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ABSTRACT
Epileptic activity in the EEG record can manifest in different ways
over time series. A classifier that would alert physicians to the
possibility of different types of epileptic activity would be an ef-
fective tool. We created image data from EEG records, which we
subsequently classified using the SqueezeNet network, which has a
promising potential in the field of image classification based on the
results so far. On patients whose data the network did not come
into contact with during training and validation, we subsequently
assessed the accuracy of the classification. The accuracy for each
condition was around 80%.
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1 INTRODUCTION
The brain is the control center of our body. Because it is covered
by a skull, the most used non-invasive method of examination
is electroencephalography (EEG), which describes the changes in
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its electrical activity over time. Like any physiological process,
electrical activity can be disrupted. One of the disorders with a
significant manifestation in the form of EEG time-series changes is
epilepsy [1].

Epilepsy is a serious neurological disorder that disrupts everyday
life. One of the main ways to diagnose epilepsy is EEG. Evalua-
tion of epilepsy done only by physicians is ineffective, due to a
need of examining a several hour long recording. At the same time,
it is highly time-demanding to train physicians to reliably recog-
nize certain brain manifestations in EEG recordings [2]. Thanks
to digital technology and the evolving artificial intelligence (AI)
for signal processing, it is possible to reduce time requirements by
pre-scoring. Algorithms evaluate and highlight segments of time
series in moments when the activity corresponds to the character-
istics of epileptiform activity, instead of physicians. The first such
algorithms date back to the second half of the 20th century [3].
With the development of AI, the possibilities of classification are
constantly expanding.

AI is still evolving, so it is promising to apply new technolo-
gies for acquiring more accurate results in classification of EEG
segments. If the success of the epileptiform activity detection was
consistent across various patients and devices, the pressure on the
physicians evaluating the recordings would be reduced. Moreover,
this would speed up the entire diagnostic process.

The aim of this work is to present the success of the classification
of a convolutional neural network for various manifestations of
epileptic activity in EEG. Emphasis is placed on the optimization
of input data, i.e. the creation of image data, as well as on the sui
oftability data sets for training, testing, and validation. The success
is also verified on subjects that were not used as a training dataset.

1.1 Epilepsy
Epilepsy is one of the most common neurological diseases that
can affect anyone regardless of ethnicity, age, or gender [4]. It is
characterised by recurrent seizures that have no immediate identi-
fiable cause [5]. Epilepsy is not a homogenous type of disease, it is
rather a set of several different syndromes. This disease is treatable
in most cases (drug suppression or surgically operable). However,
pharmaco-resistant variants are also emerging [6].
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Figure 1: Example of epileptogenic activity in collected EEG signals.

Epileptic activity can manifest itself in a variety of seizures. The
basic ones are generalised and further divided into types such as:
absence of symptoms, tonic-clonic, myoclonic or clonic, atonic, and
tonic seizures. Another type are focal seizures, which are further
divided into with and without consciousness [7]. At figure 1 can be
seen different types of epileptic activity recorded by EEG.

EEG is a summation signal of neuronal electrical activity on the
scalp surface. Standard clinical EEG is often measured in a 10-20
system with 19 measuring channels. The change in voltage over
time produces a quasi-stationary signal. Certain periods of EEG
activity reflect the physiological or pathological activity. In the
frequency domain, we most often describe brain manifestations
using the power spectrum. Here, the 4 basic EEG spectral bands,
concretely delta (1 - 4 Hz), theta (4 - 8 Hz), alpha (8-13 Hz) and beta
(13-30 Hz) are most often distinguished.

1.2 Convolutional neural network
One of the types of neural networks (NN) are convolutional neural
networks (CNN). This type of neural network seeks to mimic the
way people perceive the world around them. Convolutional neural
networks are used in various areas of computer vision [8, 9]. Re-
cently, CNNs have been used for automatic classification of epileptic
seizures from EEG recordings [10]. However, for this type of NN,
the EEG signal must be converted to image data.

CNN is currently a widely used method for classifying epileptic
activity with relatively good results. For example, in the study by
Mandhouj et al. [11], the authors used Short time Fourier trans-
formation (STFT) to create an entry on CNN. The authors claim
that they had a high accuracy of about 98%. However, the authors
used the same data for training and testing. In the study by Naseem
et al. [12] the continuous wave transformation (CWT) in combi-
nation with CNN has been used instead of the STFT. Here, the
authors used a large online database (500 records) of EEG data from
healthy subjects, subjects with epilepsy diagnosis and subjects that
had a tumor. In this study, EEG segments from individual subjects

were divided evenly between the training, validation and testing
branches. The accuracy of this method was 74-78%. In the study by
Qin et al. [13], the authors achieved a high accuracy of 98.67% using
the feature fusion convolutional neural network. However, the
authors used same data for training and validation. In the study by
Sameer et al. [14] the 1D CNN for automatic feature extraction has
been used and then the epileptiform activity was classified by the
conventional classification methods. The authors again obtained
training and test data from the same datasets, so it is not possible to
evaluate the accuracy of new unknown records. Even in the study
by Shoji et al. [15], the authors randomly mixed segments from the
same records, which they then divided into training and test data.
Again, they used sections from the same EEG records for testing
and training. In this study, the authors specifically focused on the
detection of paroxysmal discharges.

2 METHODS
As part of the research, standard EEG clinical data from patients
with suspected epilepsy were preprocessed. Subsequently, the ap-
propriate time points were selected to create an image from the
EEG signal, which then entered the selected convolutional neural
network of the SqueezeNet architecture.

2.1 Dataset
The dataset consists of signals acquired from 6 patients in total. Age
range of the patients is between 19 to 58 years. Signals were mea-
sured on Brain-Quick (Micromed S.p.A.) digital system. Standard
19-channel EEG electrode placement was used, corresponding to
the 10-20 system with reference electrodes placed on the earlobes.
The recordings’ duration ranged from 9 to 20 minutes. The study
protocol has been approved by the Hospital Na Bulovce ethical
committee. The sensitivity was 100 𝜇V per 10 mm and electrode
impedance was below 5 kOhm. The sampling frequency was 256
Hz.
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Figure 2: Graph shows the GFP curve (top) and selected time point defined by local maxima of GFP curve higher than threshold
(bottom).

2.2 Preprocessing
The data were filtered with a bandpass filter 0.5–30.0 Hz. Two-way
FIR filter was used. Filter order was set to 1000. Also demean and
detrend was applied. Data were segmented into 6 second length
trials with 10% overlapping. Time-frequency analysis was done by
convolution with the Hanning window. The time resolution was
set to 500 ms. Power spectrum in the range of 1-30 Hz with 1 Hz
resolution was investigated. With regard to the number of time
points, a selection of certain time points was chosen, which serves
as a source for creating maps (images). Variance across electrodes
can reflect brain activity, which appears to be typical and can be
used to describe short-term brain conditions. This is an approach
to the analysis of microstates, where the so-called GFP curve is
calculated, see Figure 2. GFP curve is calculated like [16]:

𝐺𝐹𝑃 (𝑡) =

√√ (∑𝐾
𝑖 (𝑉𝑖 (𝑡) −𝑉𝑚𝑒𝑎𝑛 (𝑡))2

)
𝐾

where V means amplitude value and K represent the number of
channels. Local maxima were automatically selected from GFP
curves. In figure 2 a GFP curve of one subject is shown. Selected GFP
peaks correspond to epileptogenic activity (SW complex) scored by
a physician.

Size of spectrum estimation for each subject was 30 frequen-
cies for 19 channels over time. Size of GFP information was 30
frequencies per time. Spectral power estimation was performed by

convolution (frequency domain multiplication) using the Hanning
window. Power spectral values on electrodes are plotted through
a scalp in a 2D image using extrapolation and subsequent inter-
polation. Resulting maps (in 875x656 resolution) are exported to
.png format. Figures are then rescaled to 227x227 and continue into
the classification process. The images are also normalised, creating
2 sets of images for the same time points. Normalisation allows
unification of the range of the colour gamut across maps. On the
other hand, non-normalized maps reflect the distribution of activity
at a given moment and therefore provide higher contrast. The differ-
ence between normalised and non-normalised spectral power can
be seen at figure 3. From 4 individuals, segments that correspond
to epileptiform activity and physiological activity are randomly
selected. Therefore, a database of two groups is created. Each group
contains 1000 topographical maps which were subsequently divided
in 7:3 ratio into training and validation groups.

2.3 Neural Networks
Deep neural networks are used predominantly with an interest to
improve accuracy. However, greater complexity of the structure
requires more communication between servers during distributed
training and has higher hardware requirements. SqueezeNet is
therefore designed as a small architecture that seeks (18 layers)
to compensate for these shortcomings. SqueezeNet [17] achieves
AlexNet accuracy with 50x fewer parameters. For the purpose of
this work, a ready-made neural network SqueezeNet was chosen,

118



ICBRA 2022, September 18–20, 2022, Berlin, Germany Tereza Simralova et al.

Figure 3: Time-frequency analysis shows the difference between normalised (left) and non-normalised (right) spectral power.

Table 1: Parameters for CNN for different types of normalisation/scaling data input.

Normalised Non-normalised Unscaled

InitialLearnRate 0.0001 0.001 0.0003
L2Regularization 1.28E-10 0.0018 2,8512e10-8
ValidationFrequency 17 18 9
MaxEpochs 15 24 12
MiniBatchSize 20 13 25
LearnRateDropPeriod 5 10 10
LearnRateDropFactor 0.4998 0.4629 0.4608

80.83% 81.67% 81.50%

which was re-taught to our type of dataset using the method of so-
called transfer learning. The selection of the network was governed
by several criteria, namely availability in the MATLAB software
environment, low computational complexity, and suitability for our
type of dataset. Transfer learning consists of replacing the last few
layers of the network with completely new layers. These layers
then, after setting the appropriate parameters, re-learn the network
and distribute the new knowledge among other layers. In Bayesian
optimization, the maximum accuracy of verification on the vali-
dation set was chosen as the evaluation criterion. The number of
iterations was set to 500 and the final value of WeightLearnRateFac-
tor and BiasLearnRateFactor was set to 15. The algorithm used for
network training was Stochastic Gradient Descent with Momen-
tum (SGDM). The CNN was trained with the following parameters
in the specified range of parameter values: RandRotation [-90 90],
RandScale [0.5 2], InitialLearnRate [1.10-4 1.10-3], L2Regularization
[1.10-10 1.10-2], ValidationFrequency [5, 20], MiniBatchSize [10 30],
MaxEpochs [10 25], LearnRateDropPeriod [1, 10], LearnRateDrop-
Factor [0.1 0.5].Optimised parameters for different types of input
data are shown in Table 1.

2.4 Statistical evaluation
The output of Bayesian optimization is the determination of the best
network of all its iterations, the training graph, and the network
itself. After the training, the network has a certain percentage value
in accuracy in the training and validation set. However, this may

not yet correspond to its true accuracy in dividing the images into
learned categories. This needs to be verified on new data, i.e. images
that have not been used for training. Sensitivity, specificity, and
positive predictive value (PPV) parameters were also calculated
[18].

3 RESULTS
In the study, we trained CNN SqueezeNet to classify clinical EEG
records of patients with epileptiform activity. The aim was to com-
pare the input image data - their nature (e.g. normalisation) and
their effect on CNN accuracy. We also propose a methodology
of evaluation on an unknown dataset for CNN. In case of non-
normalised maps, the accuracy changes more homogeneously in
comparison to normalised one. In case of normalised maps (see
figure 5) the decrease and increase of accuracy between 500 and
1000 iterations is changing. The accuracy is more stable in higher
numbers of iterations, see Figure 4. For unscaled input the insta-
bility of accuracy in the iteration step is also typical, see figure
6.

We calculated the sensitivity, specificity and PPV of CNN for
3 input generation methods (see table 2). The first input was a
normalised time-frequency graph, the second input was a non-
normalized time-frequency graph and the third one was an un-
scaled time-frequency spectrum. Validation was performed on
data that was not used for CNN training and testing. For all vali-
dated methods, we calculated the accuracy for 4 different randomly
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Figure 4: Changing of accuracy during the training process for non-normalised data input.

Figure 5: Changing of accuracy during the training process for normalised data input.

Table 2: Sensitivity, specificity and PPV of classification on the new subject for all three types of picture preprocessing

Normalised Non-normalised [uV2/Hz] Unscaled [-]

Sensitivity 82.06% 67.53% 77.09%
Specificity 42.00% 84.00% 55.00%

PPV 96.29% 98.95% 97.45%
Accuracy 80.34% 68.24% 76.14%

selected CNN training and testing sections (see table 3). This vali-
dation tested the robustness of each method.

4 DISCUSSION
The aim of this work was to verify the classification of various
manifestations of epileptic activity in EEG records on real clinical
datasets. This data also includes segments that are difficult to clas-
sify. In contrast to studies that classify only selected segments of
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Figure 6: Changing of accuracy during the training process for unscaled data input.

Table 3: Accuracy of classification on the new subject for all three types of picture preprocessing

Normalised Non-normalised [uV2/Hz] Unscaled [-]

group 1 86.00% 90.00% 72.00%
group 2 93.00% 94.00% 89.00%
group 3 87.00% 87.00% 76.00%
group 4 90.00% 93.00% 81.00%
mean 89.00% 91.00% 79.50%

epileptic activity from online databases, for example studies [11–13
and 19], this is a more complex problem. Next difference, compared
to other studies, is the character of the input dataset [20] of images.
In our case, the image is not made of time series but used topo-
graphical maps - extra and subsequently interpolation of values
from electrodes. Such a topographic map can then be compared to
microstate analysis. Our approach is selective, it is not the data for
training from every point in time. We thus assumed lower accuracy
compared to other studies, but the result should reflect the clinical
impact more precisely.

SqueezeNet type CNN was chosen due to a small number of lay-
ers (18). Validation was performed on sections from EEG recordings
which weren’t selected for training and testing of CNN. Table 2
shows the sensitivity, specificity and PPV calculated for normalised,
non-normalised and unscaled methods. The PPV was high for all
validated methods, ranging between 96.29% and 98.95%. Therefore,
if one of the methods detected epileptic activity, it is very likely true.
The specificity was high only for the non-normalised data, specifi-
cally 84.00%. Thus, only the non-normalised method identified the
non-epileptic activity correctly. The sensitivity was highest for the
normalised method, namely 82.06%. Thus, the normalised method
was able to find the most epileptic activities. Although the other
two methods found most of the epileptic activity, they did not find a
relatively large part of the epileptic activity. The reason is probably
the inhomogeneous selection of training segments and the use of
real EEG segments instead of pattern samples.

We compared the individual methods in 4 different groups to
obtain more robust results. The individual sections were selected
randomly for training and testing. Each group was created as a
different random combination of selected sections. Table 3 shows
the accuracy for each group and the individualmethods. The highest
non-normalised method had an average accuracy of 91%. On the
contrary, the unscaled method had the lowest accuracy of 79.5%,
and also the highest variance of individual success rates. The non-
normalised method had individual robust success rates, ranging
between 87% and 94%.

The best results are based on the non-normalised method, due
to robust results, high specificity, PPV and higher sensitivity. The
accuracy of 80% that we achieved in this work is lower than some
research [21], but it can still be used in practice. Most studies use
online databases containing several-second segments of normal
activity or attack. These databases achieved high accuracies, but
these do not reflect how the resulting algorithms would work on
real data. For example, we achieved higher accuracy compared to
research [22] methodologically similar to real data. In the future,
CNN will need to be trained with more homogeneous segments in
order to improve sensitivity of the non-normalised method, The
segments for validation were selected from two EEG records. In
future work, we will focus on the non-normalised method and
validate it on a larger set of EEG data on which no CNN training
and testing has taken place. However, the non-normalised method
demonstrated the ability to detect epileptic activity in real EEG
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recordings that had not previously been used for CNN training and
testing.

5 CONCLUSION
The classification accuracy of approximately 80 % of various ori-
gins of epileptiform activity for completely new subjects gives
promising use in supporting physicians in clinical practice in the
evaluation of EEG recordings. Because the brain stays in similar
activity across the scalp repeatedly, it is possible to use the image
of the topographic map for classification. The manuscript offers a
methodology for image extraction and subsequent classification. In
the future, it would be appropriate to validate the accuracy on a
wider dataset, as the current results are promising.
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