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ABSTRACT
Adaptive robots have the potential to support the overloaded health-
care system by helping new stroke survivors learn about their con-
ditions. However, current adaptive robots often fail to maintain
users’ engagement during interactions. This study investigated
the impact of an adaptive robot on Social Agency which has been
proposed to influence engagement during learning. Twenty-four
healthy subjects participated in a study where they learned about
stroke symptoms from a robot providing social cues either 1) when
their engagement measured by a Brain-Computer Interface (BCI)
decreased or 2) at random intervals. While the results confirmed
that Social Agency correlated with Engagement, the robot’s adap-
tive behaviour did not increase Social Agency, Engagement, and
Information Recall. Using qualitative methods, we propose that
adaptive robots need to explicitly acknowledge users to increase
Social Agency.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.
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1 INTRODUCTION
Social robots capable of communicating with users can alleviate
the burden of strokes on healthcare by aiding new survivors [1, 30].
For example, stroke survivors discharged from hospitals need to
learn about symptoms, how to test for them, and rehabilitation
techniques [5, 10, 23, 32]. Due to increasing strokes among ageing
populations in the EU (1.12 million cases annually) [41], clinicians
often could not provide all survivors with the necessary informa-
tion [26, 27]. Therefore, recent human-robot interaction (HRI) stud-
ies supported clinicians with social robots that instructed patients
on conditions such as strokes, diabetes, and cancer [1, 28, 31].

While social robots can teach healthy users and patients a va-
riety of topics, they often failed to retain users’ Engagement, i.e.
the cognitive resources users allocated to learning [3, 28, 31, 38].
Lower levels of engagement during learning limited users’ Recall of
information conveyed to them by the robot [2, 14, 38]. Therefore,
recent studies investigated adaptive robots monitor users’ real-time
engagement and re-engage them using social cues [2, 12, 38, 42].

Adaptive robots relied on neurophysiologicalmeasures (e.g. brain
activity) [3, 37] and behavioural signals (e.g. gaze, gestures and fa-
cial expressions) to monitor real-time engagement [11, 14]. Despite
the high accuracy of behavioural measures [14, 33], stroke sur-
vivors’ bodily paralysis may limit these approaches [16, 39, 40].
Therefore, research on stroke patients used Brain-Computer Inter-
faces (BCIs) to capture electroencephalogram (EEG) signals [7, 9]
as a high-temporal resolution measurement of users’ engagement
through their brain activation [3, 6].

While Szafir and Mutlu [38] showed that a BCI-driven adaptive
robot increased both subjective engagement (through question-
naires) and recall from the interaction, other HRI studies observed
no such effect despite using similar BCI systems and behaviour
design (i.e. social cues) [2, 29]. Additionally, the studies that suc-
ceeded in modulating engagement also observed varied results
among their participants [18, 38]. Therefore, studies hypothesised
that the conflicting results stemmed from a low understanding of
how users perceive adaptive behaviour [2, 3, 18, 29, 38].

Adaptive robots’ social cues in past HRI studies consisted of
beat gestures, raising speech volume, leaning forward, approach-
ing users, and maintaining eye contact [15, 17, 38, 42]. Beat ges-
tures do not carry semantic meaning but can give emphasis to
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specific words [21]. Although compared to other gesture types (e.g.
metaphoric), beat gestures do not reinforce recall [18], they are
easier to implement for re-engaging users because they do not rely
on the spoken content [12, 38, 42]. For this reason, the majority of
HRI studies used beat gestures during storytelling tasks where the
robot narrated a story while users listened and then later recalled
details of the story [18, 38].

However, recent reviews posited that robots’ adaptive behaviour
can only re-engage users by also increasing their sense of social
agency; the users’ feeling that their presence influenced the robot’s
behaviour [22, 35, 43]. Current social cues from adaptive robots (e.g.
beat gestures or volume increase) did not explicitly acknowledge
users (e.g. asking them if they need a break) for them to recognise
their impact on robots’ behaviour [19, 36]. In many cases, it re-
mained a question whether users recognised that the robot adapted
its behaviour to them [2, 18, 29, 38].

To fill this gap, this study aimed to investigate how adaptive
robots would impact users’ engagement, recall, and social agency.
Moreover, we aimed to investigate the link between engagement
and social agency during a robot interaction. Using an EEG-based
BCI system, engagement level of healthy users was monitored by a
Pepper robot who provided information about stroke symptoms.
Subjects interacted with the robot in two conditions, where social
cues for re-engagement was either produced adaptively (based on
the BCI output) or randomly. Using both self-reported question-
naires and qualitative interviews, we investigated the connections
between engagement and social agency as well as whether users
could recognise a robot’s adaptive behaviour.

2 METHODS
2.1 Participants
Twenty-four healthy university students (mean age=20.5, sd=3.06)
participated in this study in exchange for course credits. Of these,
16 identified as female, 7 as male, and 1 as non-binary. Three par-
ticipants had previous experience with BCIs, 14 with robots, and 9
knew a stroke survivor. All participants signed an informed consent
according to the guidelines of the Research Ethics Committee of
Tilburg School of Humanities and Digital Sciences.

2.2 Material
This study involved Pepper (Softbank Robotics) which has 20 de-
grees of freedom allowing for natural gestures. We recorded 9
gestures in Choreographe mainly involving arm movements. Pep-
per could recognise faces and direct its gaze to people speaking. In
this experiment, we asked participants to call out to Pepper before
starting the interaction.

To track engagement, we used a passive BCI system similar to
Prinsen et al [29]. Our system comprised of a Unicorn Hybrid Black
headset (g.tec Medical Engineering, Austria) to collect EEG brain
activity and a Simlulink (MATLAB) system for real-time signal
processing and classification. The headset included 8 electrodes (Fz,
Cz, C3, C4, Pz, Oz, PO7, and PO8) as shown in Figure 1. To monitor
engagement, the BCI system extracted the EEG Engagement Index
according to Equation 1

Figure 1: Overview of adaptive human-robot interaction us-
ing a passive brain-computer interface (BCI). The BCI system
extracted engagement levels from users’ EEG signals. When
Engagement Index decreased, the robot received a message
through User Datagram Protocol (UDP) to generate a gesture.

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 =
𝛽

𝛼 + \ (1)

where 𝛽 , 𝛼 , and \ are the mean signal power in the beta (13-20Hz),
alpha (8-12Hz), and theta (4-7Hz) frequency bands averaged over
all eight electrodes [4, 13].

To improve the stability of the system, we modified the normali-
sation technique presented in [29]. Instead of a calibration task at
the beginning of the interaction, the system continuously adapted
to learners by collecting the Engagement Index over two sliding
time windows; a one-minute window as a baseline and a 10-second
window as the real-time interaction window. The BCI system con-
tinuously compared the Engagement Index in real-time interaction
windows to the baseline windows. If the Engagement Index fell
below the baseline value, Pepper performed a social cue.

2.3 Procedure
Participants sat 1.5m across from Pepper and received instructions
to remain still during the task to avoid producing noise on the EEG
signals. The interaction began with a 2 minute practice session
where Pepper reminded participants of the study procedure and
their participant rights while performing three social cues consist-
ing of leaning forward, raising its voice, and making one of the nine
possible beat gestures. The practice session aimed to familiarise
participants with Pepper’s voice, movements, and social cues.

The study followed a within-subjects design where users inter-
acted with Pepper under two conditions; Adaptive vs. Random. In
both conditions, participants wore an EEG cap while listening to
Pepper present stroke-related information. In the Adaptive condi-
tion, Pepper generated social cues when participants’ engagement
decreased below our threshold while the Random condition had
Pepper produce social cues at random times. Each condition lasted
10 minutes in which Pepper described either the physical or cogni-
tive symptoms of a stroke. We counterbalanced both the conditions
and the narratives. Pepper maintained eye contact for the whole
duration of the interaction. While we informed participants that
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Table 1: Post-task questionnaire items.

Measure Construct Question

Interactivity I impacted the robot’s behaviour
The robot changed its behaviour for me

Social Agency Autonomy The robot decided its own behaviour
I felt uninvolved in the interaction

Adaptability The robot aimed to help me learn
The robot behaved to help me

Attention I paid attention to the robot
I was focused on learning

Engagement Usability I felt frustrated during the interaction
Interacting with the robot was demanding

Reward Interacting with the robot was engaging
Interacting with the robot incited my curiosity

Pepper changed behaviours between conditions, we did not inform
them of the difference until the end of interview.

2.4 Evaluation
After each condition, participants filled a questionnaire measuring
their social agency (6 items) and engagement (6 items) on a 5-point
Likert scale (see Table 1). We developed the questionnaire using
Jackson et al.’s [19] description of social agency during robot inter-
action. The engagement items came from O’Brien’s engagement
questionnaire [25]. Following the questionnaire, participants an-
swered 10 multiple choice questions about the information they
learned in the condition. Finally, we conducted semi-structured
interviews with participants in which they explained their answers
in the questionnaires and whether they could guess the difference
between conditions. We analysed the interview transcripts using
Braune and clarke’s description of thematic analysis [8].

3 RESULTS
3.1 Self-reported questionnaire
Participants’ engagement in the Adaptive and Random conditions
did not differ (p=0.66), nor did their social agency (p=0.8, see Ta-
ble 2 for an overview). However, engagement correlated with so-
cial agency (r=0.56, p<0.001) and predicted (𝛽=0.5, p<0.001) 30%
of its variance in a linear model (Figure 2A). Specifically, social
agency correlated with engagement constructs of reward (r=0.75,
p<0.001) and usability (r=0.34, p=0.01) but not attention (p=0.52).
When removing attention from the model, reward (𝛽=0.44, p<0.001)
predicted 55% of social agency’s variance (R2=0.54, F (1, 46)=28.44,
p<0.001) while usability did not contribute to the prediction (p=0.77).

3.2 Information recall
Participants’ scores on the post-interaction tests did not differ
(p=0.83) between the Adaptive and Random conditions (see Ta-
ble 2). Additionally, while recall did not differ between the top-
ics of physical and cognitive symptoms (p=0.38), participants re-
called less information (V=226, p=0.001) in the second interaction
(M=4.08, SD=1.95) compared to the first one (M=6.33, SD=1.95) re-
gardless of condition. While social agency did not correlate with
recall (p=0.7), engagement did correlate (r=0.35, p=0.01) and predict
(𝛽=1.22, p=0.014) 10% of variance in recall (R2=0.10, F (1, 46)=6.42,
p=0.014). Adding social agency (𝛽=-1.7, p=0.002) and order of con-
dition (𝛽=-2.3, p<0.001) to engagement (𝛽=1.88, p<0.014) improved

the performance of the model by predicting 46% of recall variance
(R2=0.46, F (1, 46)=14.24, p=0.014) seen in Figure 2B.

3.3 Interviews
Only few participants (7/24) understood that conditions differed
in that one entailed robot behaviour adapting to their engagement
while the other included randomised social cues. Of these partici-
pants, only 2 correctly identified the Adaptive condition while the
other 5 attributed the conditions in the wrong order. Most partici-
pants (17/24) did not distinguish between conditions and rated their
Engagement and Social Agency similarly in both conditions.

While many participants (20/24) suspected that Pepper moni-
tored their engagement and used social cues to re-engage them, they
felt unsure due to the lack of explicit acknowledgement: "It should
say something like "Hey, I noticed you’re getting tired" and comfort
me. That’s what a real teacher does" (P3). Of these participants, most
(16/24) felt engaged due to feeling social agency in the interaction.
In contrast, the rest (4/24) felt frustrated as they felt unable to influ-
ence the interaction and provided low engagement, social agency,
and attention ratings. When asked how Pepper could increase their
social agency, most participants (21/24) needed explicit acknowl-
edgement without which they (19/24) felt ignored and uninvolved
regardless of whether Pepper adapted to their engagement: "I felt
unseen. If I left the room Pepper would just keep going. I felt like
there was no understanding on the other side." (P10). Additionally,
many participants (17/24) suggested that Pepper should not only
address their presence but also involve them by asking for feedback
instead of continuously speaking. Asking for feedback can increase
social agency through conversation which create social obligation:
"Pepper doesn’t do something different for me, it’s programmed to
say something. If it asked me for feedback, I would be part of the
conversation. It wouldn’t feel like a monologue." (P7).

4 DISCUSSION
This study explored the impact of adaptive robot behaviour on
users’ engagement, social agency, and information recall during
a healthcare-related HRI learning task. Using an EEG-based BCI
system, a Pepper robot monitored participants’ brain activity and
provided social cues when their engagement decreased. The results
showed no effect of adaptive behaviour on neither participants’ per-
ception of the interaction nor their recall. Our interviews revealed
that the majority of the participants could not tell in which condi-
tion the robot adapted its behaviour to their engagement level which
supports previous theories on user’s social agency [22, 35, 43].

Despite using similar EEG engagement classification and robot
social cues, our results run counter to that of Szafir and Mutlu [38]
who showed that adaptive robot behaviour increased recall com-
pared to random behaviour. The differences between task difficulties
could explain this misalignment. Similar to the storytelling task
in Szafir and Mutlu [38], our task lasted 10 minutes but contained
more difficult information which yielded lower recall as noted by
our participants. On the other hand, our results align with Huang
and Mutlu’s [18] 6-minute interaction containing complex domain
information and similarly found that robots’ beat gestures yielded
no impact on recall. Our subjects likely experienced mental fatigue
due to continuous delivery of stroke information by the robot and
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Table 2: Summary of questionnaire outcomes. Means and (SDs) given for each measure and their corresponding constructs.

Social Agency Interactivity Autonomy Adaptability Engagement Attention Usability Reward Recall
Adaptive 3.11 (0.52) 2.21 (1.05) 2.85 (0.94) 4.27 (0.63) 3.49 (0.63) 4.02 (0.83) 2.94 (0.84) 3.52 (0.95) 5.25 (2.21)
Random 3.12 (0.6) 2.21 (1.02) 2.85 (0.83) 4.31 (0.72) 3.47 (0.63) 4.02 (0.71) 3.04 (0.72) 3.33 (0.97) 5.17 (2.16)

Figure 2: Regression plots between A) Social Agency and Engagement based on the condition type, and B) recall and Engagement
based on the condition order.

lost interest in robot behaviour during the task. Previous studies
without robots support this as increased difficulty of learning tasks
lowered participants’ engagement due to fatigue [24, 34].

While the quantitative results did not explain why the adaptive
condition did not increase participants’ engagement and recall, our
qualitative analysis suggested that participants felt frustrated or
ignored due to Pepper’s inability to address them explicitly. Past
reviews hypothesised that this lack of social agency impedes the
effectiveness of adaptive robots [19, 22, 36]. However, interrupting
teaching tasks to address users may distract them and lower their
ability to learn as seen in previous studies [20]. Therefore, future
research should aim to explore how adaptive robots can explicitly
acknowledge users without disrupting learning. For example, Ali-
mardani et al. [2] found that subjective engagement increased when
a robot performed gestures as feedback for users reciting newly
learned foreign words compared to a robot that made no gestures.
While initially unclear why Alimardani et al’s gestures increased
subjective engagement, our study supports their hypothesis that
gestures given as feedback contained explicit acknowledgement to
users’ performance which raised their social agency.

While social agency correlated with engagement and predicted
recall, it did not correlate with Recall directly. Therefore, we pro-
vided evidence for our and previous literature’s [19, 22, 36] hypoth-
esis that Social Agency impacts Engagement but impacts Recall
only indirectly. Participants’ feelings of being ignored by Pepper
coupled with the difficulty of the task could provide an explanation
for why we observed no connection between Social Agency and

recall. Therefore, future studies should investigate whether adding
explicit acknowledgement increases social agency. In our future
work we will validate our engagement classification and investigate
whether our objective measurements of engagement correlate to
the measures of Social Agency, Engagement, and Recall.

5 CONCLUSION
Using implicit social cues of gestures, voice raising, and posture
changes, our adaptive robot did not increase users’ Social Agency
when adapting to their engagement compared to randomly timed
behaviour. However, higher experience of social agency contributed
to users’ higher levels of engagement while learning and indirectly
increased their recall. Our use of interviews and qualitative data
which currently remain underused in HRI research provided us
insights to explain these findings and propose suggestions for fu-
ture research. Users need explicit acknowledgement of their self-
induced impacts on interactions to increase their social agency. In
the future, we plan to expand these results by designing adaptive
robot behaviour using explicit social cues and consequently inves-
tigating the effectiveness of such design on user experience and
performance during robot-assisted learning.
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