦 ∈ 𝐷 that contradict Taylor’s theorem (Lemma 3.4), i.e.,��𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩�� > 𝐿

2

∥𝑦 − 𝑥 ∥2 .

Our second version of the problem considers the stopping criterion: stop if the next iterate is 𝜀-close to the current

iterate.

Definition 8. GD-Fixpoint:

Input:

• precision/stopping parameter 𝜀 > 0,

• step size 𝜂 > 0,

• (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 defining a bounded non-empty domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏},
• well-behaved arithmetic circuits 𝑓 : R𝑛 → R and ∇𝑓 : R𝑛 → R𝑛 ,
• Lipschitz constant 𝐿 > 0.

Goal: Compute any point that is an 𝜀-approximate fixed point of (projected) gradient descent for 𝑓 on domain

𝐷 with fixed step size 𝜂. Formally, find 𝑥 ∈ 𝐷 such that

𝑥 − Π𝐷

(
𝑥 − 𝜂∇𝑓 (𝑥)

)

 ≤ 𝜀.
Alternatively, we also accept one of the following violations as a solution:

• (𝑓 or ∇𝑓 is not 𝐿-Lipschitz) 𝑥,𝑦 ∈ 𝐷 such that

|𝑓 (𝑥) − 𝑓 (𝑦) | > 𝐿∥𝑥 − 𝑦∥ or ∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ > 𝐿∥𝑥 − 𝑦∥,

• (∇𝑓 is not the gradient of 𝑓 ) 𝑥,𝑦 ∈ 𝐷 that contradict Taylor’s theorem (Lemma 3.4), i.e.,��𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩�� > 𝐿

2

∥𝑦 − 𝑥 ∥2 .

The comments made about the KKT problem in the previous section also apply to these two problems. In particular,

we show that even the promise versions of the two Gradient Descent problems remain PPAD ∩ PLS-hard. In other

words, the hard instances we construct have no violations.
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Remark 3. An interesting question is: what happens if we omit the last violation (namely, the one about Taylor’s

theorem) from the definitions of these problems? For GD-Local-Search it turns out that this does not change the

complexity of the problem. Indeed, removing the last violation means that the functions 𝑓 and ∇𝑓 can now be completely

unrelated. However, for GD-Local-Search it is not hard to see that the problem remains in CLS (in fact, note that the

proof of Proposition 5.5 which reduces GD-Local-Search to General-Continuous-Localopt does not use violations

to Taylor’s theorem). Thus, the problem remains PPAD ∩ PLS-complete.

On the other hand, for GD-Fixpoint and KKT it turns out that omitting the last violation does change the complexity

of the problem. Indeed, note that unlike GD-Local-Search, the property that some 𝑥 must satisfy in order to be a

(non-violation) solution only depends on ∇𝑓 , and not at all on 𝑓 . As a result, it is easy to reduce from the problem

of finding an approximate Brouwer fixed point of a function 𝑔 : [0, 1]2 → [0, 1]2 to either of these two problems, by

letting 𝑓 (𝑥) = 0, ∇𝑓 (𝑥) = 𝑥 − 𝑔(𝑥), and setting the remaining parameters appropriately. It follows that GD-Fixpoint

and KKT without the last violation are PPAD-hard, and in fact it can be shown that they are PPAD-complete. Finally,

note that it is easy to see that GD-Fixpoint and KKT remain equivalent if we remove the last violation: one direction is

given by the proof of Proposition 5.3 (which still works without violations to Taylor’s theorem), and the other direction

can be obtained by using the arguments in step 2 of the proof of Proposition 5.4.

4 KKT IS PPAD ∩ PLS-HARD

In this section, we prove our main technical result.

Theorem 4.1. KKT is PPAD ∩ PLS-hard, even when the domain is fixed to be the unit square [0, 1]2. The hardness
continues to hold even if one considers the promise-version of the problem, i.e., only instances without violations.

In order to show this we provide a polynomial-time many-one reduction from Either-Solution(End-of-Line,Iter) to

KKT on the unit square.

Overview. Consider any instance of End-of-Line with 2
𝑛
vertices and any instance of Iter with 2

𝑚
nodes.

We construct a function 𝑓 for the KKT problem as follows. We first work on the domain [0, 𝑁 ]2 with a grid 𝐺 =

{0, 1, 2, . . . , 𝑁 }2, where 𝑁 = 2
𝑛 · 2𝑚+4. In the conceptually most interesting part of the reduction, we carefully specify

the value of the function 𝑓 and the direction of −∇𝑓 (the direction of steepest descent) at all the points of the grid 𝐺 .

Then, in the second part of the reduction, we show how to extend 𝑓 within every square of the grid, so as to obtain a

continuously differentiable function on [0, 𝑁 ]2. Finally, we scale down the domain to [0, 1]2. We show that any 𝜀-KKT

point of 𝑓 (for some sufficiently small 𝜀) must yield a solution to the End-of-Line instance or a solution to the Iter

instance.

4.1 Defining the function on the grid

Overview of the embedding. We divide the domain [0, 𝑁 ]2 into 2
𝑛 × 2𝑛 big squares. For any 𝑣1, 𝑣2 ∈ [2𝑛], let

𝐵(𝑣1, 𝑣2) denote the big square [
(𝑣1 − 1)

𝑁

2
𝑛
, 𝑣1

𝑁

2
𝑛

]
×

[
(𝑣2 − 1)

𝑁

2
𝑛
, 𝑣2

𝑁

2
𝑛

]
.

We use the following interpretation: the vertex 𝑣 ∈ [2𝑛] of the End-of-Line instance is embedded at the centre of

the big square 𝐵(𝑣, 𝑣). Thus, the vertices are arranged along the main diagonal of the domain. In particular, the trivial

source 1 ∈ [2𝑛] is located at the centre of the big square that lies in the bottom-left corner of the domain and contains

the origin.
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We seek to embed the edges of the End-of-Line instance in our construction. For every directed edge (𝑣1, 𝑣2) of the
End-of-Line instance, we are going to embed a directed path in the grid 𝐺 that goes from the centre of 𝐵(𝑣1, 𝑣1) to the

centre of 𝐵(𝑣2, 𝑣2). The type of path used and the route taken by the path will depend on whether the edge (𝑣1, 𝑣2) is a
“forward” edge or a “backward” edge. In more detail:

• if 𝑣1 < 𝑣2 (“forward” edge), then we will use a so-called green path that can only travel to the right and upwards.

The path starts at the centre of 𝐵(𝑣1, 𝑣1) and moves to the right until it reaches the centre of 𝐵(𝑣2, 𝑣1). Then, it
moves upwards until it reaches its destination: the centre of 𝐵(𝑣2, 𝑣2).
• if 𝑣1 > 𝑣2 (“backward” edge), then we will use a so-called orange path that can only travel to the left and

downwards. The path starts at the centre of 𝐵(𝑣1, 𝑣1) and moves to the left until it reaches the centre of 𝐵(𝑣2, 𝑣1).
Then, it moves downwards until it reaches its destination: the centre of 𝐵(𝑣2, 𝑣2).

Figure 6 illustrates the high-level idea of the embedding with an example.

For points of the grid 𝐺 that are part of the “environment”, namely that do not lie on a path, the function 𝑓 will

simply be defined by (𝑥,𝑦) ↦→ 𝑥 + 𝑦. Thus, if there are no paths at all, the only local minimum of 𝑓 will be at the origin.

However, a green path starts at the origin and this will ensure that there is no minimum there. This green path will

correspond to the outgoing edge of the trivial source 1 ∈ [2𝑛] of the End-of-Line instance.
The green paths will be constructed such that if one moves along a green path the value of 𝑓 decreases, which means

that we are improving the objective function value. Furthermore, the value of 𝑓 at any point on a green path will be

below the value of 𝑓 at any point in the environment. Conversely, the orange paths will be constructed such that if one

moves along an orange path the value of 𝑓 increases, so the objective function value becomes worse. Additionally, the

value of 𝑓 at any point on an orange path will be above the value of 𝑓 at any point in the environment.

We say that a path starting at 𝐵(𝑣1, 𝑣1) “starts in the environment”, if there is no path ending at 𝐵(𝑣1, 𝑣1). Similarly, a

path ending at 𝐵(𝑣2, 𝑣2) “ends in the environment”, if there is no path starting at 𝐵(𝑣2, 𝑣2). If any path starts or ends

in the environment, the construction ensures that there is a stationary point (and thus a KKT point) there. The only

exception is the path corresponding to the outgoing edge of the trivial vertex 1 ∈ [2𝑛]. The start of that path will not

create a KKT point. Thus, in the example of Figure 6, there will certainly be KKT points in 𝐵(3, 3), 𝐵(7, 7) and 𝐵(8, 8),
but not in 𝐵(1, 1).

Recall that every vertex 𝑣 ∈ [2𝑛] has at most one incoming edge and at most one outgoing edge. Thus, for any vertex

𝑣 ≠ 1, one of the following cases occurs:

• 𝑣 is an isolated vertex. In this case, the big square 𝐵(𝑣, 𝑣) will not contain any path and will fully be in the

environment, thus not containing any KKT point. Example: vertex 5 in Figure 6.

• 𝑣 has one outgoing edge and no incoming edge. In this case, the big square 𝐵(𝑣, 𝑣) will contain the start of a

green or orange path. There will be a KKT point at the start of the path, which is fine, since 𝑣 is a (non-trivial)

source of the End-of-Line instance. Example: vertex 7 in Figure 6.

• 𝑣 has one incoming edge and no outgoing edge. In this case, the big square 𝐵(𝑣, 𝑣) will contain the end of a green

or orange path. There will be a KKT point at the end of the path, which is again fine, since 𝑣 is a sink of the

End-of-Line instance. Example: vertices 3 and 8 in Figure 6.

• 𝑣 has one outgoing and one incoming edge. In this case, there are two sub-cases:

– If both edges yield paths of the same colour, then we will be able to “connect” the two paths at the centre of

𝐵(𝑣, 𝑣) and avoid introducing a KKT point there. Example: vertex 4 in Figure 6.
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4
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6

7

8

B(4, 1)

B(8, 2)

B(6, 4)

B(3, 7)

B(2, 6)

Fig. 6. Example of the high-level idea for the embedding of an End-of-Line instance in the domain. In this example we are embedding

an End-of-Line instance with the set of vertices [8] (i.e., 𝑛 = 3) and the directed edges: (1, 4) , (2, 8) , (4, 6) , (6, 2) and (7, 3) (see
Figure 1). The domain is divided into 8 × 8 big squares, and the big squares corresponding to the vertices of the End-of-Line graph

are coloured in grey. The solutions of this End-of-Line instance are the vertices 3, 7 and 8.

– If one of the paths is green and the other one is orange, then there will be a local maximum or minimum in

𝐵(𝑣, 𝑣) (and thus a KKT point). It is not too hard to see that this is in fact unavoidable. Indeed, if the incoming

path is green and the outgoing path is orange, then there will necessarily be a local minimum at the end of the

green path (Example: vertex 6 in Figure 6). If the incoming path is orange and the outgoing path is green, then

there will necessarily be a local maximum at the end of the orange path (Example: vertex 2 in Figure 6). This

is where we use the main new “trick” of our reduction: we “hide” the exact location of the KKT point inside

𝐵(𝑣, 𝑣) in such a way, that finding it requires solving a PLS-complete problem, namely the Iter instance. This

is achieved by introducing a new gadget at the point where the two paths meet. We call this the PLS-Labyrinth

gadget.

The construction of the green and orange paths is described in detail in Section 4.1.3. The PLS-Labyrinth gadget is

described in detail in Section 4.1.4.
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4.1.1 Pre-processing. Consider any instance ((𝑆, 𝑃),𝐶) of Either-Solution(End-of-Line,Iter), i.e., 𝑆, 𝑃 : [2𝑛] → [2𝑛]
is an instance of End-of-Line and 𝐶 : [2𝑚] → [2𝑚] is an instance of Iter. Without loss of generality, we can assume

that these instances satisfy the following:

(1) The successor and predecessor circuits 𝑆, 𝑃 agree on all edges. Formally, for all 𝑣 ∈ [2𝑛], it holds that
• if 𝑆 (𝑣) ≠ 𝑣 , then 𝑃 (𝑆 (𝑣)) = 𝑣 , and
• if 𝑃 (𝑣) ≠ 𝑣 , then 𝑆 (𝑃 (𝑣)) = 𝑣 .
This property can be ensured by a simple pre-processing step. We modify the circuit 𝑆 , so that before outputting

𝑆 (𝑣), it first checks whether (𝑆 (𝑣) ≠ 𝑣) ∧ (𝑃 (𝑆 (𝑣)) ≠ 𝑣), and, if this holds, outputs 𝑣 instead of 𝑆 (𝑣). It is easy to

see that this new circuit for 𝑆 can be constructed in polynomial time in the size of 𝑆 and 𝑃 . We also perform the

analogous modification for 𝑃 . It is easy to check that this does not introduce any new solutions.

(2) For all 𝑢 ∈ [2𝑚] we have 𝐶 (𝑢) ≥ 𝑢. We can ensure that this holds by modifying the circuit 𝐶 , so that before

outputting 𝐶 (𝑢), it checks whether 𝐶 (𝑢) < 𝑢, and, if this is the case, outputs 𝑢 instead of 𝐶 (𝑢). Again, the
modification can be done in polynomial time and does not introduce new solutions, nor does it stop the problem

from being total.

4.1.2 The value regimes. Recall that we want to specify the value of 𝑓 and −∇𝑓 (the direction of steepest descent) at

all points on the grid 𝐺 = {0, 1, 2, . . . , 𝑁 }2, where 𝑁 = 2
𝑛 · 2𝑚+4. In order to specify the value of 𝑓 , it is convenient to

define value regimes. Namely, if a point (𝑥,𝑦) ∈ 𝐺 is in:

• the red value regime, then 𝑓 (𝑥,𝑦) := 𝑥 − 𝑦 + 4𝑁 + 20.
• the orange value regime, then 𝑓 (𝑥,𝑦) := −𝑥 − 𝑦 + 4𝑁 + 10.
• the black value regime, then 𝑓 (𝑥,𝑦) := 𝑥 + 𝑦.
• the green value regime, then 𝑓 (𝑥,𝑦) := −𝑥 − 𝑦 − 10.
• the blue value regime, then 𝑓 (𝑥,𝑦) := 𝑥 − 𝑦 − 2𝑁 − 20.

Note that at any point on the grid, the value regimes are ordered: red > orange > black > green > blue. Furthermore, it

is easy to check that the gap between any two regimes at any point is at least 10. Figure 7 illustrates the main properties

of the value regimes.

x

y

Fig. 7. The value regimes. On the left, the colours are ordered according to increasing value, from left to right. On the right, we

indicate for each value regime, the direction in which it improves, i.e., decreases, in the 𝑥-𝑦-plane.

The black value regime will be used for the environment. Thus, unless stated otherwise, every grid point is coloured

in black, i.e., belongs to the black value regime. Furthermore, in our construction, we will set the direction of steepest

descent, i.e., −∇𝑓 (𝑥,𝑦), at every grid point (𝑥,𝑦) to be one of the four possible cardinal directions, i.e., left, right, up, or

down. Unless stated otherwise, at every black grid point (𝑥,𝑦), the direction of steepest descent −∇𝑓 (𝑥,𝑦) will point to
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the left.
7
The only exceptions to this (i.e., the only black grid points where the direction of steepest descent does not

point left) are black grid points that lie in paths, or black grid points that lie on the left boundary of the domain (i.e.,

points with 𝑥 = 0).

4.1.3 Embedding the End-of-Line instance: The green and orange paths. Our construction specifies for each grid point

a colour (which represents the value of 𝑓 at that point) and an arrow that represents the direction of −∇𝑓 at that point.
A general “rule” that we follow throughout our construction is that the function values should be consistent with the

arrows. For example, if some grid point has an arrow pointing to the right, then the adjacent grid point to the right

should have a lower function value, while the adjacent grid point to the left should have a higher function value. This

rule is not completely sufficient by itself to avoid KKT points, but it is already a very useful guide.

Recall that the grid 𝐺 = {0, 1, 2, . . . , 𝑁 }2 subdivides every big square 𝐵(𝑣1, 𝑣2) into 2
𝑚+4 × 2𝑚+4 small squares. The

width of the paths we construct will be two small squares. This corresponds to a width of three grid points.

Green paths. When a green path moves to the right, the two lower grid points will be coloured in green, and the

grid point at the top will be in black. Figure 8(a) shows a big square that is traversed by a green path from left to right.

Such a big square is said to be of type G1. The black arrows indicate the direction of −∇𝑓 at every grid point.

When a green path moves upwards, the two right-most grid points will be coloured in green, and the grid point on

the left will be in black. Figure 8(b) shows a big square of type G2, namely one that is traversed by a green path from

the bottom to the top.

Recall that a green path implementing an edge (𝑣1, 𝑣2) (where 𝑣1 < 𝑣2) comes into the big square 𝐵(𝑣2, 𝑣1) from the

left and leaves at the top. Thus, the path has to “turn”. Figure 8(c) shows how this turn is implemented. The big square

𝐵(𝑣2, 𝑣1) is said to be of type G3.

If a vertex 𝑣 ∈ [2𝑛] has one incoming edge (𝑣1, 𝑣) and one outgoing edge (𝑣, 𝑣2) such that 𝑣1 < 𝑣 < 𝑣2, then both

edges will be implemented by green paths. The green path corresponding to (𝑣1, 𝑣) will enter 𝐵(𝑣, 𝑣) from the bottom

and stop at the centre of 𝐵(𝑣, 𝑣). The green path corresponding to (𝑣, 𝑣2) will start at the centre of 𝐵(𝑣, 𝑣) and leave

the big square on the right. In order to avoid introducing any KKT points in 𝐵(𝑣, 𝑣) (since 𝑣 is not a solution of the

End-of-Line instance), we will connect the two paths at the centre of 𝐵(𝑣, 𝑣). This will be achieved by a simple turn, as

shown in Figure 8(d). The big square 𝐵(𝑣, 𝑣) is said to be of type G4.

If a vertex 𝑣 ∈ [2𝑛] \ {1} has one outgoing edge (𝑣, 𝑣2) such that 𝑣 < 𝑣2, and no incoming edge, then this will yield a

green path starting at the centre of 𝐵(𝑣, 𝑣) and going to the right, as shown in Figure 8(e). The big square 𝐵(𝑣, 𝑣) is said
to be of type G5 in that case. It is not hard to see that there will be a KKT point at the source of that green path. On the

other hand, if a vertex 𝑣 ∈ [2𝑛] \ {1} has one incoming edge (𝑣1, 𝑣) such that 𝑣1 < 𝑣 , and no outgoing edge, then this

will yield a green path coming from the bottom and ending at the centre of 𝐵(𝑣, 𝑣), as shown in Figure 8(f). The big

square 𝐵(𝑣, 𝑣) is said to be of type G6 in that case. Again, there will be a KKT point at the sink of that green path.

Orange paths. The structure of orange paths is, in a certain sense, symmetric to the structure of green paths. When

an orange path moves to the left, the two upper grid points will be coloured in orange, and the grid point at the bottom

will be in black. Figure 9(a) shows a big square that is traversed by an orange path from right to left. Such a big square

is said to be of type O1.

7
Notice that this is not the same as the negative gradient of the “black regime function” (𝑥, 𝑦) ↦→ 𝑥 + 𝑦, which would point south-west, as shown in

Figure 7. Nevertheless, as we show later, this is enough to ensure that the bicubic interpolation that we use does not introduce any points with zero

gradient in a region of the environment. Similarly, for grid points coloured with one of the other colours we will also not use the diagonal negative

gradient of the corresponding value regime function, but instead one of the four cardinal directions.
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(a) [G1] Green path traversing big square from left to right. (b) [G2] Green path traversing big square from bottom to top.

(c) [G3] Green path entering big square from the left, turning,

and leaving at the top.

(d) [G4] Green path entering big square from the bottom, turn-

ing, and leaving on the right.

(e) [G5] Source: green path starting at the centre of big square

and leaving on the right.

(f) [G6] Sink: green path entering big square from the bottom

and ending at the centre.

Fig. 8. Construction of the green paths. The figures show various types of big squares containing different portions of green paths. In

these illustrations, the big squares are assumed to have size 8 × 8 instead of 2
𝑚+4 × 2𝑚+4.
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When an orange path moves downwards, the two left-most grid points will be coloured in orange, and the grid point

on the right will be in black. Figure 9(b) shows a big square of type O2, namely one that is traversed by an orange path

from top to bottom. Note that the arrows on an orange path essentially point in the opposite direction compared to the

direction of the path. This is because we want the value to increase (i.e., worsen) when we follow an orange path.

An orange path implementing an edge (𝑣1, 𝑣2) (where 𝑣1 > 𝑣2) comes into the big square 𝐵(𝑣2, 𝑣1) from the right and

leaves at the bottom. This turn is implemented as shown in Figure 9(c). The big square 𝐵(𝑣2, 𝑣1) is said to be of type O3.

If a vertex 𝑣 ∈ [2𝑛] has one incoming edge (𝑣1, 𝑣) and one outgoing edge (𝑣, 𝑣2) such that 𝑣1 > 𝑣 > 𝑣2, then both

edges will be implemented by orange paths. The orange path corresponding to (𝑣1, 𝑣) will enter 𝐵(𝑣, 𝑣) from the top

and stop at the centre of 𝐵(𝑣, 𝑣). The orange path corresponding to (𝑣, 𝑣2) will start at the centre of 𝐵(𝑣, 𝑣) and leave

the big square on the left. As above, we avoid introducing a KKT point by connecting the two paths at the centre of

𝐵(𝑣, 𝑣). This is achieved by the turn shown in Figure 9(d). The big square 𝐵(𝑣, 𝑣) is said to be of type O4.

If a vertex 𝑣 ∈ [2𝑛] \ {1} has one outgoing edge (𝑣, 𝑣2) such that 𝑣 > 𝑣2, and no incoming edge, then this will yield

an orange path starting at the centre of 𝐵(𝑣, 𝑣) and going to the left, as shown in Figure 9(e). The big square 𝐵(𝑣, 𝑣) is
said to be of type O5 in that case. It is not hard to see that there will be a KKT point at the source of that orange path.

On the other hand, if a vertex 𝑣 ∈ [2𝑛] \ {1} has one incoming edge (𝑣1, 𝑣) such that 𝑣1 > 𝑣 , and no outgoing edge, then

this will yield an orange path coming from the top and ending at the centre of 𝐵(𝑣, 𝑣), as shown in Figure 9(f). The big

square 𝐵(𝑣, 𝑣) is said to be of type O6 in that case. Again, there will be a KKT point at the sink of that orange path.

Crossings. Note that, by construction, green paths only exist below the diagonal, and orange paths only exist above

the diagonal. Thus, there is no point where an orange path crosses a green path. However, there might exist points

where green paths cross, or orange paths cross. First of all, note that it is impossible to have more than two paths

traversing a big square, and thus any crossing involves exactly two paths. Furthermore, no crossing can occur in big

squares where a “turn” occurs, since, in that case, the turn connects the two paths.

The only way for two green paths to cross is the case where a green path traverses a big square from left to right,

and a second green path traverses the same big square from bottom to top. In that case, we say that the big square is of

type G7. This problem always occurs when one tries to embed an End-of-Line instance in a two-dimensional domain.

Chen and Deng [16] proposed a simple, yet ingenious, trick to resolve this issue. The idea is to locally re-route the two

paths so that they no longer cross. This modification has the following two crucial properties: a) it is completely local,

and b) it does not introduce any new solution (in our case a KKT point). Figure 10(a) shows how this modification is

implemented for crossing green paths, i.e., what our construction does for big squares of type G7.

The same issue might arise for orange paths. By the same arguments as above, this can only happen when an orange

path traverses a big square from right to left, and a second orange path traverses the same big square from top to

bottom. In that case, we say that the big square is of type O7. Figure 10(b) shows how the issue is locally resolved in

that case, i.e., what our construction does for big squares of type O7.

Boundary and origin squares. Any big square that is not traversed by any path (including all big squares 𝐵(𝑣, 𝑣)
where 𝑣 is an isolated vertex of the End-of-Line instance), will have all its grid points coloured in black, and −∇𝑓
pointing to the left. These big squares, which are said to be of type E1, are as represented in Figure 11(a). The only

exceptions to this rule are the big squares 𝐵(1, 𝑣) for all 𝑣 ∈ [2𝑛] \ {1}. In those big squares, which are said to be of

type E2, the grid points on the left boundary have −∇𝑓 pointing downwards, instead of to the left. The rest of the grid

points have −∇𝑓 pointing to the left as before. Note that none of these big squares is ever traversed by a path, so they

are always as shown in Figure 11(b).
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(a) [O1] Orange path traversing big square from right to left. (b) [O2] Orange path traversing big square from top to bottom.

(c) [O3] Orange path entering big square from the right, turning,

and leaving at the bottom.

(d) [O4] Orange path entering big square from the top, turning,

and leaving on the left.

(e) [O5] Source: orange path starting at the centre of big square

and leaving on the left.

(f) [O6] Sink: orange path entering big square from the top and

ending at the centre.

Fig. 9. Construction of the orange paths. The figures show various types of big squares containing different portions of orange paths.

In these illustrations, the big squares are assumed to have size 8 × 8 instead of 2
𝑚+4 × 2𝑚+4.
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(a) [G7] Crossing of green paths.

(b) [O7] Crossing of orange paths.

Fig. 10. Crossing gadgets for green and orange paths. In these two illustrations, the big squares are assumed to have size 16 × 16
instead of 2

𝑚+4 × 2𝑚+4.
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(a) [E1] Big square not traversed by any path. (b) [E2] Big square on left boundary of domain.

Fig. 11. Big squares not traversed by any path. In these two illustrations, the big squares are assumed to have size 8 × 8 instead of

2
𝑚+4 × 2𝑚+4.

Fig. 12. [S] Construction for big square 𝐵 (1, 1) (for size 8 × 8 instead of 2
𝑚+4 × 2𝑚+4).

The big square 𝐵(1, 1) is special and we say that it is of type S. Since it corresponds to the trivial source of the

End-of-Line instance, it has one outgoing edge (which necessarily corresponds to a green path) and no incoming edge.

Normally, this would induce a KKT point at the centre of 𝐵(1, 1) (as in Figure 8(e)). Furthermore, recall that, by the

definition of the black value regime, there must also be a KKT point at the origin, if it is coloured in black. By a careful

construction (which is very similar to the one used by Hubáček and Yogev [36] for Continuous-Localopt) we can

ensure that these two KKT points neutralise each other. In other words, instead of two KKT points, there is no KKT

point at all in 𝐵(1, 1). The construction for 𝐵(1, 1) is shown in Figure 12.

Figure 13 shows the whole construction for a small example where 𝑛 = 1 and big squares have size 8 × 8 (instead of

2
𝑚+4 × 2𝑚+4).

Green and orange paths meeting. Our description of the construction is almost complete, but there is one crucial

piece missing. Indeed, consider any vertex 𝑣 that has one incoming edge (𝑣1, 𝑣) and one outgoing edge (𝑣, 𝑣2) such that:

A) 𝑣1 < 𝑣 and 𝑣2 < 𝑣 , or B) 𝑣1 > 𝑣 and 𝑣2 > 𝑣 . As it stands, a green path and an orange path meet at the centre of 𝐵(𝑣, 𝑣)
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Fig. 13. [X] Full construction for a small example, in particular showing the whole boundary. Here 𝑛 = 1 and big squares have size

8 × 8 (instead of 2
𝑚+4 × 2𝑚+4).

which means that there is a local minimum or maximum at the centre of 𝐵(𝑣, 𝑣), and thus a KKT point. However, 𝑣 is

not a solution to the End-of-Line instance. Even though we cannot avoid having a KKT point in 𝐵(𝑣, 𝑣), we can “hide”

it, so that finding it requires solving the Iter instance. This is implemented by constructing a PLS-Labyrinth gadget at

the point where the green and orange paths meet. Figures 14(a) and 14(b) show where this PLS-Labyrinth gadget is

positioned inside a big square of type LA (namely when case A above occurs) and a big square of type LB (namely

when case B above occurs) respectively. The PLS-Labyrinth gadget can only be positioned at a point where a green

path and an orange path meet. In particular, it cannot be used to “hide” a KKT point occurring at a source or sink of a

green or orange path, i.e., at a solution of the End-of-Line instance.

In our construction, every big square is of type G1, G2, . . . , G7, O1, O2, . . . , O7, E1, E2, S, LA or LB. Note that we can

efficiently determine the type of a given big square, if we have access to the End-of-Line circuits 𝑆 and 𝑃 .

4.1.4 Embedding the Iter instance: The PLS-Labyrinth.

PLS-Labyrinth. We begin by describing the PLS-Labyrinth gadget for case A, i.e., 𝑣 has one incoming edge (𝑣1, 𝑣)
and one outgoing edge (𝑣, 𝑣2) such that 𝑣1 < 𝑣 and 𝑣2 < 𝑣 . In particular, 𝐵(𝑣, 𝑣) is of type LA. The PLS-Labyrinth gadget

comprises 2
𝑚+2 × 2𝑚+2 small squares and is positioned in the big square 𝐵(𝑣, 𝑣) as shown in Figure 14(a). Note, in

particular, that the bottom side of the gadget is adjacent to the orange path, and the bottom-right corner of the gadget
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PLS
Labyrinth

A

(a) [LA] Position of PLS-Labyrinth gadget in big square of type

LA.

PLS
Labyrinth

B

(b) [LB] Position of PLS-Labyrinth gadget in big square of type

LB.

Fig. 14. Position of PLS-Labyrinth gadget in big squares of type LA and LB.

lies just above the point where the green and orange paths intersect (which occurs at the centre of 𝐵(𝑣, 𝑣)). Finally,
observe that since 𝐵(𝑣, 𝑣) has 2𝑚+4 × 2𝑚+4 small squares, there is enough space for the PLS-Labyrinth gadget.

For convenience, we subdivide the PLS-Labyrinth gadget into 2
𝑚 × 2𝑚 medium squares. Thus, every medium square

is made out of 4 × 4 small squares. We index the medium squares as follows: for 𝑢1, 𝑢2 ∈ [2𝑚], let𝑀 (𝑢1, 𝑢2) denote the
medium square that is the 𝑢2th from the bottom and the 𝑢1th from the right. Thus,𝑀 (1, 1) corresponds to the medium

square that lies at the bottom-right of the gadget (and is just above the intersection of the paths). Our construction will

create the following paths inside the PLS-Labyrinth gadget:

• For every 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢, there is an orange-blue path (namely, a path formed by both orange and

blue points) starting at𝑀 (𝑢, 1) and moving upwards until it reaches𝑀 (𝑢,𝑢).
• For every 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢), there is a blue path starting at𝑀 (𝑢,𝑢) and moving

to the left until it reaches𝑀 (𝐶 (𝑢), 𝑢).

Figure 15 shows a high-level overview of how the Iter instance is embedded in the PLS-Labyrinth. Note that if𝐶 (𝑢) > 𝑢
and 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢), then the blue path starting at𝑀 (𝑢,𝑢) will move to the left until𝑀 (𝐶 (𝑢), 𝑢) where it will reach
the orange-blue path moving up from𝑀 (𝐶 (𝑢), 1) to𝑀 (𝐶 (𝑢),𝐶 (𝑢)) (which exists since 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢)). Thus, every
blue path will always “merge” into some orange-blue path. On the other hand, some orange-blue paths will stop in

the environment without merging into any other path. Consider any 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢. The orange-blue
path for 𝑢 stops at𝑀 (𝑢,𝑢). If𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢), then there is a blue path starting there, so the orange-blue path “merges”

into the blue path. However, if 𝐶 (𝐶 (𝑢)) ≤ 𝐶 (𝑢), i.e., 𝐶 (𝐶 (𝑢)) = 𝐶 (𝑢), there is no blue path starting at𝑀 (𝑢,𝑢) and the

orange-blue path just stops in the environment. Thus, the only place in the PLS-Labyrinth where a path can stop in the

environment is in a medium square𝑀 (𝑢,𝑢) such that 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) = 𝐶 (𝑢). This corresponds exactly to the

solutions of the Iter instance 𝐶 . In our construction, we will ensure that KKT points can indeed only occur at points

where a path stops without merging into any other path.
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LA1

LA2

LA3 LA4

LA5

LA5LA6

LA7

LAX1 LAX2

Fig. 15. Map of the PLS-Labyrinth for case A corresponding to the Iter example of Figure 2. Shaded squares are the medium squares

corresponding to the nodes of Iter. The horizontal blue lines (pointing left) correspond to the 3 edges in Figure 2 that go out from

non-solutions, and we do not use similar lines going out from solutions (nodes 3 and 7). We have also indicated the parts LA1-LA6,

and LAX1-LAX2, that are constructed in Figure 16.

Orange-blue paths. An orange-blue path moves from 𝑀 (𝑢, 1) upwards to 𝑀 (𝑢,𝑢) (for some 𝑢 ∈ [2𝑚] such that

𝐶 (𝑢) > 𝑢) and has a width of two small squares. The left-most point is coloured in orange and the two points on the

right are blue. Figure 16(a) shows a medium square that is being traversed by the orange-blue path, i.e., a medium

square𝑀 (𝑢,𝑤) where𝑤 < 𝑢. We say that such a medium square𝑀 (𝑢,𝑤) is of type LA1. When the orange-blue path

reaches 𝑀 (𝑢,𝑢), it either “turns” to the left and creates the beginning of a blue path (medium square of type LA4,

Figure 16(d)), or it just stops there (medium square of type LA2, Figure 16(b)). The case where the orange-blue path just
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stops, occurs when there is no blue path starting at𝑀 (𝑢,𝑢). Note that, in that case, 𝑢 is a solution of the Iter instance,

and so it is acceptable for a medium square of type LA2 to contain a KKT point.

The orange-blue path begins in𝑀 (𝑢, 1), which lies just above the orange path. In fact, the beginning of the orange-

blue path is adjacent to the orange path as shown in Figure 16(g). This is needed, since if the orange-blue path started

in the environment, the point coloured orange would yield a local maximum and thus a KKT point.

The beginning of the orange-blue path for 𝑢 = 1 is special, since, in a certain sense, this path is created by the

intersection of the green and orange paths. Figure 16(h) shows how the intersection is implemented and how exactly it

is adjacent to𝑀 (1, 1). Note that𝑀 (1, 1) is just a standard “turn”, i.e., a medium square of type LA4.

Blue paths. A blue path starts in 𝑀 (𝑢,𝑢) for some 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢). It moves

from right to left and has a width of two small squares. All three points on the path are coloured blue and the direction

of steepest descent points to the left. Figure 16(c) shows a medium square traversed by a blue path. Such a medium

square is said to be of type LA3. As mentioned above, the blue path starts at𝑀 (𝑢,𝑢) which is of type LA4 (a “turn”).

When the blue path reaches𝑀 (𝐶 (𝑢), 𝑢), it merges into the orange-blue path going from𝑀 (𝐶 (𝑢), 1) to𝑀 (𝐶 (𝑢),𝐶 (𝑢)).
This merging is straightforward and is implemented as shown in Figure 16(f). The medium square𝑀 (𝐶 (𝑢), 𝑢) is then
said to be of type LA5.

Crossings. Note that two orange-blue paths cannot cross, and similarly two blue paths can also not cross. However,

a blue path going from𝑀 (𝑢,𝑢) to𝑀 (𝐶 (𝑢), 𝑢) can cross many other orange-blue paths, before it reaches and merges

into its intended orange-blue path. Fortunately, these crossings are much easier to resolve than earlier. Indeed, when

a blue path is supposed to cross an orange-blue path, it can simply merge into it and restart on the other side. The

important thing to note here is that, while a blue path cannot stop in the environment (without creating a KKT point),

it can start in the environment. Figure 16(e) shows how this is implemented. In particular, we use a medium square of

type LA5 for the merging, and a medium square of type LA6 for the re-start of the blue path.

Note that if the blue path has to cross more than one orange-blue path in immediate succession, then it will simply

merge into the first one it meets, and restart after the last one (i.e., as soon as it reaches a medium square that is not

traversed by an orange-blue path).

Finally, we say that a medium square is of type LA7, if it does not contain any path at all. Medium squares of type

LA7 are like the environment, i.e., all the grid points are coloured black and the arrows of steepest descent point to the

left. In our construction, every medium square in the PLS-Labyrinth gadget is of type LA1, LA2, . . . , LA6, or LA7. It is

easy to check that the type of a given medium square can be determined efficiently, given access to the Iter circuit 𝐶 .

The PLS-Labyrinth gadget for case B is, in a certain sense, symmetric to the one presented above. Indeed, it suffices

to perform a point reflection (in other words, a rotation by 180 degrees) with respect to the centre of 𝐵(𝑣, 𝑣), and a

very simple transformation of the colours. With regards to the final interpolated function, this corresponds to rotating

𝐵(𝑣, 𝑣) by 180 degrees around its centre and multiplying the output of the function by −1. Let 𝜙 : 𝐵(𝑣, 𝑣) → 𝐵(𝑣, 𝑣)
denote rotation by 180 degrees around the centre of 𝐵(𝑣, 𝑣). Then, the direction of steepest descent at some grid point

(𝑥,𝑦) ∈ 𝐵(𝑣, 𝑣) in case B is simply the same as the direction of steepest descent at 𝜙 (𝑥,𝑦) in case A. The colour of (𝑥,𝑦)
in case B is obtained from the colour of 𝜙 (𝑥,𝑦) in case A as follows:

• black remains black,

• green becomes orange, and vice-versa,

• blue becomes red, and vice-versa.
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(a) [LA1] Orange-blue path traversing

medium square.

(b) [LA2] Orange-blue path ending in

medium square.

(c) [LA3] Blue path traversing medium

square.

(d) [LA4] Orange-blue path turning in

medium square and creating start of

blue path.

(e) [LA6] Blue path crossing over orange-blue path. Medium square of type LA6 indi-

cated in grey.

(f) [LA5] Blue path merging into orange-blue path.

Medium square of type LA5 indicated in grey.

(g) [LAX1] Start of orange-blue

path, adjacent to orange path.

(h) [LAX2] Start of orange-blue path

for 𝑢 = 1, adjacent to the inter-

section of green and orange path.

𝑀 (1, 1) is indicated in grey.

Fig. 16. Construction of blue and orange-blue paths in the PLS-Labyrinth gadget inside a big square of type LA.
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LB1

LB2

LB3LB4

LB5

LB5 LB6

LB7

LBX1LBX2

Fig. 17. Map of the PLS-Labyrinth for case B corresponding to the Iter example of Figure 2. Shaded squares are the medium squares

corresponding to the nodes of Iter. We have also indicated the parts LB1-LB6, and LBX1-LBX2, that are constructed in Figure 18.

Figure 17 shows a high-level overview of the PLS-Labyrinth gadget for case B. We obtain corresponding medium

squares of type LB1, LB2, . . . , LB7. The analogous illustrations for case B are shown in Figure 18.

4.2 Extending the function to the rest of the domain

Up to this point we have defined the function 𝑓 and the direction of its gradient at all grid points of𝐺 . In order to extend

𝑓 to the whole domain [0, 𝑁 ]2, we use bicubic interpolation (see e.g. [52] or the corresponding Wikipedia article
8
).

Note that the more standard and simpler bilinear interpolation (used in particular by Hubáček and Yogev [36]) yields a

8
https://en.wikipedia.org/wiki/Bicubic_interpolation

https://en.wikipedia.org/wiki/Bicubic_interpolation
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(a) [LB1] Red-green path traversing

medium square.

(b) [LB2] Red-green path ending in

medium square.

(c) [LB3] Red path traversing medium

square.

(d) [LB4] Red-green path turning in

medium square and creating start of red

path.

(e) [LB6] Red path crossing over red-green path. Medium square of type LB6 indicated

in grey.

(f) [LB5] Red path merging into red-green path. Medium

square of type LB5 indicated in grey.

(g) [LBX1] Start of red-green path,

adjacent to green path.

(h) [LBX2] Start of red-green path

for 𝑢 = 1, adjacent to the inter-

section of orange and green path.

𝑀 (1, 1) is indicated in grey.

Fig. 18. Construction of red and red-green paths in the PLS-Labyrinth gadget inside a big square of type LB.
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continuous function, but not necessarily a continuously differentiable function. On the other hand, bicubic interpolation

ensures that the function will indeed be continuously differentiable over the whole domain [0, 𝑁 ]2.
We use bicubic interpolation in every small square of the grid 𝐺 . Consider any small square and let (𝑥,𝑦) ∈ [0, 1]2

denote the local coordinates of a point inside the square. Then, the bicubic interpolation inside this square will be a

polynomial of the form:

𝑓 (𝑥,𝑦) =
3∑︁

𝑖=0

3∑︁
𝑗=0

𝑎𝑖 𝑗𝑥
𝑖𝑦 𝑗 (3)

where the coefficients 𝑎𝑖 𝑗 are computed as follows
𝑎00 𝑎01 𝑎02 𝑎03

𝑎10 𝑎11 𝑎12 𝑎13

𝑎20 𝑎21 𝑎22 𝑎23

𝑎30 𝑎31 𝑎32 𝑎33


(4)

=


1 0 0 0

0 0 1 0

−3 3 −2 −1
2 −2 1 1


·


𝑓 (0, 0) 𝑓 (0, 1) 𝑓𝑦 (0, 0) 𝑓𝑦 (0, 1)
𝑓 (1, 0) 𝑓 (1, 1) 𝑓𝑦 (1, 0) 𝑓𝑦 (1, 1)
𝑓𝑥 (0, 0) 𝑓𝑥 (0, 1) 𝑓𝑥𝑦 (0, 0) 𝑓𝑥𝑦 (0, 1)
𝑓𝑥 (1, 0) 𝑓𝑥 (1, 1) 𝑓𝑥𝑦 (1, 0) 𝑓𝑥𝑦 (1, 1)


·


1 0 −3 2

0 0 3 −2
0 1 −2 1

0 0 −1 1


Here 𝑓𝑥 and 𝑓𝑦 denote the partial derivatives with respect to 𝑥 and 𝑦 respectively. Similarly, 𝑓𝑥𝑦 denotes the second

order partial derivative with respect to 𝑥 and 𝑦. It remains to explain how we set the values of 𝑓 , 𝑓𝑥 , 𝑓𝑦 and 𝑓𝑥𝑦 at the

four corners of the square:

• The values 𝑓 (0, 0), 𝑓 (0, 1), 𝑓 (1, 0) and 𝑓 (1, 1) are set according to the value regimes in our construction.

• The values of 𝑓𝑥 (0, 0), 𝑓𝑥 (0, 1), 𝑓𝑥 (1, 0), 𝑓𝑥 (1, 1), 𝑓𝑦 (0, 0), 𝑓𝑦 (0, 1), 𝑓𝑦 (1, 0) and 𝑓𝑦 (1, 1) are set based on the direction
of steepest descent (−∇𝑓 ) in our construction, with a length multiplier of 𝛿 = 1/2. For example, if the arrow of

steepest descent at (0, 1) is pointing to the left, then we set 𝑓𝑥 (0, 1) = 𝛿 and 𝑓𝑦 (0, 1) = 0. If it is pointing up, then

we set 𝑓𝑥 (0, 1) = 0 and 𝑓𝑦 (0, 1) = −𝛿 .
• We always set 𝑓𝑥𝑦 (0, 0) = 𝑓𝑥𝑦 (0, 1) = 𝑓𝑥𝑦 (1, 0) = 𝑓𝑥𝑦 (1, 1) = 0.

By using this interpolation procedure in each small square, we obtain a function 𝑓 : [0, 𝑁 ]2 → R. In fact, we can even

extend the function to points (𝑥,𝑦) ∈ R2 \ [0, 𝑁 ]2 by simply using the interpolated polynomial obtained for the small

square that is closest to (𝑥,𝑦). This will be done automatically by our construction of the arithmetic circuit computing

𝑓 and it will ensure that the gradient is well-defined even on the boundary of [0, 𝑁 ]2.

Lemma 4.2. The function 𝑓 : R2 → R we obtain by bicubic interpolation has the following properties:

• It is continuously differentiable on R2;

• 𝑓 and its gradient ∇𝑓 are Lipschitz-continuous on [0, 𝑁 ]2 with Lipschitz-constant 𝐿 = 2
18𝑁 ;

• Well-behaved arithmetic circuits computing 𝑓 and ∇𝑓 can be constructed in polynomial time (in the size of the

circuits 𝑆, 𝑃 and 𝐶).

Proof. Regarding the first point, see, e.g., [52].

Lipschitz-continuity. In order to prove the second point, we first show that 𝑓 and ∇𝑓 are 𝐿-Lipschitz-continuous
in every small square of the grid. Consider any small square. In our construction, the values of 𝑓 , 𝑓𝑥 , 𝑓𝑦, 𝑓𝑥𝑦 used in the

computation of the coefficients 𝑎𝑖 𝑗 are clearly all upper bounded by 2
3𝑁 in absolute value. Thus, using Equation (4), it
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is easy to check that |𝑎𝑖 𝑗 | ≤ 2
10𝑁 for all 𝑖, 𝑗 ∈ {0, 1, 2, 3}. Furthermore, note that the partial derivatives of 𝑓 inside the

small square can be expressed as:

𝜕𝑓

𝜕𝑥
(𝑥,𝑦) =

3∑︁
𝑖=1

3∑︁
𝑗=0

𝑖 · 𝑎𝑖 𝑗𝑥𝑖−1𝑦 𝑗
𝜕𝑓

𝜕𝑦
(𝑥,𝑦) =

3∑︁
𝑖=0

3∑︁
𝑗=1

𝑗 · 𝑎𝑖 𝑗𝑥𝑖𝑦 𝑗−1 (5)

using the local coordinates (𝑥,𝑦) ∈ [0, 1]2 inside the small square. Finally, it is easy to check that the monomials 𝑥𝑖𝑦 𝑗 ,

𝑖, 𝑗 ∈ {0, 1, 2, 3}, are all 6-Lipschitz continuous over [0, 1]2. Putting everything together and using Equation (3) and

Equation (5), it follows that 𝑓 and ∇𝑓 are Lipschitz-continuous (w.r.t. the ℓ2-norm) with Lipschitz constant 𝐿 = 2
18𝑁

inside the small square. Note that the change from local coordinates to standard coordinates is just a very simple

translation that does not impact the Lipschitzness of the functions.

Since 𝑓 and ∇𝑓 are 𝐿-Lipschitz-continuous inside every small square and continuous over all of [0, 𝑁 ]2, it follows
that they are in fact 𝐿-Lipschitz-continuous over the whole domain [0, 𝑁 ]2. Indeed, consider any points 𝑧1, 𝑧2 ∈ [0, 𝑁 ]2.
Then, there exists ℓ ∈ N such that the segment 𝑧1𝑧2 can be subdivided into 𝑧1𝑤1𝑤2 . . .𝑤ℓ𝑧2 so that each of the segments

𝑧1𝑤1,𝑤1𝑤2, . . . , 𝑤ℓ−1𝑤ℓ ,𝑤ℓ𝑧2 lies within a small square. For ease of notation, we let𝑤0 := 𝑧1 and𝑤ℓ+1 := 𝑧2. Then, we

can write

∥∇𝑓 (𝑧1) − ∇𝑓 (𝑧2)∥ ≤
ℓ∑︁

𝑖=0

∥∇𝑓 (𝑤𝑖 ) − ∇𝑓 (𝑤𝑖+1)∥ ≤ 𝐿
ℓ∑︁

𝑖=0

∥𝑤𝑖 −𝑤𝑖+1∥ = 𝐿∥𝑧1 − 𝑧2∥

where we used the fact that

∑ℓ
𝑖=0 ∥𝑤𝑖 −𝑤𝑖+1∥ = ∥𝑧1 − 𝑧2∥, since𝑤0𝑤1𝑤2 . . .𝑤ℓ𝑤ℓ+1 is just a partition of the segment

𝑧1𝑧2. The exact same argument also works for 𝑓 .

Arithmetic circuits. Before showing how to construct the arithmetic circuits for 𝑓 and ∇𝑓 , we first construct a
Boolean circuit 𝐵 that will be used as a sub-routine. The Boolean circuit 𝐵 receives as input a point (𝑥,𝑦) on the grid

𝐺 = {0, 1, . . . , 𝑁 }2 and outputs the colour (i.e., value regime) and steepest descent arrow at that point. It is not too hard

to see that the circuit 𝐵 can be constructed in time that is polynomial in the sizes of the circuits 𝑆, 𝑃 and 𝐶 . In more

detail, it performs the following operations:

(1) Compute End-of-Line-vertices 𝑣1, 𝑣2 ∈ [2𝑛] such that (𝑥,𝑦) lies in the big square 𝐵(𝑣1, 𝑣2).
(2) Using the End-of-Line circuits 𝑆 and 𝑃 determine the exact type of 𝐵(𝑣1, 𝑣2), namely one of the following:

G1-G7, O1-O7, E1, E2, S, LA or LB.

(3) If the type of 𝐵(𝑣1, 𝑣2) is not LA or LB, then we know the exact structure of 𝐵(𝑣1, 𝑣2) and can easily return the

colour and arrow at (𝑥,𝑦).
(4) If the type of 𝐵(𝑣1, 𝑣2) is LA or LB, then first determine whether (𝑥,𝑦) lies in the PLS-Labyrinth inside 𝐵(𝑣1, 𝑣2)

or not.

(5) If (𝑥,𝑦) does not lie in the PLS-Labyrinth, then we can easily determine the colour and arrow at (𝑥,𝑦), since we
know the exact structure of 𝐵(𝑣1, 𝑣2) except the inside of the PLS-Labyrinth.

(6) If (𝑥,𝑦) lies in the PLS-Labyrinth, then we can compute Iter-vertices 𝑢1, 𝑢2 ∈ [2𝑚] such that (𝑥,𝑦) lies in the

medium square𝑀 (𝑢1, 𝑢2) of the PLS-Labyrinth inside 𝐵(𝑣1, 𝑣2).
(7) Using the Iter circuit𝐶 determine the type of𝑀 (𝑢1, 𝑢2), namely one of the following: LA1-LA7, LB1-LB7. Given

the type of𝑀 (𝑢1, 𝑢2), we then know the exact structure of𝑀 (𝑢1, 𝑢2) and can in particular determine the colour

and arrow at (𝑥,𝑦).

The arithmetic circuits for 𝑓 and ∇𝑓 are then constructed to perform the following operations on input (𝑥,𝑦) ∈ [0, 𝑁 ]2:
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(1) Using the comparison gate < and binary search, compute the bits representing (𝑥,𝑦) ∈ {0, 1, . . . , 𝑁 − 1}2: a grid
point such that (𝑥,𝑦) lies in the small square that has (𝑥,𝑦) as its bottom left corner.

(2) Simulate the Boolean circuit 𝐵 using arithmetic gates to compute (a bit representation) of the colour and arrow

at the four corners of the small square, namely (𝑥,𝑦), (𝑥 + 1, 𝑦),(𝑥,𝑦 + 1) and (𝑥 + 1, 𝑦 + 1).
(3) Using this information and the formulas for the value regimes, compute the 16 terms for 𝑓 , 𝑓𝑥 , 𝑓𝑦 and 𝑓𝑥𝑦 needed

to determine the bicubic interpolation. Then, compute the coefficients 𝑎𝑖 𝑗 by performing the matrix multiplication

in Equation (4).

(4) In the arithmetic circuit for 𝑓 , apply Equation (3) to compute the value of 𝑓 (𝑥,𝑦). In the arithmetic circuit for

∇𝑓 , apply Equation (5) to compute the value of ∇𝑓 (𝑥,𝑦). Note that in the interpolation Equations (3) and (5), we

have to use the local coordinates (𝑥 − 𝑥,𝑦 − 𝑦) ∈ [0, 1]2 instead of (𝑥,𝑦).

The two arithmetic circuits can be computed in polynomial time in 𝑛,𝑚 and in the sizes of 𝑆, 𝑃,𝐶 . Since 𝑛 and𝑚 are

upper bounded by the sizes of 𝑆 and 𝐶 respectively, they can be constructed in polynomial time in the sizes of 𝑆, 𝑃,𝐶 .

Furthermore, note that the two circuits are well-behaved. In fact, they only use a constant number of true multiplication

gates. To see this, note that true multiplication gates are only used for the matrix multiplication in step 3 and for step 4.

In particular, steps 1 and 2 do not need to use any true multiplication gates at all (see, e.g., [17, 20]). □

4.3 Correctness

To show the correctness of the construction, we prove the following lemma, which states that 0.01-KKT points of 𝑓

only lie at solutions for the End-of-Line instance or the Iter instance.

Lemma 4.3. Let 𝜀 = 0.01. We have that (𝑥,𝑦) is an 𝜀-KKT point of 𝑓 on the domain [0, 𝑁 ]2 only if (𝑥,𝑦) lies in a “solution
region”, namely:

• (𝑥,𝑦) lies in a big square 𝐵(𝑣, 𝑣), such that 𝑣 ∈ [2𝑛] \ {1} is a source or sink of the End-of-Line instance 𝑆, 𝑃 , or
• (𝑥,𝑦) lies in a medium square𝑀 (𝑢,𝑢) of some PLS-Labyrinth gadget, such that 𝑢 ∈ [2𝑚] is a solution to the Iter

instance 𝐶 , i.e., 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) = 𝐶 (𝑢).

Proof. Even though we have defined 𝜀-KKT points in Section 3.2.1 with respect to the ℓ2-norm, here it is more

convenient to consider the ℓ∞-norm instead. Note that any 𝜀-KKT point w.r.t. the ℓ2-norm is also an 𝜀-KKT point w.r.t.

the ℓ∞-norm. Thus, if Lemma 4.3 holds for 𝜀-KKT points w.r.t. the ℓ∞-norm, then it automatically also holds for 𝜀-KKT

points w.r.t. the ℓ2-norm.

For the domain [0, 𝑁 ]2, it is easy to see that a point 𝑥 ∈ [0, 𝑁 ]2 is an 𝜀-KKT point (with respect to the ℓ∞-norm) if

and only if

• for all 𝑖 ∈ {1, 2} with 𝑥𝑖 ≠ 0 : [∇𝑓 (𝑥)]𝑖 ≤ 𝜀
• for all 𝑖 ∈ {1, 2} with 𝑥𝑖 ≠ 𝑁 : −[∇𝑓 (𝑥)]𝑖 ≤ 𝜀.

Intuitively, these conditions state that if 𝑥 is not on the boundary of [0, 𝑁 ]2, then it must hold that ∥∇𝑓 (𝑥)∥∞ ≤ 𝜀. If 𝑥
is on the boundary of [0, 1]2, then “−∇𝑓 (𝑥) must point straight outside the domain, up to an error of 𝜀”.

In order to prove Lemma 4.3, we will show that any small square that does not lie in a solution region, does not

contain any 𝜀-KKT point. The behaviour of the function in a given small square depends on the information we have

about the four corners, namely the colours and arrows at the four corners, but also on the position of the square in

our instance, since the value defined by a colour depends on the position. For our proof, it is convenient to consider a

square with the (colour and arrow) information about its four corners, but without any information about its position.
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Indeed, if we can show that a square does not contain any 𝜀-KKT point using only this information, then this will

always hold, wherever the square is positioned. As a result, we obtain a finite number of squares (with colour and

arrow information) that we need to check. Conceptually, this is a straightforward task: for each small square we get a

set of cubic polynomials that could be generated by bicubic interpolation for that square, and we must prove that no

polynomial in that set has an 𝜀-KKT point within the square.

However, this still leaves us with 101 distinct small squares to verify. In a earlier version of this paper, we presented

a computer-assisted proof that used an SMT solver for this task. For each square we wrote down an SMT formula that

encodes “there exists an 𝜀-KKT point within this square”. The SMT solver was then used to check this formula for

satisfiability over the real numbers.
9
We applied the Z3 SMT solver [24] to all 101 squares in our construction and we

found that the formula is unsatisfiable for every square that does not lie directly at the end of a line of the End-of-Line

instance, or at a solution of the Iter instance, which proves Lemma 4.3. A detailed description of how the SMT formulas

were constructed, as well as the full output of the solver is available online.
10

Below, we present a direct non-computer-assisted proof of Lemma 4.3. This relatively concise proof makes extensive

use of symmetries to drastically reduce the number of cases that need to be verified. We view this proof not as a

replacement of the computer-assisted proof, but instead as additional evidence that Lemma 4.3 holds. Indeed, the two

proofs complement each other nicely, in the sense that they cover each other’s potential weaknesses. The new direct

proof eliminates any concerns one might have about the implementation of the SMT solver, or about possible hardware

failures. On the other hand, the original computer-assisted proof verified all 101 squares individually, thus avoiding

any errors in the use of symmetries and also performing the additional “sanity check” of showing that “bad” squares

(namely, squares that can only appear in a solution region) indeed introduce 𝜀-KKT points.

We begin by describing the transformations that we use to group “symmetric” squares together. Throughout, we

consider a square where each of its four corners has an associated value in Z and an arrow pointing in a cardinal

direction. The first transformation is reflection with respect to the axis 𝑦 = 1/2. Applying this transformation to a

square has the following effect: the two corners at the top of the square now find themselves at the bottom of the

square (and vice-versa) and the sign of the 𝑦-coordinate of each arrow is flipped. Using Equations (3) and (4) one can

check that taking the bicubic interpolation of this reflected square yields the same result as taking the interpolation of

the original square and then applying the reflection to the interpolated function (which corresponds to considering

(𝑥,𝑦) ↦→ 𝑓 (𝑥, 1 − 𝑦)). We can summarize this by saying that bicubic interpolation commutes with this transformation.

The second transformation we use is reflection with respect to the axis 𝑦 = 𝑥 , i.e., the diagonal through the square.

This corresponds to swapping the corners (0, 1) and (1, 0) of the square, and additionally also swapping the 𝑥- and

𝑦-coordinate of the arrows at all four corners. Again, using Equations (3) and (4) one can directly verify that this

transformation also commutes with bicubic interpolation (where applying the transformation to the interpolated

function 𝑓 corresponds to considering (𝑥,𝑦) ↦→ 𝑓 (𝑦, 𝑥)). These two transformations are already enough to obtain any

rotation or reflection of the square. We will only need one more transformation: negation. This corresponds to negating

the values and arrows at the four corners, where “negating an arrow” just means replacing it by an arrow in the opposite

direction. Using Equations (3) and (4), it is immediately clear that negation commutes with bicubic interpolation.

Since all three transformations commute with bicubic interpolation, this continues to hold for any more involved

transformation that is constructed from these basic three. Furthermore, it is easy to see that the basic transformations

9
SMT solvers are capable of deciding satisfiability for the existential theory of the reals. There are no rounding issues or floating point errors to worry

about.

10
https://github.com/jfearnley/PPADPLS/

https://github.com/jfearnley/PPADPLS/
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do not introduce 𝜀-KKT points. Indeed, if a function does not have any 𝜀-stationary points, then applying any reflection

or taking the negation cannot change that property. As a result, if two squares are “symmetric” (i.e., one can be obtained

from the other by applying a combination of the three basic transformations), then it is enough to verify that just one

of these two squares does not contain any 𝜀-KKT points when we take the bicubic interpolation.

Using this notion of symmetry, the squares that need to be verified can be grouped into just four different groups,

namely Groups 1 to 4, as shown in Figure 19. The remaining squares lie in Group 0, which contains all squares that

always lie close to actual solutions and thus do not need to be verified. They are shown in Figure 20. We now prove that

the squares in Groups 1 to 4 do not contain 𝜀-KKT points.

Group 1. This group contains the squares where all the arrows point in the same direction. These squares are all

symmetric to a square of the following form:

𝑐

𝑎

𝑑

𝑏
Conditions:

𝑎 ≥ 𝑏 + 1
𝑐 ≥ 𝑑 + 1

where 𝑎, 𝑏, 𝑐, 𝑑 are the values at the four corners of the square as shown. We now prove that bicubic interpolation does

not introduce any 𝜀-KKT point in such a square.

Recall that 𝜀 = 0.01 and that we use 𝛿 = 1/2 as the length multiplier for the arrows. Also recall that the arrows point

in the opposite direction of the gradient. Thus, our goal here will be to prove that the bicubic interpolation 𝑓 satisfies
𝜕𝑓
𝜕𝑥 (𝑥,𝑦) < −𝜀 for all points (𝑥,𝑦) ∈ [0, 1]

2
in the square, which immediately implies that the square does not contain

any 𝜀-KKT point.

We can compute the coefficients of the interpolation using Equation (4) by setting 𝑓 (0, 0) := 𝑐 , 𝑓 (1, 0) := 𝑑 , 𝑓 (0, 1) := 𝑎,
𝑓 (1, 1) := 𝑏, 𝑓𝑥 (0, 0) = 𝑓𝑥 (1, 0) = 𝑓𝑥 (0, 1) = 𝑓𝑥 (1, 1) := −𝛿 = −1/2, and the remaining terms to zero. Then, substituting

these coefficients into Equation (5) and simplifying, we obtain that for all 𝑥,𝑦 ∈ [0, 1]:
𝜕𝑓

𝜕𝑥
(𝑥,𝑦) = −1

2

− 3𝑥 (1 − 𝑥)
(
1 + 2(1 − 𝑦2 (3 − 2𝑦)) (𝑐 − 𝑑 − 1) + 2𝑦2 (3 − 2𝑦) (𝑎 − 𝑏 − 1)

)
≤ −1

2

< −𝜀

where we used the fact that 𝑦2 (3− 2𝑦) ∈ [0, 1] for all 𝑦 ∈ [0, 1], as well as the conditions 𝑐 −𝑑 − 1 ≥ 0 and 𝑎 −𝑏 − 1 ≥ 0.

Group 2. This group contains all the squares that are symmetric to a square of the following form:

𝑐

𝑎

𝑑

𝑏
Conditions:

𝑎 ≥ 𝑏 + 1
𝑐 ≥ 𝑎 + 1
𝑑 ≥ 𝑏 + 1
𝑐 ≥ 𝑑 − 1

In order to prove that such squares do not contain any 𝜀-KKT points, we distinguish two cases depending on the value

of 𝑦: when 𝑦 ∈ [0, 2/3] (i.e., below the dotted line) we show that
𝜕𝑓
𝜕𝑦 (𝑥,𝑦) < −𝜀, and when 𝑦 ∈ [2/3, 1] (i.e., above

the dotted line) we show that
𝜕𝑓
𝜕𝑥 (𝑥,𝑦) < −𝜀. Consider first the case where 𝑦 ≤ 2/3. Using Equations (4) and (5) and
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Group 1:

Group 2:

Group 3:

Group 4:

Fig. 19. Complete list of all squares that need to be verified, partitioned into four groups.
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Group 0:

Fig. 20. List of squares that lie close to actual solutions, and thus do not need to be verified.

simplifying we obtain

𝜕𝑓

𝜕𝑦
(𝑥,𝑦) = −1

2

(1 − 𝑦)
(
1 + 3𝑦

(
1 + 2𝑥 + 4

(
𝑐 − 𝑎 − 1

2

) (
1 − 𝑥2 (3 − 2𝑥)

)
+ 2(2𝑑 − 2𝑏 − 2)𝑥2 (3 − 2𝑥)

))
≤ −1

2

(1 − 𝑦) ≤ −1
6

< −𝜀

where we used the fact that 𝑥2 (3 − 2𝑥) ∈ [0, 1] for all 𝑥 ∈ [0, 1], as well as 𝑐 − 𝑎 − 1/2 ≥ 0 and 2𝑑 − 2𝑏 − 2 ≥ 0 to

obtain the first inequality, and then 𝑦 ≤ 2/3. Next, consider the case where 𝑦 ≥ 2/3. Using Equations (4) and (5) and

simplifying we obtain

𝜕𝑓

𝜕𝑥
(𝑥,𝑦) = −1

2

𝑦2 (3 − 2𝑦) − 3𝑥 (1 − 𝑥)
(
(2𝑎 − 2𝑏 − 1)𝑦2 (3 − 2𝑦)

+ 2(𝑐 − 𝑑)
(
1 − 𝑦2 (3 − 2𝑦)

) )
≤ −1

2

𝑦2 (3 − 2𝑦) − 3𝑥 (1 − 𝑥)
(
3𝑦2 (3 − 2𝑦) − 2

)
≤ −1

2

𝑦2 (3 − 2𝑦) ≤ −1
3

< −𝜀

where we used 2𝑎− 2𝑏 − 1 ≥ 1 and 𝑐 −𝑑 ≥ −1 to obtain the first inequality (as well as the fact that 𝑦2 (3− 2𝑦) ∈ [0, 1] for
all 𝑦 ∈ [0, 1] as before), and for the second and third inequality the fact that for 𝑦 ∈ [2/3, 1] we have 𝑦2 (3 − 2𝑦) ≥ 2/3.

Group 3. This group contains all the squares that are symmetric to a square of the following form:

𝑐

𝑎

𝑑

𝑏
Conditions:

𝑎 ≥ 𝑏 + 1
𝑐 ≥ 𝑎 + 1
𝑑 ≥ 𝑏 + 1
𝑐 ≥ 𝑑 − 1

Consider first the case where (𝑥,𝑦) ∈ [0, 1/2] × [2/3, 1], i.e., the point lies in the top-left corner region, as delimited by
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the dotted line. Using Equations (4) and (5) and simplifying we obtain

𝜕𝑓

𝜕𝑥
(𝑥,𝑦) = −1

2

(1 − 𝑥)
(
𝑦2 (3 − 2𝑦) + 3𝑥

(
𝑦2 − 2𝑦2 (3 − 2𝑦) + 4(𝑎 − 𝑏)𝑦2 (3 − 2𝑦)

+ 4(𝑐 − 𝑑)
(
1 − 𝑦2 (3 − 2𝑦)

) ))
≤ −1

2

(1 − 𝑥)
(
𝑦2 (3 − 2𝑦) + 3𝑥 (𝑦2 + 6𝑦2 (3 − 2𝑦) − 4)

)
≤ −1

2

(1 − 𝑥)𝑦2 (3 − 2𝑦) ≤ −1
6

< −𝜀

where we used 𝑎−𝑏 ≥ 1, 𝑐−𝑑 ≥ −1 and𝑦2 (3−2𝑦) ∈ [0, 1] for the first inequality, and then the fact that𝑦2 (3−2𝑦) ≥ 2/3
for 𝑦 ∈ [2/3, 1], as well as 𝑥 ≤ 1/2, for the second and third inequality.

Next, consider the case where (𝑥,𝑦) ∉ [0, 1/2] × [2/3, 1], i.e., 𝑥 > 1/2 or 𝑦 < 2/3. Using Equations (4) and (5) and

simplifying we obtain

𝜕𝑓

𝜕𝑦
(𝑥,𝑦) = −1

2

+ 𝑦
2

(
𝑦
(
1 − 𝑥2 (3 − 2𝑥)

)
− (1 − 𝑦)

(
− 4 + 3𝑥 (2 − 𝑥) − 5𝑥2 (3 − 2𝑥)

+ 12(𝑑 − 𝑏 − 1)𝑥2 (3 − 2𝑥) + 12(𝑐 − 𝑎 − 1)
(
1 − 𝑥2 (3 − 2𝑥)

) ))
≤ −1

2

+ 𝑦
2

(
𝑦

(
1 − 𝑥2 (3 − 2𝑥)

)
− (1 − 𝑦)

(
8 + 3𝑥 (2 − 𝑥) − 5𝑥2 (3 − 2𝑥)

) )
≤ −1

2

+ 𝑦
2

2

(
1 − 𝑥2 (3 − 2𝑥)

)
≤ −1

2

+max

{
2

9

,
3

8

}
< −𝜀

where we used 𝑑 − 𝑏 − 1 ≥ 0, 𝑐 − 𝑎 − 1 ≥ 0 and 𝑥2 (3 − 2𝑥) ∈ [0, 1] for the first and second inequalities. For the third

inequality we used the fact that 𝑥 > 1/2 or 𝑦 < 2/3, where we note that 1 − 𝑥2 (3 − 2𝑥) ∈ [0, 1] when 𝑥 ∈ [0, 1], and
1 − 𝑥2 (3 − 2𝑥) ≤ 3/4 when 𝑥 ∈ [1/2, 1].

Group 4. This group contains all the squares that are symmetric to a square of the following form:

𝑐

𝑎

𝑑

𝑏
Conditions:

𝑐 ≥ 𝑎 + 1
𝑑 ≥ 𝑏 + 1
𝑐 ≥ 𝑑 + 1
𝑎 ≥ 𝑏 − 1

Consider first the case where (𝑥,𝑦) ∈ [0, 1/2] × [0, 1/3], i.e., the point lies in the bottom-left corner region, as delimited

by the dotted line. Using Equations (4) and (5) and simplifying we obtain

𝜕𝑓

𝜕𝑥
(𝑥,𝑦) = −1

2

(1 − 𝑥)
(
1 − 𝑦2 (3 − 2𝑦) + 3𝑥

(
− 1 + 𝑦 (2 − 𝑦) + 4(𝑎 − 𝑏)𝑦2 (3 − 2𝑦)

+ 4(𝑐 − 𝑑)
(
1 − 𝑦2 (3 + 2𝑦)

) ))
≤ −1

2

(1 − 𝑥)
(
1 − 𝑦2 (3 − 2𝑦) + 3𝑥

(
3 + 𝑦 (2 − 𝑦) − 8𝑦2 (3 − 2𝑦)

) )
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≤ −1
2

(1 − 𝑥)
(
1 − 𝑦2 (3 − 2𝑦)

)
≤ −1

6

< −𝜀

where we used 𝑎 −𝑏 ≥ −1, 𝑐 −𝑑 ≥ 1 and 𝑦2 (3− 2𝑦) ∈ [0, 1] for the first inequality, and 𝑦2 (3− 2𝑦) ≤ 1/3 for 𝑦 ∈ [0, 1/3]
for the second inequality. For the third inequality, we used the fact that 𝑥 ≤ 1/2 and 1−𝑦2 (3− 2𝑦) ≥ 2/3 for 𝑦 ∈ [0, 1/3].

Next, consider the case where (𝑥,𝑦) ∉ [0, 1/2] × [0, 1/3], i.e., 𝑥 > 1/2 or 𝑦 > 1/3. Using Equations (4) and (5) and

simplifying we obtain

𝜕𝑓

𝜕𝑦
(𝑥,𝑦) = −1

2

+ 1

2

(1 − 𝑦)
(
1 − 𝑥2 (3 − 2𝑥)

)
− 3

2

𝑦 (1 − 𝑦)
(
3 − 𝑥 (2 − 𝑥)

+ 4(𝑑 − 𝑏 − 1)𝑥2 (3 − 2𝑥) + 4(𝑐 − 𝑎 − 1)
(
1 − 𝑥2 (3 − 2𝑥)

) )
≤ −1

2

+ 1

2

(1 − 𝑦)
(
1 − 𝑥2 (3 − 2𝑥)

)
− 3

2

𝑦 (1 − 𝑦)
(
3 − 𝑥 (2 − 𝑥)

)
≤ −1

2

+ 1

2

(1 − 𝑦)
(
1 − 𝑥2 (3 − 2𝑥)

)
≤ −1

2

+max

{
3

8

,
1

3

}
< −𝜀

where we used 𝑑 −𝑏−1 ≥ 0, 𝑐 −𝑎−1 ≥ 0 and 𝑥2 (3−2𝑥) ∈ [0, 1] for the first inequality, and the fact that 3−𝑥 (2−𝑥) ≥ 0

for the second inequality. For the third inequality we used the fact that 𝑥 > 1/2 or 𝑦 > 1/3, where we again note that

1 − 𝑥2 (3 − 2𝑥) ∈ [0, 1] when 𝑥 ∈ [0, 1], and 1 − 𝑥2 (3 − 2𝑥) ≤ 3/4 when 𝑥 ∈ [1/2, 1].

Boundary. Up to this point we have shown that there are no unintended 𝜀-KKT points in the interior of the domain

[0, 𝑁 ]2 of our instance. It remains to show that no 𝜀-KKT points appear on the boundary of the domain. Intuitively, this

corresponds to showing that −∇𝑓 never points “straight outside the domain” when we are on the boundary.

First of all, it is easy to see that there is no 𝜀-KKT point at any of the four corners of the domain [0, 𝑁 ]2. This follows
from the fact that at any such corner the arrow never points outside the domain (see Figure 13). Since these corners of

the domain are also corners of their respective squares, −∇𝑓 (where 𝑓 is obtained by bicubic interpolation in every

square) will automatically be equal to the arrow at that corner (scaled by 𝛿 = 1/2), which ensures that it is not an 𝜀-KKT

point.

It remains to consider points that lie on the boundary of the domain, except at the corners. Using the first two

transformations introduced earlier it is easy to check that any square that lies on the boundary (see Figure 13) is

symmetric to one of the three following cases:

𝑐

𝑎

Case (i)

𝑐

𝑎

Case (ii)

𝑐

𝑎

Case (iii)

where for cases (ii) and (iii) we also have that 𝑐 ≥ 𝑎 + 1. In each of these three illustrations the square touches the

boundary of the domain with its left edge (which is not dashed). In order to show that there are no 𝜀-KKT points on

that left edge, it suffices to show that for any (𝑥,𝑦) on that edge (i.e., 𝑥 = 0, 𝑦 ∈ [0, 1]) we have 𝜕𝑓
𝜕𝑦 (𝑥,𝑦) ∉ [−𝜀, 𝜀] or

𝜕𝑓
𝜕𝑥 (𝑥,𝑦) < −𝜀.
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• For case (i), we have

𝜕𝑓

𝜕𝑥
(0, 𝑦) = −1

2

𝑦2 (3 − 2𝑦) − 1

2

(
1 − 𝑦2 (3 − 2𝑦)

)
= −1

2

< −𝜀.

• For case (ii), we have

𝜕𝑓

𝜕𝑦
(0, 𝑦) = −1

2

− 3(2𝑐 − 2𝑎 − 1) (1 − 𝑦)𝑦 ≤ −1
2

< −𝜀

where we used 2𝑐 − 2𝑎 − 1 ≥ 0.

• For case (iii), if 𝑦 ≥ 1/2 then we have

𝜕𝑓

𝜕𝑥
(0, 𝑦) = −1

2

𝑦2 (3 − 2𝑦) ≤ −1
4

< −𝜀

since 𝑦2 (3 − 2𝑦) ≥ 1/2 when 𝑦 ∈ [1/2, 1]. On the other hand, if 𝑦 ≤ 1/2 then we have

𝜕𝑓

𝜕𝑦
(0, 𝑦) = −1

2

(1 − 𝑦) (1 + 3(4𝑐 − 4𝑎 − 1)𝑦) ≤ −1
2

(1 − 𝑦) ≤ −1
4

< −𝜀

where we used 4𝑐 − 4𝑎 − 1 ≥ 0.

It follows that there are no 𝜀-KKT points on the boundary of the domain. This completes the proof of Lemma 4.3. □

4.4 Re-scaling

The last step of the reduction is to re-scale the function 𝑓 so that it is defined on [0, 1]2 instead of [0, 𝑁 ]2. Thus, the
final function, which we denote 𝑓 here, is defined by

𝑓 (𝑥,𝑦) = (1/𝑁 ) · 𝑓 (𝑁 · 𝑥, 𝑁 · 𝑦) .

The properties of 𝑓 proved in Lemma 4.2 naturally also hold for 𝑓 , in the following sense. Clearly, 𝑓 is also continuously

differentiable. Furthermore, it holds that ∇𝑓 (𝑥,𝑦) = ∇𝑓 (𝑁 · 𝑥, 𝑁 · 𝑦). Thus, we can easily construct well-behaved

arithmetic circuits for 𝑓 and ∇𝑓 in polynomial time given well-behaved circuits for 𝑓 and ∇𝑓 , which, in turn, can be

efficiently constructed according to Lemma 4.2. Furthermore, since ∇𝑓 is 𝐿-Lipschitz-continuous, it is easy to see that

∇𝑓 is 𝐿̂-Lipschitz-continuous with 𝐿̂ = 𝑁 · 𝐿 = 2
18𝑁 2 = 2

2𝑛+2𝑚+26
. Finally, note that since 𝑓 is 𝐿-Lipschitz-continuous,

𝑓 is too, and in particular it is also 𝐿̂-Lipschitz-continuous.

All these properties imply that the instance of KKT we construct does not admit any violation solutions. In other

words, it satisfies all the expected promises. Finally, note that any 𝜀-KKT point of 𝑓 on [0, 1]2 immediately yields an

𝜀-KKT point of 𝑓 on [0, 𝑁 ]2. Thus, the correctness of the reduction follows from Lemma 4.3.

Note that we can re-scale the instance depending on the parameter regime we are interested in. The instance

(𝜀, 𝑓 ,∇𝑓 , 𝐿̂) we have constructed is clearly equivalent to the instance (𝛼𝜀, 𝛼 𝑓 ,∇(𝛼 𝑓 ), 𝛼𝐿̂) for any 𝛼 > 0. For example, by

letting 𝛼 = 1/𝐿̂, we obtain hard instances with Lipschitz-constant 1, and with inversely exponential precision parameter.

5 GRADIENT DESCENT AND KKT ARE PPAD ∩ PLS-COMPLETE

In this section, we show how the PPAD ∩ PLS-hardness of KKT (Theorem 4.1) implies that our other problems of

interest, including our Gradient Descent problems, are PPAD ∩ PLS-complete. Namely, we prove:

Theorem 5.1. The problems KKT,GD-Local-Search,GD-Fixpoint and General-Continuous-Localopt are PPAD ∩
PLS-complete, even when the domain is fixed to be the unit square [0, 1]2. This hardness result continues to hold even if one

considers the promise-versions of these problems, i.e., only instances without violations.
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The hardness results in this theorem are the “best possible”, in the following sense:

• Promise-problem: as mentioned in the theorem, the hardness holds even for the promise-versions of these

problems. In other words, the hard instances that we construct are not pathological: they satisfy all the conditions

that we would expect from the input, e.g., ∇𝑓 is indeed the gradient of 𝑓 , ∇𝑓 and 𝑓 are indeed 𝐿-Lipschitz-

continuous, etc.

• Domain: the problems remain hard even if we fix the domain to be the unit square [0, 1]2, which is arguably the

simplest two-dimensional bounded domain. All the problems become polynomial-time solvable if the domain is

one-dimensional (Lemma C.3).

• Exponential parameters: in all of our problems, the parameters, such as 𝜀 and 𝐿, are provided in the input in

binary representation. This means that the parameters are allowed to be exponentially small or large with respect

to the length of the input. Our hardness results make use of this, since the proof of Theorem 4.1 constructs an

instance of KKT where 𝜀 is some constant, but 𝐿 is exponential in the input length. By a simple transformation,

this instance can be transformed into one where 𝜀 is exponentially small and 𝐿 is constant (see Section 4.4). It is

easy to see that at least one of 𝜀 or 𝐿 must be exponentially large/small, for the problem to be hard on the domain

[0, 1]2. However, this continues to hold even in high dimension, i.e., when the domain is [0, 1]𝑛 (Lemma C.4). In

other words, if the parameters are given in unary, the problem is easy, even in high dimension. This is in contrast

with the problem of finding a Brouwer fixed point, where moving to domain [0, 1]𝑛 makes it possible to prove

PPAD-hardness even when the parameters are given in unary.

Theorem 5.1 follows from Theorem 4.1, proved in Section 4, and a set of domain- and promise-preserving reductions

as pictured in Figure 3, which are presented in the rest of this section as follows. In Section 5.1 we show that the

problems KKT, GD-Local-Search and GD-Fixpoint are equivalent. Then, in Section 5.2 we reduce GD-Local-Search

to General-Continuous-Localopt, and finally we show that General-Continuous-Localopt lies in PPAD ∩ PLS.

5.1 KKT and the Gradient Descent problems are equivalent

The equivalence between KKT, GD-Local-Search and GD-Fixpoint is proved by providing a “triangle” of reductions

as shown in Figure 3. Namely, we show that GD-Local-Search reduces to GD-Fixpoint (Proposition 5.2), GD-Fixpoint

reduces to KKT (Proposition 5.3), and KKT reduces to GD-Local-Search (Proposition 5.4). All the reductions are

domain- and promise-preserving.

Proposition 5.2. GD-Local-Search reduces to GD-Fixpoint using a domain- and promise-preserving reduction.

Proof. Let (𝜀, 𝜂, 𝐴, 𝑏, 𝑓 ,∇𝑓 , 𝐿) be an instance of GD-Local-Search. The reduction simply constructs the instance

(𝜀 ′, 𝜂, 𝐴, 𝑏, 𝑓 ,∇𝑓 , 𝐿) of GD-Fixpoint, where 𝜀 ′ = 𝜀/𝐿. This reduction is trivially domain-preserving and it is also

promise-preserving, because any violation of the constructed instance is immediately also a violation of the original

instance. Clearly, the reduction can be computed in polynomial time, so it remains to show that any (non-violation)

solution of the constructed instance can be mapped back to a solution or violation of the original instance.

Consider any solution 𝑥 ∈ 𝐷 of the GD-Fixpoint instance, i.e.,

∥𝑥 − 𝑦∥ = ∥𝑥 − Π𝐷 (𝑥 − 𝜂∇𝑓 (𝑥))∥ ≤ 𝜀 ′.

where 𝑦 = Π𝐷 (𝑥 −𝜂∇𝑓 (𝑥)). If 𝑥,𝑦 do not satisfy the 𝐿-Lipschitzness of 𝑓 , then we have obtained a violation. Otherwise,

it must be that

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿∥𝑥 − 𝑦∥ ≤ 𝐿𝜀 ′ = 𝜀.
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In particular, it follows that

𝑓 (𝑦) ≥ 𝑓 (𝑥) − 𝜀

which means that 𝑥 is a solution of the original GD-Local-Search instance. □

Proposition 5.3. GD-Fixpoint reduces to KKT using a domain- and promise-preserving reduction.

Proof. Let (𝜀, 𝜂, 𝐴, 𝑏, 𝑓 ,∇𝑓 , 𝐿) be an instance of GD-Fixpoint. The reduction simply constructs the instance (𝜀 ′, 𝐴,
𝑏, 𝑓 , ∇𝑓 , 𝐿) of KKT, where 𝜀 ′ = 𝜀/𝜂. This reduction is trivially domain-preserving and it is also promise-preserving,

because any violation of the constructed instance is immediately also a violation of the original instance. Clearly,

the reduction can be computed in polynomial time, so it remains to show that any (non-violation) solution of the

constructed instance can be mapped back to a solution or violation of the original instance.

In more detail, we will show that any 𝜀 ′-KKT point must be an 𝜀-approximate fixed point of the gradient descent

dynamics. Consider any 𝜀 ′-KKT point of the KKT instance, i.e., a point 𝑥 ∈ 𝐷 such that there exists 𝜇 ≥ 0 with

⟨𝜇,𝐴𝑥 − 𝑏⟩ = 0 and ∥∇𝑓 (𝑥) +𝐴𝑇 𝜇∥ ≤ 𝜀 ′.
Let 𝑦 = Π𝐷 (𝑥 − 𝜂∇𝑓 (𝑥)). We want to show that ∥𝑥 − 𝑦∥ ≤ 𝜀. Since 𝑦 is the projection of 𝑥 − 𝜂∇𝑓 (𝑥) onto 𝐷 , by

Lemma B.1 it follows that for all 𝑧 ∈ 𝐷
⟨𝑥 − 𝜂∇𝑓 (𝑥) − 𝑦, 𝑧 − 𝑦⟩ ≤ 0.

Letting 𝑧 := 𝑥 , this implies that ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩ ≤ 𝜂⟨∇𝑓 (𝑥), 𝑥 − 𝑦⟩ and thus

∥𝑥 − 𝑦∥2 = ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩ ≤ 𝜂⟨∇𝑓 (𝑥), 𝑥 − 𝑦⟩ = 𝜂⟨∇𝑓 (𝑥) +𝐴𝑇 𝜇, 𝑥 − 𝑦⟩ − 𝜂⟨𝐴𝑇 𝜇, 𝑥 − 𝑦⟩

≤ 𝜂⟨∇𝑓 (𝑥) +𝐴𝑇 𝜇, 𝑥 − 𝑦⟩

≤ 𝜂∥∇𝑓 (𝑥) +𝐴𝑇 𝜇∥ · ∥𝑥 − 𝑦∥

where we used the Cauchy-Schwarz inequality and the fact that ⟨𝐴𝑇 𝜇, 𝑥 − 𝑦⟩ ≥ 0, which follows from

⟨𝐴𝑇 𝜇, 𝑥 − 𝑦⟩ = ⟨𝜇,𝐴(𝑥 − 𝑦)⟩ = ⟨𝜇,𝐴𝑥 − 𝑏⟩ − ⟨𝜇,𝐴𝑦 − 𝑏⟩ ≥ 0

since ⟨𝜇,𝐴𝑥 − 𝑏⟩ = 0, 𝜇 ≥ 0 and 𝐴𝑦 − 𝑏 ≤ 0 (because 𝑦 ∈ 𝐷).
We can now show that ∥𝑥 − 𝑦∥ ≤ 𝜀. If ∥𝑥 − 𝑦∥ = 0, this trivially holds. Otherwise, divide both sides of the inequality

obtained above by ∥𝑥 − 𝑦∥, which yields

∥𝑥 − 𝑦∥ ≤ 𝜂∥∇𝑓 (𝑥) +𝐴𝑇 𝜇∥ ≤ 𝜂 · 𝜀 ′ = 𝜀. □

Proposition 5.4. KKT reduces to GD-Local-Search using a domain- and promise-preserving reduction.

Proof. Let (𝜀, 𝐴, 𝑏, 𝑓 ,∇𝑓 , 𝐿) be an instance of KKT. The reduction simply constructs the instance (𝜀 ′, 𝜂, 𝐴, 𝑏, 𝑓 ,∇𝑓 , 𝐿)
of GD-Local-Search, where 𝜀 ′ = 𝜀2

8𝐿
and 𝜂 = 1

𝐿
. This reduction is trivially domain-preserving and it is also promise-

preserving, because any violation of the constructed instance is immediately also a violation of the original instance.

Clearly, the reduction can be computed in polynomial time, so it remains to show that any (non-violation) solution of

the constructed instance can be mapped back to a solution or violation of the original instance.

Consider any 𝑥 ∈ 𝐷 that is a solution of the GD-Local-Search instance and let 𝑦 = Π𝐷 (𝑥 − 𝜂∇𝑓 (𝑥)). Then, it must

be that 𝑓 (𝑦) ≥ 𝑓 (𝑥) − 𝜀 ′. We begin by showing that this implies that ∥𝑥 − 𝑦∥ ≤ 𝜀
2𝐿
, or we can find a violation of the

KKT instance.
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Step 1: Bounding ∥𝒙 −𝒚∥. If 𝑥 and 𝑦 do not satisfy Taylor’s theorem (Lemma 3.4), then we immediately obtain a

violation. If they do satisfy Taylor’s theorem, it holds that

⟨∇𝑓 (𝑥), 𝑥 − 𝑦⟩ − 𝐿
2

∥𝑦 − 𝑥 ∥2 ≤ 𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝜀 ′.

Now, since 𝑦 is the projection of 𝑥 − 𝜂∇𝑓 (𝑥) onto 𝐷 , by Lemma B.1 it follows that ⟨𝑥 − 𝜂∇𝑓 (𝑥) − 𝑦, 𝑧 − 𝑦⟩ ≤ 0 for all

𝑧 ∈ 𝐷 . In particular, by letting 𝑧 := 𝑥 , we obtain that

⟨∇𝑓 (𝑥), 𝑥 − 𝑦⟩ ≥ 1

𝜂
⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩ = 𝐿∥𝑦 − 𝑥 ∥2

where we used the fact that 𝜂 = 1/𝐿. Putting the two expressions together we obtain that

𝐿

2

∥𝑦 − 𝑥 ∥2 = 𝐿∥𝑦 − 𝑥 ∥2 − 𝐿
2

∥𝑦 − 𝑥 ∥2 ≤ 𝜀 ′

which yields that ∥𝑥 − 𝑦∥ ≤
√︁
2𝜀 ′/𝐿 = 𝜀

2𝐿
.

Step 2: Obtaining an 𝜺-KKT point. Next, we show how to obtain an 𝜀-KKT point or a violation of the KKT instance.

Note that if 𝑦 − 𝑥 = −𝜂∇𝑓 (𝑥), then we immediately have that ∥∇𝑓 (𝑥)∥ = ∥𝑥 − 𝑦∥/𝜂 ≤ 𝜀/2, i.e., 𝑥 is an 𝜀-KKT point.

However, because of the projection Π𝐷 used in the computation of𝑦, in general we might not have that𝑦−𝑥 = −𝜂∇𝑓 (𝑥)
and, most importantly, 𝑥 might not be an 𝜀-KKT point. Nevertheless, we show that 𝑦 will necessarily be an 𝜀-KKT point.

Since 𝑦 is the projection of 𝑥 − 𝜂∇𝑓 (𝑥) onto 𝐷 , by Lemma B.1 it follows that for all 𝑧 ∈ 𝐷

⟨𝑥 − 𝜂∇𝑓 (𝑥) − 𝑦, 𝑧 − 𝑦⟩ ≤ 0.

From this it follows that for all 𝑧 ∈ 𝐷

⟨−∇𝑓 (𝑥), 𝑧 − 𝑦⟩ ≤ 1

𝜂
⟨𝑦 − 𝑥, 𝑧 − 𝑦⟩ ≤ 1

𝜂
∥𝑥 − 𝑦∥ · ∥𝑧 − 𝑦∥ ≤ 𝜀

2

∥𝑧 − 𝑦∥

where we used the Cauchy-Schwarz inequality, 𝜂 = 1/𝐿 and ∥𝑥 − 𝑦∥ ≤ 𝜀/2𝐿. Next, unless 𝑥 and 𝑦 yield a violation to

the 𝐿-Lipschitzness of ∇𝑓 , it must hold that ∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥ ≤ 𝜀/2. Thus, we obtain that for all 𝑧 ∈ 𝐷

⟨−∇𝑓 (𝑦), 𝑧 − 𝑦⟩ = ⟨−∇𝑓 (𝑥), 𝑧 − 𝑦⟩ + ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦), 𝑧 − 𝑦⟩

≤ 𝜀

2

∥𝑧 − 𝑦∥ + ∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ · ∥𝑧 − 𝑦∥

≤ 𝜀∥𝑧 − 𝑦∥

(6)

where we used the Cauchy-Schwarz inequality.

Let 𝐼 = {𝑖 ∈ [𝑚] : [𝐴𝑦 − 𝑏]𝑖 = 0}, i.e., the indices of the constraints that are tight at 𝑦. Denote by 𝐴𝐼 ∈ R(𝑚−|𝐼 |)×𝑛

the matrix obtained by only keeping the rows of 𝐴 that correspond to indices in 𝐼 . Assume for now that the statement

∃𝑝 ∈ R𝑛 : 𝐴𝐼𝑝 ≤ 0, ⟨−∇𝑓 (𝑦), 𝑝⟩ > 𝜀∥𝑝 ∥ (7)

does not hold. Then, by a stronger version of Farkas’ Lemma, which we prove in the appendix (Lemma B.3), it follows

that there exists 𝜈 ∈ R |𝐼 |≥0 such that ∥𝐴𝑇
𝐼
𝜈 + ∇𝑓 (𝑦)∥ ≤ 𝜀. Let 𝜇 ∈ R𝑚≥0 be such that 𝜇 agrees with 𝜈 on indices 𝑖 ∈ 𝐼 , i.e.,

𝜇𝐼 = 𝜈 , and 𝜇𝑖 = 0 for 𝑖 ∉ 𝐼 . Then we immediately obtain that𝐴𝑇 𝜇 = 𝐴𝑇
𝐼
𝜈 and thus ∥𝐴𝑇 𝜇 +∇𝑓 (𝑦)∥ = ∥𝐴𝑇

𝐼
𝜈 +∇𝑓 (𝑦)∥ ≤ 𝜀.

Since we also have that ⟨𝜇,𝐴𝑦 − 𝑏⟩ = ⟨𝜇𝐼 , [𝐴𝑦 − 𝑏]𝐼 ⟩ = 0 (because [𝐴𝑦 − 𝑏]𝐼 = 0), it follows that 𝑦 indeed is an 𝜀-KKT

point of 𝑓 on domain 𝐷 .

It remains to show that the statement (7) indeed does not hold. Consider any 𝑝 ∈ R𝑛 such that 𝐴𝐼𝑝 ≤ 0. Then, there

exists a sufficiently small 𝛼 > 0 such that 𝑧 = 𝑦 + 𝛼𝑝 ∈ 𝐷 . Indeed, note that [𝐴𝑧 − 𝑏]𝑖 = [𝐴𝑦 − 𝑏]𝑖 + 𝛼 [𝐴𝑝]𝑖 and thus
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• for 𝑖 ∈ 𝐼 , we get that [𝐴𝑧 − 𝑏]𝑖 ≤ 0, since [𝐴𝑦 − 𝑏]𝑖 = 0 and [𝐴𝑝]𝑖 ≤ 0,

• for 𝑖 ∉ 𝐼 , we have that [𝐴𝑦 − 𝑏]𝑖 < 0. If [𝐴𝑝]𝑖 ≤ 0, then we obtain [𝐴𝑧 − 𝑏]𝑖 ≤ 0 as above. If [𝐴𝑝]𝑖 > 0, then it

also holds that [𝐴𝑧 − 𝑏]𝑖 ≤ 0, as long as 𝛼 ≤ − [𝐴𝑦−𝑏 ]𝑖[𝐴𝑝 ]𝑖 .

Thus, it suffices to pick 𝛼 = min

{
− [𝐴𝑦−𝑏 ]𝑖[𝐴𝑝 ]𝑖 : 𝑖 ∉ 𝐼 , [𝐴𝑝]𝑖 > 0

}
. Note that this indeed ensures that 𝛼 > 0.

Since 𝑧 = 𝑦 + 𝛼𝑝 ∈ 𝐷 , using (6) we get that

⟨−∇𝑓 (𝑦), 𝑝⟩ = 1

𝛼
⟨−∇𝑓 (𝑦), 𝑧 − 𝑦⟩ ≤ 𝜀

𝛼
∥𝑧 − 𝑦∥ = 𝜀∥𝑝 ∥.

Thus, we have shown that the statement (7) indeed does not hold, and this finishes the proof. □

5.2 From GD-Local-Search to PPAD ∩ PLS

In this section we show that GD-Local-Search reduces to General-Continuous-Localopt (Proposition 5.5), and

then that General-Continuous-Localopt lies in PPAD ∩ PLS (Proposition 5.6).

Proposition 5.5. GD-Local-Search reduces to General-Continuous-Localopt using a domain- and promise-

preserving reduction.

Proof. This essentially follows from the fact that the local search version of Gradient Descent is a special case of

continuous local search, which is captured by the General-Continuous-Localopt problem. Let (𝜀, 𝐴, 𝑏, 𝜂, 𝑓 ,∇𝑓 , 𝐿)
be an instance of GD-Local-Search. The reduction simply constructs the instance (𝜀, 𝐴, 𝑏, 𝑝, 𝑔, 𝐿′) of General-

Continuous-Localopt, where 𝑝 (𝑥) = 𝑓 (𝑥), 𝑔(𝑥) = 𝑥 − 𝜂∇𝑓 (𝑥) and 𝐿′ = max{𝜂𝐿 + 1, 𝐿}. We can easily construct

an arithmetic circuit computing 𝑔, given the arithmetic circuit computing ∇𝑓 . It follows that the reduction can be

computed in polynomial time. In particular, since we extend ∇𝑓 by using only the gates − and ×𝜁 , the circuit for 𝑔 is
also well-behaved.

Let us now show that any solution to the General-Continuous-Localopt instance yields a solution to the GD-

Local-Search instance. First of all, by construction of 𝑔, it immediately follows that any local optimum solution of the

General-Continuous-Localopt instance is also a non-violation solution to the GD-Local-Search instance.

Next, we show that any pair of points 𝑥,𝑦 ∈ 𝐷 that violate the (𝜂𝐿 + 1)-Lipschitzness of 𝑔, also violate the 𝐿-

Lipschitzness of ∇𝑓 . Indeed, if 𝑥,𝑦 do not violate the 𝐿-Lipschitzness of ∇𝑓 , then

∥𝑔(𝑥) − 𝑔(𝑦)∥ ≤ ∥𝑥 − 𝑦∥ + 𝜂∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥ ≤ (𝜂𝐿 + 1)∥𝑥 − 𝑦∥.

In particular, any violation to the 𝐿′-Lipschitzness of 𝑔 yields a violation to the 𝐿-Lipschitzness of ∇𝑓 .
Finally, any violation to the 𝐿′-Lipschitzness of 𝑝 immediately yields a violation to the 𝐿-Lipschitzness of 𝑓 . Since

any violation to General-Continuous-Localopt yields a violation to GD-Local-Search, the reduction is also

promise-preserving. □

Proposition 5.6. General-Continuous-Localopt lies in PPAD ∩ PLS.

Proof. This essentially follows by the same arguments that were used by Daskalakis and Papadimitriou [21] to

show that CLS lies in PPAD ∩ PLS. The only difference is that here the domain is allowed to be more general. Consider

any instance (𝜀, 𝐴, 𝑏, 𝑝, 𝑔, 𝐿) of General-Continuous-Localopt.
The containment of General-Continuous-Localopt in PPAD follows from a reduction to the problem of finding a

fixed point guaranteed by Brouwer’s fixed point theorem, which is notoriously PPAD-complete. Indeed, let 𝑥∗ ∈ 𝐷
be any 𝜀/𝐿-approximate fixed point of the function 𝑥 ↦→ Π𝐷 (𝑔(𝑥)), i.e., such that ∥Π𝐷 (𝑔(𝑥∗)) − 𝑥∗∥ ≤ 𝜀/𝐿. Then,
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unless 𝑥∗ and Π𝐷 (𝑔(𝑥∗)) yield a violation of 𝐿-Lipschitzness of 𝑝 , it follows that 𝑝 (Π𝐷 (𝑔(𝑥∗))) ≥ 𝑝 (𝑥∗) − 𝜀, i.e., 𝑥∗ is a
solution of the General-Continuous-Localopt instance. Formally, the reduction works by constructing the instance

(𝜀 ′, 𝐴, 𝑏, 𝑔, 𝐿) of General-Brouwer, where 𝜀 ′ = 𝜀/𝐿. The formal definition of General-Brouwer can be found in

Appendix D, where it is also proved that the problem lies in PPAD.

The containment of CLS in PLS was proved by Daskalakis and Papadimitriou [21] by reducing Continuous-

Localopt to a problem called Real-Localopt, which they show to lie in PLS. Real-Localopt is defined exactly as

Continuous-Localopt, except that the function 𝑔 is not required to be continuous. In order to show the containment

of General-Continuous-Localopt in PLS, we reduce to the appropriate generalisation of Real-Localopt, which we

simply call General-Real-Localopt. Formally, the reduction is completely trivial, since any instance of General-

Continuous-Localopt is also an instance of General-Real-Localopt, and solutions can be mapped back as is. The

formal definition of General-Real-Localopt can be found in Appendix D, where it is also proved that the problem

lies in PLS. □

6 CONSEQUENCES FOR CONTINUOUS LOCAL SEARCH

In this section, we explore the consequences of Theorem 4.1 (and Theorem 5.1) for the class CLS, defined by Daskalakis

and Papadimitriou [21] to capture problems that can be solved by “continuous local search” methods. In Section 6.2 we

also consider a seemingly weaker version of CLS, which we call Linear-CLS, and show that it is in fact the same as CLS.

Finally, we define a Gradient Descent problem where we do not have access to the gradient of the function (which

might, in fact, not even be differentiable) and instead use “finite differences” to compute an approximate gradient. We

show that this problem remains PPAD ∩ PLS-complete.

6.1 Consequences for CLS

The class CLS was defined by Daskalakis and Papadimitriou [21] as a more natural counterpart to PPAD ∩ PLS. Indeed,
Daskalakis and Papadimitriou noted that all the known PPAD ∩ PLS-complete problems were unnatural, namely

uninteresting combinations of a PPAD-complete and a PLS-complete problem. As a result, they defined CLS, a subclass

of PPAD ∩ PLS, which is a more natural combination of PPAD and PLS, and conjectured that CLS is a strict subclass

of PPAD ∩ PLS. They were able to prove that various interesting problems lie in CLS, thus further strengthening the

conjecture that CLS is a more natural subclass of PPAD ∩ PLS, and more likely to capture the complexity of interesting

problems.

It follows from our results that, surprisingly, CLS is actually equal to PPAD ∩ PLS.

Theorem 6.1. CLS = PPAD ∩ PLS.

Recall that in Theorem 5.1, we have shown that General-Continuous-Localopt with domain [0, 1]2 is PPAD ∩ PLS-
complete. Theorem 6.1 follows from the fact that this problem lies in CLS, almost by definition. Before proving this in

Proposition 6.3 below, we explore some further consequences of our results for CLS. An immediate consequence is that

the two previously known CLS-complete problems are in fact PPAD ∩ PLS-complete.

Corollary 6.2. Banach and MetametricContraction are PPAD ∩ PLS-complete.

For the definitions of these problems, which are computational versions of Banach’s fixed point theorem, see [23] and

[30], respectively.

Furthermore, our results imply that the definition of CLS is “robust” in the following sense:
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• Dimension: the class CLS was defined by Daskalakis and Papadimitriou [21] as the set of all TFNP problems that

reduce to 3D-Continuous-Localopt, i.e., Continuous-Localopt with 𝑛 = 3. Even though it is easy to see

that 𝑘D-Continuous-Localopt reduces to (𝑘 + 1)D-Continuous-Localopt (Lemma C.1), it is unclear how to

construct a reduction in the other direction. Indeed, similar reductions exist for the Brouwer problem, but they

require using a discrete equivalent of Brouwer, namely End-of-Line, as an intermediate step. Since no such

discrete problem was known for CLS, this left open the possibility of a hierarchy of versions of CLS, depending

on the dimension, i.e., 2D-CLS ⊂ 3D-CLS ⊂ 4D-CLS . . . . We show that even the two-dimensional version is

PPAD ∩ PLS-hard, and thus the definition of CLS is indeed independent of the dimension used. In other words,

2D-CLS = CLS = 𝑛D-CLS.

Note that this is tight, since 1D-Continuous-Localopt can be solved in polynomial time (Lemma C.3), i.e.,

1D-CLS = FP.
11

• Domain: some interesting problems can be shown to lie in CLS, but the reduction produces a polytopal domain,

instead of the standard hypercube [0, 1]𝑛 . In other words, they reduce to General-Continuous-Localopt,

which we have defined as a generalization of Continuous-Localopt. Since General-Continuous-Localopt

is PPAD ∩ PLS-complete (Theorem 5.1), it follows that CLS can equivalently be defined as the set of all TFNP

problems that reduce to General-Continuous-Localopt.

• Promise: the problem Continuous-Localopt, which defines CLS, is a problem with violation solutions. One

can instead consider promise-CLS, which is defined as the set of all TFNP problems that reduce to a promise

version of Continuous-Localopt. In the promise version of Continuous-Localopt, we restrict our attention

to instances that satisfy the promise, i.e., where the functions 𝑝 and 𝑔 are indeed 𝐿-Lipschitz-continuous. The

class promise-CLS could possibly be weaker than CLS, since the reduction is required to always map to instances

of Continuous-Localopt without violations. However, it follows from our results that promise-CLS =CLS,

since the promise version of Continuous-Localopt is shown to be PPAD ∩ PLS-hard, even on domain [0, 1]2

(Theorem 5.1).

• Turing reductions: since PPAD and PLS are closed under Turing reductions [11], it is easy to see that this also

holds for PPAD ∩ PLS, and thus by our result also for CLS.

• Circuits: CLS is defined using the problem Continuous-Localopt where the functions are represented by

general arithmetic circuits. If one restricts the type of arithmetic circuit that is used, this might yield a weaker

version of CLS. Linear arithmetic circuits are a natural class of circuits that arise when reducing from various

natural problems. We define Linear-CLS as the set of problems that reduce to Continuous-Localopt with linear

arithmetic circuits. In Section 6.2 we show that Linear-CLS = CLS.

Before moving on to Section 6.2 and Linear-CLS, we provide the last reduction in the chain of reductions proving

Theorem 6.1.

Proposition 6.3. General-Continuous-Localopt with fixed domain [0, 1]2 reduces to 2D-Continuous-Localopt
using a promise-preserving reduction. In particular, the problem lies in CLS.

Proof. Given an instance (𝜀, 𝑝, 𝑔, 𝐿) of General-Continuous-Localopt with fixed domain [0, 1]2, we construct the
instance (𝜀, 𝑝, 𝑔′, 𝐿) of 2D-Continuous-Localopt, where 𝑔′(𝑥) = Π𝐷 (𝑔(𝑥)). Note that since 𝐷 = [0, 1]2, the projection

11
With the slight abuse of notation that FP ⊆ TFNP, as explained in Section 3.1.1.



56 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

Π𝐷 can easily be computed as [Π𝐷 (𝑥)]𝑖 = min{1,max{0, 𝑥𝑖 }} for all 𝑥 ∈ R2 and 𝑖 ∈ [2]. In particular, since we extend

𝑔 by using only the gates −, ×𝜁 , min, max and rational constants, the circuit for 𝑔′ is also well-behaved.

Any non-violation solution of the constructed instance is also a solution of the original instance. Any violation

of the constructed instance is immediately mapped back to a violation of the original instance. In particular, it holds

that ∥𝑔′(𝑥) − 𝑔′(𝑦)∥ ≤ ∥𝑔(𝑥) − 𝑔(𝑦)∥ for all 𝑥,𝑦 ∈ [0, 1]2, since projecting two points cannot increase the distance

between them. This implies that any violation of the 𝐿-Lipschitzness of 𝑔′ is also a violation of the 𝐿-Lipschitzness of

𝑔. Note that by Lemma C.2 we do not need to ensure that the codomain of 𝑝 is in [0, 1]. Finally, it is easy to see that

2D-Continuous-Localopt lies in CLS, since it immediately reduces to 3D-Continuous-Localopt (Lemma C.1). □

6.2 Linear-CLS and Gradient Descent with finite differences

The class CLS was defined by Daskalakis and Papadimitriou [21] using the Continuous-Localopt problem which

uses arithmetic circuits with gates in {+,−,min,max,×, <} and rational constants. In this section we show that even if

we restrict ourselves to linear arithmetic circuits (i.e., only the gates in {+,−,min,max,×𝜁 } and rational constants are

allowed), the Continuous-Localopt problem and CLS remain just as hard as the original versions. Note that even

though these circuits are called linear, they in fact correspond to piecewise linear functions.

Definition 9. Linear-Continuous-Localopt:

Input:

• precision/stopping parameter 𝜀 > 0,

• linear arithmetic circuits 𝑝 : [0, 1]𝑛 → [0, 1] and 𝑔 : [0, 1]𝑛 → [0, 1]𝑛 .

Goal: Compute an approximate local optimum of 𝑝 with respect to 𝑔. Formally, find 𝑥 ∈ [0, 1]𝑛 such that

𝑝 (𝑔(𝑥)) ≥ 𝑝 (𝑥) − 𝜀.

For 𝑘 ∈ N, we let 𝑘D-Linear-Continuous-Localopt denote the problem Linear-Continuous-Localopt where

𝑛 is fixed to be equal to 𝑘 . Note that the definition of Linear-Continuous-Localopt does not require violation

solutions, since every linear arithmetic circuit is automatically Lipschitz-continuous with a Lipschitz-constant that can

be represented with a polynomial number of bits (Lemma A.1). In particular, Linear-Continuous-Localopt reduces

to Continuous-Localopt and thus to General-Continuous-Localopt.

We define the class 2D-Linear-CLS as the set of all TFNP problems that reduce to 2D-Linear-Continuous-Localopt.

We show that:

Theorem 6.4. 2D-Linear-CLS = PPAD ∩ PLS.

Note that, just as for CLS, the one-dimensional version can be solved in polynomial time, i.e., 1D-Linear-CLS = FP.
12

The

containment 2D-Linear-CLS ⊆ PPAD ∩ PLS immediately follows from the fact that 2D-Linear-CLS ⊆ CLS ⊆ PPAD ∩ PLS.
The other, more interesting, containment in Theorem 6.4 can be proved by directly reducing 2D-Continuous-Localopt

to 2D-Linear-Continuous-Localopt. This reduction mainly relies on a more general result which says that any

arithmetic circuit can be arbitrarily well approximated by a linear arithmetic circuit on a bounded domain. This

approximation theorem (Theorem E.1) is stated and proved in Appendix E. The proof uses known techniques developed

12
With the slight abuse of notation that FP ⊆ TFNP, as explained in Section 3.1.1.
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in the study of the complexity of Nash equilibria [17, 20], but replaces the usual averaging step by a median step, which

ensures that we obtain the desired accuracy of approximation.

Instead of reducing 2D-Continuous-Localopt to 2D-Linear-Continuous-Localopt, we prove Theorem 6.4 by a

different route that also allows us to introduce a problem which might be of independent interest. To capture the cases

where the gradient is not available or perhaps too expensive to compute, we consider a version of Gradient Descent

where the finite differences approach is used to compute an approximate gradient, which is then used as usual to obtain

the next iterate. Formally, given a finite difference spacing parameter ℎ > 0, the approximate gradient ∇̃ℎ 𝑓 (𝑥) at some

point 𝑥 ∈ [0, 1]𝑛 is computed as [
∇̃ℎ 𝑓 (𝑥)

]
𝑖
=
𝑓 (𝑥 + ℎ · 𝑒𝑖 ) − 𝑓 (𝑥 − ℎ · 𝑒𝑖 )

2ℎ

for all 𝑖 ∈ [𝑛]. The computational problem is defined as follows. Note that even though we define the problem on the

domain [0, 1]𝑛 , it can be defined on more general domains as in our other problems.

Definition 10. GD-Finite-Diff:

Input:

• precision/stopping parameter 𝜀 > 0,

• step size 𝜂 > 0,

• finite difference spacing parameter ℎ > 0,

• linear arithmetic circuit 𝑓 : R𝑛 → R.

Goal: Compute any point where (projected) gradient descent for 𝑓 on domain𝐷 = [0, 1]𝑛 using finite differences

to approximate the gradient and fixed step size 𝜂 terminates. Formally, find 𝑥 ∈ [0, 1]𝑛 such that

𝑓 (Π𝐷 (𝑥 − 𝜂∇̃ℎ 𝑓 (𝑥))) ≥ 𝑓 (𝑥) − 𝜀

where for all 𝑖 ∈ [𝑛] [
∇̃ℎ 𝑓 (𝑥)

]
𝑖
=
𝑓 (𝑥 + ℎ · 𝑒𝑖 ) − 𝑓 (𝑥 − ℎ · 𝑒𝑖 )

2ℎ
.

GD-Finite-Diff immediately reduces to Linear-Continuous-Localopt by setting 𝑝 := 𝑓 and 𝑔 := Π𝐷 (𝑥 − 𝜂∇̃ℎ 𝑓 (𝑥)).
It is easy to construct a linear arithmetic circuit computing 𝑔, given a linear arithmetic circuit computing 𝑓 . Note,

in particular, that the projection Π𝐷 can be computed by a linear circuit since 𝐷 = [0, 1]𝑛 . Indeed, [Π𝐷 (𝑥)]𝑖 =

min{1,max{0, 𝑥𝑖 }} for all 𝑖 ∈ [𝑛] and 𝑥 ∈ R𝑛 . Finally, the restriction of the codomain of 𝑝 to [0, 1] can be handled

exactly as in the proof of Lemma C.2.

In particular, the reduction from GD-Finite-Diff to Linear-Continuous-Localopt is domain-preserving and thus

Theorem 6.4 immediately follows from the following theorem.

Theorem 6.5. GD-Finite-Diff is PPAD ∩ PLS-complete, even with fixed domain [0, 1]2.

This result is interesting by itself, because the problem GD-Finite-Diff is arguably quite natural, but also because it

is the first problem that is complete for PPAD ∩ PLS (and CLS) that has a single arithmetic circuit in the input. Note

that our other problems which we prove to be PPAD ∩ PLS-complete, as well as the previously known CLS-complete

problems, all have two arithmetic circuits in the input.
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Proof. As explained above, GD-Finite-Diff immediately reduces to Linear-Continuous-Localopt and thus to

General-Continuous-Localopt, which lies in PPAD ∩ PLS by Proposition 5.6. Thus, it remains to show that GD-

Finite-Diff is PPAD ∩ PLS-hard when we fix 𝑛 = 2. This is achieved by reducing from GD-Local-Search on domain

[0, 1]2, which is PPAD ∩ PLS-hard by Theorem 5.1. In fact, we can even simplify the reduction by only considering

GD-Local-Search instances that have some additional structure, but remain PPAD ∩ PLS-hard. Namely, consider an

instance (𝜀, 𝜂, 𝑓 ,∇𝑓 , 𝐿) of GD-Local-Search on domain 𝐷 = [0, 1]2 such that:

• ∇𝑓 is the gradient of 𝑓 ,
• 𝑓 and ∇𝑓 are 𝐿-Lipschitz-continuous on [−1, 2]2.

To see that the problem remains PPAD ∩ PLS-hard even with these restrictions, note that the restrictions are satisfied

by the hard instances constructed for the KKT problem in the proof of Theorem 4.1, and that the reduction from

KKT to GD-Local-Search in Proposition 5.4 also trivially preserves them. In particular, even though the proof of

Theorem 4.1 only mentions that 𝑓 and ∇𝑓 are 𝐿-Lipschitz-continuous on [0, 1]2, the same arguments also show that

they are 𝐿-Lipschitz-continuous on [−1, 2]2 (where 𝐿 has been scaled by some fixed constant).

Let us now reduce from the instance (𝜀, 𝜂, 𝑓 ,∇𝑓 , 𝐿) of GD-Local-Search to GD-Finite-Diff. We construct the

instance (𝜀 ′, 𝜂, ℎ, 𝐹 ) of GD-Finite-Diff where 𝜀 ′ = 𝜀/4, ℎ = min{1, 𝜀
8𝜂𝐿2
} and 𝐹 is a linear arithmetic circuit that is

obtained as follows. Let 𝛿 = min{𝜀/4, 𝐿ℎ2/2}. By Theorem E.1 and Remark 4, we can construct a linear arithmetic circuit

𝐹 : R2 → R in polynomial time in size(𝑓 ), log𝐿 and log(1/𝛿) such that |𝑓 (𝑥) − 𝐹 (𝑥) | ≤ 𝛿 for all 𝑥 ∈ [−1, 2]2. Note that
the second possibility in Theorem E.1 cannot occur, since 𝑓 is guaranteed to be 𝐿-Lipschitz-continuous on [−1, 2]2.

Consider any solution of that instance of GD-Finite-Diff, i.e., a point 𝑥 ∈ [0, 1]2 such that 𝐹 (Π𝐷 (𝑥 − 𝜂∇̃ℎ𝐹 (𝑥))) ≥
𝐹 (𝑥) − 𝜀/4. Let us show that 𝑥 is a solution to the original GD-Local-Search instance, i.e., that 𝑓 (Π𝐷 (𝑥 − 𝜂∇𝑓 (𝑥))) ≥
𝑓 (𝑥) − 𝜀.

We have that for 𝑖 ∈ {1, 2}���� [∇̃ℎ 𝑓 (𝑥)]𝑖 − [
∇𝑓 (𝑥)

]
𝑖

����
=

���� 𝑓 (𝑥 + ℎ · 𝑒𝑖 ) − 𝑓 (𝑥 − ℎ · 𝑒𝑖 )
2ℎ

−
[
∇𝑓 (𝑥)

]
𝑖

����
≤ 1

2ℎ

(���𝑓 (𝑥 + ℎ · 𝑒𝑖 ) − 𝑓 (𝑥) − ℎ [
∇𝑓 (𝑥)

]
𝑖

��� + ���−𝑓 (𝑥 − ℎ · 𝑒𝑖 ) + 𝑓 (𝑥) − ℎ [
∇𝑓 (𝑥)

]
𝑖

���)
=

1

2ℎ

(���𝑓 (𝑥 + ℎ · 𝑒𝑖 ) − 𝑓 (𝑥) − 〈
∇𝑓 (𝑥), (𝑥 + ℎ · 𝑒𝑖 ) − 𝑥

〉���
+

���−𝑓 (𝑥 − ℎ · 𝑒𝑖 ) + 𝑓 (𝑥) + 〈
∇𝑓 (𝑥), (𝑥 − ℎ · 𝑒𝑖 ) − 𝑥

〉���)
≤ 1

2ℎ

(
𝐿

2



ℎ · 𝑒𝑖

2 + 𝐿
2



−ℎ · 𝑒𝑖

2) =
𝐿ℎ

2

where we used Taylor’s theorem (Lemma 3.4). Note that 𝑥 ± ℎ · 𝑒𝑖 ∈ [−1, 2]2, since ℎ ≤ 1. Furthermore, it is easy

to see that

��[∇̃ℎ𝐹 (𝑥)]𝑖 − [∇̃ℎ 𝑓 (𝑥)]𝑖 �� ≤ 𝛿/ℎ, since 𝐹 approximates 𝑓 up to error 𝛿 on all of [−1, 2]2. It follows that

∇̃ℎ𝐹 (𝑥) − ∇𝑓 (𝑥)

 ≤ √2(𝛿/ℎ + 𝐿ℎ/2) ≤ 2𝐿ℎ. From this it follows that����𝑓 (Π𝐷

(
𝑥 − 𝜂∇𝑓 (𝑥)

) )
− 𝑓

(
Π𝐷

(
𝑥 − 𝜂∇̃ℎ𝐹 (𝑥)

) )����
≤ 𝐿 ·




Π𝐷

(
𝑥 − 𝜂∇𝑓 (𝑥)

)
− Π𝐷

(
𝑥 − 𝜂∇̃ℎ𝐹 (𝑥)

)






The Complexity of Gradient Descent: CLS = PPAD ∩ PLS 59

≤ 𝐿 ·



(𝑥 − 𝜂∇𝑓 (𝑥)) − (

𝑥 − 𝜂∇̃ℎ𝐹 (𝑥)
)




≤ 𝜂𝐿 ·


∇̃ℎ𝐹 (𝑥) − ∇𝑓 (𝑥)



≤ 2𝜂𝐿2ℎ ≤ 𝜀/4.

Finally, note that |𝑓 (𝑥) − 𝐹 (𝑥) | ≤ 𝛿 ≤ 𝜀/4 and����𝑓 (Π𝐷

(
𝑥 − 𝜂∇̃ℎ𝐹 (𝑥)

) )
− 𝐹

(
Π𝐷

(
𝑥 − 𝜂∇̃ℎ𝐹 (𝑥)

) )���� ≤ 𝛿 ≤ 𝜀/4.
Thus, since 𝐹

(
Π𝐷

(
𝑥 − 𝜂∇̃ℎ𝐹 (𝑥)

) )
≥ 𝐹 (𝑥) − 𝜀/4, it follows that

𝑓

(
Π𝐷

(
𝑥 − 𝜂∇𝑓 (𝑥)

) )
≥ 𝑓 (𝑥) − 4𝜀/4

i.e., 𝑥 is a solution to the original GD-Local-Search instance. □

7 FUTURE DIRECTIONS

Our results may help to identify the complexity of the following problems that are known to lie in PPAD ∩ PLS:

• Mixed-Congestion: The problem of finding a mixed Nash equilibrium of a congestion game. It is known that

finding a pure Nash equilibrium is PLS-complete [29]. As mentioned in Section 1.2, Babichenko and Rubinstein

[5] have recently applied our main result to obtain PPAD ∩ PLS-completeness for Mixed-Congestion. It would

be interesting to extend this to network congestion games, where the strategies are represented implicitly.

• polynomial-KKT: The special case of the KKT problem where the function is a polynomial, provided explicitly

in the input (exponents in unary). In particular, note that this version of the problem does not require the

introduction of violation-solutions for Lipschitzness and smoothness. A consequence of the above-mentioned

reduction by Babichenko and Rubinstein [5] is that the problem is PPAD ∩ PLS-complete for polynomials of

degree 5. It is an interesting open problem to extend this hardness result to lower degree polynomials.

• Contraction: Find a fixed point of a function that is contracting with respect to some ℓ𝑝 -norm.

• Tarski: Find a fixed point of an order-preserving function, as guaranteed by Tarski’s theorem [19, 27, 32].

• ColorfulCarathéodory: A problem based on a theorem in convex geometry [46].

The first three problems on this list were known to lie in CLS [21], while the other two were only known to lie in

PPAD ∩ PLS.
The collapse between CLS and PPAD ∩ PLS raises the question of whether the class EOPL (for End of Potential

Line), a subclass of CLS, is also equal to PPAD ∩ PLS. The class EOPL, or more precisely its subclass UEOPL (with U for

unique), is known to contain various problems of interest that have unique solutions such as Unique Sink Orientation

(USO), the P-matrix Linear Complementarity Problem (P-LCP), Simple Stochastic Games (SSG) and Parity Games [31].

In an earlier version of this paper, we conjectured that EOPL≠ PPAD ∩ PLS, but, in another surprising turn of events,

subsequent work by Göös et al. [35] has shown that in fact EOPL= PPAD ∩ PLS. This collapse provides further evidence
that PPAD ∩ PLS is a natural and robust class. Furthermore, together with the work of Hubáček and Yogev [36], who

prove that EOPL ⊆ CLS, it also yields an alternative proof of CLS = PPAD ∩ PLS. Finally, regarding our results about
the gradient descent problem, the proof of PPAD ∩ PLS-hardness can now be significantly simplified by reducing from

End-of-Potential-Line, the standard EOPL-complete problem, instead of Either-Solution(End-of-Line,Iter). In
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particular, “green paths” are enough to embed an End-of-Potential-Line instance, and the “orange paths” and the

PLS-Labyrinth are no longer needed.

The collapse EOPL= PPAD ∩ PLS leaves open the question of whether UEOPL is also equal to PPAD ∩ PLS. We

conjecture that UEOPL≠ PPAD ∩ PLS. The canonical complete problem for UEOPL, Uniqe-End-of-Potential-Line,

is the same as End-of-Potential-Line, except that it also allows an additional kind of violation solution. We currently

see no way of reducing End-of-Potential-Line to Uniqe-End-of-Potential-Line, because this would require a

way to extract a standard solution from one of those new violation solutions. In order to provide evidence that the

classes are not equal, one could try to obtain an oracle separation between UEOPL and PPAD ∩ PLS, in the sense of

Beame et al. [6].

Ishizuka [37] has recently shown that the definition of EOPL is robust with respect to some modifications (similarly

to PPAD [34]), and has provided a somewhat artificial problem that is complete for PPA∩PLS. This raises the interesting
question of whether PPA ∩ PLS, and other intersections of well-studied classes, also admit natural complete problems,

or if PPAD ∩ PLS is in fact an isolated case.

A MORE ON ARITHMETIC CIRCUITS

A.1 Evaluation of well-behaved arithmetic circuits (Proof of Lemma 3.3)

We restate the Lemma here for convenience.

Lemma 3.3. Let 𝑓 be a well-behaved arithmetic circuit with 𝑛 inputs. Then, for any rational 𝑥 ∈ R𝑛 , 𝑓 (𝑥) can be computed

in time poly(size(𝑓 ), size(𝑥)).

Proof. Recall that an arithmetic circuit 𝑓 is well-behaved if, on any directed path that leads to an output, there

are at most log(size(𝑓 )) true multiplication gates. Without loss of generality, we can assume that the circuit 𝑓 only

contains gates that are used to compute at least one of the outputs.

Let 𝑥 denote the input to circuit 𝑓 and for any gate 𝑔 of 𝑓 let 𝑣 (𝑔) denote the value computed by gate 𝑔 when 𝑥 is

provided as input to the circuit. For any gate 𝑔 that is not an input gate or a constant gate, let 𝑔1 and 𝑔2 denote the

two gates it uses as inputs. Clearly, if 𝑔 is one of {+,−,×,max,min, >}, 𝑣 (𝑔) can be computed in polynomial time in

size(𝑣 (𝑔1))+size(𝑣 (𝑔2)), including transforming it into an irreducible fraction. Thus, in order to show that the circuit can

be evaluated in polynomial time, it suffices to show that for all gates𝑔 of 𝑓 , it holds that size(𝑣 (𝑔)) ≤ 𝑝 (size(𝑓 )+size(𝑥)),
where 𝑝 is some fixed polynomial (independent of 𝑓 and 𝑥 ). In the rest of this proof, we show that

size(𝑣 (𝑔)) ≤ 6 · size(𝑓 )3 · size(𝑥).

It is convenient to partition the gates of the circuit depending on their depth. For any gate 𝑔 in 𝑓 , we let 𝑑 (𝑔) denote
the depth of the gate in 𝑓 . The input gates and the constant gates are at depth 1. For any other gate 𝑔, we define its depth

inductively as 𝑑 (𝑔) = 1 +max{𝑑 (𝑔1), 𝑑 (𝑔2)}, where 𝑔1 and 𝑔2 are the two input gates of 𝑔. Note that 𝑑 (𝑔) ≤ size(𝑓 ) for
all gates 𝑔 in the circuit.

We also define a notion of “multiplication-depth” 𝑚𝑑 (𝑔). The gates 𝑔 at depth 1 all have 𝑚𝑑 (𝑔) = 0. For the

rest of the gates, the multiplication-depth is defined inductively. For a gate 𝑔 whose inputs are 𝑔1 and 𝑔2, we let

𝑚𝑑 (𝑔) = 1 + max{𝑚𝑑 (𝑔1),𝑚𝑑 (𝑔2)} if 𝑔 is a true multiplication gate, and 𝑚𝑑 (𝑔) = max{𝑚𝑑 (𝑔1),𝑚𝑑 (𝑔2)} otherwise.
Since 𝑓 is well-behaved, it immediately follows that𝑚𝑑 (𝑔) ≤ log(size(𝑓 )) for all gates 𝑔 of the circuit.
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We begin by showing that for any gate 𝑔 of 𝑓 , it holds that |𝑣 (𝑔) | ≤ 2
size(𝑓 )2 (size(𝑥)+size(𝑓 ))

. This follows from the

stronger statement that

|𝑣 (𝑔) | ≤ 2
𝑑 (𝑔) ·2𝑚𝑑 (𝑔) · (size(𝑥)+size(𝑓 )) ,

which we prove by induction as follows. First of all, note that any gate at depth 1 satisfies the statement, since any

input or constant of the circuit is bounded by 2
size(𝑥)

or 2
size(𝑓 )

respectively. Next, assume that the statement holds

for all gates with depth ≤ 𝑘 − 1 and consider some gate 𝑔 at depth 𝑘 . Let 𝑔1 and 𝑔2 denote its two inputs, which must

satisfy that 𝑑 (𝑔1) ≤ 𝑘 − 1 and 𝑑 (𝑔2) ≤ 𝑘 − 1. If 𝑔 is one of {min,max, <}, then the statement immediately also holds

for 𝑔. If 𝑔 is an addition or subtraction gate, then |𝑣 (𝑔) | ≤ |𝑣 (𝑔1) | + |𝑣 (𝑔2) | ≤ 2max{|𝑣 (𝑔1) |, |𝑣 (𝑔2) |}, which implies

that the statement also hold for 𝑔, since 𝑑 (𝑔1), 𝑑 (𝑔2) ≤ 𝑘 − 1 and 𝑑 (𝑔) = 𝑘 . If 𝑔 is a multiplication by a constant, then

|𝑣 (𝑔) | ≤ 2
size(𝑓 ) |𝑣 (𝑔1) | (wlog 𝑔2 is the constant), and the statement holds for 𝑔 too. Finally, if 𝑔 is a true multiplication

gate, then |𝑣 (𝑔) | = |𝑣 (𝑔1) | |𝑣 (𝑔2) | ≤ (max{|𝑣 (𝑔1) |, |𝑣 (𝑔2) |})2. Since𝑚𝑑 (𝑔) = 1 +max{𝑚𝑑 (𝑔1),𝑚𝑑 (𝑔2)}, it follows that
the statement also holds for 𝑔.

Let 𝑑𝑒𝑛(𝑔) denote the absolute value of the denominator of 𝑣 (𝑔) (written as an irreducible fraction). We show that

for all gates 𝑔, it holds that 𝑑𝑒𝑛(𝑔) ≤ 2
size(𝑓 )2 (size(𝑥)+size(𝑓 ))

. This is enough to conclude our proof. Indeed, since we

also have that |𝑣 (𝑔) | ≤ 2
size(𝑓 )2 (size(𝑥)+size(𝑓 ))

, it follows that the absolute value of the numerator of 𝑣 (𝑔) is

|𝑣 (𝑔) | · 𝑑𝑒𝑛(𝑔) ≤ 2
2·size(𝑓 )2 (size(𝑥)+size(𝑓 )) .

As a result, it follows that

size(𝑣 (𝑔)) ≤ 2 · size(𝑓 )2 (size(𝑥) + size(𝑓 )) + size(𝑓 )2 (size(𝑥) + size(𝑓 )) ≤ 6 · size(𝑓 )3 · size(𝑥).

It remains to show that 𝑑𝑒𝑛(𝑔) ≤ 2
size(𝑓 )2 (size(𝑥)+size(𝑓 ))

, which we prove by showing that

𝑑𝑒𝑛(𝑔) ≤ 2
𝑑 (𝑔) ·2𝑚𝑑 (𝑔) · (size(𝑥)+size(𝑓 )) .

Let𝑀 denote (the absolute value of) the product of all denominators appearing in the input 𝑥 and the description of 𝑓 ,

i.e., the denominators of the coordinates of the input 𝑥 , and the denominators of the constants used by 𝑓 . Note that

𝑀 ≤ 2
size(𝑥)+size(𝑓 )

. We prove by induction that for all gates 𝑔,

𝑑𝑒𝑛(𝑔) is a factor of𝑀𝑑 (𝑔) ·2𝑚𝑑 (𝑔)

which in particular implies the bound on 𝑑𝑒𝑛(𝑔) above. First of all, note that any gate at depth 1 is an input or a constant,

and thus satisfies the statement. Next, assume that the statement holds for all gates with depth ≤ 𝑘 − 1 and consider

some gate 𝑔 at depth 𝑘 . Let 𝑔1 and 𝑔2 denote its two inputs, which must satisfy that 𝑑 (𝑔1) ≤ 𝑘 − 1 and 𝑑 (𝑔2) ≤ 𝑘 − 1. If
𝑔 is one of {min,max, <}, then it is easy to see that the statement immediately also holds for 𝑔. If 𝑔 is an addition or

subtraction gate, then, since 𝑣 (𝑔1) and 𝑣 (𝑔2) can both be expressed as fractions with denominator𝑀𝑑 (𝑔) ·2𝑚𝑑 (𝑔)
, so can

𝑣 (𝑔), and the statement also holds for 𝑔. If 𝑔 is a multiplication by a constant, then 𝑑𝑒𝑛(𝑔) is a factor of𝑀𝑑 (𝑔) ·2𝑚𝑑 (𝑔)
,

since 𝑑𝑒𝑛(𝑔1) is a factor of𝑀 (𝑑 (𝑔)−1) ·2
𝑚𝑑 (𝑔)

and the denominator of the constant is a factor of𝑀 (wlog assume that 𝑔2

is the constant). Finally, if 𝑔 is a true multiplication gate, then 𝑑𝑒𝑛(𝑔1) and 𝑑𝑒𝑛(𝑔2) are factors of𝑀𝑑 (𝑔) ·2𝑚𝑑 (𝑔)−1
, and

thus 𝑑𝑒𝑛(𝑔) is a factor of (𝑀𝑑 (𝑔) ·2𝑚𝑑 (𝑔)−1 )2 = 𝑀𝑑 (𝑔) ·2𝑚𝑑 (𝑔)
as desired. □

A.2 Linear arithmetic circuits are Lipschitz-continuous

Linear arithmetic circuits are only allowed to use the operations {+,−,max,min,×𝜁 } and rational constants. The

operation ×𝜁 denotes multiplication by a constant (which is part of the description of the circuit). Every linear arithmetic
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circuit is in particular a well-behaved arithmetic circuit, and so, by Lemma 3.3, can be evaluated in polynomial time.

Furthermore, every linear arithmetic circuit represents a Lipschitz-continuous function such that the Lipschitz constant

has polynomial bit-size with respect to the size of the circuit.

Lemma A.1. Any linear arithmetic circuit 𝑓 : R𝑛 → R𝑚 is 2size(𝑓 )
2

-Lipschitz-continuous (w.r.t. the ℓ∞-norm) over R𝑛 .

Proof. For any gate 𝑔 of the circuit 𝑓 , let 𝐿(𝑔) denote the Lipschitz-constant of the function which outputs the

value of 𝑔, given the input 𝑥 to the circuit. As in the proof of Lemma 3.3, it is convenient to partition the gates of 𝑓

according to their depth. Note that for all the gates 𝑔 at depth 1, i.e., the input gates and the constant gates, it holds

that 𝐿(𝑔) ≤ 1. We show that any gate 𝑔 at depth 𝑘 satisfies 𝐿(𝑔) ≤ 2
𝑘 ·size(𝑓 )

. It immediately follows from this that 𝑓 is

2
size(𝑓 )2

-Lipschitz-continuous (w.r.t. the ℓ∞-norm) over R𝑛 .

Consider a gate 𝑔 at depth 𝑘 with inputs 𝑔1 and 𝑔2 (which lie at a lower depth). If 𝑔 is + or −, then 𝐿(𝑔) ≤
𝐿(𝑔1) + 𝐿(𝑔2) ≤ 2max{𝐿(𝑔1), 𝐿(𝑔2)} ≤ 2 · 2(𝑘−1) ·size(𝑓 ) ≤ 2

𝑘 ·size(𝑓 )
. If 𝑔 is max or min, then it is easy to see that

𝐿(𝑔) ≤ max{𝐿(𝑔1), 𝐿(𝑔2)} ≤ 2
𝑘 ·size(𝑓 )

. Finally, if 𝑔 is ×𝜁 , then 𝐿(𝑔) ≤ |𝜁 | · 𝐿(𝑔1) ≤ 2
size(𝑓 )

2
(𝑘−1) ·size(𝑓 ) = 2

𝑘 ·size(𝑓 )
,

where we used the fact that |𝜁 | ≤ 2
size(𝑓 )

. □

B MATHEMATICAL TOOLS

B.1 Tools from convex analysis and a generalization of Farkas’ Lemma

Let 𝐷 ⊆ R𝑛 be a non-empty closed convex set. Recall that the projection Π𝐷 : R𝑛 → 𝐷 is defined by Π𝐷 (𝑥) =
argmin𝑦∈𝐷 ∥𝑥 − 𝑦∥, where ∥ · ∥ denotes the Euclidean norm. It is known that Π𝐷 (𝑥) always exists and is unique. The

following two results are standard tools in convex analysis, see, e.g., [7].

Lemma B.1. Let 𝐷 be a non-empty closed convex set in R𝑛 and let 𝑦 ∈ R𝑛 . Then for all 𝑥 ∈ 𝐷 it holds that

⟨𝑦 − Π𝐷 (𝑦), 𝑥 − Π𝐷 (𝑦)⟩ ≤ 0.

Proposition B.2. Let 𝐷1 and 𝐷2 be two disjoint non-empty closed convex sets in R𝑛 and such that 𝐷2 is bounded. Then,

there exist 𝑐 ∈ R𝑛 \ {0} and 𝑑 ∈ R such that ⟨𝑐, 𝑥⟩ < 𝑑 for all 𝑥 ∈ 𝐷1, and ⟨𝑐, 𝑥⟩ > 𝑑 for all 𝑥 ∈ 𝐷2.

We will need the following generalization of Farkas’ Lemma, which we prove below. For 𝜀 = 0, we recover the usual

statement of Farkas’ Lemma.

Lemma B.3. Let 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑛 and 𝜀 ≥ 0. Then exactly one of the following two statements holds:

(1) ∃𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 0, ⟨𝑏, 𝑥⟩ > 𝜀∥𝑥 ∥,
(2) ∃𝑦 ∈ R𝑚 : ∥𝐴𝑇𝑦 − 𝑏∥ ≤ 𝜀, 𝑦 ≥ 0.

Proof. Let us first check that both statements cannot hold at the same time. Indeed, if this were the case, then we

would obtain the following contradiction

𝜀∥𝑥 ∥ < ⟨𝑏, 𝑥⟩ = ⟨𝐴𝑇𝑦, 𝑥⟩ + ⟨𝑏 −𝐴𝑇𝑦, 𝑥⟩ ≤ ⟨𝑦,𝐴𝑥⟩ + ∥𝑏 −𝐴𝑇𝑦∥∥𝑥 ∥ ≤ 𝜀∥𝑥 ∥

where we used the fact that ⟨𝑦,𝐴𝑥⟩ ≤ 0 and the Cauchy-Schwarz inequality.

Now, let us show that if statement 2 does not hold, then statement 1 must necessarily hold. Let 𝐷1 = {𝐴𝑇𝑦 : 𝑦 ≥ 0}
and𝐷2 = {𝑥 : ∥𝑥−𝑏∥ ≤ 𝜀}. Note that since statement 2 does not hold, it follows that𝐷1 and𝐷2 are disjoint. Furthermore,

it is easy to check that 𝐷1 and 𝐷2 satisfy the conditions of Proposition B.2. Thus, there exist 𝑐 ∈ R𝑛 \ {0} and 𝑑 ∈ R such
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that ⟨𝑐, 𝑥⟩ < 𝑑 for all 𝑥 ∈ 𝐷1, and ⟨𝑐, 𝑥⟩ > 𝑑 for all 𝑥 ∈ 𝐷2. In particular, we have that for all𝑦 ≥ 0, ⟨𝐴𝑐,𝑦⟩ = ⟨𝑐, 𝐴𝑇𝑦⟩ < 𝑑 .
From this it follows that 𝐴𝑐 ≤ 0, since if [𝐴𝑐]𝑖 > 0 for some 𝑖 , then ⟨𝐴𝑐,𝑦⟩ ≥ 𝑑 for 𝑦 =

|𝑑 |
[𝐴𝑐 ]𝑖 𝑒𝑖 .

In order to show that 𝑥 := 𝑐 satisfies the first statement, it remains to prove that ⟨𝑏, 𝑐⟩ > 𝜀∥𝑐 ∥. Note that by

setting 𝑦 = 0, we get that 0 = ⟨𝑐, 𝐴𝑇 0⟩ < 𝑑 . Let 𝑧 = 𝑏 − 𝜀 𝑐
∥𝑐 ∥ . Since 𝑧 ∈ 𝐷2, it follows that ⟨𝑐, 𝑧⟩ > 𝑑 > 0. Since

⟨𝑐, 𝑧⟩ = ⟨𝑐, 𝑏⟩ − 𝜀∥𝑥 ∥, statement 1 indeed holds. □

B.2 Proof of Lemma 3.4 (Taylor’s Theorem)

We restate the Lemma here for convenience.

Lemma 3.4 (Taylor’s theorem). Let 𝑓 : R𝑛 → R be continuously differentiable and let 𝐷 ⊆ R𝑛 be convex. If ∇𝑓 is

𝐿-Lipschitz-continuous (w.r.t. the ℓ2-norm) on 𝐷 , then for all 𝑥,𝑦 ∈ 𝐷 we have��𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩�� ≤ 𝐿

2

∥𝑦 − 𝑥 ∥2 .

Proof. Let 𝑔 : [0, 1] → R be defined by 𝑔(𝑡) = 𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)). Then, 𝑔 is continuously differentiable on [0, 1] and
𝑔′(𝑡) = ⟨∇𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)), 𝑦 − 𝑥⟩. Furthermore, 𝑔′ is (𝐿∥𝑥 − 𝑦∥2)-Lipschitz-continuous on [0, 1], since

|𝑔′(𝑡1) − 𝑔′(𝑡2) | = |⟨∇𝑓 (𝑥 + 𝑡1 (𝑦 − 𝑥)) − ∇𝑓 (𝑥 + 𝑡2 (𝑦 − 𝑥)), 𝑦 − 𝑥⟩|

≤ ∥∇𝑓 (𝑥 + 𝑡1 (𝑦 − 𝑥)) − ∇𝑓 (𝑥 + 𝑡2 (𝑦 − 𝑥))∥ · ∥𝑦 − 𝑥 ∥

≤ 𝐿 · ∥𝑡1 (𝑦 − 𝑥) − 𝑡2 (𝑦 − 𝑥)∥ · ∥𝑦 − 𝑥 ∥

≤ 𝐿 · |𝑡1 − 𝑡2 | · ∥𝑦 − 𝑥 ∥2

where we used the Cauchy-Schwarz inequality. We also used the fact that ∇𝑓 is 𝐿-Lipschitz on 𝐷 , and 𝑥 + 𝑡 (𝑦 − 𝑥) ∈ 𝐷
for all 𝑡 ∈ [0, 1]. Now, we can write

𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ = 𝑔(1) − 𝑔(0) − 𝑔′(0) =
∫

1

0

(𝑔′(𝑡) − 𝑔′(0)) d𝑡

and thus

|𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩| ≤
∫

1

0

|𝑔′(𝑡) − 𝑔′(0) | d𝑡 ≤
∫

1

0

𝐿 · ∥𝑥 − 𝑦∥2 · |𝑡 | d𝑡 = 𝐿

2

∥𝑦 − 𝑥 ∥2 . □

C MINOR OBSERVATIONS ON CONTINUOUS-LOCALOPT AND KKT

Lemma C.1. For all integers 𝑘2 > 𝑘1 > 0, 𝑘1D-Continuous-Localopt reduces to 𝑘2D-Continuous-Localopt using a

promise-preserving reduction.

Proof. For 𝑥 ∈ R𝑘2 , we write 𝑥 = (𝑥1, 𝑥2), where 𝑥1 ∈ R𝑘1 and 𝑥2 ∈ R𝑘2−𝑘1 . Let (𝜀, 𝑝, 𝑔, 𝐿) be an instance of

𝑘1D-Continuous-Localopt. The reduction constructs the instance (𝜀, 𝑝 ′, 𝑔′, 𝐿) of 𝑘2D-Continuous-Localopt, where

𝑝 ′(𝑥) = 𝑝 ′(𝑥1, 𝑥2) = 𝑝 (𝑥1) and 𝑔′(𝑥) = 𝑔′(𝑥1, 𝑥2) = (𝑔(𝑥1), 0) .

Clearly, the arithmetic circuits for 𝑝 ′ and 𝑔′ can be constructed in polynomial time and are well-behaved.

Since |𝑝 ′(𝑥) − 𝑝 ′(𝑦) | = |𝑝 (𝑥1) − 𝑝 (𝑦1) | ≤ 𝐿∥𝑥1 − 𝑦1∥ ≤ 𝐿∥𝑥 − 𝑦∥, it is clear that any violation 𝑥,𝑦 ∈ [0, 1]𝑘2 of
𝐿-Lipschitzness for 𝑝 ′ also yields a violation 𝑥1, 𝑦1 ∈ [0, 1]𝑘1 for 𝑝 . Similarly, since

∥𝑔′(𝑥) − 𝑔′(𝑦)∥ = ∥(𝑔(𝑥1), 0) − (𝑔(𝑦1), 0)∥ = ∥𝑔(𝑥1) − 𝑔(𝑦1)∥ ≤ 𝐿∥𝑥1 − 𝑦1∥ ≤ 𝐿∥𝑥 − 𝑦∥,
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any violation 𝑥,𝑦 of 𝐿-Lipschitzness for 𝑔′ also yields a violation 𝑥1, 𝑦1 for 𝑔. Thus, any violation of the constructed

instance is always mapped back to a violation of the original instance, and the reduction is indeed promise-preserving.

Finally, note that any proper solution 𝑥 ∈ [0, 1]𝑘2 of the constructed instance, i.e., such that 𝑝 ′(𝑔′(𝑥)) ≥ 𝑝 ′(𝑥) − 𝜀,
immediately yields a solution 𝑥1 ∈ [0, 1]𝑘1 of the original instance. □

Lemma C.2. Continuous-Localopt with codomain [0, 1] for function 𝑝 is equivalent to Continuous-Localopt

without this restriction.

Proof. It is clear that the version with the restriction trivially reduces to the version without the restriction. Thus, it

remains to show the other direction, namely that Continuous-Localopt without the codomain restriction reduces to

the restricted version.

Let (𝜀, 𝑝, 𝑔, 𝐿) be an instance of Continuous-Localopt with domain [0, 1]𝑛 and without a codomain restriction for

𝑝 . The reduction constructs the instance (𝜀 ′, 𝑝 ′, 𝑔, 𝐿′) of Continuous-Localopt with domain [0, 1]𝑛 , where 𝜀 ′ = 𝜀
2𝑛𝐿

,

𝐿′ = max{𝐿, 1

2𝑛 } and

𝑝 ′(𝑥) = min

{
1,max

{
0,
1

2

+ 𝑝 (𝑥) − 𝑝 (𝑧𝑐 )
2𝑛𝐿

}}
where 𝑧𝑐 = (1/2, 1/2, . . . , 1/2) is the centre of [0, 1]𝑛 . Note that the arithmetic circuit computing 𝑝 ′ can be computed

in polynomial time given the circuit for 𝑝 , and that the modification of 𝑝 will require using gates ×𝜁 , but no general

multiplication gates. Thus, the circuit for 𝑝 ′ is also well-behaved. Note, in particular, that the value 𝑝 (𝑧𝑐 ) can be

computed in polynomial time in the size of the circuit for 𝑝 . It follows that the reduction can be computed in polynomial

time.

First of all, let us show that any point 𝑥 ∈ [0, 1]𝑛 such that 𝑝 ′(𝑥) ≠ 1

2
+ 𝑝 (𝑥)−𝑝 (𝑧𝑐 )

2𝑛𝐿
will immediately yield a violation

of the 𝐿-Lipschitzness of 𝑝 . Indeed, if 𝑥 and 𝑧𝑐 satisfy the 𝐿-Lipschitzness of 𝑝 , then this means that

|𝑝 (𝑥) − 𝑝 (𝑧𝑐 ) | ≤ 𝐿∥𝑥 − 𝑧𝑐 ∥ ≤ 𝑛𝐿

since 𝑥, 𝑧𝑐 ∈ [0, 1]𝑛 . As a result, it follows that 1

2
+ 𝑝 (𝑥)−𝑝 (𝑧𝑐 )

2𝑛𝐿
∈ [0, 1] and thus 𝑝 ′(𝑥) = 1

2
+ 𝑝 (𝑥)−𝑝 (𝑧𝑐 )

2𝑛𝐿
.

In the rest of this proof we assume that we always have 𝑝 ′(𝑥) = 1

2
+ 𝑝 (𝑥)−𝑝 (𝑧𝑐 )

2𝑛𝐿
, since we can immediately extract a

violation if we ever come across a point 𝑥 where this does not hold. Let us now show that any solution of the constructed

instance immediately yields a solution of the original instance. Clearly, any violation of the 𝐿′-Lipschitzness of 𝑔 is

trivially also a violation of 𝐿-Lipschitzness.

Next assume that 𝑥,𝑦 ∈ [0, 1]𝑛 are a violation of 𝐿′-Lipschitzness of 𝑝 ′. Let us show by contradiction that 𝑥,𝑦 must

be a violation of 𝐿-Lipschitzness for 𝑝 . Indeed, assume that 𝑥,𝑦 satisfy the 𝐿-Lipschitzness for 𝑝 , then

|𝑝 ′(𝑥) − 𝑝 ′(𝑦) | =
����𝑝 (𝑥) − 𝑝 (𝑦)

2𝑛𝐿

���� ≤ 1

2𝑛
∥𝑥 − 𝑦∥

which is a contradiction to 𝑥,𝑦 being a violation of 𝐿′-Lipschitzness of 𝑝 ′.

Finally, consider any proper solution of the constructed instance, i.e., 𝑥 ∈ [0, 1]𝑛 such that 𝑝 ′(𝑔(𝑥)) ≥ 𝑝 ′(𝑥) − 𝜀 ′.
Then it follows straightforwardly that 𝑝 (𝑔(𝑥)) ≥ 𝑝 (𝑥) −2𝑛𝐿𝜀 ′, which implies that 𝑥 is a solution to the original instance,

since 2𝑛𝐿𝜀 ′ = 𝜀. Note that the reduction is also promise-preserving, since we always map violations of the constructed

instance back to violations of the original instance. □

Lemma C.3. General-Continuous-Localopt with fixed dimension 𝑛 = 1 can be solved in polynomial time. As a result,

this also holds for KKT, GD-Local-Search and GD-Fixpoint.
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Proof. This is a straightforward consequence of the fact that finding Brouwer fixed points in one dimension is

easy. Consider any instance (𝜀, 𝐴, 𝑏, 𝑝, 𝑔, 𝐿) of General-Continuous-Localopt with 𝑛 = 1. It is easy to see that any

𝜀/𝐿-approximate fixed point of 𝑥 ↦→ Π𝐷 (𝑔(𝑥)) immediately yields a solution to the General-Continuous-Localopt

instance.

Thus, we proceed as follows. First of all, from 𝐴 and 𝑏 we can directly determine 𝑡1, 𝑡2 ∈ R such that 𝐷 = [𝑡1, 𝑡2].
Note that the bit-size of 𝑡1 and 𝑡2 is polynomial in the input size. Then define a grid of points on the interval [𝑡1, 𝑡2]
such that the distance between consecutive points is 𝜀/𝐿2. Finally, using binary search, find two consecutive points

𝑥1 and 𝑥2 such that 𝑔(𝑥1) ≥ 𝑥1 and 𝑔(𝑥2) ≤ 𝑥2. One of these two points has to be an 𝜀/𝐿-approximate fixed point of

𝑥 ↦→ Π𝐷 (𝑔(𝑥)) (or we obtain a violation of Lipschitz-continuity). Binary search takes polynomial time, because the

number of points is at most exponential in the input size.

Since the other three problems reduce to General-Continuous-Localopt using domain-preserving reductions (see

Section 5), it follows that they can also be solved in polynomial time when 𝑛 = 1. □

Lemma C.4. KKT on domain [0, 1]𝑛 can be solved in polynomial time in 1/𝜀, 𝐿 and the sizes of the circuits for 𝑓 and ∇𝑓 .

Proof. This follows from the fact that the problem can be solved by Gradient Descent in polynomial time in those

parameters. Let (𝜀, 𝑓 ,∇𝑓 , 𝐿) be an instance of KKT with domain [0, 1]𝑛 . First, compute 𝑓 (0) in polynomial time in

size(𝑓 ). If 𝑓 is indeed 𝐿-Lipschitz-continuous, then it follows that 𝑓 (𝑥) ∈ 𝐼 = [𝑓 (0) −
√
𝑛𝐿, 𝑓 (0) +

√
𝑛𝐿] for all 𝑥 ∈ [0, 1]𝑛 .

If we ever come across a point where this does not hold, we immediately obtain a violation of 𝐿-Lipschitz-continuity of

𝑓 . So, for the rest of this proof we simply assume that 𝑓 (𝑥) ∈ 𝐼 for all 𝑥 ∈ [0, 1]𝑛 .
Note that the length of interval 𝐼 is 2

√
𝑛𝐿, which is polynomial in 𝐿 and 𝑛. By using the reduction in the proof of

Proposition 5.4, we can solve our instance by solving the instance (𝜀 ′, 𝜂, 𝑓 ,∇𝑓 , 𝐿) of GD-Local-Search, where 𝜀 ′ = 𝜀2

8𝐿

and 𝜂 = 1

𝐿
. The important observation here is that this instance of GD-Local-Search can be solved by applying

Gradient Descent with step size 𝜂 and with any starting point, in at most
|𝐼 |
𝜀′ =

16

√
𝑛𝐿2

𝜀2
steps. Indeed, every step must

improve the value of 𝑓 by 𝜀 ′, otherwise we have found a solution. It is easy to see that each step of Gradient Descent

can be done in polynomial time in size(∇𝑓 ), 𝑛 and log𝐿. Since the number of steps is polynomial in 1/𝜀, 𝐿 and 𝑛, the

problem can be solved in polynomial time in 1/𝜀, 𝐿, 𝑛, size(𝑓 ) and size(∇𝑓 ). Finally note that 𝑛 ≤ size(𝑓 ) (because 𝑓
has 𝑛 input gates). □

D GENERAL-BROUWER AND GENERAL-REAL-LOCALOPT

In this section we define the computational problems General-Brouwer and General-Real-Localopt and prove that

they are PPAD- and PLS-complete respectively. These two completeness results follow straightforwardly from prior

work. The membership of General-Brouwer in PPAD and of General-Real-Localopt in PLS are used in this paper

to show that our problems of interest lie in PPAD ∩ PLS.

Definition 11. General-Brouwer:

Input:

• precision parameter 𝜀 > 0,

• (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 defining a bounded non-empty domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏},
• well-behaved arithmetic circuit 𝑔 : R𝑛 → R𝑛 ,
• Lipschitz constant 𝐿 > 0.
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Goal: Compute an approximate fixed point of 𝑔 on domain 𝐷 . Formally, find 𝑥 ∈ 𝐷 such that

∥Π𝐷 (𝑔(𝑥)) − 𝑥 ∥ ≤ 𝜀.

Alternatively, we also accept a violation of 𝐿-Lipschitzness of 𝑔 as a solution. Namely, 𝑥,𝑦 ∈ 𝐷 such that

∥𝑔(𝑥) − 𝑔(𝑦)∥ > 𝐿∥𝑥 − 𝑦∥.

Proposition D.1. General-Brouwer is PPAD-complete.

Proof. Various formulations and special cases of the problem of finding a Brouwer fixed point are known to be

PPAD-complete [16, 28, 50]. The PPAD-hardness of our General-Brouwer problem immediately follows from the

PPAD-hardness of the problem on the domain [0, 1]2 and when 𝑔 is a linear arithmetic circuit, which is known from

[45].

The containment in PPAD essentially follows from Proposition 2 in [28], where it is shown that finding an approximate

fixed point of a Brouwer function that is efficiently computable and continuous, when the domain is a bounded polytope,

is in PPAD. In General-Brouwer, the function is not guaranteed to be continuous, but instead we allow violations

of Lipschitz-continuity as solutions. However, it can easily be seen that the proof in [28] also applies to this case.

Alternatively, we can also use our Theorem E.1 to approximate the circuit 𝑔 by a linear arithmetic circuit (which is

necessarily Lipschitz-continuous with a polynomially representable Lipschitz-constant, see Lemma 3.3) and then use

[28, Proposition 2] directly. Note that since 𝐷 is bounded, we can easily compute𝑀 > 0 such that 𝐷 ⊆ [−𝑀,𝑀]𝑛 (using

linear programming). Then, using Theorem E.1 and Remark 4, we can approximate 𝑔 by a linear arithmetic circuit on

the domain 𝐷 . □

Definition 12. General-Real-Localopt:

Input:

• precision/stopping parameter 𝜀 > 0,

• (𝐴,𝑏) ∈ R𝑚×𝑛 × R𝑚 defining a bounded non-empty domain 𝐷 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏},
• well-behaved arithmetic circuits 𝑝 : R𝑛 → R and 𝑔 : R𝑛 → R𝑛 ,
• Lipschitz constant 𝐿 > 0.

Goal: Compute an approximate local optimum of 𝑝 with respect to 𝑔 on domain 𝐷 . Formally, find 𝑥 ∈ 𝐷 such

that

𝑝 (Π𝐷 (𝑔(𝑥))) ≥ 𝑝 (𝑥) − 𝜀.

Alternatively, we also accept a violation of 𝐿-Lipschitzness of 𝑝 as a solution. Namely, 𝑥,𝑦 ∈ 𝐷 such that

|𝑝 (𝑥) − 𝑝 (𝑦) | > 𝐿∥𝑥 − 𝑦∥.

Proposition D.2. General-Real-Localopt is PLS-complete.

Proof. The PLS-hardness of General-Real-Localopt immediately follows from Theorem 2.1 in [21], where it is

shown that the problem is PLS-complete in the special case where the domain is [0, 1]3. The proof of membership in

PLS for the domain [0, 1]3 immediately generalizes to [0, 1]𝑛 , even for non-fixed 𝑛. Thus, it remains to show that we

can reduce General-Real-Localopt to the special case where the domain is [0, 1]𝑛 .
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Note that since 𝐷 is bounded, we can easily compute𝑀 > 0 such that 𝐷 ⊆ [−𝑀,𝑀]𝑛 (using linear programming).

We extend 𝑝 and 𝑔 to the whole hypercube [−𝑀,𝑀]𝑛 by using the projection onto 𝐷 , namely 𝑝 (𝑥) = 𝑝 (Π𝐷 (𝑥)) and
𝑔(𝑥) = 𝑔(Π𝐷 (𝑥)). Since ∥𝑥 − 𝑦∥ ≥ ∥Π𝐷 (𝑥) − Π𝐷 (𝑦)∥ for all 𝑥,𝑦 ∈ R𝑛 , it follows that any violation of 𝐿-Lipschitzness

for 𝑝 immediately yields a violation for 𝑝 . If 𝑥 ∈ [−𝑀,𝑀]𝑛 is an 𝜀-approximate local optimum of 𝑝 with respect to 𝑔,

i.e., 𝑝 (Π𝐷 (𝑔(𝑥))) ≥ 𝑝 (𝑥) − 𝜀, then it immediately follows that Π𝐷 (𝑥) ∈ 𝐷 is an 𝜀-approximate local optimum of 𝑝 with

respect to 𝑔. Thus, we have reduced the problem to the case where the domain is a hypercube [−𝑀,𝑀]𝑛 .
The final step is to change the domain from [−𝑀,𝑀]𝑛 to [0, 1]𝑛 , which can easily be achieved by letting 𝑝 (𝑥) =

𝑝 (2𝑀 · 𝑥 −𝑀 · e) and 𝑔(𝑥) = (𝑔(2𝑀 · 𝑥 −𝑀 · e) +𝑀 · e)/2𝑀 . Here e ∈ R𝑛 denotes the all-ones vector. A violation

of 2𝑀𝐿-Lipschitzness for 𝑝 immediately yields a violation of 𝐿-Lipschitzness for 𝑝 . Furthermore, if 𝑥 ∈ [0, 1]𝑛 is an

𝜀-approximate local optimum of 𝑝 with respect to 𝑔, then it is easy to see that (2𝑀 · 𝑥 − 𝑀 · e) ∈ [−𝑀,𝑀]𝑛 is an

𝜀-approximate local optimum of 𝑝 with respect to 𝑔. We thus obtain an instance on the domain [0, 1]𝑛 with the functions

𝑝 and 𝑔 and 𝐿′ = 2𝑀𝐿 instead of 𝐿. By using the same arguments as in [21, Theorem 2.1], it follows that the problem

lies in PLS. Note that we do not actually need to construct arithmetic circuits that compute 𝑝 and 𝑔 (from the given

circuits for 𝑝 and 𝑔), because it suffices to be able to compute the functions in polynomial time for the arguments in

[21] to go through. □

E APPROXIMATION BY LINEAR CIRCUITS

In this section, we show that functions computed by arithmetic circuits can be approximated by linear arithmetic

circuits with a very small error. In linear arithmetic circuits we are only allowed to use the gates +, −, max, min, ×𝜁 and

rational constants. In particular, we cannot use general multiplication gates or comparison gates.

Theorem E.1. Given a well-behaved arithmetic circuit 𝑓 : [0, 1]𝑛 → R𝑑 , a purported Lipschitz constant 𝐿 > 0, and a

precision parameter 𝜀 > 0, in polynomial time in size(𝑓 ), log𝐿 and log(1/𝜀), we can construct a linear arithmetic circuit

𝐹 : [0, 1]𝑛 → R𝑑 such that for any 𝑥 ∈ [0, 1]𝑛 it holds that:

• ∥ 𝑓 (𝑥) − 𝐹 (𝑥)∥∞ ≤ 𝜀, or
• given 𝑥 , we can efficiently compute 𝑦 ∈ [0, 1]𝑛 such that

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥∞ > 𝐿∥𝑥 − 𝑦∥∞ .

Here “efficiently” means in polynomial time in size(𝑥), size(𝑓 ), log𝐿 and log(1/𝜀).

Our proof of this result relies on existing techniques introduced by Daskalakis et al. [20] and Chen et al. [17], but with

a modification that ensures that we only get a very small error. Indeed, using the usual so-called sampling trick with

averaging does not work here. We modify the sampling trick to output the median instead of the average.

Since we believe that this tool will be useful in future work, we prove a more general version of Theorem E.1. This

more general version is Theorem E.2 and it is presented and proved in the next subsection, where we also explain how

Theorem E.1 is easily obtained from Theorem E.2.

Remark 4. Note that in Theorem E.1 the domain [0, 1]𝑛 can be replaced by [−𝑀,𝑀]𝑛 for any𝑀 > 0 (in which case

the running time is polynomial in the same quantities and in log𝑀). This is easy to show by using a simple bijection

between [0, 1]𝑛 and [−𝑀,𝑀]𝑛 . This also holds for the more general statement in Theorem E.2. In fact, the result

holds for any convex set 𝑆 ⊆ [−𝑀,𝑀]𝑛 , as long as we can efficiently compute the projection onto 𝑆 . Furthermore,

the choice of the ℓ∞-norm in the statement is not important, and it can be replaced by any other ℓ𝑝 -norm, if 𝑓 is

𝐿-Lipschitz-continuous with respect to that norm.
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E.1 General statement and proof

In order to make the statement of the result as general as possible, we consider a class of functions F . Every function

𝑓 ∈ F has an associated representation, and we let size(𝑓 ) denote the length of the representation of 𝑓 . For example, if

F is the class of functions represented using a certain type of circuit, then size(𝑓 ) is the size of the circuit corresponding
to 𝑓 . The following definition is inspired by a similar notion in [28].

Definition 13. A class F of functions is said to be polynomially-approximately-computable if there exists a polynomial

𝑞 such that for any function 𝑓 ∈ F where 𝑓 : [0, 1]𝑛 → R𝑑 , any point 𝑥 ∈ [0, 1]𝑛 , and any precision parameter 𝛿 > 0, a

value 𝑣 ∈ R𝑑 such that ∥ 𝑓 (𝑥) − 𝑣 ∥∞ ≤ 𝛿 can be computed in time 𝑞(size(𝑓 ) + size(𝑥) + log(1/𝛿)).

The next theorem basically says that any polynomially-approximately-computable class can be approximated by linear

arithmetic circuits, as long as the functions are Lipschitz-continuous.

Theorem E.2. Let F be a polynomially-approximately-computable class of functions. Given 𝑓 ∈ F where 𝑓 : [0, 1]𝑛 →
R𝑑 , 𝐿 > 0 and 𝜀 > 0, in polynomial time in size(𝑓 ), log𝐿 and log(1/𝜀), we can construct a linear arithmetic circuit

𝐹 : [0, 1]𝑛 → R𝑑 such that for any 𝑥 ∈ [0, 1]𝑛 it holds that:

• ∥ 𝑓 (𝑥) − 𝐹 (𝑥)∥∞ ≤ 𝜀, or
• given 𝑥 , we can efficiently compute 𝑦 ∈ [0, 1]𝑛 such that

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥∞ > 𝐿∥𝑥 − 𝑦∥∞ + 𝜀/2.

Here “efficiently” means in polynomial time in size(𝑥), size(𝑓 ), log𝐿 and log(1/𝜀).

Note that Theorem E.2 immediately implies Theorem E.1, since the class of all well-behaved arithmetic circuits mapping

[0, 1]𝑛 to R𝑑 is polynomially-approximately-computable. (In fact, it is even exactly computable.) Note that since

𝐿∥𝑥 − 𝑦∥∞ + 𝜀/2 ≥ 𝐿∥𝑥 − 𝑦∥∞ for any 𝜀 > 0, we indeed immediately obtain Theorem E.1.

Proof of Theorem E.2. First of all, note that we can assume that 𝑑 = 1. Indeed, if 𝑓 : [0, 1]𝑛 → R𝑑 , then we can

consider 𝑓1, . . . , 𝑓𝑑 : [0, 1]𝑛 → Rwhere 𝑓𝑖 (𝑥) = [𝑓 (𝑥)]𝑖 , and construct linear arithmetic circuits 𝐹1, . . . , 𝐹𝑑 approximating

𝑓1, . . . , 𝑓𝑑 (as in the statement of the theorem). By constructing 𝐹 (𝑥) = (𝐹1 (𝑥), . . . , 𝐹𝑑 (𝑥)), we have then obtained a

linear arithmetic that satisfies the statement of the theorem. Indeed, if for some 𝑥 ∈ [0, 1]𝑛 we have ∥ 𝑓 (𝑥) −𝐹 (𝑥)∥∞ > 𝜀,

then it follows that there exists 𝑖 ∈ [𝑛] such that |𝑓𝑖 (𝑥) − 𝐹𝑖 (𝑥) | > 𝜀. From this it follows that we can efficiently compute

𝑦 with |𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦) | > 𝐿∥𝑥 −𝑦∥∞ + 𝜀/2, which implies that ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥∞ > 𝐿∥𝑥 −𝑦∥∞ + 𝜀/2. Note that 𝑑 ≤ size(𝑓 ),
so this construction remains polynomial-time with respect to size(𝑓 ), log𝐿 and log(1/𝜀).

Consider any 𝐿 > 0, 𝜀 > 0 and 𝑓 ∈ F where 𝑓 : [0, 1]𝑛 → R. Pick 𝑘 ∈ N such that 𝑁 := 2
𝑘 ≥ 4𝐿/𝜀. We consider the

partition of [0, 1]𝑛 into 𝑁𝑛
subcubes of side-length 1/𝑁 . Every 𝑝 ∈ [𝑁 ]𝑛 then represents one subcube of the partition,

and we let 𝑝 ∈ [0, 1]𝑛 denote the centre of that subcube. Formally, for all 𝑝 ∈ [𝑁 ]𝑛 , 𝑝 ∈ [0, 1]𝑛 is given by[
𝑝
]
𝑖
=

2𝑝𝑖 − 1
2𝑁

for all 𝑖 ∈ [𝑛] .

For any 𝑝 ∈ [𝑁 ]𝑛 , let ˜𝑓 (𝑝) denote the approximation of 𝑓 (𝑝) with error at most 𝜀/16. Note that ˜𝑓 (𝑝) can be computed

in time 𝑞(size(𝑓 ) + size(𝑝) + log(16/𝜀)) (where 𝑞 is the polynomial associated to F ). Since size(𝑝) is polynomial in

log𝐿 and log(1/𝜀), we can compute a rational number 𝑀 > 0 such that size(𝑀) is polynomial in size(𝑓 ), log𝐿 and
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log(1/𝜀), and it holds that | ˜𝑓 (𝑝) | ≤ 𝑀 for all 𝑝 ∈ [𝑁 ]𝑛 . We then define

𝐶 (𝑝) :=
⌊(

˜𝑓 (𝑝) +𝑀
)
16

𝜀

⌋
+ 1

for all 𝑝 ∈ [𝑁 ]𝑛 . Note that 𝐶 (𝑝) ∈ [1, 32𝑀/𝜀 + 1] ∩ N. Pick𝑚 ∈ N such that 2
𝑚 ≥ 32𝑀/𝜀 + 1. Then, 𝐶 : [𝑁 ]𝑛 → [2𝑚]

and we construct a Boolean circuit {0, 1}𝑘𝑛 → {0, 1}𝑚 that computes 𝐶 . Importantly, the Boolean circuit can be

constructed in polynomial time in size(𝑓 ), log𝐿 and log(1/𝜀). Before we move on, note that for all 𝑝 ∈ [𝑁 ]𝑛 , letting
𝑉 (𝑝) := (𝐶 (𝑝) − 1) 𝜀

16
−𝑀 , it holds that��𝑓 (𝑝) −𝑉 (𝑝)�� ≤ ���𝑓 (𝑝) − ˜𝑓 (𝑝)

��� + ��� ˜𝑓 (𝑝) −𝑉 (𝑝)��� ≤ 𝜀

8

(8)

since |𝑓 (𝑝) − ˜𝑓 (𝑝) | ≤ 𝜀/16 and��� ˜𝑓 (𝑝) −𝑉 (𝑝)���
=

���� ˜𝑓 (𝑝) +𝑀 − ⌊(
˜𝑓 (𝑝) +𝑀

)
16

𝜀

⌋
𝜀

16

����
≤

���� ˜𝑓 (𝑝) +𝑀 − (
˜𝑓 (𝑝) +𝑀

)
16

𝜀

𝜀

16

���� + ����( ˜𝑓 (𝑝) +𝑀)
16

𝜀
−

⌊(
˜𝑓 (𝑝) +𝑀

)
16

𝜀

⌋���� 𝜀
16

≤ 𝜀

16

.

Using Lemma E.3, which is our key lemma here and is stated and proved in the next subsection, we can construct a

linear arithmetic circuit 𝐹 : [0, 1]𝑛 → R in polynomial time in size(𝐶) (and thus in size(𝑓 ), log𝐿 and log(1/𝜀)), such
that for all 𝑥 ∈ [0, 1]𝑛

𝐹 (𝑥) ∈
[
min

𝑝∈𝑆 (𝑥)
𝐶 (𝑝), max

𝑝∈𝑆 (𝑥)
𝐶 (𝑝)

]
where 𝑆 (𝑥) ⊆ [𝑁 ]𝑛 is such that

(1) |𝑆 (𝑥) | ≤ 𝑛 + 1,
(2) ∥𝑥 − 𝑝 ∥∞ ≤ 1/𝑁 for all 𝑝 ∈ 𝑆 (𝑥), and
(3) 𝑆 (𝑥) can be computed in polynomial time in size(𝑥) and log𝑁 .

We modify the linear circuit so that instead of outputting 𝐹 (𝑥), it outputs (𝐹 (𝑥) − 1) 𝜀
16
−𝑀 . Note that this is straight-

forward to do using the arithmetic gates at our disposal. Since 𝑉 (𝑝) = (𝐶 (𝑝) − 1) 𝜀
16
− 𝑀 , we obtain that for all

𝑥 ∈ [0, 1]𝑛

𝐹 (𝑥) ∈
[
min

𝑝∈𝑆 (𝑥)
𝑉 (𝑝), max

𝑝∈𝑆 (𝑥)
𝑉 (𝑝)

]
.

We are now ready to complete the proof. For this it suffices to show that if |𝑓 (𝑥) − 𝐹 (𝑥) | > 𝜀, then the second point in

the statement of the theorem must hold. Assume that 𝑥 ∈ [0, 1]𝑛 is such that |𝑓 (𝑥) − 𝐹 (𝑥) | > 𝜀. It immediately follows

that there exists 𝑝∗ ∈ 𝑆 (𝑥) such that |𝑓 (𝑥) −𝑉 (𝑝∗) | > 𝜀. By Equation (8), it follows that |𝑓 (𝑥) − 𝑓 (𝑝∗) | > 𝜀 − 𝜀/8 = 7𝜀/8.
Note that we might not be able to identify 𝑝∗, since we can only approximately compute 𝑓 . Thus, we instead proceed

as follows. We compute 𝑝 ′ = argmax𝑝∈𝑆 (𝑥) |𝑓 ′(𝑥) − 𝑓 ′(𝑝) |, where 𝑓 ′ denotes computation of 𝑓 with error at most

𝜀/32. Note that 𝑝 ′ can be computed in polynomial time in size(𝑥), size(𝑓 ), log𝐿 and log(1/𝜀), since 𝑓 ′ and 𝑆 (𝑥) can be

computed efficiently.

We now show that 𝑦 = 𝑝 ′ ∈ [0, 1]𝑛 satisfies the second point in the statement of the theorem. First of all, note that

|𝑓 ′(𝑥)− 𝑓 ′(𝑝∗) | > 7𝜀/8−2𝜀/32 = 13𝜀/16. By the choice of 𝑝 ′, it must be that |𝑓 ′(𝑥)− 𝑓 ′(𝑝 ′) | ≥ |𝑓 ′(𝑥)− 𝑓 ′(𝑝∗) | > 13𝜀/16,
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which implies that |𝑓 (𝑥)−𝑓 (𝑝 ′) | > 13𝜀/16−2𝜀/32 > 3𝜀/4. On the other hand, sincewe have that ∥𝑥−𝑝 ′∥∞ ≤ 1/𝑁 ≤ 𝜀/4𝐿
(because 𝑝 ′ ∈ 𝑆 (𝑥)), it follows that 𝐿∥𝑥 − 𝑝 ′∥∞ ≤ 𝜀/4. Thus, we indeed have that |𝑓 (𝑥) − 𝑓 (𝑦) | > 𝐿∥𝑥 − 𝑦∥∞ + 𝜀/2, as
desired. Since 𝑝 ′ can be computed efficiently, so can 𝑦 = 𝑝 ′. □

E.2 Key Lemma

Let us recall some notation introduced in the proof of Theorem E.2. For 𝑁 ∈ N, consider the partition of [0, 1]𝑛 into

𝑁𝑛
subcubes of side-length 1/𝑁 . Every 𝑝 ∈ [𝑁 ]𝑛 then represents one subcube of the partition, and we let 𝑝 ∈ [0, 1]𝑛

denote the centre of that subcube. Formally, for all 𝑝 ∈ [𝑁 ]𝑛 , 𝑝 ∈ [0, 1]𝑛 is given by[
𝑝
]
𝑖
=

2𝑝𝑖 − 1
2𝑁

for all 𝑖 ∈ [𝑛].

Lemma E.3. Assume that we are given a Boolean circuit 𝐶 : {0, 1}𝑘𝑛 → {0, 1}𝑚 , interpreted as a function 𝐶 : [𝑁 ]𝑛 →
[2𝑚], where 𝑁 = 2

𝑘 . Then, in polynomial time in size(𝐶), we can construct a linear arithmetic circuit 𝐹 : [0, 1]𝑛 → R
such that for all 𝑥 ∈ [0, 1]𝑛

𝐹 (𝑥) ∈
[
min

𝑝∈𝑆 (𝑥)
𝐶 (𝑝), max

𝑝∈𝑆 (𝑥)
𝐶 (𝑝)

]
where 𝑆 (𝑥) ⊆ [𝑁 ]𝑛 is such that

(1) |𝑆 (𝑥) | ≤ 𝑛 + 1,
(2) ∥𝑥 − 𝑝 ∥∞ ≤ 1/𝑁 for all 𝑝 ∈ 𝑆 (𝑥), and
(3) 𝑆 (𝑥) can be computed in polynomial time in size(𝑥) and log𝑁 .

Proof. We begin by a formal definition of 𝑆 (𝑥) and prove that it has the three properties mentioned in the statement

of the Lemma. We then proceed with the construction of the linear arithmetic circuit.

For 𝑁 ∈ N, consider the partition of [0, 1] into 𝑁 subintervals of length 1/𝑁 . Let 𝐼𝑁 : [0, 1] → [𝑁 ] denote the
function that maps any point in [0, 1] to the index of the subinterval that contains it. In the case where a point lies

on the boundary between two subintervals, i.e., 𝑥 ∈ 𝐵 = {1/𝑁, 2/𝑁, . . . , (𝑁 − 1)/𝑁 }, the tie is broken in favour of the

smaller index. Formally,

𝐼𝑁 (𝑥) = min

{
ℓ ∈ [𝑁 ]

����𝑥 ∈ [
ℓ − 1
𝑁

,
ℓ

𝑁

]}
.

We abuse notation and let 𝐼𝑁 : [0, 1]𝑛 → [𝑁 ]𝑛 denote the natural extension of the function to [0, 1]𝑛 , where it is simply

applied on each coordinate separately. Thus, if we consider the partition of [0, 1]𝑛 into 𝑁𝑛
subcubes of side-length 1/𝑁 ,

then, for any point 𝑥 ∈ [0, 1]𝑛 , 𝑝 = 𝐼𝑁 (𝑥) ∈ [𝑁 ]𝑛 is the index of the subcube containing 𝑥 . For 𝑥 ∈ R𝑛 \ [0, 1]𝑛 , we let
𝐼𝑁 (𝑥) := 𝐼𝑁 (𝑦) where 𝑦 is obtained by projecting every coordinate of 𝑥 onto [0, 1].

Letting e ∈ R𝑛 denote the all-ones vector, we define

𝑆 (𝑥) =
{
𝐼𝑁 (𝑥 + 𝛼 · e)

����𝛼 ∈ [
0,

1

2𝑁

]}
.

In other words, we consider a small segment starting at 𝑥 and moving up simultaneously in all dimensions, and we let

𝑆 (𝑥) be the set of subcubes-indices of all the points on the segment. We can now prove the three properties of 𝑆 (𝑥):

(1) Note that for any 𝑖 ∈ [𝑛], there exists at most one value 𝛼 ∈ [0, 1/2𝑁 ] such that [𝑥 + 𝛼 · e]𝑖 ∈ 𝐵 =

{1/𝑁, 2/𝑁, . . . , (𝑁 − 1)/𝑁 }. We let 𝛼𝑖 denote that value of 𝛼 if it exists, and otherwise we let 𝛼𝑖 = 1/2𝑁 . Thus,

we obtain 𝛼1, 𝛼2, . . . , 𝛼𝑛 ∈ [0, 1/2𝑁 ] and we rename them 𝛽𝑖 so that they are ordered, i.e., 𝛽1 ≤ 𝛽2 ≤ · · · ≤ 𝛽𝑛
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and {𝛽𝑖 | 𝑖 ∈ [𝑛]} = {𝛼𝑖 | 𝑖 ∈ [𝑛]}. By the definition of 𝐼𝑁 , it is then easy to see that 𝛼 ↦→ 𝐼𝑁 (𝑥 + 𝛼 · e) is constant
on each of the intervals [0, 𝛽1], (𝛽1, 𝛽2], (𝛽2, 𝛽3], . . . , (𝛽𝑛−1, 𝛽𝑛] and (𝛽𝑛, 1/2𝑁 ]. Since these 𝑛 + 1 intervals (some

of which are possibly empty) cover the entirety of [0, 1/2𝑁 ], it follows that |𝑆 (𝑥) | ≤ 𝑛 + 1.
(2) Consider any 𝑝 ∈ 𝑆 (𝑥). Let 𝛼 ∈ [0, 1/2𝑁 ] be such that 𝑝 = 𝐼𝑁 (𝑦) where 𝑦 = 𝑥 + 𝛼 · e. For any 𝑖 ∈ [𝑛], it

holds that 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑥𝑖 + 1/2𝑁 . There are two cases to consider. If 𝐼𝑁 (𝑦𝑖 ) = 𝐼𝑁 (𝑥𝑖 ), then this means that 𝑥𝑖

lies in the subinterval of length 1/𝑁 centred at [𝑝]𝑖 , and thus, in particular, |𝑥𝑖 − [𝑝]𝑖 | ≤ 1/2𝑁 ≤ 1/𝑁 . The

only other possibility is that 𝐼𝑁 (𝑦𝑖 ) = 𝐼𝑁 (𝑥𝑖 ) + 1, since 𝛼 ∈ [0, 1/2𝑁 ]. But for this to happen, it must be that

(2𝐼𝑁 (𝑥𝑖 )−1)/2𝑁 ≤ 𝑥𝑖 ≤ 2𝐼𝑁 (𝑥𝑖 )/2𝑁 , since𝛼 ≤ 1/2𝑁 . By definition, [𝑝]𝑖 = (2𝐼𝑁 (𝑦𝑖 )−1)/2𝑁 = (2𝐼𝑁 (𝑥𝑖 )+1)/2𝑁 ,

and so we again obtain that |𝑥𝑖 − [𝑝]𝑖 | ≤ 1/𝑁 . Since this holds for all 𝑖 ∈ [𝑛], it follows that ∥𝑥 − 𝑝 ∥∞ ≤ 1/𝑁 .

(3) Given 𝑥 ∈ [0, 1]𝑛 , the values 𝛼1, . . . , 𝛼𝑛 ∈ [0, 1/2𝑁 ], defined in the first point above, can be computed in

polynomial time in size(𝑥), 𝑛 and log𝑁 . Then, 𝑆 (𝑥) can be computed by simply evaluating 𝐼𝑁 (𝑥 + 𝛼 · e) for
all 𝛼 ∈ {𝛼1, . . . , 𝛼𝑛, 1/2𝑁 }, which can also be done in polynomial time in size(𝑥), 𝑛 and log𝑁 . Note that since

𝑛 ≤ size(𝑥), the computation of 𝑆 (𝑥) runs in polynomial time in size(𝑥) and log𝑁 .

We can now describe how the linear arithmetic circuit 𝐹 : [0, 1]𝑛 → R is constructed. Let 𝐶 : {0, 1}𝑘𝑛 → {0, 1}𝑚 be the

Boolean circuit that is provided. It is interpreted as a function 𝐶 : [𝑁 ]𝑛 → [2𝑚], where 𝑁 = 2
𝑘
. Let 𝑥 ∈ [0, 1]𝑛 be the

input to the linear arithmetic circuit. 𝐹 is constructed to perform the following steps.

Step 1: Sampling trick. In the first step, we create a sample 𝑇 of points close to 𝑥 . This is a standard trick that was

introduced in the study of the complexity of computing Nash equilibria [17, 20]. Here we use the so-called equi-angle

sampling trick introduced by Chen et al. [17]. The sample 𝑇 consists of 2𝑛 + 1 points:

𝑇 =

{
𝑥 + ℓ

4𝑛𝑁
· e

���� ℓ ∈ {0, 1, 2, . . . , 2𝑛}} .
Note that these 2𝑛 + 1 points can easily be computed by 𝐹 given the input 𝑥 . The following two observations are

important:

(1) for all 𝑦 ∈ 𝑇 , 𝐼𝑁 (𝑦) ∈ 𝑆 (𝑥) (by definition of 𝑆 (𝑥)),
(2) Let 𝑇𝑏 = {𝑦 ∈ 𝑇 | ∃𝑖 ∈ [𝑛] : dist(𝑦𝑖 , 𝐵) < 1

8𝑛𝑁
}, where 𝐵 = {1/𝑁, 2/𝑁, . . . , (𝑁 − 1)/𝑁 } and dist(𝑦𝑖 , 𝐵) =

min𝑡 ∈𝐵 |𝑦𝑖 − 𝑡 |. We call these the bad samples, because they are too close to a boundary between two subcubes.

The points in𝑇𝑔 = 𝑇 \𝑇𝑏 are the good samples. It holds that |𝑇𝑏 | ≤ 𝑛. This is easy to see by fixing some coordinate

𝑖 ∈ [𝑛], and noting that there exists at most one point 𝑦 ∈ 𝑇 such that dist(𝑦𝑖 , 𝐵) < 1

8𝑛𝑁
. Indeed, since the

samples are successively 1/4𝑛𝑁 apart, at most one can be sufficiently close to any given boundary. Furthermore,

since the samples are all 1/2𝑁 close, at most one boundary can be sufficiently close to any of them (for every

coordinate). Thus, since there is at most one bad sample for each coordinate, there are at most 𝑛 bad samples

overall.

Step 2: Bit extraction. In the second step, we want to compute 𝐼𝑁 (𝑦) for all 𝑦 ∈ 𝑇 . This corresponds to extracting

the first 𝑘 bits of each coordinate of each point 𝑦 ∈ 𝑇 , because 𝑁 = 2
𝑘
. Unfortunately, bit extraction is not a continuous

function and thus it is impossible to always perform it correctly with a linear arithmetic circuit. Fortunately, we will

show that we can perform it correctly for most points in 𝑇 , namely all the good points in 𝑇𝑔 .

Consider any 𝑦 ∈ 𝑇 and any coordinate 𝑖 ∈ [𝑛]. In order to extract the first bit of 𝑦𝑖 , the arithmetic circuit computes

𝑏1 = min{1,max{0, 8𝑛𝑁 (𝑦𝑖 − 1/2)} =: 𝜙 (𝑦𝑖 − 1/2) .
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Note that if 𝑦𝑖 ≥ 1/2 + 1/8𝑛𝑁 , then 8𝑛𝑁 (𝑦𝑖 − 1/2) ≥ 1 and thus 𝑏1 = 1. On the other hand, if 𝑦𝑖 ≤ 1/2 − 1/8𝑛𝑁 , then

8𝑛𝑁 (𝑦𝑖 − 1/2) ≤ −1 and thus 𝑏1 = 0. This means that if dist(𝑦𝑖 , 𝐵) ≥ 1/8𝑛𝑁 , the first bit of 𝑦𝑖 is extracted correctly.

Note that 𝐵 = {1/𝑁, 2/𝑁, . . . , (𝑁 − 1)/𝑁 } = {1/2𝑘 , 2/2𝑘 , . . . , (2𝑘 − 1)/2𝑘 }.
To extract the second bit, the arithmetic circuit computes 𝑡 := 𝑦𝑖 − 𝑏1/2 and

𝑏2 = 𝜙 (𝑡 − 1/4) .

By the same argument as above, 𝑏2 is the correct second bit of 𝑦𝑖 , if |𝑡 − 1/4| ≥ 1/8𝑛𝑁 , i.e., if |𝑦𝑖 − 1/4| ≥ 8𝑛𝑁 and

|𝑦𝑖 − 3/4| ≥ 8𝑛𝑁 . Thus, if dist(𝑦𝑖 , 𝐵) ≥ 1/8𝑛𝑁 , the second bit is also computed correctly, since 1/4, 3/4 ∈ 𝐵.
To extract the third bit, the arithmetic circuit updates 𝑡 := 𝑡 − 𝑏2/4 and computes 𝑏3 = 𝜙 (𝑡 − 1/8). We proceed

analogously up to the 𝑘th bit 𝑏𝑘 . By induction and the same arguments as above, it follows that the first 𝑘 bits of 𝑦𝑖 are

computed correctly by the arithmetic circuit as long as dist(𝑦𝑖 , 𝐵) ≥ 1/8𝑛𝑁 . In particular, this condition always holds

for 𝑦 ∈ 𝑇𝑔 .
By performing this bit extraction for each coordinate of each 𝑦 ∈ 𝑇 , we obtain the purported bit representation of

𝐼𝑁 (𝑦) for each 𝑦 ∈ 𝑇 . The argumentation in the previous paragraphs shows that for all 𝑦 ∈ 𝑇𝑔 , we indeed obtain the

correct bit representation of 𝐼𝑁 (𝑦). For 𝑦 ∈ 𝑇𝑏 , we have no control over what happens, and it is entirely possible that

the procedure outputs numbers that are not valid bits, i.e., not in {0, 1}.

Step 3: Simulation of the Boolean circuit. In the next step, for each 𝑦 ∈ 𝑇 , we evaluate the circuit 𝐶 on the bits

purportedly representing 𝐼𝑁 (𝑦). The Boolean gates of 𝐶 are simulated by the arithmetic circuit as follows:

• ¬𝑏 := 1 − 𝑏,
• 𝑏 ∨ 𝑏 ′ := min{1, 𝑏 + 𝑏 ′},
• 𝑏 ∧ 𝑏 ′ := max{0, 𝑏 + 𝑏 ′ − 1}.

Note that if the input bits 𝑏, 𝑏 ′ are valid bits, i.e., in {0, 1}, then the Boolean gates are simulated correctly, and the output

is also a valid bit.

For 𝑦 ∈ 𝑇𝑔 , since the input bits indeed represent 𝐼𝑁 (𝑦), the simulation of 𝐶 will thus output the correct bit repre-

sentation of 𝐶 (𝐼𝑁 (𝑦)) ∈ [2𝑚]. We can obtain the value 𝐶 (𝐼𝑁 (𝑦)) ∈ [2𝑚] itself by decoding the bit representation, i.e.,

multiplying every bit by the corresponding power of 2 and adding all the terms together.

Let 𝑉 (𝑦) ∈ R denote the value that this step outputs for each 𝑦 ∈ 𝑇 . For 𝑦 ∈ 𝑇𝑔 , we have that 𝑉 (𝑦) = 𝐶 (𝐼𝑁 (𝑦)). For
𝑦 ∈ 𝑇𝑏 , there is no guarantee other than 𝑉 (𝑦) ∈ R.

Step 4: Median using a sorting network. In the last step, we want to use the |𝑇 | = 2𝑛 + 1 values that we have
computed (namely {𝑉 (𝑦) |𝑦 ∈ 𝑇 }) to compute the final output of our arithmetic circuit. In previous constructions of

this type, in particular [17, 20], the circuit would simply output the average of the 𝑉 (𝑦). However, this is not good
enough to prove our statement, because even a single bad point 𝑦 can introduce an inversely polynomial error in the

average.

In order to obtain a stronger guarantee, the arithmetic circuit instead outputs themedian of the multiset {𝑉 (𝑦) |𝑦 ∈ 𝑇 }.
The median of the given 2𝑛 + 1 values can be computed by constructing a so-called sorting network (see, e.g., [42]).

The basic operation of a sorting network can easily be simulated by the max and min gates. It is easy to construct a

sorting network for 2𝑛 + 1 values that has size polynomial in 𝑛. The output of the sorting network will be the same

values that it had as input, but sorted. In other words, the sorting network outputs 𝑉1 ≤ 𝑉2 ≤ · · · ≤ 𝑉2𝑛+1 such that
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{𝑉𝑗 | 𝑗 ∈ [2𝑛 + 1]} = {𝑉 (𝑦) |𝑦 ∈ 𝑇 } as multisets. The final output of our arithmetic circuit is 𝑉𝑛+1, which is exactly the

median of the 2𝑛 + 1 values.
Recall from step 1 that |𝑇𝑏 | ≤ 𝑛 and thus |𝑇𝑔 | ≥ 𝑛 + 1. It immediately follows that either𝑉𝑛+1 corresponds to𝑉 (𝑦) of a

good sample 𝑦, or there exist 𝑖 < 𝑛+1 and 𝑗 > 𝑛+1 such that both𝑉𝑖 and𝑉𝑗 correspond to good samples. In other words,

the output of the circuit satisfies 𝐹 (𝑥) ∈ [min𝑦∈𝑇𝑔 𝐶 (𝐼𝑁 (𝑦)),max𝑦∈𝑇𝑔 𝐶 (𝐼𝑁 (𝑦))]. As noted in step 1, 𝐼𝑁 (𝑦) ∈ 𝑆 (𝑥) for
all 𝑦 ∈ 𝑇 . Thus, we obtain that 𝐹 (𝑥) ∈ [min𝑝∈𝑆 (𝑥) 𝐶 (𝑝),max𝑝∈𝑆 (𝑥) 𝐶 (𝑝)].

It follows that the linear arithmetic circuit 𝐹 that we have constructed indeed satisfies the statement of the Lemma.

Furthermore, the construction we have described can be performed in polynomial time in size(𝐶), 𝑛,𝑚 and 𝑘 . Since

size(𝐶) ≥ max{𝑛, 𝑘,𝑚}, it is simply polynomial time in size(𝐶). □
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