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ABSTRACT
As robots become increasingly prevalent in our communities, align-
ing the values motivating their behavior with human values is
critical. However, it is often difficult or impossible for humans, both
expert and non-expert, to enumerate values comprehensively, ac-
curately, and in forms that are readily usable for robot planning.
Misspecification can lead to undesired, inefficient, or even danger-
ous behavior. In the value alignment problem, humans and robots
work together to optimize human objectives, which are often rep-
resented as reward functions and which the robot can infer by
observing human actions. In existing alignment approaches, no
explicit feedback about this inference process is provided to the
human. In this paper, we introduce an exploratory framework to
address this problem, which we call Transparent Value Alignment
(TVA). TVA suggests that techniques from explainable AI (XAI) be
explicitly applied to provide humans with information about the
robot’s beliefs throughout learning, enabling efficient and effective
human feedback.
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1 INTRODUCTION
Alignment of autonomous agent objectives with those of humans
could greatly enhance agents’ ability to act flexibly to safely and
reliably meet humans’ goals across a variety of contexts. However,
a key barrier to alignment is that it is often difficult for humans
to specify their objectives comprehensively in ways that produce
desired agent behavior across all contexts and in forms that are
readily usable for agent planning [32]. Value alignment is an open
challenge in artificial intelligence that aims to address this prob-
lem by enabling agents to infer human goals and values through
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Figure 1: Transparent Value Alignment (TVA) Framework

interaction [10, 16, 20]. Though not explicitly accounted for in
most existing approaches to alignment, direct and appropriate feed-
back about this value learning process could enable humans to
more readily verify alignment or identify gaps in agent models
and subsequently amend these gaps efficiently and effectively. In
this paper, we introduce an exploratory framework which captures
this two-way communication and inference process which we call
Transparent Value Alignment (TVA). An overview of the closed-loop
TVA process is depicted in Figure 1.

To see the value of applying the TVA lens to approaches for
alignment, we can consider a manufacturing-based scenario in
which a human and a robot work together to efficiently move
boxes from a conveyor belt onto a shipping pallet. Suppose the
robot initially learns to perform the task while working with a
cautious human partner who never enters the robot’s reachable
workspace. However, suppose that this robot also needs to be able
to accommodate future human partners who are less cautious and
prefer to work in closer proximity to the robot when moving boxes.
In this scenario, the robot might learn to prioritize efficiency over
maintaining a safe distance from human partners or might not
learn to consider proximity to humans at all, which could lead to
dangerous interactions. Providing explicit feedback about the trade-
offs the robot has learned to the humans in this scenario could
enable them to amend the robot’s priorities, thereby enhancing the
safety of future interactions and the overall performance of the
human-robot team. The TVA problem framing applies not only to
manufacturing applications such as this example, but also has broad
applicability across many other human-robot interaction domains
such as search and rescue robotics, space robotics, autonomous
driving, and others.

While human objectives and values can be represented in a va-
riety of ways, reward functions are a common representation in
the value alignment setting [10, 16, 20]. Reward functions encode
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the benefit of taking different actions from different states and can
be used to develop autonomous agent plans in fields such as rein-
forcement learning [38]. They are widely applied to agent planning
problems because they provide an efficient way to model desired
and undesired behaviors, can be leveraged within a number of con-
venient modeling frameworks such as Markov Decision Processes
(MDPs), and are generalizable across a variety of environments.
Additionally, there exist numerous approaches for both learning
reward functions from humans and optimizing them. However,
misspecified reward functions can lead to problems such as “re-
ward hacking” where an agent optimizes reward in a way that is
not intended by the designer [2, 32], which motivates the need for
alignment in reward-driven planning scenarios in particular. Given
these considerations, we focus on learning and explaining reward
functions in our discussion of TVA.

Some existing approaches to reward alignment make the as-
sumption that humans can infer an agent’s beliefs about the reward
function over the course of an interaction by simply observing the
agent’s optimal actions at each step [16, 20]. However, this might be
difficult or intractable given human cognitive limitations, especially
in complex scenarios. Therefore, enabling agents to provide direct
feedback to humans about their current beliefs about reward and
doing so in a way that leverages the most effective techniques for
agent transparency could enhance the alignment process. State-of-
the-art techniques in explainable AI (XAI) can be explicitly designed
and applied to enable agents to achieve this end. Gunning and Aha
[19] define XAI as “AI systems that can explain their rationale to
a human user, characterize their strengths and weaknesses, and
convey an understanding of how they will behave in the future.”
We adopt this definition of XAI and define explanations in the TVA
context as the information necessary to support human inference
of the agent’s reward function.

The key insight of the TVA approach to alignment is that study-
ing each component of the TVA loop (value learning and value
explanations) while considering the entire closed-loop process has
the potential to enhance alignment overall. For example, certain
approaches for value learning may be better suited to supporting
interpretability than others, and certain approaches to AI explain-
ability may enable humans to more naturally guide a robot’s value
learning process. Therefore, studying each component in light of
the other is an important future direction of this work.

In the remainder of this paper, we discuss a representative but
non-comprehensive set of existing approaches to the two primary
components of the TVA process depicted in Figure 1: value learning
(Section 2) and value explanations (Section 3). Since we consider
reward functions as the representation of value in this work, we
outline approaches for reward learning and reward explanations
in particular. In these sections, we also identify future research
directions for reward learning and reward explanations as they
relate to the closed-loop, bi-directional TVA process. In Section
4, we highlight additional future research directions motivated by
the exploratory TVA framework. Section 5 further discusses how
TVA can be applied as a tool in human-centered design processes.
Finally, Section 6 concludes the paper.

2 APPROACHES FOR REWARD LEARNING
Various approaches for reward learning have been proposed in
the AI literature. Many approaches apply inverse reinforcement
learning-based techniques, which leverage demonstrations of opti-
mal or near-optimal behavior to infer objectives and rewards [31].
For example, learning from demonstration is one common approach
in which a human provides demonstrations of desired behavior and
the agent derives the reward and associated optimal policy from
these demonstrations [4]. While most approaches assume that hu-
man demonstrations are either optimal or approximately optimal
(according to a Boltzmann rational assumption) when perform-
ing inference over human rewards, recent work has considered
a more structured approach to modeling human sub-optimality
which accounts for the possibility of missing features [6].

Beyond learning from demonstration-based approaches, active
learning involves a “learner” agent which learns about a human
teacher’s reward function through a sequence of queries about
agent behavior [36]. These queries often ask humans to provide
their preference for agent behavior from two or more demonstra-
tions. A popular strategy for query selection is uncertainty sampling
in which the agent generates queries that maximally reduce uncer-
tainty about the reward parameters [36]. Another recent strategy
selects queries based on both uncertainty over reward parameters
and the human’s ability to answer the queries confidently [5]. Bıyık
et al. [5] show that the agent’s estimate of the human’s reward
function is better aligned with the human’s true reward function
and that human teachers find queries easier to answer with their
proposed query selection strategy than with a baseline approach.
Other approaches involve incorporating corrections or critiques
of agent behavior into active learning in order to reduce the to-
tal number of queries required to learn human reward functions
[12]. While these strategies ask about the ideal agent behavior that
results from the human’s underlying reward function, other ap-
proaches ask humans about the features in their reward function
directly [21, 29]. For example, Hadfield-Menell et al. [21] leveraged
human-crafted reward functions as observations about the true re-
ward and performed inference over the true reward function given
these observations.

Existing approaches for learning from demonstration and active
learning do not provide explicit feedback to the human about what
the agent has learned throughout the interaction. Recent work in
value alignment has accounted for the implicit feedback humans
receive during reward learning through their observations of agent
actions. This work models human-agent interaction as a two-player
game in which only the human has full information about the
reward function that the team is aiming to optimize [16, 20]. In
this setup, the human infers the agent’s current beliefs through
observing its actions at each point during the interaction and then
uses this inferred information to choose their own maximally in-
formative actions for the agent to observe in turn. As discussed
in the Introduction, while feedback is implicitly accounted for in
this problem setup, these techniques have not explored how to
effectively provide feedback through the explicit use of explanation
techniques within the value alignment context, which the TVA
framework addresses.
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3 APPROACHES FOR REWARD
EXPLANATION

As with reward learning, numerous approaches for explaining re-
ward have also been proposed. These fall broadly into two cate-
gories: feature-based explanations, which explain reward functions
in terms of their features and relative weights, and policy-based ex-
planations, which explain reward functions in terms of the policies
that result from the reward function [34]. Feature-based techniques
introduced to date include directly providing the reward function
in terms of its features and weights [34], providing subsets of the
most important, prototypical, or unknown features [25, 33, 39], and
providing weighted abstractions of reward features [26, 37]. Policy-
based techniques include providing the most optimal, least optimal,
or most legible trajectories based on the reward function [14, 34],
summarizing the policy by either providing sets of informative
demonstrations [1, 9, 22, 27, 28] or rationales that describe how
state-action pairs relate to the overall policy [13, 15], and providing
factored policy information which indicates the contribution of
each state-action pair to each reward feature [3, 23]. While not
yet studied, combinations of feature- and policy-based explanation
techniques may be most ideal in certain contexts, and further re-
search is needed to determine whether these combinations would
be of value in the alignment context.

Applying these explanation techniques successfully in the align-
ment setting requires not only an understanding of how effectively
each technique communicates reward information but also con-
sideration of additional factors which affect human information
processing and reliance on automation, such as trust and cognitive
workload [35]. Sanneman and Shah [34] performed a recent study
comparing a variety of reward explanation techniques and found
that while directly providing reward information most effectively
supported human understanding of reward functions, providing
abstractions of reward features was most effective in terms of bal-
ancing reward understanding with cognitive workload. Another
consideration for presenting reward explanations is how to ap-
propriately scaffold and communicate information in ways that
account for human learning strategies, which both Lee et al. [28]
and Booth et al. [8] address. Further study of these techniques and
others within the closed-loop TVA context in particular is needed
to determine which individual or combinations of explanation tech-
niques are most effective for enhancing human feedback in the
value learning process.

4 CLOSING THE TVA LOOP: FUTURE
RESEARCH DIRECTIONS

Future TVA research will require consideration and study of the full
closed-loop process of learning and explaining reward as a whole.
Beyond studying techniques such as the ones outlined in Sections
2 and 3 in light of this closed-loop TVA process, there are a variety
of additional avenues for future research which would also be of
value. For example, developing a common language [24] or a set of
common representations [7] for reward features between humans
and robots could make both the processes of reward learning and
explanation more efficient. While initial steps have been taken in
this direction [7, 24], more research is necessary to extend these

initial approaches and characterize their efficacy in the closed-loop
alignment context more broadly.

In addition, learning and explaining reward in the TVA context
may be most effectively achieved by leveraging different types of
information (e.g. feature- or policy-based information or combina-
tions of them) at different points throughout the learning process,
and further study of this would be of value. Individual differences
between humans, such as expertise, skills, and communication
needs, should also be studied and accounted for in future research
on TVA [11]. Finally, while human studies have been performed
to determine the efficacy of algorithms for reward learning and
explanation in isolation, future human studies will be necessary to
characterize any differences in and nuances of these results within
the context of the closed-loop TVA process.

While this paper has primarily discussed scenarios where a hu-
man holds the ground truth reward function, an additional future
research direction relates to cases where the human must instead
learn about the reward function from an agent which holds the
ground truth, flipping the proposed loop. In this case, algorithms
that explicitly support human reward learning and evaluation of the
human’s knowledge throughout the learning process must be devel-
oped and studied. Previous research on AI tutoring could serve as a
launching point for such approaches [18]. Finally, complex human-
robot teaming scenarios of the future will most likely involve cases
where neither the human nor the robot has full information about
the team’s shared reward function or cases where multiple humans
have different rewards or preferences that must be negotiated in
order to converge on an agreed-upon shared reward. Algorithms
for learning, explanation, and negotiation in these circumstances
must also be developed.

5 TVA AS A TOOL FOR HUMAN-CENTERED
DESIGN

In this paper, we have discussed reward functions as a possible
representation for human values, since reward lends itself well to
the context of robot decision-making. It is important to note that
we refer to values in a limited sense here: the values encapsulated
by reward functions model only the subset of human values which
translate cleanly to trade-offs between observable features of a
robot’s environment that influence its decision-making. However,
robots are also part of a broader societal context which includes
the full set of human values. These values influence much more
about robot adoption than robot decision-making, including both
whose values the robot aligns with and how robots are adopted in
any given context, if at all.

Processes such as Participatory Design [17] and Value Sensitive
Design (VSD) [30] can be applied to ensure that the perspectives
of all relevant stakeholders are accounted for in the application of
robotics across new domains. TVA can be applied as a tool within
these processes to ensure that the values they capture are appropri-
ately translated into robot reward functions. Since TVA increases
transparency about the value learning process, it will also ideally
empower non-robot programmers and those who might not other-
wise have power over how robots are applied in their respective
domains to more directly control the robot adoption process.
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6 CONCLUSION
In this paper, we proposed the exploratory Transparent Value Align-
ment framework, which contributes to the design and study of
effective algorithms for bi-directional communication between hu-
mans and robots in the value alignment setting. This framework
incorporates the explicit consideration of suitable strategies for
explaining the robot’s reward function throughout the learning
process. This can enable a person to provide enhanced feedback
which leads to more efficient and higher-quality alignment. There
are an abundance of future research directions which build on the
proposed exploratory TVA framework, spanning both algorithm
development and human study design. This future research will fa-
cilitate more effective human-robot teaming by lowering the barrier
to safe and high-performance human-robot interaction.
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