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ABSTRACT

Detailed routing is the most tedious and complex procedure in
design automation and has become a determining factor in layout
automation in advanced manufacturing nodes. Despite continu-
ing advances in custom integrated circuit (IC) routing research,
industrial custom layout flows remain heavily manual due to the
high complexity of the custom IC design problem. Besides conven-
tional design objectives such as wirelength minimization, custom
detailed routing must also accommodate additional constraints
(e.g., path-matching) across the analog/mixed-signal (AMS) and
digital domains, making an already challenging procedure even
more so. This paper presents a novel detailed routing framework for
custom circuits that leverages deep reinforcement learning to opti-
mize routing patterns while considering custom routing constraints
and industrial design rules. Comprehensive post-layout analyses
based on industrial designs demonstrate the effectiveness of our
framework in dealing with the specified constraints and producing
sign-off-quality routing solutions.

CCS CONCEPTS

• Hardware → Wire routing.
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1 INTRODUCTION

Detailed routing is extremely intricate, time-consuming, and the
most complicated procedure in modern layout automation flows
and thus has become a determinant factor for enabling automation
in advanced technology nodes. Recent research on detailed routing
for digital integrated circuits (ICs) shows promising achievements in
fulfilling real-world physical design demands [26, 13, 12]. However,
despite being broadly investigated in the past decades, detailed
routing for custom designs, especially in the analog/mixed-signal
(AMS) domain, remains heavily manual in current industrial custom
layout flows. This shortcoming is mainly caused by the sensitive
nature and high complexity of custom circuits [7].

Lacking simple proxy design objectives and comprehensive per-
formance modeling methods across a wide range of custom circuits,
a custom detailed router cannot adopt specialized layout strategies
for specific circuit classes like human layout experts. To overcome
this issue, circuit designers often abstract design aspects for perfor-
mance concerns (e.g., current balancing, parasitics reduction) into
geometrical and electrical constraints for efficiency [15]. A robust
custom detailed router should handle these additional specified
constraints (e.g., path-matching, symmetry) on top of the conven-
tional objectives such as wirelength optimization and design-rule-
checking (DRC) to produce high-quality routing solutions that can
pass sign-off checks. Failing to satisfy the constraints can lead to
a drastically degraded post-layout performance [28, 19]. Figure 1
illustrates an example of a cross-coupled differential net pair speci-
fied with path-matching constraints on source and sink terminals.
Though the routing solution in Figure 1(a) has a more optimized to-
tal wirelength, the solution in Figure 1(b) minimizes source-to-sink
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Figure 1: Example of different detailed routing solutions. (a)

A solution with more optimized wirelength. (b) A solution

with better matching between paths 𝑝112, 𝑝
1
13, 𝑝

2
12, and 𝑝

2
13.

path mismatches across the connecting pins, resulting in better
balanced post-layout performance.

Recent progress in reinforcement learning (RL) has demonstrated
great potential in various applications in the electronic design au-
tomation (EDA) domain, including parallel prefix circuit design [24],
logic optimization [17], macro placement [22], Steiner tree construc-
tion [21], global routing [14], net-ordering [27], and standard cell
generation [23]. However, no previous work has attempted to tackle
the custom detailed routing core problem using RL techniques. In
this work, we devise a novel reinforcement learning guided custom
detailed routing framework capable of handling sophisticated de-
sign constraints and rigid design rules for industrial custom circuits.
Highlights of this work are summarized as follows.

• An RL-guided custom detailed routing framework for ad-
vanced FinFET circuits is devised to generate sign-off-ready
routing solutions by optimizing routing objectives while
considering specified constraints and industrial design rules.

• A heterogeneous graph representation is presented to effec-
tively model routing topologies and nearby physical struc-
tures of targeted nets.

• A rip-up and re-routing scheme integrated with well-trained
RL policies is shown to optimize routed nets iteratively.

• The proposed RL-based methodology can easily adapt to
future design constraints with minimal adjustment to the re-
ward function, the graph representation of routing solutions,
and the GNN architecture.

• Experimental results on advanced industrial circuits show
that our framework outperforms previous work and achieves
aligned or even better post-layout performance than highly
optimized manual layouts.

2 RELATEDWORK

Existing routing methodologies can be organized into three cate-
gories: 1) template-based methods, 2) simulation-based techniques,
and 3) constraint-driven approaches.

Template-based methods leverage well-optimized manual design
modules for implementation. In [10, 20], template-based routing
considers design-specific concerns (e.g., diffusion sharing, interdig-
itation) that are hard to handle by automated procedures. This type
of methodology can realize robust and high-performance layouts.
However, it suffers from scalability issues as the complex templates

require significant labor efforts, thus are more restricted in large-
scale systems such as high-speed serializer/deserializer (SerDes)
and phase-locked loop (PLL).

Simulation-based techniques perform sensitivity analyses to cap-
ture critical information (e.g., parasitics mismatch, current flow)
of the current routing solution to ensure that the specification is
met. In [1], simulations are integrated with the routing process to
identify critical nets and matching information. The simulation-
based methods provide accurate performance feedback and can be
generalized to consider various performance metrics (e.g., phase
margin, power dissipation) across circuit classes. Still, the long exe-
cution time and resource-hungry computations that come with the
simulations make implementing large-scale systems impractical.

Constraint-based approaches abstract layout conventions and
restrictions for circuit performance without sacrificing the rout-
ing scalability in practice and are thus widely adopted in exist-
ing custom routing studies. In [3], a maze routing algorithm sup-
porting mirror-symmetry constraints is proposed. In [5], an inte-
ger linear programming (ILP) formulation is presented to tackle
various forms of path-matching, including symmetry, common-
centroid, topology-matching, and length-matching constraints. The
work [16] further extends the concept of symmetry into four vari-
ants (i.e., mirror-symmetry, self-symmetry, cross-symmetry, and
partial-symmetry) to satisfy aesthetic needs in custom detailed
routing. However, solutions for sophisticated constraints (e.g., si-
multaneous path-matching in multiple nets, as shown in Figure 1)
are still absent in current literature. Furthermore, traditional pla-
nar technologies [18] and advanced FinFET technologies [25] have
different design rules and routing conventions, resulting in diverse
constraint sets. Therefore, developing new algorithms that can
cover more complex settings and easily generalize to unseen con-
straints is necessary for real-world physical design needs.

3 PRELIMINARIES

3.1 Custom Routing Constraints

To ensure performance and layout robustness, circuit designers
typically follow geometrical and electrical constraints during the
custom layout implementation procedure.

Matching is an essential concept in custom layouts since it is the
foundation of several commonly geometrical constraints, such as
variants of symmetry, common-centroid, and topology-matching
constraints. Symmetry constraints are specified to route a matched
net pair symmetrically along some joint horizontal or vertical axes.
Variants of symmetry can be extended for more complicated sit-
uations. For example, the routing of a net pair with pins on both
sides of the symmetry axis cannot be perfectly symmetric; other-
wise, an overlap will occur when crossing the axis and thus require
detours. Common-centroid constraints are specified for routing
a matched net pair symmetrically regarding some common cen-
ters and are commonly adopted for nets attached to array struc-
tured cells. Topology-matching constraints are specified to produce
structurally-similar routing patterns and are often applied in critical
but asymmetric nets. All the constraints above follow the match-
ing principle and can be formulated as generalized path-matching
constraints, where a path 𝑝𝑘

𝑖 𝑗
= (𝑡𝑘

𝑖
, 𝑡𝑘
𝑗
) is a tuple that signifies
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Figure 2: Computation flow of the proposed RL-guided custom detailed routing optimization framework.

the connection from pin 𝑡𝑘
𝑖
to pin 𝑡𝑘

𝑗
in net 𝑛𝑘 . Generalized path-

matching constraints minimize the mismatches between pin pairs
in a group of nets. In this work, we focus on solving generalized
path-matching constraints as they cover the most widely adopted
geometrical constraints in real-world practice and beyond. Figure 1
gives an example of two crisscrossing nets where symmetry con-
straints could fail at handling the non-symmetric crossing of the
Y-axis. However, general path-matching constraints can effectively
describe the path-matching objective. We can achieve layout with
better performance by specifying a generalized path-matching con-
straint such that 𝑝112, 𝑝

1
13, 𝑝

2
12, and 𝑝

2
13 have similar path resistances,

as shown in Figure 1(b).
Electrical constraints ensure that post-layout circuit performance

is not limited by extra parasitics on critical nets along with path
mismatches across critical signals. To efficiently handle these con-
straints, we pre-defined suitable wire widths and via templates
on a non-uniform track configuration for each layer. The widths
and via templates are determined according to simulation data and
design rules. To reduce coupling for certain critical nets, shield-
ing constraints are imposed by blocking signals to be routed on
neighboring tracks.

3.2 Negotiation-Based Rip-Up and Re-Route

Rip-up and re-routing schemes are broadly adopted in global and
detailed routing literature to eliminate design rule or electromi-
gration (EM) violations. In [2], a negotiation-based rip-up and re-
routing (NRR) method is presented and has become the mainstream
technique used in state-of-the-art routers due to its superb ability
to alleviate congestion. The core concept of NRR is to add addi-
tional history cost on routing grid edges if violations exist at the
previous iteration. This way, the path-finding engine will avoid
passing through previously violated regions as those are likely to
be congested or resource-insufficient. For an edge 𝑒 in the routing
grid graph, the negotiation-based routing cost at the 𝑖th rip-up and
re-routing iteration is defined as follows in [2].

cost (𝑒) =
(
cost𝑏 (𝑒) + cost (𝑖 )

ℎ
(𝑒)

)
× penalty(𝑒), (1)

where cost𝑏 (𝑒) is the base cost of routing through 𝑒 , cost (𝑖 )
ℎ

(𝑒)
is the history cost of 𝑒 at iteration 𝑖 , and penalty(𝑒) denotes the
congestion penalty, which is related to the number of other nets
presently using 𝑒 . At the end of the 𝑖th iteration, the history cost
cost (𝑖+1)

ℎ
(𝑒) for the next iteration is updated as follows.

cost (𝑖+1)
ℎ

(𝑒) =
{

cost (𝑖 )
ℎ

(𝑒) + costinc, if 𝑒 has violations,
cost (𝑖 )

ℎ
(𝑒), otherwise,

(2)

where cost (0)
ℎ

(𝑒) = 1 and costinc is the incrementing constant. Ex-
tensions and variants of negotiation-based cost functions have also
been investigated to improve violation solving [4, 12]. In our custom
detailed routing framework, we adopt a revised negotiation-based
routing cost to encourage different routing solutions and reduce
repetition. Instead of updating history costs for violated edges, we
accumulate the costs for all edges occupied by routed nets. This
technique reduces the chances of repeated solutions and allows RL
agents to refine routing patterns in a shortened sequence of actions.

3.3 Problem Formulation

Problem 1 (Custom Detailed Routing). Given a set of placed cells,
a set of nets 𝑁 = {𝑛𝑖 | 1 ≤ 𝑖 ≤ |𝑁 |}, a non-uniform routing
grid configuration, and a set of routing constraints (discussed in
Section 3.1), generate a DRC-clean routing solution for each net
𝑛𝑖 ∈ 𝑁 such that𝑛𝑖 is connected, the total routing cost is minimized,
and the specified constraints are satisfied.

4 RL-GUIDED CUSTOM ROUTING FLOW

The overall computation flow of the proposed RL-guided custom de-
tailed routing framework is shown in Figure 2. First, the routing so-
lutions of each net inmatching groups specifiedwith path-matching
constraints are transformed into a proposed heterogeneous graph
representation. A feature initialization process is then executed to
set the input features of all vertices regarding their types. After
the graph initialization stage, we enter the core of our framework,
which consists of two main phases: 1) RL policy learning, which
distributively samples sequences of observations, actions, and the

28



ISPD ’23, March 26–29, 2023, Virtual Event, USA Hao Chen et al.

Table 1: Notations used in this paper.

Symbol Description
𝑀 The set of all matching groups.
𝑚𝑖 The 𝑖th matching group in𝑀 .

𝑁 , 𝑇 , 𝑃 , 𝐶 The set of all nets, pins, paths, and path-matching con-
straints specified in the circuit netlist, respectively.

𝑁𝑚 , 𝑇𝑚 , 𝑃𝑚 , 𝐶𝑚 The set of nets, pins, paths, and path-matching con-
straints specified in matching group𝑚, respectively.

𝑛𝑖 , 𝑡𝑘𝑖 , 𝑐𝑖 The 𝑖th net in 𝑁 , 𝑖th pin of the 𝑘th net, and 𝑖th path-
matching constraint in 𝐶 , respectively.

𝑝𝑘
𝑖 𝑗

The path formed by the connections between (𝑡𝑘
𝑖
, 𝑡𝑘
𝑗
).

Φ𝑁 The current routing result of nets in 𝑁 .
ℓ𝑖 The 𝑖th segment in the same routing solution.

𝑉 ℓ , 𝑉 𝑝 , 𝑉 𝑐 The set of segment, path, and constraint nodes in the
proposed heterogeneous graph, respectively.

𝐸ℓℓ , 𝐸ℓp , 𝐸pc , 𝐸cℓ The set of segment-to-segment, segment-to-path,
path-to-constraint, and constraint-to-segment edges
in the proposed heterogeneous graph, respectively.

vℓ
𝑖
, v𝑝

𝑖
, v𝑐

𝑖
The 𝑖th node in 𝑉 ℓ , 𝑉 𝑝 , and 𝑉 𝑐 , respectively.

𝑒ℓℓ
𝑖
, 𝑒ℓp, 𝑒pc, 𝑒cℓ The 𝑖th edge in 𝐸ℓℓ , 𝐸ℓp , 𝐸pc , and 𝐸cℓ , respectively.

corresponding rewards for efficient data collection, then trains an
RL policy maximizing routing rewards, and 2) RL-guided rip-up
and re-routing, which integrates well-trained RL policies to deter-
mine suitable segment removal sequences to guide the backbone
detailed router to optimize routing patterns. Table 1 summarizes
the notations used in this paper.

4.1 Heterogeneous Graph Representation

Routing solutions can be formulated into graphs naturally since
they are formed by connections of segments/wires. To model rout-
ing solutions for a group of nets associatedwith some path-matching
constraints, we propose a heterogeneous graph representation for
improved accuracy, efficiency, and complexity.

Given a routed matching group, we construct a heterogeneous
graph𝐺 = (𝑉 , 𝐸), where𝑉 is a set of vertices and 𝐸 is a set of edges.
The set 𝑉 can be further divided into three subsets, namely 𝑉 ℓ , 𝑉 𝑝 ,
and𝑉 𝑐 , as described in Table 1. Each vertex vℓ

𝑖
∈ 𝑉 ℓ maps to a routed

segment (i.e., horizontal wire, vertical wire, or via). Each vertex v𝑝
𝑖
∈

𝑉 𝑝 maps to a path in some path-matching constraints, and each
vertex v𝑐

𝑖
∈ 𝑉 𝑐 associates to a specified path-matching constraint.

The set 𝐸 can also be split into four categories, including 𝐸ℓℓ , 𝐸ℓp ,
𝐸pc , and 𝐸cℓ , as described in Table 1. A seg-seg edge 𝑒ℓℓ = (vℓ

𝑖
, vℓ

𝑗
) ∈

𝐸ℓℓ , vℓ
𝑖
, vℓ

𝑗
∈ 𝑉 ℓ signifies that the mapped segment of vℓ

𝑖
connects

with that of vℓ
𝑗
. A seg-path edge 𝑒ℓp = (vℓ

𝑖
, v𝑝

𝑗
) ∈ 𝐸ℓp , vℓ

𝑖
∈ 𝑉 ℓ , v𝑝

𝑗
∈

𝑉 𝑝 marks that themapped segment of vℓ
𝑖
exists in the corresponding

path of v𝑝
𝑗
. A path-cstr edge 𝑒pc = (v𝑝

𝑖
, v𝑐

𝑗
) ∈ 𝐸pc , v𝑝

𝑖
∈ 𝑉 𝑝 , v𝑐

𝑗
∈ 𝑉 𝑐

indicates that the path of v𝑝
𝑖
is specified in the associated path-

matching constraint of v𝑐
𝑗
. Finally, a cstr-seg edge 𝑒cℓ = (v𝑐

𝑖
, vℓ

𝑗
) ∈

𝐸cℓ , v𝑐
𝑖
∈ 𝑉 𝑐 , vℓ

𝑗
∈ 𝑉 ℓ means that the segment of vℓ

𝑗
should be

considered in the associated constraint of v𝑐
𝑖
. Algorithm 1 sketches

the heterogeneous graph construction process. First, we initialize a
graph and build the vertex sets from the input matching group and
constraints (Lines 1-4). We then enumerate all routed segments to
add seg-seg edges between the corresponding vertices of connected
segments (Lines 6-9). Finally, we check through every constraint

Algorithm 1 ConstructHeterogeneousGraph(m,Φm)
Input: Amatching group𝑚, path-matching constraints𝐶𝑚 with paths

𝑃𝑚 , and its routing solution Φ𝑚 .
Output: The heterogeneous graph representation 𝐺 .
1: Initialize a heterogeneous graph 𝐺 = (𝑉 , 𝐸);
2: 𝑉 ℓ := {Vertex (ℓ) | ∀ℓ ∈ Φ𝑚};
3: 𝑉 𝑝 := {Vertex (p) | ∀𝑝 ∈ 𝑃𝑚};
4: 𝑉 𝑐 := {Vertex (c) | ∀𝑐 ∈ 𝐶𝑚};
5: 𝐸ℓℓ := ∅; 𝐸ℓp := ∅; 𝐸pc := ∅; 𝐸cℓ := ∅;
6: for each segment ℓ𝑖 ∈ Φ𝑚 do ⊲ build 𝐸ℓℓ
7: for each segment ℓ𝑗 ∈ Φ𝑚 and 𝑗 ≠ 𝑖 do
8: if isConnected (ℓ𝑖 , ℓ𝑗 ) then
9: 𝐸ℓℓ := 𝐸ℓℓ ∪ {(Vertex (ℓ𝑖 ),Vertex (ℓ𝑗 ))};
10: for each constraint 𝑐 ∈ 𝐶𝑚 do ⊲ build 𝐸ℓp , 𝐸pc , and 𝐸cℓ

11: for each path 𝑝 that exists in 𝑐 do
12: 𝐸pc := 𝐸pc ∪ {(Vertex (𝑝),Vertex (𝑐))};
13: for each segment ℓ that exists in 𝑝 do

14: 𝐸ℓp := 𝐸ℓp ∪ {(Vertex (ℓ),Vertex (𝑝))};
15: 𝐸cℓ := 𝐸cℓ ∪ {(Vertex (𝑐),Vertex (ℓ))};
16: 𝑉 := 𝑉 ℓ ∪𝑉 𝑝 ∪𝑉 𝑐 ;
17: 𝐸 := 𝐸ℓℓ ∪ 𝐸ℓp ∪ 𝐸pc ∪ 𝐸cℓ ;
18: return 𝐺 ;

,   

(a)

(b)

Node (seg)

Node (path)

Node (cstr)

 Edge (seg-seg)

Edge (seg-path)

Edge (path-cstr)

Edge (cstr-seg, from )

Edge (cstr-seg, from )

Wire (M1) Wire (M2) Via (V1)

Nets Constraints

Figure 3: Example of the heterogeneous graph representa-

tion. (a) A routed matching group consists of nets 𝑛1, 𝑛2, and
𝑛3 with path-matching constraints 𝑐1 and 𝑐2. (b) The corre-

sponding heterogeneous graph representation of the group.

and its paths for constructing seg-path, path-cstr, and cstr-seg edges,
then return the graph (Lines 10-18). Figure 3 illustrates the proposed
graph representation for a matching group of three nets, and two
path-matching constraints, where 𝑐1 specifies that 𝑝112, 𝑝

1
13, 𝑝

2
12

should be matched, and 𝑐2 means that 𝑝213 should match 𝑝312.
After constructing the heterogeneous graph, we set the initial fea-

ture vector for each vertex. Table 2 summarizes the features of each
node type and their dimension. For each segment node, we define a
20-dimensional feature vector, including the normalized endpoint
coordinates, segment length, lower layer index, number of design
rule violations (DRVs), history costs on neighboring routing grid

29



Reinforcement Learning Guided Detailed Routing for Custom Circuits ISPD ’23, March 26–29, 2023, Virtual Event, USA

Table 2: Initial features of each vertex type in the proposed

heterogeneous graph representation.

Type Feature Dim.

Segment

Norm. bottom-left coordinate 2
Norm. top-right coordinate 2
Norm. length 1
Norm. lower layer index 1
Norm. design rule violations 1
Norm. history costs 11
Boolean indicator for via 1
Boolean indicator for terminal segment 1

Path

Norm. segment count 1
Norm. length 1
Norm. via count 1
Norm. path resistance 1

Constraint
Norm. maximum difference of path resistances 1
Norm. averge of path resistances 1
Norm. standard deviation of path resistances 1

edges, and two additional Boolean indicators for vias and terminal
segments (i.e., segments connected to pins). To calculate the history
cost features for a vertical segment, we expand a bounding box
whose width equals 11 pitch steps of vertical tracks (i.e., previous 5
tracks, following 5 tracks, and the current track) and height equals
the segment length, then record the history cost summation on each
track within the bounding box to form an 11-dimensional vector.
The calculation for horizontal segments can be done similarly. The
proposed formulation implicitly encodes the spatial distribution of
history costs, which provides information for RL agents to under-
stand the congestion status of the surrounding area. For each path
node, we set an initial feature vector of 4 dimensions, including
the normalized segment count, length, via count, and resistance of
the path. While for each constraint node, we have the normalized
maximum difference, average, and standard deviation of resistances
of paths associated with the constraint as the initial feature vector.

4.2 RL Policy Learning

We model the custom detailed routing problem for a matching
group𝑚 as a Markov decision process M = (S,A, 𝑅, 𝑓𝑇 , 𝛾), where
a state 𝑠 in state space S is a heterogeneous graph representation
for a routing solution (described in Section 4.1), an action 𝑎𝑘 in
action space A removes the 𝑘th segment ℓ𝑘 in the current solution
while 𝑎0 ∈ A terminates the decision process, 𝑅 : S × A → R
is the reward function describing the desired pattern and routing
constraints, 𝑓𝑇 : S × A → ΔS is the transition function defining
the distribution over next states given a state and an action, and
𝛾 ∈ [0, 1] is the discount factor. In our implementation, 𝑓𝑇 includes
the underlying dangling wires refinement and re-routing and is
unknown to the RL policy. We want to optimize a policy 𝜋 : S →
ΔA such that the return is maximized as follows.

𝜋∗ = argmax
𝜋
E𝜋

[ ∞∑︁
𝑖=0

𝛾𝑖𝑅

(
𝑠 (𝑖 ) , 𝑎 (𝑖 ) , 𝑠 (𝑖+1)

)]
, (3)

where E𝜋 denotes the expectation over 𝑎 (𝑖 ) ∼ 𝜋 (· | 𝑠 (𝑖 ) ), 𝑠 (𝑖+1) ∼
𝑓𝑇 (· | 𝑠 (𝑖 ) , 𝑎 (𝑖 ) ), and 𝑠 (𝑖 ) , 𝑎 (𝑖 ) , 𝑟 (𝑖 ) denotes state, action, and reward
at timestep 𝑖 . Starting from an initial state of a randomly routed
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Figure 4: Network architecture for RL training and inference.

Table 3: Detailed parameters of the model in Figure 4.

Network Layer Input† Output Aggregator Activation

GNN (𝐸ℓℓ ) SAGE (20, 20) 128 pool ReLU
SAGE (128, 128) 128 pool ReLU

GNN (𝐸ℓ𝑝 ) SAGE (128, 5) 128 pool ReLU
GNN (𝐸𝑝𝑐 ) SAGE (128, 3) 128 pool ReLU
GNN (𝐸𝑐ℓ ) SAGE (128, 128) 128 pool ReLU

Policy module FC 256 256 - ReLU
FC 256 |A| - -

Value module FC 128 128 - ReLU
FC 128 1 - -

† (src, dst) for GNNs represent the size of source and destination node features.

solution, we set the reward function as

𝑟 (𝑖 ) = 𝑅
(
𝑠 (𝑖 ) , 𝑎 (𝑖 ) , 𝑠 (𝑖+1)

)
=

𝑤wl

(
wl(𝑠 (𝑖 ) ) − wl(𝑠 (𝑖+1) )

)
+𝑤via

(
via(𝑠 (𝑖 ) ) − via(𝑠 (𝑖+1) )

)
+

𝑤ptp

(
ptp(𝑠 (𝑖 ) ) − ptp(𝑠 (𝑖+1) )

)
+𝑤drv

(
drv(𝑠 (𝑖 ) ) − drv(𝑠 (𝑖+1) )

)
,

(4)
wherewl(𝑠 (𝑖 ) ) is the wirelength, via(𝑠 (𝑖 ) ) is the via count, drv(𝑠 (𝑖 ) )
is the total design rule violations, and

ptp(𝑠 (𝑖 ) ) = 1
|𝐶𝑚 |

∑︁
𝑐∈𝐶𝑚

max
𝑝 𝑗 ,𝑝𝑘 ∈𝑐, 𝑗≠𝑘

��res(𝑝 𝑗 ) − res(𝑝𝑘 )
�� (5)

is the average of maximum path resistance mismatch in each con-
straint in𝐶𝑚 . In practice, we set𝑤wl ,𝑤via,𝑤ptp , and𝑤drv to 0.1, 0.1,
30, and 300, respectively, to encourage path-matching and penalize
DRC violations. Note that the wirelength and via minimizing terms
also help on path-matching since it encourages the agent to explore
in a refined search space.

We train the policy by proximal policy optimization (PPO) [9],
and the proposed neural network architecture is shown in Figure 4
and Table 3. Neural networks are parameterized by 𝜃 , which in-
cludes GNN for segment embeddings and fully-connected layers in
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the value and policy modules. First, we generate segment embed-
dings by four sequential graph convolutions: seg-seg aggregation
for 𝐸ℓℓ , seg-path aggregation for 𝐸ℓp , path-cstr aggregation for 𝐸pc ,
and cstr-seg aggregation for 𝐸cℓ . SAGE GNN layers [8] are used for
feature aggregation on each edge type. The aggregation function
for edges in 𝐸ℓp is shown as follows.

ℎ
( 𝑗+1)
N(v) = pool

(
{ℎ ( 𝑗 )u ,∀u ∈ N (v)}

)
,

ℎ
( 𝑗+1)
v = ReLU

(
𝑊 ( 𝑗 ) · concat

(
ℎ
( 𝑗 )
v , ℎ

( 𝑗+1)
N(v)

))
,

(6)

where ℎ ( 𝑗 )v denotes the hidden features of node v at the 𝑗 th layer,
N(v) signifies the neighboring nodes of v, pool(·) is the element-
wise max operator, ReLU (·) is the element-wise rectified linear unit
activation function,𝑊 ( 𝑗 ) is the linear transformation matrix at the
𝑗 th layer, and concat (·, ·) denotes the vector concatenation function.
The aggregation for the remaining edge types are defined similarly.

After graph convolutions, we obtain the segment embeddings
within the group and denote them byℎ𝑘 , as in the second row of Fig-
ure 4. We average the segment embeddings to represent the overall
graph information ℎavg = 1

|𝑉 ℓ |
∑

v𝑘 ∈𝑉 ℓ ℎ𝑘 . To obtain a permutation
invariant control policy 𝜋𝜃 (i.e., independent of the segment order),
we first construct a Q-function 𝑄𝜃 : S × A → R representing the
expected return after taking an action 𝑎𝑘 from a state 𝑠 ,

𝑄𝜃 (𝑠, 𝑎𝑘 ) =


FC1

(
concat (ℎavg, ℎavg)

)
, if 𝑘 = 0,

FC1
(
concat (ℎ𝑘 , ℎavg)

)
, if 𝑘 ≠ 0 and ℓ𝑘 is not a via,

−∞, otherwise,
(7)

where FC (·) denotes fully-connected layers with ReLU activation.
The policy is then recovered by a softmax operator

𝜋𝜃 (𝑎 | 𝑠) = exp(𝑄𝜃 (𝑠, 𝑎))∑
𝑎′∈A exp(𝑄𝜃 (𝑠, 𝑎′))

. (8)

Additionally, we also learn a value function 𝑈𝜃 : S → R,

𝑈𝜃 (𝑠) = FC2 (ℎavg), (9)

which is used to reduce the variance of policy training.
In every training iteration, we sample actions from the policy to

collect𝐷 episodes, whose states, actions, and rewards are indexed by
superscript 𝑑 , each with 𝐻 timesteps. The parameters are updated
by minimizing the empirical expectation loss

𝐿(𝜃 ) = 1
𝐷

𝐷∑︁
𝑑=1

min
(
𝜂
(𝑖,𝑑 )
𝜃

𝐴
(𝑖,𝑑 )
𝜃

, clip(𝜂 (𝑖,𝑑 )
𝜃

, 1 − 𝜖, 1 + 𝜖)𝐴(𝑖,𝑑 )
𝜃

)
+ 𝛼

(
𝑈𝜃 (𝑠 (𝑖,𝑑 ) ) −𝑈 (𝑖,𝑑 )

)2
(10)

over a batch of trajectories, where 𝜂 (𝑖,𝑑 )
𝜃

=
𝜋𝜃 (𝑎 (𝑖,𝑑 ) |𝑠 (𝑖,𝑑 ) )
𝜋𝜃old (𝑎

(𝑖,𝑑 ) |𝑠 (𝑖,𝑑 ) ) is the

probability ratio of the new policy and the old policy, 𝐴(𝑖,𝑑 )
𝜃

is the
estimated advantage, clip(·, 1−𝜖, 1+𝜖) is the clipping function with
lower bound 1 − 𝜖 and upper bound 1 + 𝜖 ,𝑈𝜃 (·) returns the value
of some state, 𝑈 (𝑖,𝑑 ) denotes the discounted return, and 𝜖 , 𝛼 ∈ R

Algorithm 2 RLRR(M)
Input: A circuit with matching groups𝑀 , path-matching constraints

𝐶 with paths 𝑃 , and an RL policy 𝜋 : S → ΔA.
Output: The optimized routing result Φ.
1: Define a group order 𝜏𝑀 and sort𝑀 according to 𝜏𝑀 ;
2: Φ := ∅;
3: for each matching group𝑚 ∈ 𝑀 do

4: Define a net order 𝜏𝑚 and sort𝑚 according to 𝜏𝑚 ;
5: Φ𝑚 := Route(𝑚); ⊲ generate initial routing for𝑚
6: for iter = 1 to 𝐾iter do

7: 𝑠 (0) := HeteroGraph(Φ𝑚);
8: for 𝑖 = 1 to 𝐾step do ⊲ actions
9: 𝑎 (𝑖−1) := argmax𝑎 𝜋 (𝑎 | 𝑠 (𝑖−1) );
10: if 𝑎 (𝑖−1) ≠ 𝑎0 then
11: Φ𝑚 := Route(Refine(RipUp(Φ𝑚, 𝑎 (𝑖−1) )));
12: 𝑠 (𝑖 ) := HeteroGraph(Φ𝑚);
13: else break;
14: Reset history costs on the routing grid edges;
15: Φ := Φ ∪ Φ𝑚 ;
16: return Φ;

are hyperparameters. 𝐴(𝑖,𝑑 )
𝜃

and𝑈 (𝑖,𝑑 ) are defined as follows.

𝐴
(𝑖,𝑑 )
𝜃

=

𝐻−𝑖−1∑︁
𝑗=0

(𝛾𝜆) 𝑗𝛿 (𝑖+𝑗,𝑑 )
𝜃

,

𝛿
(𝑖,𝑑 )
𝜃

= 𝑟 (𝑖,𝑑 ) + 𝛾𝑈𝜃 (𝑠 (𝑖+1,𝑑 ) ) −𝑈𝜃 (𝑠 (𝑖,𝑑 ) ),

𝑈 (𝑖,𝑑 ) =
𝐻−𝑖−1∑︁
𝑗=0

𝛾 𝑗𝑟 (𝑖+𝑗,𝑑 ) ,

(11)

where 𝜆 ∈ R is a weighted constant. We minimize the loss in
Equation (10) by the Adam optimizer [6]. In our implementation, 𝐷 ,
𝐻 , 𝜖 , 𝛼 , and 𝜆 are set to 72, 150, 0.3, 1, and 1, respectively. Note that
when long routes are needed for matching, the history cost is not
sufficiently accumulated to force the router to detour if the horizon
is too short; on the other hand, the router will spend a considerable
amount of time if the horizon is too long, thus inefficient.

4.3 RL-Guided Rip-Up and Re-Route

In this step, we perform custom routing optimization for the speci-
fied critical matching groups. Integrating with well-trained RL poli-
cies, We devise an RL-guided rip-up and re-route (RLRR) scheme
that executes intelligent action sequences to refine routing patterns.

Algorithm 2 shows the proposed RLRR procedure. Before start-
ing the optimization loop, we define a routing order 𝜏𝑀 for the
matching groups𝑀 inside the circuit and sort the matching groups
according to 𝜏𝑀 , as shown in Line 1. In our implementation, 𝜏𝑀 is
the ascending order of the constraint count of each group. With
the order, we route and optimize each matching group.

For each matching group𝑚 ∈ 𝑀 , we also define a net order 𝜏𝑚
and generate the initial routing for𝑚 regarding 𝜏𝑚 (Lines 4-5). In
Lines-6-14, we start the RLRR core process by obtaining the initial
state (i.e., the heterogeneous graph representation for the initial
solution). Then, with a state as input, the trained RL policy decides
which segment to be removed. Finally, we rip up the segment,
perform solution refinement (i.e., remove dangling wires and vias),
re-route the net, and update the current state until the maximum
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Figure 5: Circuit schematics. (a) 16:1 multiplexing buffer. (b)

4-stage ring oscillator. (c) 6-bit phase interpolator.

step 𝐾step is reached or the terminating action is selected, where
𝐾step is 150 in our implementation for both training and inference.
The entire process repeats until hitting the maximum iterations
𝐾iter . Note that the proposed procedure remains efficient when𝐾iter
increases as the routing solution converges, and thus a well-trained
policy 𝜋 will terminate the inner loop (Lines 8-13) immediately.
After finishing the routing and optimization for all matching groups,
we perform standard signal routing on the remaining non-critical
signal nets without constraints to obtain the final routing result.

5 EXPERIMENTAL RESULTS

The proposed framework is implemented in C++ and Python with
the RLlib library [11]. All experiments are conducted on a Linux
workstation with 128 2.7GHz CPUs with 512GB memory and an
NVIDIA A100 GPU. Three industrial circuits designed under TSMC
5nm technology are used for evaluation, including a 16:1 multiplex-
ing buffer (BUF), a 4-stage ring oscillator (OSC), and a 6-bit phase
interpolator (PI), as shown in Figure 5. Our framework focuses
on the custom handling for critical nets, while a digital detailed
router completes the routing for non-critical nets (e.g., control/DC
signals). Each circuit has a cell placement designed by experienced
designers, so a comparison is solely dependent on routing.

Table 4: Statistics of the benchmark circuits.

Benchmark #Cells #Nets #Pins #Cstrs #Paths Area (µm2)
BUF 42 66 228 6 30 7.40×7.50
OSC 21 16 102 6 14 5.97×5.26
PI 124 122 620 19 56 9.23×11.98

5.1 Routing Metrics Evaluation

We compare our framework with the analog detailed router of [16]
in terms of total wirelength, via count, design rule violations, aver-
age peak-to-peak path resistance difference, and runtime of critical
routing. The average value of maximum path resistance difference
per constraint PTPres (defined in Equation (5)) reflects the overall
matching. Since [16] considers symmetry constraint variants but
lacks the support for generalized path-matching constraints, we
annotate additional symmetry constraints on matched nets to ap-
proximate the layout needs and optimize PTPres . To demonstrate
the importance of the proposed constraints, we generate three

layouts for each benchmark with three different settings: 1) [16]
without any constraints (Base-1), 2) [16] with symmetry constraints
(Base-2), and 3) our framework with generalized path-matching
constraints. Table 5 shows the comparisons between the routing
results. The detailed router of [16] fails to complete the routing
without DRVs in OSC and PI due to local congestion. The layouts
generated by Base-1 and Base-2 result in 5.75× and 3.76× higher
PTPres than ours, respectively. Note that our framework clears all
DRVs and achieves a much more optimized PTPres in the trade-off
of slightly increased wirelength and via count of less than 2% dif-
ference compared with the others. As for the runtime, the router
of [16] shows advantages in sparser designs such as BUF, while
the runtime of our framework is dominated by loading trained RL
models. Though our framework has increased runtime in dense and
congested designs such as OSC and PI, it can eliminate violations
and achieve DRC-clean layouts. In contrast, the others terminate
the optimization procedure before removing all the violations.

5.2 Post-Layout Performance Analyses

5.2.1 16:1 Digital Multiplexing Buffer (BUF). The 16:1 multiplex-
ing buffer is designed to drive a large capacitive load with the
ability to select between 16 input signals (IN<15:0>) using 4-bit
control (ctrl<>). Six groups of path-matching constraints were ap-
plied across 30 individual paths to minimize per-stage and total
input-to-output insertion delay variations across the 16 selectable
signal paths. Table 6 summarizes the post-layout simulations com-
paring a manual layout to auto-routed layouts generated by Base-2
and our framework. On average, both auto-routed layouts produce
lower insertion delays (per stage and total) with reduced delay vari-
ability compared with the manual layout. While Base-2 achieves
lower average insertion delays (-2.3% across per-stage groups and
-1.9% total w.r.t ours), our framework reduces delay variability by
26.1% across all per-stage groups and by 19.1% for the total input-
to-output delays. The inherent symmetry of the BUF cell placement
aids in the symmetry constraints achieving similar performance
results to the use of path-matching constraints.

5.2.2 4-Stage Ring Oscillator (OSC). The 4-stage ring oscillator
generates 10.3GHz complimentary in-phase (nodes ck000/ck180)
and quadrature-phase (nodes ck090/ck270) clocks from a nominal
750mV supply voltage. To minimize duty cycle and quadrature-
phase distortion, 6 groups of path-matching constraints are applied
to 14 signal paths to reduce delay variations between the core
oscillator stages, cross-coupled inverters, and output buffers. Table 7
compares the post-layout performance. Both Base-2 and our layouts
produce duty cycles closer to the 50% target, along with lower
quadrature (IQ) distortion magnitudes overall. The use of path-
matching constraints further reduces IQ distortion values by an
additional 30%.

5.2.3 6-Bit Phase Interpolator (PI). The 6-bit phase interpolator
adjusts the output clock phase in 1.33ps increments (60 phase steps)
by interpolating between 4-phase input clocks (ck000, ck090, ck180,
ck270) at 12.5GHz. 19 path-matching constraint groups are applied
across 56 individual signal paths to minimize routing asymmetry
to the blending stages and thus reduce output phase deviations
across input codes. Comparison of post-layout performance are

32



ISPD ’23, March 26–29, 2023, Virtual Event, USA Hao Chen et al.

Table 5: Comparison of total wirelength (WL (µm)), total via count (VIA), design rule violations (DRV), the average value of

maximum path resistance difference per constraint (PTPres (Ω)), and runtime (sec).

Benchmark Base-1 ([16] w/o constraints) Base-2 ([16] w/ symmetry constraints) Ours
WL VIA DRV PTPres Runtime† WL VIA DRV PTPres Runtime† WL VIA DRV PTPres Runtime†

BUF 96.4 271 0 65.7 0.36 96.6 265 0 64.6 0.40 102.0 272 0 22.3 3.70
OSC 21.3 88 5 130.4 0.39 21.3 88 5 130.4 0.40 21.0 90 0 23.9 18.38
PI 390.0 830 0 337.5 32.23 380.7 779 1 111.6 123.94 385.8 790 0 38.2 132.27

Norm. 0.99 1.01 - 5.75 0.12 0.98 0.98 - 3.76 0.36 1.00 1.00 - 1.00 1.00
† The runtime of critical routing on nets with constraints. (RL policy training time excluded.)

Table 6: Comparison of the post-layout insertion delay and

rise/fall times of BUF.

Stage Insertion Delay (ps) Rise / Fall Time (ps)
Manual Base-2 Ours Manual Base-2 Ours

1 Avg 11.9 10.1 10.2 10.3 / 10.5 9.2 / 9.4 9.3 / 9.5
Std 0.33 0.25 0.23 0.27 / 0.29 0.22 / 0.24 0.25 / 0.25

2 Avg 11.9 11.0 11.1 10.2 / 11.4 9.5 / 10.7 9.6 / 10.8
Std 0.15 0.17 0.15 0.14 / 0.14 0.16 / 0.19 0.12 / 0.12

3 Avg 12.1 11.3 11.6 10.5 / 10.5 9.9 / 9.9 10.0 / 10.1
Std 0.08 0.08 0.06 0.08 / 0.06 0.05 / 0.06 0.02 / 0.00

4 Avg 11.2 10.4 10.9 9.1 / 9.7 8.4 / 9.0 8.9 / 9.5
Std 0.01 0.01 0.00 - - -

Total Avg 77.7 72.7 74.1 - - -
Std 0.53 0.42 0.34 - - -

Table 7: Comparison of the post-layout oscillation frequency,

duty cycle and quadrature phase distortion of OSC.

Layout Freq.
(GHz)

Duty Cycle / Quadrature Phase Distortion (%)

ck000 ck090 ck180 ck270 Avg
Std

Manual 10.27 49.0 / - 49.1 / 0.28 48.9 / 0.00 49.2 / 0.33 49.1 / 0.20
0.10 / 0.15

Base-2 10.75 50.3 / - 50.3 / -0.17 50.1 / -0.03 50.1 / 0.27 50.2 / 0.16
0.11 / 0.10

Ours 10.68 50.2 / - 50.3 / 0.15 50.2 / -0.13 50.1 / 0.05 50.2 / 0.11
0.09 / 0.04

shown in the integral non-linearity (INL) plots in Figure 6, mea-
sured as the normalized ratio of the ideal and actual output phase
deviations across phase codes (nominally 0). Since PI is sensitive
to path-matching delays in and out of the trimmable multiplexers,
post-layout performance of auto-generated layouts are compared
in Figure 6(a) using path-matching (Ours), symmetry (Base-2), or
no constraints (Base-1). The use of symmetry constraints resulted
in worse average and maximum INL magnitudes (1.27 and 2.33,
respectively) compared with path-matching constraints, while rout-
ing without any constraints resulted in significant performance
degradation with average and maximum INL magnitudes of 1.91
and 4.60, respectively. Compared with the manual layout with aver-
age and maximum INL magnitudes of 1.07 and 2.19, our layout has
lower average INL magnitudes (0.84) across the four phase code
quadrants with a smaller peak INL value (1.70), as in Figure 6(b).

5.3 Policy Generalization

To evaluate the generalizability of our framework, we compare total
training loss and the routing results of PI using policies trained from
scratch and fine-tuned with a pre-trained policy over varying time
stamps, as shown in Figure 7. We pre-trained a policy using only
BUF and OSC, then included PI in the training environment for fine-
tuning. The routing cost is calculated as wl(Φ) + via(Φ) + 30ptp(Φ),
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Figure 7: The total training loss and normalized routing cost

of trained models from scratch and fine-tuning over varying

amounts of time.

where Φ is a routing solution. As can be seen in Figure 7(a), the pre-
trained network starts with a better initial solution withmuch lower
training loss and converges after 50 iterations of fine-tuning, while
the network trained from scratch struggles at the beginning and
still has a higher loss after 200 iterations. As shown in Figure 7(b),
the pre-trained network with fine-tuning quickly converges after
two hours of training, while training from scratch requires much
longer training time (>12 hours).

6 CONCLUSION

This work has presented a novel RL-guided detailed routing frame-
work for advanced custom circuits. A heterogeneous graph repre-
sentation for detailed routing solution modeling has been proposed.
A learning model using graph neural networks for proximal policy
optimization-based deep RL learning has been devised. A rip-up
and re-routing scheme with RL policy integration has been shown
to optimize routing objectives. With minimal adjustments to the
reward function and model architecture, the proposed framework
can quickly adapt to future design constraints. Experimental re-
sults have demonstrated the effectiveness of the proposed custom
detailed routing framework in producing sign-off-quality layouts.
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