Check for
Updates

Anomaly Detection for Dynamic Human-Robot Assembly

Application of an LSTM-based autoencoder to interpret uncertain human behavior in HRC
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ABSTRACT

Human-Robot Collaboration (HRC) requires humans and robots
to work on the same product in the same work environment at
the same time. Therefore, the robotic system needs to understand
human behavior so it can assist the human appropriately. Since
the human is an uncertain variable in this system, human action
recognition is one of the key challenges when it comes to HRC. To
address this problem, we developed an anomaly detection frame-
work for the dynamic assembly of complex products. We used an
Long-Short-Term-Memory (LSTM)-based autoencoder to detect
anomalies in human behavior and post-process the output to cate-
gorize it as a green or red anomaly. A green anomaly represents a
deviation from the intended order but a valid assembly sequence.
A red anomaly represents an invalid sequence. In both cases, the
worker is guided to complete the assembly process. We demonstrate
our proposed framework using an appropriate industrial use case.
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1 INTRODUCTION

In industrial environments several trends are evolving. Firstly, a
shift from mass production to the assembly of products with a high
variance is recognizable [13]. Secondly, the use of cobots tremen-
dously increases [17]. Simultaneously, the amount of skilled work-
ers decrease according to the demographic change [3]. To address
these upcoming trends, HRC combines the strengths of humans
and robots. The robot takes on actions that require repetitive ac-
curacy and heavy weights, while the human takes on tasks that
require dexterity and logical interpretation. Nevertheless, the factor
human is a non-deterministic variable, especially when the process
is dynamic. In the context of this late breaking report we define
a "dynamic assembly process" as a process that has multiple valid
ways to assemble a product.

In this late breaking report, we present a framework to interpret
human actions during the assembly process by using an anomaly de-
tection algorithm. In addition, we post-process detected anomalies
using an Assembly Sequence Plan (ASP) with multiple possible
assembly paths and object detection to classify the anomaly as
green or red. A green anomaly is classified if the worker chooses
an alternative, but valid way to assemble the product. Since there is
a deviation from the intended order an anomaly will be detected by
the anomaly detection algorithm, but classified as a valid assembly
sequence based on the ASP. A red anomaly is detected when an
invalid assembly path is selected. A prerequisite is that the ASP con-
tains multiple options to assemble the product. Our contributions
in this late breaking report are:

(1) An anomaly detection framework for worker actions in a
dynamic assembly sequence.

(2) A representation of an ASP as a directed graph containing
multiple valid paths.

(3) Preliminary results from an LSTM-based autoencoder trained
on one valid assembly path.

2 RELATED WORK

This work lies at the intersection of two fields: a) human action
recognition, and b) anomaly detection via LSTM-based autoen-
coders. Both topics are addressed in the following sections.
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2.1 Human Action Recognition

Human Action Recognition (HAR) is important for our work since
we want to adapt the assembly sequence at run-time to the actions
of the human. According to Li et al. [7], bi-directional empathy
can be achieved by recognizing human actions and predict their
intentions. With this knowledge, the robot can react to uncertainties
in the human behavior, which is one of the key challenges when it
comes to HRC.

According to Pareek et al. [11] the process of HAR consist of
three different steps: 1) action representation, 2) dimensionality
reduction and 3) action analysis. Action representation, especially
in the context of HRC, is often done by extracting skeleton infor-
mation using depth sensors like the Kinect [5]. Compared to RGB
images and videos, skeleton information primarily consists of one-
dimensional information which makes action recognition simpler
and more effective [11]. In the presented framework we also use
skeleton-based pose estimation as input features for our model.
Since we use an LSTM autoencoder, which cannot extract spatial
information [6], we only use 2D-pose estimation. An LSTM-based
autoencoder is able to address both dimensionality reduction and
action analysis [16]. The high dimensional features are transformed
to low level dimensions with minor errors and the LSTM is able to
cover temporal dependencies within the actions.

2.2 LSTM-Based Autoencoder

In our work, we frame HAR as the detection of anomalies. Ac-
cording to Sodemann et al. [14] there are three common types of
anomalies in research: 1) anomalous events with significantly dif-
ferent characteristics from normal events (e.g. spatial, color); 2)
anomalous events with temporal irregularities (e.g. happen rarely,
wrong order); 3) anomalous events that have a specific meaning.
Soti et al. [15] look at the first two types of anomalies in the context
of HRC. They use an LSTM to detect “temporal normal behavior”
of the human that can change over time. The algorithm is able to
react to the uncertainties in human behavior. Our algorithm has
the same goal, but we extend the focus to the third category of
anomalies by post-processing the detected anomalies and compare
them with assembly sequences and object related information and
hence give them a meaning.

Provotar et al. [12] state, that classical machine learning (ML)
methods (support vector machines, hidden markov models, nearest
neighbors) are not suitable when it comes to anomaly detection in
time series data. They therefore train an LSTM-based autoencoder
on two timeseries datasets. Their model works on all types of time
series data but is likely to have high false positive rates (38 %). With
our novel framework we are able to reduce the false positive rate
of LSTM-based autoencoders by post-processing the results with
additional object detection and assembly sequence plan information
as well as human cognition.

Nassif et al. [10] indicate that deep learning approaches often
fail to provide accurate results when it comes to HAR in HRC. They
state that limited data from operator assembly tasks are available
and that these data suffer huge distribution discrepancy caused by
different working conditions and human body characteristics. In
our initial work, we limit ourselves to a single assembly sequence
and were able to train a robust model on this workflow. Our model
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only requires limited data since we exclusively train the intended
assembly sequence. Alternative sequences (both valid and invalid)
are detected as anomalies (green and red). The model can be im-
proved by incorporating feedback from the human operator during
the assembly.
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Figure 1: Exploded view of the gearbox assembly on the left
and the numbering of the bolts on the right.

3 ANOMALY DETECTION IN DYNAMIC
HUMAN-ROBOT ASSEMBLY

An experimental setup based on an industrial use case was used to
evaluate our anomaly detection framework and also to explain the
term of dynamic human-robot assembly.

3.1 Experimental Setup

The industrial use case to evaluate our approach is shown in Figure
1. An adapter plate is bolted to a gearbox using four bolts.

Table 1 shows the intended assembly sequence. The robot manip-
ulates the heavy parts in step 1 and 2 and holds the adapter plate in
position in subsequent steps ("third hand"). The human handles the
small components that require a certain dexterity. For our studies
we only focus on the bolting part, assuming that the gearbox (GB)
and the adapter plate (AP) are already at their final position.

Table 1: Assembly Sequence Plan (ASP) of the final product.

‘ Step ‘ Assembly Description ‘ Assignment
1 Place Gearbox (GB) Robot
2 Place adapter plate (AP) Robot
3 Bolt down B1 Human
4 Bolt down B3 Human
5 Bolt down B2 Human
6 Bolt down B4 Human

3.2 Dynamic Human-Robot Assembly

Figure 2 shows the valid assembly paths of our industrial use case.
Step 1, placement of the gearbox (GB) and step 2, placement of the
adapter plate (AP) have a fixed order. Steps 3-6 can be executed
in different orders which we refer to as "dynamic" human robot
assembly. The worker can start with any of the four bolts in step 3,
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but is then constrained in step 4 because bolts must be mounted
diagonally to avoid jamming. In step 5, the worker is again free to
choose, but restricted in step 6 since only one bolt is left. In total,
there are eight different ways to mount the gearbox correctly. The
path highlighted in orange is the one intended for the assembly
of the final product (FP). Only this path was used for training
the anomaly detection algorithm. Training with all valid assembly
paths would be time consuming and would result in a more complex
model. The path highlighted in green is a valid alternative path. This
path is classified as an anomaly since it was not used for training.
The post-processing of our algorithm classifies this path as a valid
way to assemble the final product and marks it as a green anomaly.
The path marked in red would lead to an invalid assembly, since it
can cause jamming in the connection between the gearbox and the
adapter plate. Our approach recognizes this case as a red anomaly.
In this case, both the robot and the human must be informed that
something went wrong.

Step 1

Figure 2: Possible assembly paths in our dynamic assembly
process with the intended path highlighted in orange, a green
anomaly (valid alternative assembly sequence) and a red
anomaly (invalid assembly sequence).

4 SYSTEM ARCHITECTURE

The architecture of our proposed framework consists of four parts
as shown in Figure 3: Input, Interpretation, Post-processing and Out-
put. The data flow is from left to right. The input data consists
of data points from a 2D-pose estimation algorithm. The subse-
quent part based on an LSTM autoenocder interprets the data based
on the intended assembly sequence (orange path). The final post-
processing part analyses the anomaly and categorizes it as a green
or red anomaly. The last part is the output unit which gives feedback
to the worker as well as guidance for the next steps in the ASP.

4.1 Input

The features to train our algorithm are defined and extracted in
the Input part. Pareek [11] referred to this as the first step in HAR,
"action representation”. Single data points are generated by a pose
estimation algorithm that marks and extracts joint positions of the
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Figure 3: Anomaly detection framework to interpret the as-
sembly process. If an anomaly is detected post-processing
will be activated. Object detection (OD) is then used to match
the current assembly step with the possible assembly paths
in the Assembly Sequence Plan (ASP).

human body out of 2D images [2] [9]. The output are 250 feature
points on a single frame. The input of our LSTM autoencoder is
a three dimensional array. The first parameter x; stands for the
number of samples used for training. The second parameter x;
represents the recorded frames (time steps), and the third parameter
x3 shows the attached feature values. Since the execution time of
an assembly step can vary between workers, parameter x; does not
have a fixed size. For our use case, the variation is small since the
human tasks (attaching bolts) are identical for all steps. The third
parameter x3 corresponds to the data points of the joints which
are extracted from the pose estimation algorithm. The number of
feature points (fixed size of 250) stays the same even if the worker
changes.

4.2 Interpretation

In the Interpretation unit we combine the HAR steps dimensionality
reduction and action analysis by using an LSTM-based autoencoder
[8]. The structure of the LSTM autoencoder consists of two parts:
1) the encoder, which is responsible for compressing the input data
to a lower dimension, and 2) the decoder, which reconstructs the
compressed data to the original input data. The reconstruction error
is then used as a threshold to detect anomalies. To interpret the
time series of a complete assembly step, we additionally use an
LSTM model in order to focus on features in several frames. Thus,
our approach is able to detect deviations from the intended order
of the ASP by using a threshold for the error value of the algorithm
and classifying each step performed by the worker as an anomaly
or no anomaly (Figure 4).

4.3 Post-processing

The Post-processing unit adds meaning to the recognized anomaly
by distinguishing between green and red anomalies. The following
units are used to differentiate between the two: 1) Object Detection
(OD) verifies a valid sub-assembly, and 2) Assembly Sequence Plan
(ASP) checks whether the alternative way is valid.

The OD unit uses information from an additional camera to de-
tect and locate the objects in the workspace, using the LINE-MOD
algorithm [4]. Alternatives such as YOLO or other ML-algorithms
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Figure 4: Detected anomaly in the first picture based on the
difference between the intended (orange) and an anomaly
path (blue). On the second picture no anomaly is detected,
because the reconstruction error is below the threshold.

may be used in further work [1, 18]. The localization of the ob-
ject is used to check whether a valid sub-assembly was assembled
within an assembly step and hence whether one of the pre-planned
assembly paths is being executed.

Secondly, the ASP unit checks if the assembly step done by the
worker is allowed according to the directed graph of assembly
sequence plans (Figure 2). Moreover, not only the paths of valid
assembly sequences but also the order is examined.

4.4 Output

The Output unit guides the worker through the assembly and is
used as an interface to input worker feedback to improve the LSTM
autoencoder. The interaction with the worker is realised using
a worker guidance system (WGS). Three output cases are distin-
guished:

(1) Intended (orange) assembly path: the WGS displays assembly
instructions.

(2) Red anomaly: the WGS flags a possible error to the worker.
In case of a false positive, the worker can overrule the system.
This information is stored to retrain the algorithm.

(3) Green anomaly: the WGS informs the worker that a non-
intended but valid assembly path has been chosen. The in-
formation is also stored to improve the algorithm.
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5 PRELIMINARY RESULTS

Our experiments show promising results in detecting anomalies
with the LSTM autoencoder (Figure 4). For our first evaluation of
the training process we used 10 recordings of assembly step 3 and
4, with 30 frames per step. The worker stays the same during each
recording. Additionally we tested our models on different sample
data (n=30). The results are shown in the confusion matrices of
Figure 5.

Step 3 Actual Step 4 Actual
(n=30)

Anomaly No Anomaly Anomaly No Anomaly

Predicted
Predicted

No Anomaly
No Anomaly

Figure 5: Confusion matrices of step 3 (bolt down B1) on the
left and step 4 (bolt down B3) on the right

For the post-processing we tested our object localization algo-
rithm to detect single components and sub-assemblies of our prod-
uct and matched it with the appropriate assembly sequence step of
the ASP-graph. First results revealed that we are able to differentiate
between green and red anomalies.

An overview of the preliminary results is shown in a comple-
mentary video attachment 1.

6 CONCLUSION AND FUTURE WORK

In this late breaking report, we have presented a framework on how
to detect anomalous human behavior during collaborative human-
robot assembly. We use joint positions of the human body, extracted
via 2D-pose estimation, as input for an LSTM-based anomaly de-
tection. Using object detection and a directed graph of ASP, we are
able to distinguish between valid alternative assembly paths (green
anomalies) and invalid assembly paths (red anomalies). For all cases
the worker receives visual instructions on how to proceed and the
possibility to correct false positive results via a WGS. In future
work, we will use the workers’ feedback to improve our algorithm
in order to increase the robustness. Furthermore we enhance the
post-processing by testing other machine learning detection and
localization models and test the framework on a more advanced
industrial use case.
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