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ABSTRACT
We analyze 14,651 HIV1 reverse transcriptase (HIV RT) sequences
from the Stanford HIV Drug Resistance Database labeled with treat-
ment regimen in order to study the evolution this enzyme under
drug selection in the clinic. Our goal is to identify distinct sectors
of HIV RT’s sequence space that are undergoing evolution as a way
to identify individual selections and/or evolutionary solutions. We
utilize Uniform Manifold Approximation and Projection (UMAP), a
graph-based dimensionality reduction technique uniquely suited
for the detection of non-linear dependencies and visualize the re-
sults using an unsupervised clustering algorithm based on density
analysis. Our analysis produced 21 distinct clusters of sequences.
Supporting the biological significance of these clusters, they tend
to represent phylogenetically related sequences with strong corre-
spondence to distinct treatment regimens. Thus, this method for
visualization of areas of HIV RT undergoing evolution can help in-
fer information about selective pressures, although it is correlative.
The mutation signatures associated with each cluster may represent
the higher-order epistatic context facilitating these evolutionary
pathways, information that is generally not accessible by other
types of mutational co-dependence analyses.
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1 INTRODUCTION
The Human Immunodeficiency Virus (HIV) is a retrovirus that
is the causative agent of Acquired Immunodeficiency Syndrome
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(AIDS), currently infecting over 36 million adults and 1.7 million
children. Advances in antiretroviral therapy allow patients with
HIV to live long lives while hosting the virus. However, thanks
to its extremely high mutation rate, HIV-1 has evolved resistance
to some of these antiretroviral drugs and in 2020 AIDS was still
causing 680,000 deaths worldwide [1].

HIV-1 infects primarily CD4+ T cells by injecting viral RNA
along with reverse transcriptase, protease, and integrase proteins.
The single-stranded viral RNA is transcribed into double-stranded
DNA by the reverse transcriptase (RT) and integrated into the cell’s
genome by the integrase. The functional expression of viral genes
requires processing by a viral protease [2]. All these processes and
the fusion of the viral envelopewith the host’s cell membrane can be
inhibited by drugs. Here, we focus primarily on HIV RT inhibitors,
which represent a major class of antiretrovirals [20]. These come
in two flavors. The first class of antiretroviral drugs are nucleo-
side reverse transcriptase inhibitors (NRTIs), which are nucleoside
analogs that compete with dNTPs for incorporation, inhibiting re-
verse transcriptase. The second class are non-nucleoside reverse
transcriptase inhibitors (NNRTIs), which bind at the hydrophobic
pocket, interfering with DNA synthesis [4, 5].

RT replication is error prone and represents a major source of
mutations [19]. Given that most random mutations are deleterious,
replicating HIV genomes are under constant purifying selection
[3]. Under positive selective pressure by HIV-RT inhibitors, drug
resistance mutations (DRMs) are selected. Some of these DRMs
have been identified as diagnostic for resistance to NRTIs and to
NNRTIs and are routinely used for predictive diagnostics [16]. Well
characterized NRTIs resistance mutations are found at positions 41,
65, 67, 70, 74, 115, 184, 210, 215, and 219 [4], and diagnostic NNRTIs
resistant mutations are found at positions 100, 101, 103, 106, 138,
181, 188, 190, and 230 [5].

NRTIs and NNRTIs are often prescribed in combination [6, 17].
More specifically, highly-active antiretroviral therapy (HAART) is
a drug cocktail treatment used to reduce HIV viral load sufficiently
to prevent the progression to AIDS. HAART includes at least three
medications, namely one protease inhibitor (PI) and two to three
reverse transcriptase inhibitors. A selection with drugs acting by
different mechanisms minimizes the probability of resistance and
when resistance evolves maximizes the probability of having a high
fitness cost. Decreased fitness associated with adaptive DRMs leads
to the selection of compensatory mutations, generating networks
of co-dependent mutations. The landscape of the sequence context
supporting the evolution of gain-of-function mutations has not
been studied in all its constitutive interdependencies, particularly
beyond pairwise interactions.
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Dimensionality reduction methods such as multi-dimensional
scaling (MDS) and principal component analysis (PCA) have been
previously reported [7]. These analyses define a pairwise distance
metric along positions on the HIV genome in order to create a dis-
tance matrix, then perform an eigenvector decomposition on this
matrix to observe how the mutations relate in lower-dimensional
space. However, a linear dimensionality reduction limits the identi-
fication of large, interdependent networks of mutations that may
be evolving together. Indeed, a more recent study performing an
integrated analysis of residue coevolution and protein structures
showed complex interdependencies between mutations [21]. Here
we turn to a non-linear dimensionality reduction technique, which
allows for identification of relationships between an unbounded
number of mutations simultaneously, with the hope of capturing
such interdependencies.

The approach that we used is Uniform Manifold Approximation
and Projection (UMAP) [8]. UMAP is a graph-based dimensionality
reduction technique that is uniquely suited for the detection of
non-linear dependencies. Amongst graph-based algorithms, UMAP
is known to have superior preservation of local structure because
it implements a gravity-like pull for closeby points. This is ad-
vantageous to the analysis of non-linear dependencies between
mutations, where the number of co-dependent mutations that can
be analyzed is unbounded. UMAP enables sequences with similar
nonlinear dependencies between mutations to be drawn closer to-
gether because it prioritizes these local interactions. This drew a
compelling case for applying UMAP directly to the RT sequence
data.

Our curated database consisted of 14,651 HIV1 reverse transcrip-
tase sequences from the Stanford HIV Drug Resistance Database
labeled with the treatment regimen that patients were undergoing
at the time of viral isolation. Our analysis produced clusters of se-
quences showing distinct sectors of HIV RT’s sequence space that
are accessible to evolution. These clusters tended to be phylogenet-
ically related, and we found a strong correspondence between how
homogenous the sequence was within a sector and how consistent
the treatment that the patient had received was. This suggests that
this method can be used to infer information about the number
and nature of selections driving the evolution of a protein. Strik-
ingly, antiretroviral cocktails but the known adaptive DRMs are
largely absent in the mutation profiles associated with each of these
clusters. We suggest that the mutations consistently found in these
clusters represent distinct configurations of higher- order epistatic
interactions that determine the accessibility of RT sequence space
to evolution.

2 METHODS
2.1 Dataset
The 72,200 HIV-1 reverse transcriptase sequences used in this anal-
ysis were sourced from the Stanford HIV Drug Resistance Database
[9]. Primarily, these sequences mapped the p66 subunit of HIV-1 re-
verse transcriptase, consisting of 560 amino acids and its enzymatic
activities. These sequences were taken from patients involved in
longitudinal studies from patients under different treatment regi-
mens. For each sequence, the following information was also given:
patient ID, study ID, study year, and a list of the drugs administered

to the patient for the purpose of HIV treatment prior to sequencing.
Here, we will refer to this additional information frequently as the
sequence’s metadata.

The number of sequences per patient varied depending on both
the study and how many drugs were introduced into the treatment
regimen over time. Further, the various studies represented chose to
sequence different regions and amounts of the reverse transcriptase,
which raised the need for multiple sequence alignment.

2.2 Sequence Alignment and Reference
Sequence

Prior to alignment, the sequences were translated from nucleotide
sequences into amino acid sequences via the Biopython package’s
Sequence module [10]. During translation, 34,177 sequences which
included stop codons were identified and filtered out of the dataset
to be aligned, as these represented abortive viruses. A further 510
sequences were filtered out due to errors in translation. The remain-
ing 41,529 sequences were compiled into one FASTA file to allow
for sequence alignment. These remaining sequences represented
35,873 patients in total.

Multiple sequence alignment was performed on the resulting
amino acid sequences using MAFFT: a multiple alignment program
for amino acid or nucleotide sequences [11]. The resulting align-
ment consisted of 563 amino acids, starting at and extending from
the first amino acid of the p66 subunit.

The reference sequence used in this analysis was also sourced
from the Stanford HIV Drug Resistance Database [9] and was com-
plete for the entire 563 amino acid region spanned by the sequence
alignment. This rendered it a complete and suitable reference for
the sequences from all of the studies given in the dataset.

2.3 Quality Control for Sequences
We designed a method to collapse the database so that each se-
quence represents the most recent sample from each patient, rea-
soning that it is the sample that has had the longest time to evolve.
Further, the sequences were cropped to focus on the active region
of the p66 subunit, consisting of the first 230 amino acids in the
alignment. Sequences which were not complete for this region,
identified by a dash or ‘X’ in the alignment, were removed from
the dataset. These filters in combination brought the total size of
the dataset down to 14,651 aligned, complete sequences, one per
patient.

2.4 Training Data Encoding and Separation of
Metadata

The datawas then prepared for analysis by splitting into the training
data and metadata. The training data was the only data that was
used in the analysis, while the metadata was stored in a separate
dataset, to be used after the analysis to interpret results. Separate
dataframes were used to store the information but could be cross-
indexed in order to obtain information for a given sequence.

Training data consisted of only the sequences. In order to per-
form numerical analyses on this type of data, a one-hot encoding
was utilized to create a matrix representation of the raw sequence
data. In this representation, a column was included for each of the

15



Identifying Selections on HIV-1 RT via UMAP ICBRA 2022, September 18–20, 2022, Berlin, Germany

possible amino acids present at each position along the sequence
(i.e. columns “0_A”, “0_F”, “0_H”, “0_L”, “0_P”, . . ..).

Metadata consisted of the patient ID, study ID, study year, raw
sequence, and a list of the drugs administered to the patient for the
purpose of HIV treatment. This was expanded to include a list of the
mutations identified in each sequence. Depending on the sequence
of mutations found, sequences were annotated into drug categories
to help interpret the correspondence between the communities
identified by our unsupervised clustering algorithm based on den-
sity analysis and likely selections driving them (see Density-Based
Spatial Clustering of Applications with Noise below). If a majority
of these mutations belonged to either known nucleoside reverse
transcriptase inhibitor (NRTI) diagnostic mutations or to known
non-nucleoside reverse transcriptase inhibitor (NNRTI) diagnostic
mutations, they were labeled “TAM” or “NNRTI”, respectively. If no
clear majority of either type was found, we labeled the sequence as
“None”.

2.5 Dimensionality Reduction via Uniform
Manifold Approximation and Projection

The novel nonlinear dimensionality reduction algorithm Uniform
Manifold Approximation and Projection (UMAP) was utilized to
obtain a projection of the training dataset onto lower-dimensional
space. The implementation of UMAP used here is given by the
algorithm’s authors and to perform unsupervised learning of a
lower-dimensional representation of the data. The hyperparame-
ter of the number of neighbors required to define a point as an
interior point was set to 5, and the random state was fixed to 42
as per computing convention. Note that reasonably adjusting the
hyperparameter of the number of neighbors required should yield
similar dimensionality reduction.

In this lower-dimensional space, each sequence is represented by
a single point. Also note that the Euclidean distance between points
in this space cannot represent evolutionary distance as the distances
are nonlinearly determined by the mutations in the sequences,
where one important mutation or combination of mutations can
cause a large shift.

2.6 Density-Based Spatial Clustering of
Applications of Noise (DBSCAN)

Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) [12] was chosen as the clustering algorithm for this analysis
as it does not require specification of a fixed number of points (se-
quences) per cluster. The implementation of DBSCAN utilized here
is taken from Sci-kit Learn’s cluster package. The minimum number
of samples (sequences) for each cluster was set to 30 samples and
the epsilon value set to 0.5, values conferred upon by methodical
adjustments and observation of the clustering quality. Note that
reasonably adjusting these hyperparameters should yield similar
clustering. In our analysis, this configuration resulted in 21 distinct
clusters of which two were considerably larger than the others.
Recall that each point in this space represents a sequence. Thus,
each cluster of points represents a group of sequences.

For each cluster, we now had a group of sequences which had
been brought together based on some latent factors identified by

the algorithms. As a control, we checked if the sequences them-
selves were the sole basis of the clustering as opposed to some
variation between studies. Thus, we verified that the sequences in
each cluster were from various studies and patients. For instance,
the 33 sequences in Cluster 5 came from 33 different patients and 7
different studies.

Cluster 0 from the initial DBSCAN clustering analysis was very
large, consisting of about 10,000 diverse sequences. Thus, it was
necessary to further break down this cluster via a repeat analysis
in order to extract meaningful sub-clusters. First, we collected the
training data corresponding to the sequences in Cluster 0 into a
separate data frame, then repeated the same UMAP and DBSCAN
analysis on this dataset [8, 12]. This resulted in several sub-clusters,
of which one was again exceptionally large but two were distinctly
identifiable. Later we will see that the information gained from this
increased resolution has important meaning.

2.7 Histograms and Homogeneity
For each cluster of patient sequences, two frequency histograms
were created: one for the frequencies of the mutations, and one for
the frequencies of the drug treatments prescribed to the patients.
For convenient comparison, these two histograms were included
side-by-side for each cluster in a figure.

We defined here a homogeneity index `50 / ` to quantify the
consistency with which mutations appear within a cluster’s se-
quences: dividing `50 the number of mutations with frequency
greater than 50% by the total number ` of mutations observed. We
also define a corresponding homogeneity index _50 / _ to quantify
the consistency with which drug treatments appear within a clus-
ter’s sequences. Here, _50 represents the number of mutations with
frequency greater than 50% and _ represents the total number of
mutations observed.

2.8 Computing Phylogenetic Distance with
UPGMA

To estimate the level of phylogenetic relatedness of the sequences
that were clustered together, we utilized the UPGMA algorithm
for building phylogenetic trees from given sequences [14]. The
implementation used for UPGMA was from BioPython’s Phylo
package [10].

First, clusters of random sequences from the dataset were gen-
erated in varying sizes as a control. For each of these clusters, a
UPGMA tree was built and the tree depth was recorded, which is
defined as the maximum distance from the original ancestor to a
descendant. Then, for each of our clusters from the DBSCAN clus-
tering, this analysis was repeated and the tree depth was recorded.

2.9 Longitudinal Analysis
For each patient, we build a network at the first and last sequenc-
ing point. Mutations were called by aligning the last and the first
sequence.
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3 RESULTS AND DISCUSSION
3.1 Goal and Approach
The goal of this study is to map out distinct sectors of HIV RT’s
sequence that are accessible to evolution as a way to get informa-
tion about types of selections that HIV RT is undergoing in the
clinic and about the adaptive solutions found by evolution. Our
assumption is that HIV RT’s evolution is driven in different direc-
tions by a variety of factors (replication efficiency, resistance to
drug treatment, fidelity of replication, etc.) while at the same time
being shaped by epistasis. We reasoned that the combination of
directional selection, which favors the fixation of specific adaptive
mutations, and epistasis, which can enhance the effect of adaptive
mutations, but which also restricts the accessible sequence space,
will allow us to cluster sequences according to either the type of
adaptive solution or the type of selection driving them. For this
approach to work, we needed two elements: (a) a large number of
individual sequences and (b) the ability to maximize our ability to
detect functional interactions.

Sequence database: we obtained 72,200 HIV-1 sequences from
the Stanford HIV Drug Resistance Database, deposited between
1987 and 2017. These sequences mapped the p66 subunit of HIV-1
RT, which harbors its enzymatic activities [9]. Some of these se-
quences were part of longitudinal studies, with multiple sequential
samples corresponding to individual patients. After putting these
sequences through quality control filters and selecting only the last
sequence available for each patient the total number of sequences
went down to 14,651 (see Methods). Thus, our curated sequence
database represented the most frequent sequence found in the last
sample taken from individual patients.

Maximal ability to detect functional interactions: traditional
methods such as multi-dimensional scaling and PCA have
been previously used to study RT mutations in the context of
antiretroviral selection [7]. These methods are based on eigenvalue
decomposition of a distance matrix which is ultimately a linear
(otherwise known as pairwise) approach to dimensionality
reduction. The expectation was to be able to identify communities
corresponding to one or a small number of adaptive mutations
for a given adaptive solution and a network of co-dependent
mutations. At least it was hoped that mutations conferring
resistance to NNRTIs would be found in a separate community
relative to mutations conferring resistance to NRTIs, given that
the targets and mechanisms of resistance for these two classes of
antiretroviral drugs are very different. However, when used on
complex sequences recovered from the clinic, these linear methods
were only partially successful in segregating communities of NRTI
and NNRTI-selected mutations [7].

Recently, more sophisticated non-linear dimensionality reduc-
tion approaches have been developed [8, 15]. These methods can
capture interactions between multiple mutations simultaneously,
thus increasing the number of interactions detected. We hypothe-
sized that by increasing the density of the network of interactions
detected, we would be able to improve the resolution of the gener-
ated mutation communities.

We initially considered the idea of using a Variational Auto-
Encoder (VAE), which is a machine learning model that learns a
lower-dimensional representation of the data by reconstructing

it from a reduced form that has successfully been used to model
complex biological systems [18]. We tried a VAE approach to create
our encoding of the data [15]. However, this approach did not
produce clear clusters in its latent space due to lack of incentive
for this in the loss function. At the time, we were using UMAP:
Uniform Manifold Approximation and Projection as a method of
visualizing the latent space encoding of the data created by the
VAE [8] . We realized that removing the VAE from the pipeline
and instead applying the UMAP directly resulted in a dramatic
increase in our spatial resolution. This approach produced several
clear, distinct clusters (Fig. 1).

3.2 Dimensionality Reduction of HIV-1 RT
Sequences via UMAP and Clustering

The UMAP algorithm is a nearest-neighbor graph-based algorithm
that performs dimensionality reduction without assumption of lin-
earity [8]. Upon obtaining the UMAP embedding of the sequences,
we clustered the sequences in this space using Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) [12]. DBSCAN
was chosen because it does not require specification of a fixed num-
ber of points (sequences) per cluster, instead deriving the optimal
number of clusters mathematically. Figure 1a details the resulting
20 clusters of sequences obtained and that are further explored in
this analysis.

3.3 Phylogenetic Relatedness of Clustered
Sequences

We performed several tests to assess the biological relevance of the
clusters obtained. The first one was to measure the phylogenetic
relatedness of the clustered sequences. To this end, we computed
a UPGMA tree for each cluster. The maximum depth of the tree
represented the distance of the furthest removed descendant of the
common ancestor, and thus this was used as a metric for compar-
ison between trees. The results are shown in Table 1 below. As
expected, we observed that the sequences in our clusters tended
to be more phylogenetically related than randomly selected se-
quences, up to 14-fold, although with some exceptions. We also
noted that the samples within the clusters also tended to be col-
lected within shorter timeframes than the samples in randomly
selected sequences (in selected clusters the timeframe was only 9
years, compared to 30 years for a random sample of similar size).
The mean date of collection also shifted substantially depending on
the cluster, as late as 2012, compared to 2006 for the random sample.
Both the increased phylogenetic relatedness and the increased time
frame specificity suggests that the UMAP-derived clusters reflect a
biologically-relevant commonality between the sequences.

Another way to look at the ability of our analysis to identify
related sequences is to look at the representation of all the mu-
tations found in each cluster. To measure the consistency in the
representation of mutations within a given cluster, we defined a
homogeneity index as _50 / _ where _50 represents the number
of mutations with frequency greater than 50% and _ represents
the total number of mutations observed (see Methods). The result
is shown in Table 1, column 5. As expected, we see a substantial
negative correlation between the maximal UPGMA tree length and
the homogeneity index (R= -0.57). In other words, the more related
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1a. 1b.

Figure 1: DBSCAN clustering on Embedding of the training set by UMAP. This is a low-dimensionality representation of
UMAP-mediated dimensionality reduction of our curated HIV-RT sequence database. 1a. Cluster segregation. The sequences
in this space are then segregated into 21 clusters using DBSCAN, an unsupervised clustering algorithm based on density. 1b.
Second round of UMAP-mediated dimensionality reduction. Cluster 4 is the only cluster in the top figure which provides
significant spatial resolution when divided into its two main subclusters.

Table 1: Cluster-by-cluster Phylogenetic Analysis

Cluster Size UPGMA Max Tree
Depth

Mutation
homogeneity index

Treatment
homogeneity index

Years of
Collection

Mean year
of collection

Random (avg. of 5) 862 0.5030869476 0.0162601626 0.3571428571 1987 to 2017 2006
Random (avg. of 5) 400 0.4807792177 0.01826484018 0.2857142857 1987 to 2017 2006
Random (avg. of 5) 50 0.3009390475 0.02419354839 0.5714285714 1987 to 2017 2006
0 10175 Too large to compute 0.009661835749 0.3125 1987 to 2017 2006

1 51 0.3282895537 0.0412371134 0.333 1995 to 2017 2008
2 375 0.5440459029 0.07196969697 1.000 1998 to 2011 2006
3 48 0.3099992703 0.08695652174 0.500 2002 to 2015 2011
4 1737 0.3371911882 0.0206185567 0.200 1997 to 2015 2010
5 213 0.3206148863 0.07142857143 0.667 1995 to 2015 2010
6 195 0.05779799555 0.05940594059 0.375 1996 to 2016 2005
7 51 0.02514479978 0.15 n/a 2001 to 2015 2008
8 37 0.02633467788 0.14 1.000 2006 to 2015 2010
9 62 0.03273030533 0.1363636364 1.000 1998 to 2015 2008
10 43 0.0243315197 0.25 n/a 2004 to 2015 2009
11 48 0.0297267636 0.1355932203 n/a 2004 to 2015 2009
12 44 0.04062937319 0.1230769231 1.000 1999 to 2015 2010
13 41 0.0320933801 0.1355932203 n/a 2002 to 2016 2012
14 35 0.02136858403 0.1219512195 n/a 2003 to 2015 2010
15 39 0.03298188611 0.1129032258 1.000 2002 to 2015 2009
16 41 0.02498220847 0.2173913043 n/a 1992 to 2015 2010
17 47 0.02982838497 0.1 n/a 2005 to 2015 2011
18 31 0.04382553236 0.07272727273 1.000 2006 to 2015 2011
19 24 0.02471175795 0.1395348837 n/a 2001 to 2015 2010
20 15 0.3030275172 0.1320754717 1.000 2003 to 2013 2011
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Table 2: Subcluster-by-subcluster Phylogenetic Analysis of Cluster 4

Cluster Size UPGMA Max Tree
Depth

Mutation
homogeneity
index

Treatment
homogeneity
index

Years of
Collection

Mean year of
collection

0 76 0.03043863312 0.07936507937 1 1998 to 2015 2010
1 119 0.0355895035 0.04938271605 n/a 1999 to 2015 2009
2 118 0.05613080606 0.06896551724 n/a 2000 to 2015 2010
3 88 0.04171547765 0.08620689655 n/a 2000 to 2015 2011
4 133 0.3253646267 0.0625 0.5 2000 to 2015 2011
5 59 0.03008323311 0.08064516129 n/a 2001 to 2015 2010
6 63 0.02211538217 0.08474576271 n/a 2001 to 2015 2009
7 51 0.03636769417 0.1090909091 n/a 2002 to 2015 2010

the sequences are, the more likely a given mutation is to be highly
represented in the cluster.

We noticed that both the phylogenetic relatedness and homo-
geneity dropped dramatically in seven of the 21 clusters. These
included the largest one (cluster 0) and two other medium-sized
(clusters 2, 4, and 5). We wondered if an additional round of UMAP
analysis for these larger clusters would result in more homogenous
subclusters. We only obtained distinct subclusters for cluster 4 (Fig.
1b). The UPGMA longest tree and homogeneity indexes for cluster 4
subclusters are listed in Table 2 and show evidence of phylogenetic
relatedness but little mutation homogeneity, suggesting that cluster
4 may represents sequences drifting without clear directionality.

3.4 Identifying Drug Selection Correspondence
with Clusters

We hypothesized that some of the clusters could identify distinct
selections and/or distinct adaptive solutions to selections, as pre-
viously shown for networks representing pairwise interactions in
TEM beta-lactamase [22, 23]. Since we can assume that most of
the viruses included in our database have been under antiretroviral
selection since the early nineties, we reasoned that drug treatment
may constitute a significant selection driving the evolution of these
HIV RT sequences. 2 shows two side-by-side histograms for each
individual cluster: one detailing the frequency of mutations (on
the left) and one detailing the drug regimens undergone by the
patients from which the viruses were isolated (on the right). Note
that for illustration purposes 2 excludes the mutations which were
observed in less than 30% of the sequences.

Interestingly, we observed that eight clusters of sequences iden-
tified patients selected by a consistent drug treatment (clusters 2, 5,
8, 9, 12, 15, 18 and 20) (2a). The other 13 clusters are shown in 2b.
This is a remarkable result, considering the wide diversity of drug
regimens included and that treatment information was not used to
generate the clusters.

To quantify the consistency in the treatment, we defined a treat-
ment homogeneity index, similar to the mutation homogeneity
index `50 / ` where `50 represents the number of treatments with
frequency greater than 50% for a given cluster and ` represents the
total number of treatments observed (see Methods). The homo-
geneity index values are listed in Table 1. All of the above clusters,

except cluster 5, produced a homogeneity index of 1. For com-
parison, a randomly selected control with 50 samples produced a
homogeneity index of 0.57.

We also verified that each of these clusters included sequences
sourced from various studies, ruling out the possibility of clustering
on the basis of individual study design. This adds support to the
idea that the algorithm can truly discern the evolutionary effects
of selection by particular drug treatments.

Strikingly, the mutation homogeneity index correlated strongly
with the treatment homogeneity index (R=0.83). We also found a
strong treatment concordance for one of the subclusters of cluster
4 (subcluster 0) (Fig. 2c). This observation confirms that a repeat
UMAP analysis on a heterogeneous cluster can produce subclusters
representing concordant treatment.

3.5 Epistatic Context for Diagnostic Mutations
In a final attempt to demonstrate the link between selected UMAP-
derived clusters and drug selection, we looked for a correspondence
between mutations that are unique to each cluster and diagnostic
mutations for the corresponding selections. To our surprise, we
found that the major known drug resistance mutations for NRTI
and NNRTI drugs were conspicuously absent as mutations driving
cluster classification. Note that mutations present in less than 30% of
the sequences for a given cluster were not included in the graph. The
main exception was K103X (a NNRTI resistance mutation), which
was uniquely found in cluster 6, and L210X (a NRTI resistance
mutation, which was uniquely found in cluster 7.

In an effort to show the effect of drug selection, we looked at clus-
ter 2 sequences because we had a good representation of patients
sampled before and after treatment (368 out 375 sequences) and
because treatment had been consistent across patients (the NNRTI
nevirapine, although some of these patients were also treated with
NRTIs). For these samples, we called the mutations that were fixed
during treatment by identifying mutations that only appeared after
treatment. The results of this analysis are shown in Fig. 4. In this
analysis, we see a high representation of the main NNRTI resis-
tance mutation: K103X and a lower representation of two additional
NNRTI mutations: Y181X, G190X. We also see NNRTI mutations
represented, notably M184X, D67X, and K70X.

Taken together, these results suggest that for cluster 4, selection
is likely driven by drug selection but the network of interactions
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2b
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2c

Figure 2: Correspondence between mutation and treatment profiles. Each row represents a UMAP-derived cluster of HIV-1 RT
sequences. Shown are the frequency of mutations by position (left) and the frequency of prescribed drugs in the treatment
regimen for each patient (right). 2a. Clusters with a treatment homogeneity index above a random control. 2b. Clusters with
a treatment homogeneity index below a random control. 2c. Subclusters 0 and 4 of cluster 4, which show high treatment
homogeneity indexes. The correspondence between these clusters and distinct treatment regimens seen in panels 2a and 2c
suggests that the UMAP clustering can discriminate between different selective pressures effectively.

Figure 3: Correlation between themutation homogeneity and
treatment homogeneity indexes. The treatment homogeneity
index (x-axis) and mutation homogeneity index (y-axis) are
plotted. The trendline is shown, and the regression formula
is y = 0.111*x + 2.93E-03.

with the adaptive mutations rather than the adaptive mutation
themselves and are more stable and therefore determine the UMAP-
derived mutation profile.

4 CONCLUSION
Here we used UMAP analysis to embed HIV-RT mutation data
in lower-dimensional space and visualized the results using an
unsupervised clustering algorithm based on density analysis. We
hypothesized that clustering in space would identify evolutionary
solutions and/or selections, as previously shown by constructing a
network of pairwise interactions for beta-lactamases [22, 23]. We

also hypothesized that detecting nonlinear dependencies would
increase the resolution of this analysis.

To our knowledge, this is the first time that non-linear depen-
dencies have been included in an analysis of HIV-RT evolution.

Our analysis produced 21 clusters. Here we show three lines of
evidence supporting the idea that these clusters represent sequences
that are related in a biologically meaningful way. Sequences within
a cluster tend to: 1. be phylogenetically related; 2. be sampled closer
in time; 3. come from patients undergoing similar treatment. While
we have not proven that our clusters represent sequences whose
selection is driven by the associated treatment, we have shown a
striking correlation between UMAP’s ability to identify clusters of
homogeneous sequences and the treatment regime of the patients
from which these sequences were derived (3). Note that treatment
information was not used as input in this analysis.

To be clear, these are trends and are not found in all the clusters.
Repeated UMAP analysis in one of the clusters (cluster 4) showed
limited additional resolution, possibly because of drift. Hypermu-
tator viruses have been identified that could accelerate drift. The
largest cluster (cluster 0) remains to be resolved possibly because
of overlaps between the adaptive solutions needed to respond to
complex antiretroviral treatment. Eight clusters have no treatment
associated with them, possibly due to an incomplete annotation in
our database.

Our analysis produced a mutation profile associated with each
cluster. The mutation profiles associated with each cluster may
represent the higher-order epistatic context supporting these evo-
lutionary pathways, information that is generally not accessible by
other types of mutational co-dependence analyses. Strikingly these
profiles contained almost no major DRM. This may partially reflect
genetic drift, as common ancestors will be counted as mutations and
heavily determine the profile. It may also reflect the fact that these
sequences reflect the predominant sequence, and a smaller fraction
of sequences with drug resistance mutations may have been missed.
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Figure 4: Longitudinal analysis of mutations in cluster 2. Shown are the mutations that only appeared after onset of treatment.

This could also mean that the network of interactions with the
adaptive mutations rather than the adaptive mutation themselves
are more stable and therefore determine the UMAP-derived muta-
tion profile. It will be interesting to investigate these signatures in
clusters of mutations known to have evolved within a short period
of time in order to derive information about the network of mutant
interactions that creates the necessary context for the evolution of
specific adaptive solutions.
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