Check for
Updates

Thrilled by Your Progress!
Large Language Models (GPT-4) No Longer Struggle to Pass
Assessments in Higher Education Programming Courses

Jaromir Savelka
Carnegie Mellon University
Pittsburgh, PA, USA
jsavelka@cs.cmu.edu

Chris Bogart
Carnegie Mellon University
Pittsburgh, PA, USA
cbogart@andrew.cmu.edu

ABSTRACT

This paper studies recent developments in large language models’
(LLM) abilities to pass assessments in introductory and intermedi-
ate Python programming courses at the postsecondary level. The
emergence of ChatGPT resulted in heated debates of its potential
uses (e.g., exercise generation, code explanation) as well as misuses
in programming classes (e.g., cheating). Recent studies show that
while the technology performs surprisingly well on diverse sets of
assessment instruments employed in typical programming classes
the performance is usually not sufficient to pass the courses. The
release of GPT-4 largely emphasized notable improvements in the
capabilities related to handling assessments originally designed
for human test-takers. This study is the necessary analysis in the
context of this ongoing transition towards mature generative Al
systems. Specifically, we report the performance of GPT-4, compar-
ing it to the previous generations of GPT models, on three Python
courses with assessments ranging from simple multiple-choice ques-
tions (no code involved) to complex programming projects with
code bases distributed into multiple files (599 exercises overall).
Additionally, we analyze the assessments that were not handled
well by GPT-4 to understand the current limitations of the model,
as well as its capabilities to leverage feedback provided by an auto-
grader. We found that the GPT models evolved from completely
failing the typical programming class’ assessments (the original
GPT-3) to confidently passing the courses with no human involve-
ment (GPT-4). While we identified certain limitations in GPT-4’s
handling of MCQs and coding exercises, the rate of improvement
across the recent generations of GPT models strongly suggests their
potential to handle almost any type of assessment widely used in
higher education programming courses. These findings could be
leveraged by educators and institutions to adapt the design of pro-
gramming assessments as well as to fuel the necessary discussions

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9976-0/23/08.
https://doi.org/10.1145/3568813.3600142

Arav Agarwal
Carnegie Mellon University
Pittsburgh, PA, USA
arava@andrew.cmu.edu

Marshall An
Carnegie Mellon University
Pittsburgh, PA, USA
haokanga@andrew.cmu.edu

Majd Sakr
Carnegie Mellon University
Pittsburgh, PA, USA
msakr@cs.cmu.edu

into how programming classes should be updated to reflect the
recent technological developments. This study provides evidence
that programming instructors need to prepare for a world in which
there is an easy-to-use widely accessible technology that can be
utilized by learners to collect passing scores, with no effort whatso-
ever, on what today counts as viable programming knowledge and
skills assessments.

CCS CONCEPTS

« Social and professional topics — Computing education;
Student assessment; « Computing methodologies — Artificial
intelligence; Natural language processing.

KEYWORDS

Al code generation, introductory and intermediate programming,
Multiple-choice question answering, MCQ, coding exercises, gener-
ative pre-trained transformers, GPT, Python course, programming
knowledge assessment, ChatGPT, Codex, GitHub Copilot, Alpha-
Code

ACM Reference Format:

Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr.
2023. Thrilled by Your Progress! Large Language Models (GPT-4) No Longer
Struggle to Pass Assessments in Higher Education Programming Courses.
In Proceedings of the 2023 ACM Conference on International Computing Edu-
cation Research V.1 (ICER 23 V1), August 07-11, 2023, Chicago, IL, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3568813.3600142

1 INTRODUCTION

Rapidly increasing capabilities of large language models (LLM) keep
challenging established practices in various contexts, including
computer science and information technology (CS/IT) education.
There are important unanswered questions related to (i) curricu-
lar changes needed to accommodate the new reality, (ii) excessive
learners’ reliance on LLMs in engaging with learning materials, as-
signments, and assessments, as well as (iii) considerable uncertainty
as to how the future of CS/IT profession(al)s look like. Hence, the
all-important concern shared by many CS/IT educators as to what
are the skills and knowledge the learners in CS/IT programs need
in order to have successful and meaningful careers. Perhaps, a more
immediate question that likely occupies minds of many instructors

https://orcid.org/0000-0002-3674-5456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3568813.3600142
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568813.3600142&domain=pdf&date_stamp=2023-09-10

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

is how to assess learners’ skills and knowledge in the presence of
ubiquitous tools (e.g., ChatGPT,! GitHub Copilot?) that could be
easily utilized to pass the assessments (at least partially).

While it is difficult to provide definitive or even satisfactory
answers to questions posed above it is of utmost importance to
build and maintain a body of empirically validated knowledge that
would facilitate deep and meaningful discussions on these topics.
Indeed, there has been a growing body of scholarship focused on
understanding the capabilities of LLMs, as well as their limitations,
in the context of programming education (see Section 2). The re-
cent release of GPT-4 poses a challenge for the existing work that
needs to be confirmed or updated to account for this seemingly
more powerful technology. The issue is especially pressing when
it comes to what we know about the capabilities of GPT models
to handle assessments that were originally designed for a human
test-taker. This is because GPT-4 appears to perform much better on
academic and professional exams when compared to the preceding
GPT-3.5 generation. The technical report [35] made available with
the GPT-4 release lists 34 such exams, including various Gradu-
ate Record Examination (GRE) tests,> SAT Math,* or a Uniform
Bar Exam.” Several of the listed exams involve programming tasks
(e.g., Leetcode,® Codeforces Rating’) and those too show notably
improved performance. Hence, it appears that the current knowl-
edge of the capabilities of the GPT models to handle assessments
in programming courses might be outdated.

This paper analyzes the capabilities of the newest state of the
art generative pre-trained transformer (GPT-4) to pass typical as-
sessments, i.e., multiple-choice question (MCQ) tests and coding
exercises, in introductory and intermediate programming courses.
The aim of this paper is to quickly react to the recent release of
GPT-4 and assess if and to what extent do the findings presented
by similar past studies performed with GPT-3 and 3.5 models still
stand. Hence, the focus is not only on the performance of GPT-4
but also on the comparison of its performance to that of the ear-
lier GPT models. To that end we employ a data set comprising of
599 assessments from three currently running Python courses. We
asses the outputs of the GPT models as if they were coming from
a human learner. This means that we also expose the models to a
feedback generated by an auto-grader and provide them with an
opportunity to iterate on the solution. This is all done in a manner
ensuring that there is no human intervention that could contribute
to models successfully passing the assessments. This approach al-
lows us to accurately gauge if the automatically generated solutions
would enable a human learner to pass a course provided it would
have been their own work. The immediate insight that this study
offers is that the danger of learners’ over-reliance on GPT models

1OpenAl: ChatGPT. Available at: https://chat.openai.com/ [Accessed 2023-03-20]
2GitHub Copilot: Your Al pair programmer. Available at: https://github.com/features/
copilot [Accessed 2023-03-20]

3ETS: The GRE General Test. Available at: https://www.ets.org/gre/test- takers/general-
test/about.html [Accessed 2023-03-20]

4SAT Suite of Assessments. Available at: https://satsuite.collegeboard.org/sat/whats-
on-the-test/math [Accessed 2023-03-20]

SNCBE: Uniform Bar Examination. Available at: https://www.ncbex.org/exams/ube/
[Accessed 2023-03-20]

LeetCode. Available at: https://leetcode.com/ [Accessed 2023-03-22]

7Codeforces. Available at: https://codeforces.com/contests [Accessed 2023-03-22]

79

Savelka et al.

when completing their programming courses’ assignments and
assessments is a real concern that has to be taken seriously.

To investigate if and how GPT-4 challenges the findings of the
prior works related to the capabilities of LLMs to handle diverse
types of assessments typically employed in real-world introduc-
tory and intermediate Python programming courses at the post-
secondary level, we analyzed the following research questions from
the prior work in light of the newly released model:

(RQ1) To what degree can GPT-4 generate correct answers to MCQs
in order to pass an introductory or intermediate course in
Python in higher education? [45, 46]

(RQ2) Does GPT-4 struggle with programming MCQs containing
code snippets that require multi-hop reasoning? [45]

(RQ3) To what degree can GPT-4 produce solutions to complex
coding tasks from instructions in order to pass an introduc-
tory or intermediate course in Python in higher education?
[7, 10, 11, 38, 46]

(RQ4) Can GPT-4 successfully utilize feedback to fix solutions of
coding tasks? [46]

By carrying out this work, we provide the following contribu-
tions to the CS education research community. To our best knowl-
edge, this is the first comprehensive study that:

(C1) Measures performance of the GPT-4 model on diverse as-
sessment instruments from Python programming courses,
updating and extending the current body of knowledge that
has been developed on experiments with GPT-3 models.

(C2) Offers a detailed in-depth analysis of common properties
of MCQs and coding tasks that are answered incorrectly by
GPT-4.

2 RELATED WORK

GPT-4. Given the recent arrival of GPT-4, there have been few
studies of the implications of the new model in education as of the
writing of this paper. OpenAI’s technical report states performance
of GPT-4 on numerous tasks across diverse domains. Of particular
importance are the 92.0% success rate of GPT-4 on grade-school
mathematics questions using 5-shot examples and chain-of-thought
prompting, solving 31/41 Leetcode easy and 21/80 Leetcode medium
exercises, and significant success across several quantitative AP
and competitive mathematics exams [35]. Katz et al. demonstrate
that GPT-4 achieves 297 points on the Uniform Bar Exam (UBE),
passing the bar exam and, in the authors words “by a significant
margin” [18]. Lastly, Jiao et al. consider the performance of GPT-4
on academic translation tasks, demonstrating that the ChatGPT
service achieves significantly better performance compared to ex-
isting commercial translation products [16]. This paper falls in line
with such work, conducting a rigorous evaluation of the recently-
released GPT-4 model when applied to typical introductory and
intermediate programming assessments. We demonstrate that the
gains in performance observed in other domains extend to the
programming education as well.

GPT Performance on Programming MCQs. Savelka et al.
evaluated the capability of text-davinci-@03, to pass a diverse
set of assessment instruments, including MCQs, in the realistic con-
text of full-fledged programming courses [46]. They found that the

https://chat.openai.com/
https://github.com/features/copilot
https://github.com/features/copilot
https://www.ets.org/gre/test-takers/general-test/about.html
https://www.ets.org/gre/test-takers/general-test/about.html
https://satsuite.collegeboard.org/sat/whats-on-the-test/math
https://satsuite.collegeboard.org/sat/whats-on-the-test/math
https://www.ncbex.org/exams/ube/
https://leetcode.com/
https://codeforces.com/contests

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments

then current GPT models were not capable of passing the full spec-
trum of assessments typically involved in a Python programming
course (below 70% on even entry-level modules); but a straightfor-
ward application of these models could enable a learner to obtain
a non-trivial portion of the overall available score (over 55%) in
introductory and intermediate courses alike. They also observed
that an important limitation of the GPT models was their apparent
struggle with activities that required multi-hop reasoning, and that
there appeared to be a difference in success rate between MCQs
that contained a code snippet and those that did not [45, 46]. In
this work, we re-examine those findings in the light of the more
powerful model released since their publication. We find that the
conclusions about the models not being able to pass the courses
no longer hold. However, some of the limitations identified in the
prior work still hold.

GPT Performance on MCQs in Other Domains. Robinson
et al. apply InstructGPT [36] and Codex to OpenBookQA [31], Sto-
ryCloze [33], and RACE-m [23] data sets which focus on multi-hop
reasoning, recall, and reading comprehension, reporting 77.4-89.2%
accuracy [43]. In some cases, GPT can generate code when ap-
plied to programming assignments in higher education courses.
Drori and Verma used Codex to write Python programs to solve
60 computational linear algebra MCQs, reporting 100% accuracy
[9]. Others have used GPT models to solve various MCQ-based
exams, including the United States Medical Licensing Examination
(USMLE), with accuracy around 50% [13, 22, 27], the Multistate Bar
Examination (MBE) [3, 18], and the American Institute of Certified
Public Accountants’ (AICPA) Regulation (REG) exam [2]. Although,
GPT can often answer questions about systems and rules, it is espe-
cially challenged by tasks that involve applying them and reasoning
about their implications in novel examples. Hendryks et al. created
data set that includes a wide variety of MCQs across STEM, hu-
manities and arts, with GPT-3 performing at levels above 50% for
subjects such as marketing and foreign policy, but below 30% for
topics such as formal logic [14]. They found that the model per-
formed particularly poorly in quantitative subjects. For example,
in Elementary Mathematics they note that GPT can answer ques-
tions about arithmetic order of operations (e.g., that multiplications
are performed before additions), but it cannot correctly answer
questions that require applying this concept. They also note that
GPT performance is not necessarily correlated with how advanced
the topic is for humans, doing better at College Mathematics than
Elementary Mathematics. Finally, they noted that GPT does poorly
on tests of legal and moral reasoning [14]. Lu et al. studied GPT
models’ performance on a large data set consisting of 21,208 MCQs
on topics in natural science, social science, and language [28]. They
prompted the models to produce an explanation along with its an-
swer and reported 1-3% improvement in accuracy (74.04%). In this
work, we do not adopt the approach and, hence, leave space for
future work as it appears quite promising and definitely applicable
in the context of programming MCQs.

GPT Performance on Coding Assessments. There is a grow-
ing body of related work on GPT models’ capabilities in solving
educational programming tasks by generating code and text. Finnie-
Ansley et al. evaluated Codex on 23 programming tasks used as
summative assessments in a CS1 [10] and CS2 [11] programming
courses. Denny et al. focused on the effects of prompt engineering

80

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

when applying Copilot to a set of 166 exercises from the publicly
available CodeCheck repository [7]. Jalil et al. evaluated the per-
formance of ChatGPT on content from five chapters of software
testing curricula, reporting a 55.6% accuracy in their assessment
[15]. Our paper extends the existing body of work, most impor-
tantly by using the more powerful GPT-4 model. Piccolo et al. used
184 programming exercises from an introductory bioinformatics
course to evaluate the extent to which ChatGPT can successfully
complete basic to moderate level programming tasks, reporting
the success rate of 75.5% on the first attempt and 97.3% when pro-
vided with feedback [38]. Several studies focus on collaboration
between a human learner and GPT-based assisting tools (e.g., Copi-
lot). Kazemitabaar et al. studied learners using OpenAI’s Codex
during traditional code creation tasks, and demonstrated the use of
Codex did not harm their performance, with experienced students
performing significantly better [19]. Leinonen et al. used Codex
to generate more readable error messages for learners to use for
project-level debugging, suggesting that model-created explana-
tions can serve as effective scaffolding for students learning to
program [25]. Prather et al. examined how novices interact with
these tools, observing that novices struggle to understand and use
Copilot [39].

GPT and Computing Education. Besides the work focused on
how well LLMs do in various tasks meant to be performed by human
learners, there is also a growing body of work on using LLMs to sup-
port computing education. Sarsa et al. used code-davinci-001 to
generate 240 introductory programming exercises, along with tests,
sample solutions and explanations, reporting that over 75% of the
generated exercises were novel and suitable for use in a university
setting [44]. Macnelil et al. integrated LLM-generated code expla-
nations into an interactive e-book and compared several different
explanation types, such as line-by-line or summarization-oriented
explanations, reporting students using line-by-line explanations
the most despite them being considered the least useful according
to the students [29]. Leinonen et al. compared learner-authored
code explanations with those generated by GPT-3, showing that
students perceived GPT-3 generated explanations as more readable
of the two [24].

GPT Performance on Coding Tasks in Professional Set-
tings. Outside of the educational context, there have been studies
exploring GPT’s capabilities on competitive and interview program-
ming tasks. Chen et al. released the HumanEval data set where
Codex achieved 28.8% success rate on the first attempt and 72.3%
when allowed 100 attempts [6]. Li et al. report Deepmind’s Alpha-
Code performance on Codeforces competitions,® achieving a 54.3%
ranking amongst 5,000 participants [26]. Karmakar et al. reported
96% pass rate for Codex on a data set of 115 programming prob-
lems from HackerRank® [17]. Nguyen and Nadi reported Copilot’s
effectiveness on LeetCode!? problems, achieving 42% accuracy [34].
Perry et al. explored the security implications of using Copilot [37].

Program code does more than control computer execution; it
also, some argue primarily, serves as communication among devel-
opers [20]. Since GPT is a text prediction model trained on code in

8Codeforces. Available at: https://codeforces.com/contests [Accessed 2023-01-22]
9HackerRank. Available at: https://www.hackerrank.com/ [Accessed 2023-01-22]
0L eetCode. Available at: https:/leetcode.com/ [Accessed 2023-01-22]

https://codeforces.com/contests
https://www.hackerrank.com/
https://leetcode.com/

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

the context of human discussions about it, the model’s representa-
tion of code is likely to capture code’s design intent more strongly
than code’s formal properties. For example, work from multiple
studies suggest that models that interpret code depend heavily
on function names and input variables [32, 49]. Although, models
like GPT are not trained to simulate code execution, they can in
many cases generate code based on natural language description
of the code’s intent. Researchers have reported varying success at
generating code in response to programming assignments, rang-
ing from Codex’s 100% success generating Python computational
linear algebra programs [9], to 78.3% on some CS1 programming
problems [10], to 79% on the CodeCheck!! repository of Python
programming problems [7].

Prompt Engineering. It has been well established that LLMs
are few-shot learners, capable of answering questions without addi-
tional fine-tuning in a zero-shot fashion [4]. In general, finding the
best prompt for a specific task is challenging, with prompts that
are semantically similar sometimes providing large differences in
performance [51]. Despite this difficulty, there have been several
advancements in developing techniques for prompt engineering to
improve the performance of LLMs. Numerous studies have explored
prompts which include a number of examples to demonstrate what
the desired output should be [4, 12, 50]. However, the current re-
search literature remains inconclusive as to the efficacy of adding
examples to natural language prompts, with multiple studies sug-
gesting that the order and number of examples can dramatically
influence the performance of LLMs across various tasks [42, 50].

In introductory CS context, there has been an inquiry into ex-
plainable prompt-engineering practices. Denny et al. explored prompt-
ing Copilot for CS1 exercises, demonstrating that while prompt
engineering can significantly improve the performance of Copilot
on CS1 problems, verbose prompts can lead to decreases in model
performance [7]. Similar study has been performed on CS2 coding
tasks [11].

More recently, there has been significant interest in chain of
thought prompting, a technique where an LLM is asked to provide
both the answer and the reasoning that lead to the answer in ques-
tion. This has lead to significant performance gains in symbolic and
quantitative reasoning tasks, by forcing the LLM to emulate human
reasoning in addition to the answer itself [48]. Recently, researchers
have also explored the so called “least-to-most” prompting, where
a task is decomposed into several sub-problems, which are then
answered all at once by the model [52].

3 DATA

For the purpose of this study, we obtained the data set that was
originally used in [45, 46]. The researchers collected assessment
exercises from three real-world currently running Python program-
ming courses.

Python Essentials - Part 1 (Basics)'? (PE1) transitions learners
from a state of complete programming illiteracy to a level of pro-
gramming knowledge which allows them to design, write, debug,

11CodeCheck: Python Exercises. Available at: https://horstmann.com/codecheck/
python-questions.html [Accessed 2022-01-22]

120penEDG: Python Essentials - Part 1 (Basics). Available at: https://edube.org/study/
pel [Accessed 2023-03-20]

81

Savelka et al.

and run Python programs. There are four units in the course, and
one completion (summary) test. The units include:

(1) Introduction to Python and computer programming,

(2) Data types, variables, basic input-output operations and basic
operators

(3) Boolean values, conditional loops, lists, logical and bitwise
operators

(4) Functions, tuples, dictionaries and data processing.

PE1 employs MCQ assessments. Formative assessments are called
quizzes and summative assessments are called tests. Qualitatively,
the test MCQs appear to be considerably more challenging than
quiz MCQs. The MCQs often include small snippets of code and
ask learners to reason about them.

There are 149 questions in PE1. An MCQ may involve a snippet
of Python code (with code) or it may be expressed fully in natural
language (no code). For an MCQ, to be considered as with code
there either is at least one line fully dedicated to computer code,
and/or the choices are computer code expressions. Inline mentions
of names of functions or variables were not considered as sufficient
for an MCQ to be considered with code. Out of the 149 MCQs in
PE1, 96 have code snippets. The MCQs are further distinguished
into the following categories:

o True/False — The learner is asked to assess the truthfulness
of a single statement.

o Identify True/False Statement — The learner is asked to pick
one or more choices as either true or false.

o Finish Statement. — The learner is asked to complete a state-
ment.

o Output — The learner is asked to identify the choice that
corresponds to the output of a given snippet of code.

e Fill-in Blanks — The learner is asked to fill in a code snippet
by selecting the appropriate choice as an answer.

e Other — Any MCQ that does not fall into any of the above
categories.

Table 1 provides additional details, including the categorization of
questions according to their type. Example questions for all the
types are shown in Appendix A.

Python Essentials - Part 2 (Intermediate) (PE2)'® covers advanced
aspects of Python programming, such as modules, packages, excep-
tions, file processing, or object-oriented programming. Similarly to
PE1, the course is organized into four units and it is also equipped
with a completion (summary) test. The course units are:

(1) Modules, packages, and PIP

(2) Strings, String and List Methods, Exceptions
(3) Object-Oriented Programming

(4) Miscellaneous

Justlike PE1, PE2 also employs MCQ assessments exclusively (quizzes
and tests). There are 148 questions in PE2 out of which 83 have
code snippets. Table 1 has additional details.

Finally, Practical Programming with Python'* (PPP) centers around
hands-on projects focused on fundamental Python constructs and

130penEDG: Python Essentials - Part 2 (Intermediate). Available at: https://edube.org/
study/pe2 [Accessed 2023-01-15]

143ail(): Social and Interactive Learning Platform. Available at: https://sailplatform.
org/courses. [Accessed 2023-03-20]

https://horstmann.com/codecheck/python-questions.html
https://horstmann.com/codecheck/python-questions.html
https://edube.org/study/pe1
https://edube.org/study/pe1
https://edube.org/study/pe2
https://edube.org/study/pe2
https://sailplatform.org/courses
https://sailplatform.org/courses

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

Table 1: MCQ Data Set. Each row provides information about the MCQ assessments each of the courses employ. Each column
reports on the distribution of the MCQ types across the courses.

Course Units MCQ (no code) MCQ (with code) Course
(topics) | T/F Id. T/F Fin.S. Other | T/F Id. T/F Fin.S. Out Fill-in Other | Overall
PE1 4 0 5 23 18 0 5 6 51 0 41 149
PE2 4 0 7 31 10 0 0 21 27 0 52 148
PPP 8 25 32 2 19 23 21 0 32 13 66 233
Type Overall 16 25 44 56 47 23 26 27 110 13 159 530
Table 2: Coding Activities Data Set. Each row provides infor- [15 lines ...]
mation about each project’s focus area(s) and the number of popula "be"_’ks “[’;’0‘;71‘” = {] ©)
tasks and activities they contain. Fund. stands for Python " ?n‘;mfpage;?eiov’vt?numipages 1. [2 lines ...]
language fundamentals; SW Dev. stands for software devel- SN
opment practices (e.g., Test-driven development); Data stands rating': { o , o
! A average_rating': row['average_rating'],
for data processing and analysis (e.g., file formats, databases). ‘text_reviews_count': row['text_reviews_count']
[5 lines ...]
Project Topic Fund. SW Dev. Data Tasks Acts. [FEEDBACK] The value of [...] book's “info™ and “num_pages™ (@
. . ki hould b f “<cl "int'>". [...
Types, variables, functions v/ v 4 6 eys L...] should be of type “<class "int™>". [...]
Iteration, conditionals, v 4 6 [22 11 @
. . ines ...]
strings, basic I/O 'num_pages': int(row['num_pages']), [6 lipes ...]
Lists, sets, tuples and v v 2 11 'average_rating': row['average_rating'],
dicti . "text_reviews_count': int(row['text_reviews_count']) ©
ictionaries [5 lines ...1
Classes, objects, attributes v 6 8
and methods [FEEDBACK] The value of [...] book's “rating™ and “average_rating”
Debugging, refactoring, V4 6 15 keys [...] should be of type “<class 'float'>". [...] ®
testing and packaging -
il dd % 3 7 [29 lines ...]
Files and datastores 'average_rating': float(row['average_rating']), @
Web scraping and office v 4 7 [7 lines ...]
document processing
Data analysis v 3 9
Y 6o Figure 1: An example interaction with auto-grader which

exposure to software development tools, practices, and real-world
applications. The course consists of eight units which include:

(1) Python basics and introduction to functions
(2) Control flow, strings, input and output

(3) Python data structures,

(4) Object-oriented programming

(5) Software development

(6) Data manipulation

(7) Web scraping and office document processing
(8) Data analysis

PPP also uses MCQs extensively. However, their influence on learn-
ers’ passing the course is limited compared to PE1 and PE2. In
PPP MCQs are used as inline gating activities meant as formative
assessments and graded tests as summative assessments. The con-
tribution of the tests to the overall grade would vary across the PPP
offerings but it would rarely exceed 20%. There are 233 MCQs in
PPP (144 with code snippets). Table 1 has additional details about
MCQs in PPP.

In comparison to PE1 and PE2, PPP mostly employs the project-
based education model [21]. Learners individually work on larger
programming projects that are subdivided into tasks. The projects

82

recognizes that the num_pages field (1) should not be of type
str and produces corresponding feedback (2). After the flaw
is corrected (3), as well as similar one (4) not mentioned in
the feedback, another issue with the average_rating field (5)
is fixed (7) based on the additional feedback (6).

require sustained effort that often extends over several days, de-
pending on the proficiency of the learner. All the eight projects
are auto-graded. The auto-grader provides learners with feedback
that can be utilized for improving the solutions until a project dead-
line. The score from the projects, tests, and reflections (discussion
posts) determines if a learner successfully completes the course.
The projects typically contribute around 80% towards the grade.
There are 69 coding activities in PPP (elements of the 32 project
tasks). Further details about the projects and their coding activities
are reported in Table 2.

Each project activity is associated with one or more assessments
which are high-level rules that need to be met in order for a learner
to be awarded with score points. For example, an assessment could
require the output JSON file to have specific fields in terms of their
names and data types. The auto-grader then uses an extensive bat-
tery of detailed tests to ensure the high-level assessment rule is met.
The test cases are dynamically generated during the evaluation of

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

each submission. In case one or more tests fail, the learner receives
a feedback the aim of which is to (1) clearly explain as to why the
assessment rule is not met, and, hence, the score cannot be awarded,
and (2) provide a hint on how to iterate on the solution towards
a successful outcome. The feedback would typically not provide
an extensive enumeration of the failed test cases. Instead, it often
focuses on the most prominent one or the first one encountered.
The feedback usually does not expose the exact nature of the test.
While the feedback varies greatly across the activities the most
common pattern is the contrast between the expectation and the
actual state of the submitted solution. In most of the cases, the focus
of the auto-grader is on the correctness of the solution. However,
there are several activities focusing on code style and quality. In
those activities, the grader goes beyond correctness and evaluates
the compliance of the submitted solution. Figure 1 shows an exam-
ple interaction with the auto-grader, illustrating how the feedback
facilitates iterative improvement of the solution.

4 EXPERIMENTAL DESIGN

4.1 Models

The original GPT model [40] is a 12-layer decoder-only transformer
[47] with masked self-attention heads. Its core capability is fine-
tuning on a downstream task. The GPT-2 model [41] largely follows
the details of the original GPT model with a few modifications, such
as layer normalization moved to the input of each sub-block, addi-
tional layer-normalization after the first self-attention block, and
a modified initialization. Compared to the original model it dis-
plays remarkable multi-task learning capabilities [41]. The third
generation of GPT models [4] uses almost the same architecture as
GPT-2. The only difference is that it alternates dense and locally
banded sparse attention patterns in the layers of the transformer.
The main focus of Brown et al. was to study the dependence of per-
formance and model size where eight differently sized models were
trained (from 125 million to 175 billion parameters). The largest
of the models is commonly referred to as GPT-3. The interesting
property of these models is that they appear to be very strong zero-
and few-shot learners. This ability appears to improve with the
increasing size of the model [4]. The technical details about the
recently released GPT-4 model have not been disclosed due to (al-
leged) concerns about potential misuses of the technology as well
as highly competitive market with generative AI [35].

We are primarily interested in the performance of the gpt-4
(GPT-4) model as compared to text-davinci-003 (GPT-3.5). As
of writing of this paper, GPT-4 is by far the most advanced model
released by OpenAl The model is focused on dialog between a
user and a system. On the other hand, GPT-3.5 is a more general
model focused on text completion. It builds on top of previous
text-davinci-002, which in turn is based on code-davinci-002
(focused on code-completion tasks) which is sometimes referred to
as codex. To gauge the rate of improvement over the several recent
years, we compare the performance of GPT-4 to GPT-3.5 as well
as to the previous generation’s InstructGPT text-davinci-001
model (GPT-3)" on the MCQ answering task. For coding exercises,
we benchmark GPT-4 to GPT-3.5 only. This is because GPT-3 is

150penAlL: Model index for researchers. Available at: https://beta.openai.com/docs/
model-index-for-researchers/instructgpt-models [Accessed 2023-01-15]

83

Savelka et al.

mostly focused on text completion, and is not capable of producing
(decent) solutions to coding exercises; this ability only emerged
with code-davinci-002 and later models.

We set the temperature of all the models to 0.0, which corre-
sponds to no randomness. The higher the temperature the more
creative the output but it can also be less factual. As the temperature
approaches 0.0, the model becomes more deterministic, which we
deem as important for reproducability. Given that existing litera-
ture does use different temperatures for testing, we did initially
test a variety of temperatures, but found that setting temperature
to 0.0 worked well for our setting, which falls inline with the find-
ings and precedence of existing work regarding multiple-choice
questions [2, 27, 28]. Additionally, given that we were largely eval-
uating questions automatically a single-time per question, setting
temperature to 0.0 provided us with the most likely completion of
GPT-4, allowing us to be more confident in our resulting analysis.
We set max_tokens to 500 (a token roughly corresponds to a word)
for MCQ answering, and to 2,000 (GPT-3.5) or 4,000 (GPT-4) for
coding activities. This parameter controls the maximum length
of the completion (i.e., the output). Note that each model has a
length limit on the prompt, and the completion counts towards
that limit. While GPT-4 allows for 8,192 tokens!® the GPT-3.5 can
only accept up to 4,097 tokens. We set top_p to 1, as is recom-
mended when temperature is set to 0.0. This parameter is related to
temperature and also influences creativeness of the output. We set
frequency_penalty to 0, which allows repetition by ensuring no
penalty is applied to repetitions. Finally, we set presence_penalty
to 0, ensuring no penalty is applied to tokens appearing multiple
times in the output.

4.2 Experimental Design

To test the performance on MCQs, we submit questions one by
one using the openai Python library!” which is a wrapper for
the OpenATI's REST APL For GPT-3 and GPT-3.5, we embed each
question in the prompt templates shown in Figure 2. Since GPT-
4 is a model optimized for dialogue, we use different prompts—
the ones shown in Figure 3. Note that the prompt for GPT-4 is
designed with the intent to prevent the model from explaining
the answer to a user as we are only interested in the answer(s)
themselves. Each model returns one or more of the choices as
the prompt completion (response), which is then compared to the
reference answer. Following the approach adopted by PE1 and PE2,
partially correct answers are considered to be incorrect.

In coding tasks, we submit the instructions using the prompt
templates shown in Figure 4 for GPT-3.5. Again, we use a different
prompt for GPT-4 which is shown in Figure 5. While we needed to
embed the coding activity instructions into the GPT-3.5’s prompt
(as shown in Figure 4) these are passed to GPT-4 more naturally as
a message coming from a user.

To each submission, the auto-grader assigns a score and gener-
ates detailed actionable feedback. If the full score was not achieved
we amended the GPT-3.5’s prompt with the addendum (shown in
Figure 4). For GPT-4 we simply continued in the dialogue where the

16There is also a variant of the model that supports up to 32,768 tokens.
7GitHub: OpenAl Python Library. Available at: https://github.com/openai/openai-
python [Accessed 2023-01-16]

https://beta.openai.com/docs/model-index-for-researchers/instructgpt-models
https://beta.openai.com/docs/model-index-for-researchers/instructgpt-models
https://github.com/openai/openai-python
https://github.com/openai/openai-python

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

I am a highly intelligent bot that can easily handle answering
multiple-choice questions on introductory Python topics.

Given a question and choices I can always pick the right ones.
Question: {{question}} @

Choices:

{{choices}} ®

The correct answer:

Figure 2: MCQ Prompt Template for GPT-3 and GPT-3.5. The
text of the preamble (1) is inspired by OpenAI’s QA example.
The {{question}} token (2) is replaced with the question text.
The {{choices}} token (3) is replaced with the candidate an-
swers where each one is placed on a single line preceded by
a capital letter.

You are a highly intelligent bot that can easily handle answering
multiple-choice questions on introductory Python topics. Given a

question and choices you can always pick the right ones. You are

not expected to explain the answers. (@

Example user question:
What function in Python is typically used to display text to the
terminal?

A. input

B. print
C. len
D. int

@

Question: {{question}} ®

Choices:
{{choices}} @

Example bot response:
B. print

Figure 3: MCQ Prompt Templates for GPT-4. The outer frame
shows the system’s prompt which is used to set the context
of the dialogue. The text of the preamble (1) is inspired by
OpenAT’s QA example. The example user question and bot
response (2) primes the model to return the answer(s) only
(no explanations). The inner frame depicts the user’s message
sent to the dialogue system. The {{question}} token (3) is
replaced with the question text. The {{choices}} token (4) is
replaced with the candidate answers where each one is placed
on a single line preceded by a capital letter.

solution it generated was followed by the auto-grader’s feedback.
Then, we submitted the revised solution to the auto-grader and
repeated the process until either the full score was achieved or the
solution remained unchanged from the preceding one (impasse).
When dealing with coding activities, we encountered the models’
limitation on the prompt length (4,097 tokens for GPT-3.5 and 8,192
or 32,768 for GPT-4). Within this limit, it was necessary to fit: (i)
the prompt boilerplate; (ii) the instructions; (iii) the contents of the
handout files (usually starter code) distributed to learners; and (iv)
the solution generated by the model (i.e., the prompt completion).
Instead of full project (8) instructions we submitted the individual
project tasks (32). If a task could not be fitted into a prompt, we
decreased the max_tokens parameter (space for solution) to <2,000
for GPT-3.5 or <4,000 for GPT-4. If this did not resolve the issue we
edited the instructions leaving out pieces that could be reasonably
expected as not being useful for the GPT models. As the last resort,

84

TASK

Implement a Python program to print "Hello, World!" in hello.py.
=== hello.py ===

TODO 1

=== D

SOLUTION

=== hello.py ===

print("Hello, World!")

TASK
{{instructions}} @
{{file_name}} === ®
{{handout}}

SOLUTION

Figure 4: Coding Task Prompt Templates for GPT-3.5. Outer
frame is the first submission template. The preamble (1)
primes the model to generate a solution code as completion.
The {{instructions}} token (2) is replaced with the coding
task instructions. A starter code is injected into {{file_name}}
(3) and {{handout}} (4) tokens. The inner frame shows the
template for re-submission (appended to the original). The
{{file_name}} (5) and {{solution}} (6) were replaced with the
GPT’s solution and the {{feedback}} (7) with the auto-grader’s
feedback.

You are a highly intelligent coding bot that can easily handle any
Python programming task. Given a natural language instructions you
can always implement the correct Python solution. Your focus is the
solution code only. You are not allowed to provide explanations.

Example (toy) instructions:
Implement a Python program to print "Hello, World!" in the
hello.py.

()

Example bot solution:
hello.py
print("Hello, World!")

®

Figure 5: Coding Task Prompt Template for GPT-4. The pre-
amble (1) primes the model to generate the code of the so-
lution only (no explanations). The example instructions (2)
and solution (3) are used to further clarify the expectations
on the output.

we would split the task into several smaller coding activities (69
overall) if the task was to develop several loosely coupled elements.
The GPT models’ solutions were then submitted to the auto-grader.

5 RESULTS AND DISCUSSION

5.1 (RQ1) To what degree can GPT-4 generate
correct answers to MCQs?

The results of applying the GPT models to the MCQ exercises

are reported in Tables 3 (PE1), 4 (PE2), and 5 (PE3). While the

original GPT-3 model correctly answered only 199 out of the 530

questions (37.5%), the GPT-3.5 and GPT-4 models were much more

successful. GPT-3.5 correctly answered 341 MCQs (64.3%). GPT-4

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

successfully handled 446 questions (84.1%). Hence, we observe a
sizeable improvements across the successive generations of the
GPT models.

The results from PE1 are reported in Table 3. In order to pass
the course the score of 70% or better is required from all the 5 tests.
While the GPT-3 model could not pass any of the tests, and the
more successful GPT-3.5 model passed only the first course module,
as already reported in prior work [45, 46], the GPT-4 model passed
all the four module tests as well as the summary test (i.e., passing
the course with the overall score of 85%).

The performance of the models on PE2 is presented in Table 4.
The assessment scheme of PE2 is the same as that of PE1. Here,
the GPT-3.5 model was somewhat more successful and passed 3/4
module tests. However, it also failed the Summary Test (65.0%).
The original GPT-3 model still could not pass a single test. These
findings were also reported in prior work [45, 46] The GPT-4 model
again passed all the five graded assignments (89.6% overall score).

Table 5 reports the results of applying the models to the MCQs
in PPP. Again, we observe similar progression from the weakest
GPT-3 model (30.9% on the tests), through the better performing
GPT-3.5 (65.4%), as already reported in prior work [45, 46], to the
best performing GPT-4 model (77.8%). Note, that passing of PPP is
not solely determined by the MCQ assessments, and largely depends
on the performance on the coding activities (projects).

Overall, the findings reported in prior work [45, 46] no longer
hold. While GPT-3 and GPT-3.5 models’ performance on the pro-
gramming MCQs is not sufficient for passing the three courses,
GPT-4 handles the MCQs well enough to reliably pass the course
MCQ assessments. Note, that in some countries much lower passing
scores may be required. Hence, our finding of GPT-4 passing the
assessments the prior models fail to pass might not hold in those
contexts.

5.2 (RQ2) Does GPT-4 struggle with
programming MCQs containing code?
Table 6 reports the results of our experiments on how GPT models
handle MCQs of various types. The GPT-4 model performs the best
(84.5% overall) with quite a noticeable margin over the GPT-3.5
(65.5% overall). The performance of the original GPT-3 appears to
be much lower compared to the other two models. This is to be
expected, as the major breakthrough in OpenAI GPT models’ capa-
bilities in handling computer code was Codex (code-davinci-002)
[6] which is the predecessor of text-davinci-003 (ie., GPT-3.5).13
There appears to be a clear difference between the performance
of the most capable GPT-4 on the MCQs that contain code snippets
(81.0% overall) compared to those that do not (90.7% overall). This
is to be expected as the combination of code and natural language
likely constitutes (on average) more complex input than natural
language alone. Additionally, it is quite possible that in our particu-
lar context the questions with code are (on average) more difficult
than questions with no code. However, notice that the gap appears
to be much wider in the preceding generations of the GPT models
(29.9% vs 53.3% for GPT-3 and 59.5% vs 77.9% for GPT-3.5). Hence, it
appears that GPT-4’s capabilities in handling MCQs with code are

80penAlL: Model index for researchers. Available at: https://beta.openai.com/docs/
model-index-for-researchers/instructgpt-models [Accessed 2023-01-15]

85

Savelka et al.

much improved compared to its predecessors. However, the observ-
able difference between the performance on MCQs with natural
language only and MCQs with code remains. There also appears
to be clear difference between the performance of GPT-4 on the
completion-oriented MCQs (96.9%), i.e., Finish Statement and Fill-in
and the rest (81.3%). Since GPT models are primarily focused on
prompt completion, be it text or computer code, this finding is also
as expected. Hence, the findings from prior work [45] still hold in
this regard.

To investigate further GPT-4’s code handling limitations, we
analyzed the 67 MCQs with code that GPT-4 answered incorrectly,
manually inspecting the full answers, and sometimes altering the
prompt and requerying, to hypothesize the reasons for the errors.
We found that the model’s mistakes fell into five main categories,
listed in Table 7.

Problems in the question (WRONG-Q) GPT’s explanations
in some cases exposed problems in the original questions. For ex-
ample, one question asks, in part, “Which of the potential solu-
tions would load the data into a DataFrame object where the in-
dex is set to the month column?”. The correct answer was “df =
pd.read_csv("tickets_monthly.csv", index_col=0)”, using
the Pandas package to load a CSV file into a variable df. How-
ever GPT-4, answered “pd.read_csv("tickets_monthly.csv",
index_col=0)", explaining that the actual correct answer “.. is
correct in terms of functionality, but it assigns the DataFrame to a
variable df. The question asked for a solution that loads the data
into a DataFrame object, not a variable assignment.” Note that the
answer preferred byt the GPT-4 model would be defensible since it
does in fact load a DataFrame, albeit in an impractical way. Realis-
tically, we might have granted a student the point if they provided
similar explanation . Also note that GPT-4’s explanation is not com-
pletely correct. The correct answer does load a DataFrame as well
as assign it. It is then the better answer of the two (because more
pragmatic).

Multi-hop reasoning (MULTI-HOP) GPT is known to have
difficulty with answering questions that require multiple hops of
reasoning [48]. Adding an instruction to show the reasoning steps
sometimes improves the answers, or even leads to revising a wrong
answer after explaining it. We re-queried GPT4 for some questions
that appeared to use multi-hop reasoning, changing the prompt to
encourage explanation (we removed the prompt text discouraging
explanations, and added, “Give your answer, then provide your
reasoning:” at the end of the prompt.) This indeed corrected some,
but not all, of the errors. Interestingly, even when GPT-4 lists out
the steps, its analysis of a step may be incorrect in the context
of a complex, multi-hop answer, even though it is correct when
answering a similar question in isolation. Sometimes this mimics
motivated reasoning. For example, one question involved predicting
the effect of two apparently opposite string replacement commands:

quote = '"The things that make me different are the ' +\
"things that make me, me."'
new_sentence = quote.replace(" different",

new_sentence = new_sentence.replace(", me",
" different")

n

, me")

Although the second replacement does not restore the original
sentence, GPT’s step claims that it does:

https://beta.openai.com/docs/model-index-for-researchers/instructgpt-models
https://beta.openai.com/docs/model-index-for-researchers/instructgpt-models

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

Table 3: PE1 results. The graded assignments are colored; green and check mark indicate passing while red means failing.

Module Topic

GPT-3

Quizzes
GPT-3.5

GPT-4

GPT-3

Tests
GPT-3.5

GPT-4

Introduction to Python and programming
Data types, variables, I/O, operators
Booleans, conditionals, loops, operators
Functions, data structures, exceptions
Completion (Summary Test)

8/10 (80.0%)
6/10 (60.0%)
3/10 (30.0%)
6/12 (50.0%)

10/10 (100%)
10/10 (100%)
7/10 (70.0%)
9/12 (75.0%)

10/10 (100%)
10/10 (100%)
10/10 (100%)
9/12 (75.0%)

6/10 (60.0%)
6/20 (30.0%)
6/20 (30.0%)
7/22 (31.8%)
7/35 (20.0%)

v 9/10 (90.0%
10/20 (50.0%
12/20 (60.0%

12/22 (54.5%

17/35 (48.6%)

NOANDANDAND

v 10/10 (100%)
v 18/20 (90.0%)
v 16/20 (80.0%)
v 20/22 (90.9%)
v 27/35 (77.1%)

Course Total

23/42

36/42

39/42

32/107

(54.8%)

(85.7%)

(92.4%)

(29.9%)

60/107
(56.1%)

91/107
(85.0%)

Table 4: PE2 results. The graded assignments are colored; green and check mark indicates passing while red means failing,.

Module Topic GPT-3

Quizzes
GPT-3.5

GPT-4

GPT-3

Tests
GPT-3.5

GPT-4

Modules, packages, and PIP
Strings, string list methods, exceptions | 7/10 (70.0%)
Object-oriented programming 7/10 (70.0%)
Miscellaneous 8/12 (66.7%)
Completion (Summary Test) -

3/10 (30.0%)

6/10 (60.0%)
6/10 (60.0%)
8/10 (80.0%)
9/12 (75.0%)

10/10 (100%)
9/10 (90.0%)
9/10 (90.0%)
11/12 (91.7%)

10/18 (55.6%)
4/15 (26.7%)
4/17 (23.5%)
4/16 (25.0%)

11/40 (27.5%)

v 14/18 (77.8%
v 11/15 (73.3%
v 12/17 (70.6%
9/16 (56.2%
26/40 (65.0%)

T2

v 17/18 (94.4%)
v 13/15 (86.7%)
v 15/17 (82.4%)
v 15/16 (93.8%)
v 35/40 (87.5%)

Course Total 25/42

29/42

40/42

33/106

72/106

95/106

(59.5%)

(69.0%)

(95.2%)

(31.1%)

(67.9%)

(89.6%)

Table 5: PPP results. The tests contribute to the grade, typically by no more than 20%. Since in PPP tests themselves do not

determine pass or fail no colors are used.

Quizzes Tests

Module Topic GPT-3 GPT-3.5 GPT-4 GPT-3 GPT-3.5 GPT-4
Python basics and introduction to functions | 12/30 (40.0%) 21/30 (70.0%) 27/30 (90.0%) | 4/12 (33.3%) 9/12 (75.0%) 10/12 (83.3%)
Control flow, strings, input and output 8/22 (36.4%) 10/22 (45.5%) 16/22(72.7%) | 3/11 (27.3%) 8/11(72.7%) 10/11 (90.9%)
Python data structures 9/18 (50.0%) 10/18 (55.6%) 14/18 (77.8%) | 4/14 (28.6%) 9/14 (64.3%) 10/14 (71.4%)
Object-oriented programming 6/14 (42.9%) 7/14 (50.0%) 11/14 (77.6%) | 4/11 (36.4%) 10/11(90.9%) 11/11 (100%)
Software development 9/19 (47.4%) 12/19 (63.2%) 16/19 (84.2%) | 5/10 (50.0%) 7/10 (70.0%) 10/10 (100%)
Data manipulation 6/17 (35.3%) 9/17 (52.9%) 13/17 (76.5%) | 5/13 (38.5%) 5/13 (35.5%) 8/13 (61.5%)
Web scraping and office document processing | 5/10 (50.0%) 5/10 (50.0%) 5/10 (50.0%) 0/5 (0.0%) 3/5 (60.0%) 3/5 (60.0%)
Data analysis 6/22 (27.3%) 17/22 (77.3%) 18/22 (81.8%) | 0/5(0.0%) 2/5(40.0%) 2/5 (20.0%)
Course Total 61/152 91/152 120/152 25/81 53/81 64/81

(40.1%) (59.9%) (78.9%) (30.9%) (65.4%) (79.0%)

The second replace() function call replaces the first
occurrence of ", me" with " different". The new string
becomes: "The things that make me different are the
things that make me, me.

This is not true as the call to the replace function replaces all
matching strings. GPT-4 explains this aspect of the question cor-
rectly when asked in isolation:

This code will output a modified version of the quote
string where every occurrence of the substring , me”
is replaced with the string “ different”. [...] “The things
that make me different are the things that make me
different”

86

Another commonly occurring failure due to multi-hop reasoning
seems to be related to interference between subparts of a question.
For example, one question defines a function called mystery that
does a series of edits and permutations on a list. The choices list
four calls to this function, each with a proposed output, and asks
the student to identify which of the pairs is correct. Unlike the true
“multi-hop” questions, these do not build on each other, but they
nonetheless seem to interact. GPT-4 can explain the function in
isolation and identify the correct result. However, when the four
choices are posed together for verification, it identifies all four of
them as correct, even though only one is in fact correct.

Unlikely failure (FLUKE) For MCQs, we set temperature to 0
as we were explicitly focused on running a reproducible experiment,
capturing the performance of the most likely output of the model.

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

Table 6: Performance of the GPT models across MCQs of
different types.

Question Type GPT-3 GPT-3.5 GPT-4
No Code
True/False 13/25 20/25 23/25
(52.0%) (80.0%) (92.0%)
Identify True/False Statement 12/44 27/44 35/44
(273%) (61.4%) (79.5%)
Finish Statement 42/56 50/56 56/56
(75.0%) (89.3%) (1.0%)
Other 25/47 37/47 43/47
(53.2%) (78.7%) (91.5%)
Total 92/172 134/172 157/172
(53.5%) (77.9%) (91.3%)
With Code
True/False 12/23 10/23 13/23
(52.2%) (43.5%) (56.5%)
Identify True/False Statement 10/26 11/26 16/26
(385%) (42.3%) (61.5%)
Output 28/110 53/110 86/110
(25.4%) (48.2%) (78.2%)
Fill-in 5/13 11/13 12/13
(385%) (84.6%) (92.3%)
Finish Statement 10/27 22/27 25/27
(37.0%) (81.5%) (92.6%)
Other 42/159 106/159 139/159
(264%) (66.7%) (87.4%)
Total 107/358 213/358 291/358
(29.9%) (59.5%) (81.3%)
Overall 199/530 347/530 448/530
(37.5%) (65.5%) (84.5%)

Table 7: Qualitative coding of wrong GPT-4 code MCQ an-
swers

Code Definition #Q

WRONG-Q GPT’s explanation revealed a 13
valid interpretation suggesting
that the question itself was am-
biguous

MULTI-HOP Model was confused by multi- 19
hop reasoning.

FLUKE GPT only gets the question 8
wrong when temperature=0

DUAL- The text of the code did not 13

INTERPRETATION match its intent, and GPT some-
times relied on the intent

INCOHERENT GPT answers are variable and 14

inconsistent

Setting a higher temperature and taking the most common of
several answers could be a way to achieve more reliably correct per-
formance. We marked as FLUKE any questions that GPT-4 got right
with temperature being set higher. This is because in this case the

87

Savelka et al.

incorrect handling is associated with a particular parametrization
of the model.

Reasoning biased by inferred code intent (DUAL-INTERP)
GPT-4 sometimes provided answers that focused on the intent
rather than the exact nature of the code itself. For example, in one
question, a calculation is performed but the last line, printing out
the result, is commented out. GPT-4 answered as if the line were not
commented out. If asked to explain the reasoning step-by-step, GPT-
4 sometimes caught its mistake. GPT-4 is optimized for dialog, in
which humans do the best to make sense of inconsistent inputs; we
infer the most plausible coherent interpretation of an interlocutor.
A debugging-focused question that asks about unintended behavior
from subtly wrong code is interpreted as if the code were “correct”.
The same robust ability to interpret intent that lets it answer poorly-
worded English questions apparently trips it up in questions about
purposefully misleading code.

Inconsistent reasoning (INCOHERENT) GPT-4 sometimes
gives different answers when queried repeatedly with temperature
> 0. When providing reasons, it may give contradictory answers
within the same response. For example, one question asked if the
expression not (mag < 5) would be correct in a program with
multiple blanks, at a point where values >= 6 have already been
ruled out. GPT-4 incorrectly responds “The suggested expression
not (mag < 5) is not accurate because it will also include mag-
nitudes of 6.0 and higher” However, it then gives the completed
code, using the logically equivalent expression mag > 5.0. It ex-
plains that “should be mag >= 5.0, as this accurately identifies the
"Moderate" category without including higher magnitude levels”
Other responses contained similar contradictions.

5.3 (RQ3) To what degree can GPT-4 produce
solutions to complex coding tasks?

The results of applying the GPT models to the coding activities
are reported in Table 8. While the GPT-3.5 model obtained 407
points from the available 760 (53.6%) after a single submission to
each activity GPT-4 collected 545 points (71.7%). While there is
no stable grading scheme for PPP it is fair to anticipate that the
performance of GPT-3.5 on MCQ tests (65.4%) and projects (54.6%)
would typically not be deemed sufficient for passing the course. On
the other hand, the performance of GPT-4, i.e., 79% on the MCQ
tests and 71.7% on the projects, comes dangerously close if not all
the way towards actually passing the course. Hence, the findings
reported in [46] appear to be challenged by the more capable GPT-4
model as well as the findings reported in [7, 10, 11, 38].

We observe that the performance of GPT-4 across the tasks
appears to be related to the performance of GPT-3.5. That is to say,
the tasks that were challenging for GPT-3.5 appear to be challenging
even for GPT-4. GPT-3.5 collected very low scores on the first
submission from projects 2 (40 points), 5 (4 points), 7 (20 points),
and 8 (11 points). While GPT-4 obtained somewhat higher scores (56,
14, 53 and 44 points respectively) these four projects remained the
most challenging. Hence, it appears that the workings of GPT-3.5
and GPT-4 with respect to the coding tasks are not fundamentally
different, despite GPT-4 being noticeably better performing. Hence,
the strengths and limitations reported in prior work [7, 10, 11, 38,
46] still hold to a certain degree.

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

Table 8: Coding tasks results. Max score is the maximum score achievable from a task. First score is the score after first
submission. Resubs is the number of re-submissions after the first submission before the full score or no-change impasse were
reached. Final score is the score after feedback.

GPT-3.5 GPT-4
Project Topic Tasks (skills) Max 1st Resubs Final 1st Resubs Final
Types, variables, functions Variable assignment 13 13 0 13 13 0 13
User-defined functions, imports, return vs print 20 16 1 16 20 0 20
Simple scripts, comments 50 50 0 50 50 0 50
Testing 12 12 0 12 12 0 12
Project 1 Total 95 91 1 91 95 0 95
Iteration, conditionals, Conditional statements 10 10 0 10 10 0 10
strings, basic I/O Strings, while loop, for loop, complex printing 35 5 4 9 6 11 18
Read and write files 15 0 2 3 15 0 15
Complex script 35 25 1 25 25 1 25
Project 2 Total 95 40 7 47 56 12 68
Lists, sets, tuples and Create container, access, add, remove and update 40 38 1 40 40 0 40
dictionaries elements, and convert containers across types
Nested data structure, transformation, sorting, 55 30 3 40 55 0 55
export to file, complex report
Project 3 Total 95 68 4 80 95 0 95
Classes, objects, Implement classes 13 13 0 13 13 0 13
attributes and methods Define, access and set private attributes 19 19 0 19 19 0 19
Inheritance 20 20 0 20 20 0 20
Implement re-usable utility functions 16 16 0 16 16 0 16
Composition, object instantiation 16 16 0 16 16 0 16
Override special methods (repr, eq) 11 0 3 0 9 1 11
Project 4 Total 95 84 3 84 93 1 95
Debugging, refactoring, Identify and fix errors in code 10 0 2 0 5 2 5
testing and packaging Refactor larger code base 14 - - - - - -
Exception handling 13 4 2 4 4 2 13
Analyze and fix code on style correctness 28 0 10 0 0 23 14
Test-driven development 20 0 5 5 5 7 10
Package Python application using pip 10 - - - - - -
Project 5 Total 95 4 19 9 14 34 42
Files and datastores Load and store data in files 45 30 3 45 45 0 45
Create SQL objects, load and query data in SQL 30 30 0 30 30 0 30
Load and query data in MongoDB 20 20 0 20 20 0 20
Project 6 Total 95 80 3 95 95 0 95
Web scraping and office Get HTML, extract information from HTML, 35 5 10 18 33 1 35
document processing handle multiple HTML files
Manipulate Excel files programatically 25 5 4 5 5 4 5
Authenticate and utilize public API 15 0 1 0 15 0 15
Manipulate Word files programmatically 20 10 3 20 0 1 20
Project 7 Total 95 20 18 43 53 6 75
Data analysis Load data to pandas, merge pandas DataFrames, 35 11 3 11 24 2 24
persist pandas DataFrame
Assess data quality, examine descriptive statistics 40 0 3 25 0 1 25
Utilize regular expressions 20 0 1 20 20 0 20
Project 8 Total 95 11 7 56 44 3 69
Course Total 760 407 59 505 545 56 634
53.6% 66.4% | 71.7% 83.4%

88

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

54 (RQ4) Can GPT-4 successfully utilize
feedback to fix solutions of coding tasks?

The coding tasks results after providing the models with feedback
are also reported in Table 8. The overall score achieved by the
GPT-3.5 model improved from 53.6% to 66.4%. The score would still
likely be too low for passing the course. GPT-4’s score increased
from 71.7% to 83.4%. This score would almost certainly enable a
human learner to pass the course. Hence, the ability of GPT-4 to
utilize feedback seems to be even stronger than the ability of the
GPT-3.5 model evaluated in [38, 46]. That is, of course, if there is no
requirement related to passing some minimal threshold for all of the
projects. Even after 34 feedback iterations on the project 6 coding
activities (debugging, refactoring, testing and packaging) GPT-4
obtained only 42 of the available 95 points. The low performance
on this particular project could be explained in terms of several
closely related factors. First, certain activities in this project could
not be performed at all because they involved use of external tools
beyond writing code. For example, the refactoring activities require
creating new files and directories as well as renaming and moving
files. The packaging activities involve interaction with the command
line. Note that it would be possible to equip LLMs, including GPT
models, with the ability to manipulate such external tools [30].
However, we did not consider the possibility in this study, and we
have simply refrained from attempting such activities. Similarly,
the remaining activities related to fixing errors, style correctness,
and testing heavily rely on external tools (i.e., the debugger, pylint,
pycodestyle, pytest). These activities were attempted since these
tools are not strictly required. However, this is problematic because
the feedback would often not contain all the necessary information.
For example, in the testing task the feedback contains the high-level
information about the test coverage (%). The models did not have
access to the full coverage report that would show the lines not
covered by the tests accessible to human learners.

Some of the coding activities were challenging for GPT-4 be-
cause they involved artifacts, beyond the task instructions, that
were crucial for generating correct solution. Often, human learn-
ers would not necessarily find such tasks particularly challenging.
One example of such an artifact is an input data set the size of
which exceeds the maximum length of the model’s prompt. While
human learners can simply inspect the large input data set and
identify the appropriate methods to parse the data as required by
the task specifications, GPT-4 was unable to solve the task based
on the instructions. By extracting sample records from the input
data set and providing the sample input along with the expected
output, GPT-4 was able to successfully implement the required data
transformation.

Finally, we observed that GPT-4, despite being more successful
than GPT-3.5, still struggles with fine-grained formatting require-
ments related to both, the output as well as the code itself. For
example, GPT-4 was able to utilize the feedback based on the out-
put of the style-checker that the code contained long lines over
100 characters, and modified the code to shorten the lines. At the
same time, the model completely failed to utilize similar feedback
from a more strict style-checking tool complaining about the lines
that were over 79 characters long. In this particular case, GPT-4
was not able to break up a string that made the line in question 81

89

Savelka et al.

characters long. Similarly, when the provided feedback complained
about a missing white-space between the | character and subse-
quent number in the task focused on printing a tabular report to
a terminal, the GPT-4 model was not able to correct the solution
accordingly.

6 IMPLICATIONS FOR TEACHING PRACTICE

This study provides evidence that programming instructors need
to prepare for a world in which there is an easy-to-use widely
accessible technology that can be utilized by learners to collect
passing scores, with no effort whatsoever, on what today counts as
viable programming knowledge and skills assessments. While this
development has been apparent from the growing body of prior
work [7, 10, 11, 38, 46] this paper is the strongest evidence reported
so far in the context of programming education, and it is consistent
with the OpenATI’s GPT-4 release report [35].

In consequence, the instructors may consider shifting the focus
from assessment to learning, i.e., they should prioritize the learning
experience and skills development, rather than merely preparing
learners for assessments. The learners should be encouraged to
focus on learning and growth, rather than on always coming up
with the right answers. The importance of academic honesty and
ethical behavior in the classroom should be emphasized. Ideally,
a culture that values original work and personal effort should be
promoted. The instructors may need to move away from traditional
assessments, such as multiple-choice exams. Instead, they may
consider using more complex assessments such as code reviews,
pair programming, and oral examinations that require students to
demonstrate their understanding in real-time.

While it may be appealing to the instructors to understand the
limitations of GPT models when it comes to handling MCQs to
design tests that are difficult to be answered automatically we
argue that this is likely not a viable approach. Given the rate of
improvement over the past several years we document in this study,
it appears quite likely the existing limitations will be overcome
rather soon, reducing the effectiveness of tests designed to exploit
the identified weaknesses. Instead of trying to create “GPT-proof”
tests, it may be more productive to focus on developing assessments
focused on higher-order thinking skills, such as critical thinking,
problem-solving, and creativity as these are more difficult for the
GPT models to replicate.

In programming activities, we identified several use cases where
the application of GPT models does not (yet) appear to be straight-
forward. While similar argument as the one used for MCQs may
be employed against potential hardening of the coding tasks by
insisting on unusual fine-grained nuances of the code itself or its
output, re-designing the tasks to rely on artifacts beyond the in-
structions and/or employment of external tools may be promising.
This is because the ability to extract, consolidate, and express essen-
tial information from multiple sources may become an important
skill critical for success of future learners. Instructors may consider
incorporating such complex (but not necessary complicated) pro-
gramming tasks requiring learners to consolidate problem context
from multiple sources. This approach could reduce the misuse while
promoting beneficial use of GPT models.

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments

7 LIMITATIONS ANT THREATS TO VALIDITY

Although, the results of our study provide important insights into
the evolving capabilities of the GPT models in passing typical assess-
ments employed in introductory and intermediate Python classes,
limitations in several areas must be acknowledged.

Generalizability. While Python is a widely used and represen-
tative language, it is one of many languages used in programming
courses at the postsecondary level. GPT models have been shown
to handle a number of programming languages [5, 8]. Nevertheless,
our findings may not generalize to those languages with different
structures, syntax, and conventions. Secondly, while the program-
ming assessments used in this study are typical of those found in
many Python programming courses, there may be other types of
assessments (e.g., open questions, oral exams). Finally, our study
was conducted using assessments in English, limiting the extent
to which the findings apply to programming assessments in other
languages. This poses a limitation as programming education is
a global endeavour, and a significant proportion of programming
courses and resources are available in languages other than English.

Prompt Engineering. The prompts employed in this study
were carefully crafted following the best practices. However, it is
important to acknowledge that our research did not explore the
effects of prompt engineering, i.e., further fine-tuning the initial
prompts. Engaging in prompt engineering could potentially lead
to even stronger performance of the models. This unexplored area
could limit the implications of our findings which should rather be
interpreted as lower bound of the performance.

Information on GPT Models. It is not well-known what data
have been used during the models’ training. This is important be-
cause LLMs such as the ones evaluated in this study have capacity
to memorize the data seen during their training. Hence, in case
the assessments would have been seen during the training our ex-
periments would not be able to show the models’ capabilities to
pass the assessments. They would rather be a testament to their
memorization abilities. While we can be reasonably sure that the
assessments employed in this study were not seen during the train-
ing as they are not part of any publicly available data set, this is an
important limitation one has to be aware of when evaluating the
OpenaAI’s GPT models. Additional limitation is the lack of pub-
licized technical details about GPT-4. The rapid development and
evolution of GPT models, coupled with a lack of available technical
details, makes it challenging for researchers to reproduce our study.
Therefore, the results should be interpreted with this lack of full
transparency and reproducibility in mind.

8 CONCLUSIONS AND FUTURE WORK

We analyzed the capabilities of the GPT-4 model in passing typical
assessments, such as MCQ tests and coding exercises, in introduc-
tory and intermediate programming courses. The analysis is the
needed response to the recent release of GPT-4 evaluating the ex-
tent to which previous findings regarding GPT-3 and 3.5 models are
still relevant. The study highlights that the risk of learners becom-
ing overly reliant on GPT models when completing programming
course assignments and assessments is a genuine concern that must
be taken seriously which is consistent with [1]. In light of these
findings, it is crucial to develop strategies to address this growing

90

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

challenge and maintain the relevance and integrity of programming
education.

The future work should focus on development of innovative
assessment techniques resilient to automatically generated solu-
tions. This could include incorporating real-time problem-solving
components, group projects, or other collaborative activities that
require human interaction. Additionally, further studies of potential
benefits and risks associated with LLMs are needed to enable edu-
cators to harness their power while mitigating potential drawbacks.
Finally, as more capable LLMs continue to emerge, it is crucial to
conduct ongoing evaluations of their capabilities in the context
of programming education. This will ensure that educators and
institutions remain informed and prepared to adapt their teaching
methodologies and assessment strategies in response to the rapid
advancements.

REFERENCES

[1] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2022. Programming Is Hard-Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation.
arXiv preprint arXiv:abs/2212.01020 (2022).

Jillian Bommarito, Michael Bommarito, Daniel Martin Katz, and Jessica Katz. 2023.

GPT as Knowledge Worker: A Zero-Shot Evaluation of (AI) CPA Capabilities.

arXiv preprint arXiv:abs/2301.04408 (2023).

Michael Bommarito II and Daniel Martin Katz. 2022. GPT Takes the Bar Exam.

arXiv preprint arXiv:abs/2212.14402 (2022).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[5] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric

Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha

Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial

General Intelligence: Early experiments with GPT-4. arXiv:2303.12712 [cs.CL]

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,

Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish

Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe

Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,

Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex

Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,

Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,

Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam

McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large

Language Models Trained on Code. arXiv preprint arXiv:abs/2107.03374 (2021).

https://doi.org/10.48550/ARXIV.2107.03374

[7] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring prompt engineering for solving CS1 problems using natural language.
In Proceedings of the 54th ACM Technical Symposium on Computer Science Educa-
tion V. 1. 1136-1142.

[8] Giuseppe Destefanis, Silvia Bartolucci, and Marco Ortu. 2023. A Preliminary

Analysis on the Code Generation Capabilities of GPT-3.5 and Bard AI Models for

Java Functions. arXiv preprint arXiv:2305.09402 (2023).

Iddo Drori and Nakul Verma. 2021. Solving Linear Algebra by Program Synthesis.

arXiv preprint arXiv:2111.08171 (2021). https://doi.org/10.48550/ARXIV.2111.

08171

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and

James Prather. 2022. The Robots Are Coming: Exploring the Implications of

OpenAlI Codex on Introductory Programming. In Australasian Computing Educa-

tion Conference (Virtual Event, Australia) (ACE °22). Association for Computing

Machinery, New York, NY, USA, 10-19. https://doi.org/10.1145/3511861.3511863

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,

James Prather, and Brett A Becker. 2023. My Al Wants to Know if This Will

Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In

Proceedings of the 25th Australasian Computing Education Conference. 97-104.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021. Making Pre-trained Language

Models Better Few-shot Learners. arXiv:2012.15723 [cs.CL]

Amelia Gilson, Conrad W. Safranek, Tao Huang, Vimig Socrates, Lim Sze Chi,

Roderick A. Taylor, and David Chartash. 2022. How Well Does ChatGPT Do

[2

[3

—_
S

[o

[10]

[12

[13

https://arxiv.org/abs/2303.12712
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2111.08171
https://doi.org/10.48550/ARXIV.2111.08171
https://doi.org/10.1145/3511861.3511863
https://arxiv.org/abs/2012.15723

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

[14

[15

[16]

[17

(18]

[19

[20]
[21]

[22

[23

[24]

[25]

[26

[27]

[28]

[29

[30]

When Taking the Medical Licensing Exams? The Implications of Large Lan-
guage Models for Medical Education and Knowledge Assessment. In medRxiv.
https://doi.org/10.1101/2022.12.23.22283901.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring Massive Multitask Language Under-
standing. arXiv preprint arXiv:abs/2009.03300 (2020). https://doi.org/10.48550/
ARXIV.2009.03300

Sajed Jalil, Suzzana Rafi, Thomas D. LaToza, Kevin Moran, and Wing Lam. 2023.
ChatGPT and Software Testing Education: Promises & Perils. https://doi.org/10.
48550/arXiv.2302.03287 arXiv:2302.03287 [cs.SE]

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing Wang, and Zhaopeng
Tu. 2023. Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine.
arXiv:2301.08745 [cs.CL]

Anjan Karmakar, Julian Aron Prenner, Marco D’Ambros, and Romain Robbes.
2022. Codex Hacks HackerRank: Memorization Issues and a Framework for Code
Synthesis Evaluation. ArXiv abs/2212.02684 (2022).

Daniel Martin Katz, Michael James Bommarito, Shang Gao, and Pablo Arredondo.
2023. GPT-4 Passes the Bar Exam. Available at SSRN 4389233 (2023).

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI "23). Association for Computing Machinery, New York, NY, USA,
Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

Donald Ervin Knuth. 1984. Literate programming. The computer journal 27, 2
(1984), 97-111.

Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. 2016. Project-based
learning: A review of the literature. Improving schools 19, 3 (2016), 267-277.
Tiffany H Kung, Morgan Cheatham, Arielle Medinilla, Czarina Sillos, Lorie
De Leon, Camille Elepano, Marie Madriaga, Rimel Aggabao, Giezel Diaz-Candido,
James Maningo, et al. 2022. Performance of ChatGPT on USMLE: Potential for
Al-Assisted Medical Education Using Large Language Models. medRxiv preprint
(2022). https://doi.org/10.1101/2022.12.19.22283643.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. Race:
Large-scale reading comprehension dataset from examinations. arXiv preprint
arXiv:abs/1704.04683 (2017).

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. https://doi.org/10.48550/arXiv.2304.
03938 arXiv:2304.03938 [cs.CY]

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large Language Models to Enhance
Programming Error Messages. In Proceedings of the 54th ACM Technical Sym-
posium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 563-569.
https://doi.org/10.1145/3545945.3569770

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code generation
with AlphaCode. Science 378, 6624 (2022), 1092-1097. https://doi.org/10.1126/
science.abq1158 arXiv:https://www.science.org/doi/pdf/10.1126/science.abq1158
Valentin Liévin, Christoffer Egeberg Hother, and Ole Winther. 2022. Can
large language models reason about medical questions? ArXiv preprint
arXiv:abs/2207.08143 (2022).

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun
Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. 2022. Learn to Explain:
Multimodal Reasoning via Thought Chains for Science Question Answering.
https://doi.org/10.48550/ARXIV.2209.09513

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using
Code Explanations Generated by Large Language Models in a Web Software
Development E-Book. In Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). As-
sociation for Computing Machinery, New York, NY, USA, 931-937. https:
//doi.org/10.1145/3545945.3569785

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ram
Pasunuru, Roberta Raileanu, Baptiste Roziére, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented Language Models: a Survey. arXiv

91

[31

[32

[33

[38

[39

=
A

(41

[42

[43

[44]

=
&

[46

[47

(48]

N
)

[50

[51

(52

Savelka et al.

preprint arXiv:2302.07842 (2023).

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit
of armor conduct electricity? A new dataset for open book question answering.
arXiv preprint arXiv:abs/1809.02789 (2018).

Ahmad Haji Mohammadkhani, Chakkrit Kla Tantithamthavorn, and Hadi Hem-
mati. 2022. Explainable Al for Pre-Trained Code Models: What Do They Learn?

When They Do Not Work? ArXiv preprint arXiv:abs/2211.12821 (2022).
Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv

Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A corpus and
cloze evaluation for deeper understanding of commonsense stories. In Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. 839-849.

Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copilot’s
Code Suggestions. In 2022 IEEE/ACM 19th International Conference on Mining
Software Repositories (MSR). 1-5. https://doi.org/10.1145/3524842.3528470
OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. arXiv
preprint arXiv:abs/2203.02155 (2022).

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2022. Do Users
Write More Insecure Code with Al Assistants? arXiv preprint arXiv:2211.03622
(2022).

Stephen R Piccolo, Paul Denny, Andrew Luxton-Reilly, Samuel Payne, and Perry G
Ridge. 2023. Many bioinformatics programming tasks can be automated with
ChatGPT. arXiv preprint arXiv:2303.13528 (2023).

James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. " It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. arXiv preprint arXiv:2304.02491 (2023).
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. (2019).
Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. arXiv:2102.07350 [cs.CL]
Joshua Robinson, Christopher Michael Rytting, and David Wingate. 2022. Lever-
aging Large Language Models for Multiple Choice Question Answering. arXiv
preprint arXiv:abs/2210.12353 (2022). https://doi.org/10.48550/ARXIV.2210.12353
Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large Lan-
guage Models. In Proceedings of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER °22). Association for Computing Machinery, New York, NY, USA, 27-43.
https://doi.org/10.1145/3501385.3543957

Jaromir Savelka, Arav Agarwal, Christopher Bogart, and Majd Sakr. 2023. Large
Language Models (GPT) Struggle to Answer Multiple-Choice Questions about
Code. arXiv preprint arXiv:2303.08033 (2023).

Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yifan Song, and Majd Sakr.
2023. Can Generative Pre-trained Transformers (GPT) Pass Assessments in
Higher Education Programming Courses?. In Proceedings of the 28th Annual ACM
Conference on Innovation and Technology in Computer Science Education.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi,
F. Xia, Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits
Reasoning in Large Language Models. ArXiv abs/2201.11903 (2022).

Guang Yang, Yu Zhou, Wenhua Yang, Tao Yue, Xiang Chen, and Taolue Chen.
2022. How Important are Good Method Names in Neural Code Generation? A
Model Robustness Perspective. ArXiv abs/2211.15844 (2022).

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023. Prompting Large Lan-
guage Model for Machine Translation: A Case Study. ArXiv abs/2301.07069
(2023).

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021.
Calibrate Before Use: Improving Few-Shot Performance of Language Models.
arXiv:2102.09690 [cs.CL]

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi. 2022. Least-
to-Most Prompting Enables Complex Reasoning in Large Language Models. ArXiv
abs/2205.10625 (2022).

https://doi.org/10.48550/ARXIV.2009.03300
https://doi.org/10.48550/ARXIV.2009.03300
https://doi.org/10.48550/arXiv.2302.03287
https://doi.org/10.48550/arXiv.2302.03287
https://arxiv.org/abs/2302.03287
https://arxiv.org/abs/2301.08745
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.48550/arXiv.2304.03938
https://doi.org/10.48550/arXiv.2304.03938
https://arxiv.org/abs/2304.03938
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abq1158
https://doi.org/10.48550/ARXIV.2209.09513
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3524842.3528470
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2102.07350
https://doi.org/10.48550/ARXIV.2210.12353
https://doi.org/10.1145/3501385.3543957
https://arxiv.org/abs/2102.09690

Large Language Models (GPT-4) No Longer Struggle to Pass Assessments

A MCQ EXAMPLES PER TYPES

True/False

Developers that write code individually are not expected to apply
code standards.

A. True

B. False

Evaluate the following expression and determine whether it is True
or False.

2+21=2x%x2

A. True

B. False

Identify True/False Statement

Which of the following statements is false?

A. The pandas module provides some CSV-related methods.

B. Python has a built-in XML package with several modules for
XML parsing.

C. JSON data format has syntax to represent all Python data structure
types.

D. Python has a built-in csv module containing methods for read-
ing and writing into CSV files.

Take a look at the snippet and choose one of the following state-
ments which is true:

nums = []

vals = nums[:]

vals.append(1)

A. nums is longer than ‘vals’

B. vals is longer than nums

C. nums and vals are of the same length

Finish Statement

The “** operator:

A. performs duplicated multiplication
B. does not exist

C. performs exponentiation

Right-sided binding means that the following expression:
1 %% 2 %% 3

will be evaluated:

A. from right to left

B. in random order

C. from left to right

Output

What is the output of the following snippet if the user enters two
lines containing 2 and 4 respectively?

x = int(input())

y = int(input())

print(x + y)

92

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

A2
B. 24
Cé6

What is the output of the following snippet?

my_list_1 = [1, 2, 3]

my_list_2 = []

for v in my_list_1:
my_list_2.insert(0, v)

print(my_list_2)

A.[1, 2, 3]
B.[1, 1, 1]
C.[3, 3, 3]
D.I3, 2, 1]

Fill-in Blanks

Fill in the blank of the is_negative function definition shown be-
low, so that the function returns True when the argument provided
to num is a negative number and returns False otherwise.
def is_negative(num):
return
A.not (num > @)
B.num > @
C.num <= @
D.num < @

The following code snippet should open the myfile file and assign
the lines to the all_lines variable. Which of the options below
should be used to fill in the blanks?
with

all_lines =

file.readlines()

"o

A.open("myfile",’r’) as file:
B. "myfile" in open as file:
C.with open "myfile" as file:

Other

How many times will the code snippet below print X‘?
for i in range(1, 7):
for j in range(2, 6):
print('X")
A 24
B. 28
C.35

Given the piece of code presented in the code snippet below, what
is the value of palindromes[1]?

palindromes = ['pop', 'noon', 'madam']
A. 'pop'

B. 'noon'

C.'p'

D. 'madam’

E. 'o'

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Experimental Design
	4.1 Models
	4.2 Experimental Design

	5 Results and Discussion
	5.1 (RQ1) To what degree can GPT-4 generate correct answers to MCQs?
	5.2 (RQ2) Does GPT-4 struggle with programming MCQs containing code?
	5.3 (RQ3) To what degree can GPT-4 produce solutions to complex coding tasks?
	5.4 (RQ4) Can GPT-4 successfully utilize feedback to fix solutions of coding tasks?

	6 Implications for Teaching Practice
	7 Limitations ant Threats to Validity
	8 Conclusions and Future Work
	References
	A MCQ Examples per Types

