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Explaining to users why some items are recommended is critical, as it can help users to make better decisions,
increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable
RS usually consider explanation as a side output of the recommendation model, which has two problems: (1)
it is difficult to evaluate the produced explanations because they are usually model-dependent, and (2) as a
result, how the explanations impact the recommendation performance is less investigated.

In this paper, explaining recommendations is formulated as a ranking task, and learned from data, similar
to item ranking for recommendation. This makes it possible for standard evaluation of explanations via
ranking metrics (e.g., NDCG). Furthermore, this paper extends traditional item ranking to an item-explanation
joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals,
e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the
user-item-explanation data would be inevitably severer than that in traditional user-item interaction data, since
not every user-item pair can be associated with all explanations. To mitigate this issue, this paper proposes
to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary
relationships. Experiments on three large datasets verify the solution’s effectiveness on both explanation
ranking and item recommendation.

CCS Concepts: • Information systems → Recommender systems; Learning to rank; • Computing
methodologies→Multi-task learning.
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1 INTRODUCTION
Recommendation algorithms, such as collaborative filtering [38, 39] and matrix factorization
[23, 34], have been widely deployed in online platforms, such as e-commerce and social networks,
to help users find their interested items. Meanwhile, there is a growing interest in explainable
recommendation [5, 9, 11, 12, 15, 17, 26, 29, 47, 52, 53], which aims at producing user-comprehensible
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Fig. 1. A toy example of explanation ranking for a movie recommender system.

explanations, as they can help users make informed decisions and gain users’ trust in the system
[42, 52]. However, in current explainable recommendation approaches, explanation is often a side
output of the model, which would incur two problems: first, the standard evaluation of explainable
recommendation could be difficult, because the explanations vary from model to model (i.e., model-
dependent); second, these approaches rarely study the potential impacts of explanations, mainly
because of the first problem.
Evaluation of explanations in existing works can be generally classified into four categories,

including case study, user study, online evaluation and offline evaluation [52]. In most works, case
study is adopted to show how the example explanations are correlated with recommendations.
These examples may look intuitive, but they are less representative to reflect the overall quality
of the explanations. Results of user study [1, 16] are more plausible, but it can be expensive
and is usually evaluated in simulated environments which may not reflect real users’ actual
perception. Though this is not a problem in online evaluation, it is difficult to implement as it relies
on the collaboration with industrial firms, which may explain why only few works [33, 49, 53]
conducted online evaluation. Consequently, one may wonder whether it is possible to evaluate the
explainability using offline metrics. However, as far as we know, there is no standard metrics that are
well recognized by the community. Though BLEU [35] and ROUGE [30] have been widely adopted
to evaluate text quality for natural language generation, text quality is not equal to explainability
[6, 26].

With the attempt to achieve a standard offline evaluation of recommendation explanations, we
formulate the explanation problem as a ranking task [31]. The basic idea is to train a model that
can select appropriate explanations from a shared explanation pool for a recommendation. For
example, when a movie recommender system suggests the movie “Frozen” to a user, it may also
provide a few explanations, such as “great family movie” and “excellent graphics”, as shown in
Fig. 1. Notice that, these explanations are available all the time, but their ranking orders differ for
different movie recommendations, and only those ranked top are presented to the user. In this case,
the explanations are also learned from data, similar to recommendations. Moreover, this general
formulation can be adapted to various explanation styles, such as sentences, images, and even new
styles yet to be invented, as long as the user-item-explanation interactions are available. As an
instantiation, we adopt three public datasets with textual explanations [27] for experimentation.
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With the evaluation and data, we can investigate the potential impacts of explanations, such as
higher chance of item click, conversion or fairness [41], which are less explored but are particularly
important in commercial systems. Without an appropriate approach to explanation evaluation,
explanations have usually been modeled as an auxiliary function of the recommendation task in
most explainable models [5, 11, 32, 40, 53]. Recent works which jointly model recommendation
and text generation [12] or feature prediction [15, 45], find that the two tasks could influence each
other. In particular, [10] shows that fine-tuning the parallel task of feature ranking can boost the
recommendation performance. Moreover, a user study shows that users’ feedback on explanation
items could help to improve recommendation accuracy [16]. Based on these findings, we design
an item-explanation joint-ranking framework to study if showing some particular explanations
could lead to increased item acceptance rate (i.e., improving the recommendation performance).
Furthermore, we are motivated to identify how the recommendation task and the explanation task
would interact with each other, whether there is a trade-off between them, and how to achieve the
most ideal solution for both.

However, the above investigation cannot proceed without addressing the inherent data sparsity
issue in the user-item-explanation interactions. In traditional pair-wise data, each user may be
associated with several items, but in the user-item-explanation triplets data, each user-item pair
may be associated with only one explanation. In consequence, the data sparsity problem is severer
for explanation ranking. Therefore, how to design an effective model for such one-shot learning
scenario becomes a great challenge. Our solution is to separate user-item-explanation triplets
into user-explanation and item-explanation pairs, which significantly alleviates the data sparsity
problem. Based on this idea, we design two types of model. First, a general model that only makes
use of IDs, aims to accommodate a variety of explanation styles, such as sentences and images.
Second, a domain-specific model based on BERT [14] further leverages the semantic features of the
explanations to enhance the ranking performance.

In summary, our key contributions are as follows:
• To the best of our knowledge, our work is the first attempt to achieve standard evaluation of
explainability for explainable recommendation via well-recognized metrics, such as NDCG,
precision and recall. We realize this by formulating the explanation problem as a ranking-
oriented task.
• With the evaluation, we further propose an item-explanation joint-ranking framework that
can reach our designed goal, i.e., improving the performance of both recommendation and
explanation, as evidenced by our experimental results.
• To that end, we address the data sparsity issue in the explanation ranking task by designing an
effective solution, being applied to two types of model (with and without semantic features of
the explanations)1. Extensive experiments show their effectiveness against strong baselines.

In the following, we first summarize related work in Section 2, and then formulate the problems
in Section 3. Our proposed models and the joint-ranking framework are presented in Section 4.
Section 5 introduces the experimental setup, and the discussion of results is provided in Section 6.
We conclude this work with outlooks in Section 7.

2 RELATEDWORK
Recent years have witnessed a growing interest in explainable recommendation [4, 5, 9, 11, 12, 15,
25, 26, 29, 32, 40, 47, 53]. In these works, there is a variety of explanation styles to recommendations,
including visual highlights [9], textual highlights [32, 40], item neighbors [16], knowledge graph
paths [7, 20, 48], word cloud [53], item features [17], pre-defined templates [15, 25, 53], automatically
1Codes available at https://github.com/lileipisces/BPER
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generated text [12, 26, 28, 29, 50, 51], retrieved text [4, 5, 11, 46, 47], etc. The last type of style is related
to this paper, but explanations in these works are merely side outputs of their recommendation
models. As a result, none of these works measured the explanation quality based on benchmark
metrics. In comparison, we formulate the explanation task as a learning to rank [31] problem,
which enables standard offline evaluation via ranking-oriented metrics.

On the one hand, the application of learning to rank can also be found in other domains. For
instance, [19, 44] attempt to explain entity relationships in Knowledge Graphs. The major difference
from our work is that they heavily rely on the semantic features of explanations, either constructed
manually [44] or extracted automatically [19], while one of our models works well when leveraging
only the relation of explanations to users and items, without considering such features.
On the other hand, the appropriateness of current evaluation for explanations is still under

debate. There are some works [12, 29] that regard text similarity metrics (i.e., BLEU [35] in machine
translation and ROUGE [30] in text summarization) as explainability, when generating textual
reviews/tips for recommendations. However, text similarity does not equal to explainability [6, 26].
For example, when the ground-truth is “sushi is good”, two generated explanations “ramen is good”
and “sushi is delicious” gain the same score on the two metrics. However, from the perspective
of explainability, the latter is obviously more related to the ground-truth, as they both refer to
the same feature “sushi”, but the metrics fail to reflect this issue. As a response, in this paper we
propose a new evaluation approach based on ranking.
Our proposed models are experimented on textual datasets, but it can be applied to a broad

spectrum of other explanation styles, e.g., images, as discussed earlier. Concretely, on each dataset
there is a pool of candidate explanations to be selected for each user-item pair. A recent online
experiment [49] conducted on Microsoft Office 3652 shows that this type of globally shared ex-
planations is indeed helpful to users. The main focus of this work is to study how users perceive
explanations, which is different from ours that aims to design effective models to rank explanations.
Despite of that, their research findings motivate us to provide better explanations that could lead
to improved recommendations.
In more details, we model the user-item-explanation relations for both item and explanation

ranking. There is a previous work [17] that similarly considers user-item-aspect relations as a
tripartite graph, where aspects are extracted from user reviews. Another branch of related work
is tag recommendation for folksonomy [22, 37], where tags are ranked for each given user-item
pair. In terms of problem setting, our work is different from the preceding two, because they solely
rank either items/aspects [17] or tags [22, 37], while besides that we also rank item-explanation
pairs as a whole in our joint-ranking framework. Another difference is that we study how semantic
features of explanations could help enhance the performance of explanation ranking, while none
of them did so.

3 PROBLEM FORMULATION
The key notations and concepts for the problems are presented in Table 1. We useU to denote
the set of all users, I the set of all items and E the set of all explanations. Then the historical
interaction set is given by T ⊆ U × I × E (an illustrating example of such interaction is depicted
in Fig. 2). In the following, we first introduce item ranking and explanation ranking respectively,
and then the item-explanation joint-ranking.

2https://www.office.com
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Table 1. Key notations and concepts.

Symbol Description
T training set
U set of users
I set of items
I𝑢 set of items that user 𝑢 preferred
E set of explanations
E𝑢 set of user 𝑢’s explanations
E𝑖 set of item 𝑖’s explanations
E𝑢,𝑖 set of explanations that user 𝑢 preferred w.r.t. item 𝑖

P latent factor matrix for users
Q latent factor matrix for items
O latent factor matrix for explanations
p𝑢 latent factors of user 𝑢
q𝑖 latent factors of item 𝑖

o𝑒 latent factors of explanation 𝑒

𝑏𝑖 bias term of item 𝑖

𝑏𝑒 bias term of explanation 𝑒

𝑑 dimension of latent factors
𝛼 , _ regularization coefficient
𝛾 learning rate
𝑇 iteration number
𝑀 number of recommendations for each user
𝑁 number of explanations for each recommendation
𝑟𝑢,𝑖 score predicted for user 𝑢 on item 𝑖

𝑟𝑢,𝑖,𝑒 score predicted for user 𝑢 on explanation 𝑒 of item 𝑖

3.1 Item Ranking
Personalized recommendation aims at providing a user with a ranked list of items that he/she never
interacted with before. For each user 𝑢 ∈ U, the list of𝑀 items can be generated as follows,

Top(𝑢,𝑀) := 𝑀
argmax
𝑖∈I/I𝑢

𝑟𝑢,𝑖 (1)

where 𝑟𝑢,𝑖 is the predicted score for a user 𝑢 on item 𝑖 , and I/I𝑢 denotes the set of items on which
user 𝑢 has no interactions. In Eq. (1), 𝑖 is underlined, which means that we aim to rank the items.

3.2 Explanation Ranking
Explanation ranking is the task of finding a list of appropriate explanations for a user-item pair to
justify the recommendation. Formally, given a user 𝑢 ∈ U and an item 𝑖 ∈ I, the goal of this task
is to rank the entire collection of explanations E, and select the top 𝑁 to reason why the item 𝑖 is
recommended. Specifically, we define this list of top 𝑁 explanations as:

Top(𝑢, 𝑖, 𝑁 ) := 𝑁
argmax

𝑒∈E
𝑟𝑢,𝑖,𝑒 (2)

where 𝑟𝑢,𝑖,𝑒 is the estimated score of explanation 𝑒 for a given user-item pair (𝑢, 𝑖), which could be
given by a recommendation model or by the user’s true behavior.
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Fig. 2. Illustration of user-item-explanation interactions.

3.3 Item-Explanation Joint-Ranking
The preceding tasks solely rank either items or explanations. In this task, we further investigate
whether it is possible to find an ideal item-explanation pair for a user, to whom the explanation
best justifies the item that he/she likes the most. To this end, we treat each pair of item-explanation
as a joint unit, and then rank these units. Specifically, for each user 𝑢 ∈ U, a ranked list of 𝑀
item-explanation pairs can be produced as follows,

Top(𝑢,𝑀) := 𝑀
argmax

𝑖∈I/I𝑢 ,𝑒∈E
𝑟𝑢,𝑖,𝑒 (3)

where 𝑟𝑢,𝑖,𝑒 is the predicted score for a given user 𝑢 on the item-explanation pair (𝑖 , 𝑒).
We see that either item ranking task or explanation ranking task is a special case of this item-

explanation joint-ranking task. Concretely, Eq. (3) degenerates to Eq. (1) when explanation 𝑒 is
fixed, while it reduces to Eq. (2) if item 𝑖 is already known.

4 OUR FRAMEWORK FOR RANKING TASKS
4.1 Joint-Ranking Reformulation
Suppose we have an ideal model that can perform the aforementioned joint-ranking task. During
the prediction stage as in Eq. (3), there would be |I | × |E| candidate item-explanation pairs to rank
for each user 𝑢 ∈ U. The runtime complexity is then 𝑂 (|U| · |I| · |E |), which makes this task
impractical, compared with the traditional recommendation task’s 𝑂 (|U| · |I|) complexity.

To reduce the complexity, we reformulate the joint-ranking task by performing ranking for items
and explanations simultaneously but separately. In this way, we are also able to investigate the
relationship between item ranking and explanation ranking, e.g., improving the performance of
both. Specifically, during the testing stage, we first follow Eq. (1) to rank items for each user 𝑢 ∈ U,
which has the runtime complexity of 𝑂 ( |U| · |I|). After that, for 𝑀 recommendations for each
user, we can rank and select explanations to justify each of them according to Eq. (2). The second
step’s complexity is 𝑂 ( |U| · 𝑀 · |E |), but since 𝑀 is a constant and |E | ≪ |I| (see Table 2), the
overall complexity of the two steps is 𝑂 (|U| · |I|).
In the following, we first analyze the drawback of a conventional Tensor Factorization (TF)

model when being applied to the explanation ranking problem, and then introduce our solution
BPER. Second, we show how to further enhance BPER by utilizing the semantic features of textual
explanations (denoted as BPER+). Third, we illustrate their relation to two typical TF methods
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CD and PITF. At last, we integrate the explanation ranking with item ranking into a multi-task
learning framework as a joint-ranking task.

4.2 Bayesian Personalized Explanation Ranking (BPER)
To perform explanation ranking, the score 𝑟𝑢,𝑖,𝑒 on each explanation 𝑒 ∈ E for a given user-item
pair (𝑢, 𝑖) must be estimated. As the user-item-explanation ternary relations T = {(𝑢, 𝑖, 𝑒) |𝑢 ∈
U, 𝑖 ∈ I, 𝑒 ∈ E} form an interaction cube, we are inspired to employ factorization models to
predict this type of scores. There are a number of tensor factorization techniques [2, 21], such
as Tucker Decomposition (TD) [43], Canonical Decomposition (CD) [3] and High Order Singular
Value Decomposition (HOSVD) [13]. Intuitively, one would adopt CD, because of its linear runtime
complexity in terms of both training and prediction [37] and its close relation toMatrix Factorization
(MF) [34] that has been extensively studied in recent years for item recommendation. Formally,
according to CD, the score 𝑟𝑢,𝑖,𝑒 of user 𝑢 on item 𝑖’s explanation 𝑒 can be estimated by the sum over
the element-wise multiplication of the user’s latent factors p𝑢 , the item’s q𝑖 and the explanation’s
o𝑒 :

𝑟𝑢,𝑖,𝑒 = (p𝑢 ⊙ q𝑖 )⊤o𝑒 =
𝑑∑︁

𝑘=1
𝑝𝑢,𝑘 · 𝑞𝑖,𝑘 · 𝑜𝑒,𝑘 (4)

where ⊙ denotes the element-wise multiplication of two vectors.
However, this method may not be effective enough due to the inherent sparsity problem of the

ternary data as we discussed before. Since each user-item pair (𝑢, 𝑖) in the training set T is unlikely
to have interactions with many explanations in E, the data sparsity problem for explanation ranking
is severer than that for item recommendation. Simply multiplying the three vectors would hurt the
performance of explanation ranking, which is evidenced by our experimental results in Section 6.
To mitigate such an issue and to improve the effectiveness of explanation ranking, we propose

to separately estimate the user 𝑢’s preference score 𝑟𝑢,𝑒 on explanation 𝑒 and the item 𝑖’s appropri-
ateness score 𝑟𝑖,𝑒 for explanation 𝑒 . To this end, we perform two sets of matrix factorization, rather
than employing one single TF model. In this way, the sparsity problem would be considerably
alleviated, since the data are reduced to two collections of binary relations, both of which are
similar to the case of item recommendation discussed above. At last, the two scores 𝑟𝑢,𝑒 and 𝑟𝑖,𝑒
are combined linearly through a hyper-parameter `. Specifically, the score of user 𝑢 for item 𝑖 on
explanation 𝑒 is predicted as follows,

𝑟𝑢,𝑒 = p⊤𝑢 o𝑈𝑒 + 𝑏𝑈𝑒 =
∑𝑑

𝑘=1 𝑝𝑢,𝑘 · 𝑜𝑈𝑒,𝑘 + 𝑏
𝑈
𝑒

𝑟𝑖,𝑒 = q⊤𝑖 o
𝐼
𝑒 + 𝑏𝐼𝑒 =

∑𝑑
𝑘=1 𝑞𝑖,𝑘 · 𝑜𝐼𝑒,𝑘 + 𝑏

𝐼
𝑒

𝑟𝑢,𝑖,𝑒 = ` · 𝑟𝑢,𝑒 + (1 − `) · 𝑟𝑖,𝑒
(5)

where {o𝑈𝑒 , 𝑏𝑈𝑒 } and {o𝐼𝑒 , 𝑏𝐼𝑒 } are two different sets of latent factors for explanations, corresponding
to users and items respectively.
Since selecting explanations that are likely to be perceived helpful by users is inherently a

ranking-oriented task, directly modeling the relative order of explanations is thus more effective
than simply predicting their absolute scores. The Bayesian Personalized Ranking (BPR) criterion
[36] meets such an optimization requirement. Intuitively, a user would be more likely to appreciate
explanations that cater to her own preferences, while those that do not fit one’s interests would be
less attractive to the user. Similarly, some explanations might be more suitable to describe certain
items, while other explanations might not. To build such type of pair-wise preferences, we use the
first two rows in Eq. (5) to compute the difference between two explanations for both user 𝑢 and
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item 𝑖 as follows, {
𝑟𝑢,𝑒𝑒′ = 𝑟𝑢,𝑒 − 𝑟𝑢,𝑒′
𝑟𝑖,𝑒𝑒′′ = 𝑟𝑖,𝑒 − 𝑟𝑖,𝑒′′

(6)

which respectively reflect user 𝑢’s interest in explanation 𝑒 over 𝑒 ′, and item 𝑖’s appropriateness
for explanation 𝑒 over 𝑒 ′′.
With the scores 𝑟𝑢,𝑒𝑒′ and 𝑟𝑢,𝑒𝑒′′ , we can then adopt the BPR criterion [36] to minimize the

following objective function:

min
Θ

∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

∑︁
𝑒∈E𝑢,𝑖

[ ∑︁
𝑒′∈E/E𝑢

− ln𝜎 (𝑟𝑢,𝑒𝑒′) +
∑︁

𝑒′′∈E/E𝑖

− ln𝜎 (𝑟𝑖,𝑒𝑒′′)
]
+ _ | |Θ| |2𝐹 (7)

where 𝜎 (·) denotes the sigmoid function, I𝑢 represents the set of items that user 𝑢 has interacted
with, E𝑢,𝑖 is the set of explanations in the training set for the user-item pair (𝑢, 𝑖), E/E𝑢 and E/E𝑖
respectively correspond to explanations that user 𝑢 and item 𝑖 have not interacted with, Θ is the
model parameter, and _ is the regularization coefficient.
From Eq. (7), we can see that there are two explanation tasks to be learned respectively, corre-

sponding to users and items. During the training stage, we allow them to be equally important,
since we have a hyper-parameter ` in Eq. (5) to balance their importance during the testing stage.
The effect of this parameter is studied in Section 6.1. After the model parameters are estimated, we
can rank explanations according to Eq. (2) for each user-item pair in the testing set. As we model
the explanation ranking task under BPR criterion, we accordingly name our method Bayesian
Personalized Explanation Ranking (BPER). To learn the model parameter Θ, we draw on the widely
used stochastic gradient descent algorithm to optimize the objective function in Eq. (7). Specifi-
cally, we first randomly initialize the parameters, and then repeatedly update them by uniformly
taking samples from the training set and computing the gradients w.r.t. the parameters, until the
convergence of the algorithm. The complete learning steps are shown in Algorithm 1.

4.3 BERT-enhanced BPER (BPER+)
The BPER model only exploits the IDs of users, items and explanations to infer their relation for
explanation ranking. However, this makes the rich semantic features of the explanations, which
could also capture the relation between explanations, under-explored. For example, “the acting is
good” and “the acting is great” for movie recommendation both convey a positive sentiment with a
similar meaning, so their ranks are expected to be close. Hence, we further investigate whether such
features could help to enhance BPER. As a feature extractor, we opt for BERT [14], a well-known
pre-trained language model, whose effectiveness has been demonstrated on a wide range of natural
language understanding tasks. Specifically, we first add a special [CLS] token at the beginning
of a textual explanation 𝑒 , e.g., “[CLS] the acting is great”. After passing it through BERT, we can
obtain the aggregate representation (corresponding to [CLS]) that encodes the explanation’s overall
semantics. To match the dimension of latent factors in our model, we apply a linear layer to this
vector, resulting in o𝐵𝐸𝑅𝑇𝑒 . Then, we enhance the two ID-based explanation vectors o𝑈𝑒 and o𝐼𝑒 in
Eq. (5) by multiplying o𝐵𝐸𝑅𝑇𝑒 , resulting in o𝑈 +𝑒 and o𝐼+𝑒 .{

o𝑈 +𝑒 = o𝑈𝑒 ⊙ o𝐵𝐸𝑅𝑇𝑒

o𝐼+𝑒 = o𝐼𝑒 ⊙ o𝐵𝐸𝑅𝑇𝑒

(8)
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Algorithm 1 Bayesian Personalized Explanation Ranking (BPER)
Input: training set T , dimension of latent factors 𝑑 , learning rate 𝛾 , regularization coefficient _,

iteration number 𝑇
Output: model parameters Θ = {P,Q,O𝑈 ,O𝐼 , b𝑈 , b𝐼 }
1: Initialize Θ, including P ← R |U |×𝑑 , Q ← R |I |×𝑑 , O𝑈 ← R |E |×𝑑 ,O𝐼 ← R |E |×𝑑 , b𝑈 ←
R |E |, b𝐼 ← R |E |

2: for 𝑡1 = 1 to 𝑇 do
3: for 𝑡2 = 1 to |T | do
4: Uniformly draw (𝑢, 𝑖, 𝑒) from T , 𝑒 ′ from E/E𝑢 , and 𝑒 ′′ from E/E𝑖
5: 𝑟𝑢,𝑒𝑒′ ← 𝑟𝑢,𝑒 − 𝑟𝑢,𝑒′ , 𝑟𝑖,𝑒𝑒′′ ← 𝑟𝑖,𝑒 − 𝑟𝑖,𝑒′′
6: 𝑥 ← −𝜎 (−𝑟𝑢,𝑒𝑒′), 𝑦 ← −𝜎 (−𝑟𝑖,𝑒𝑒′′)
7: p𝑢 ← p𝑢 − 𝛾 · (𝑥 · (o𝑈𝑒 − o𝑈𝑒′) + _ · p𝑢)
8: q𝑖 ← q𝑖 − 𝛾 · (𝑦 · (o𝐼𝑒 − o𝐼𝑒′′) + _ · q𝑖 )
9: o𝑈𝑒 ← o𝑈𝑒 − 𝛾 · (𝑥 · p𝑢 + _ · o𝑈𝑒 )
10: o𝑈

𝑒′ ← o𝑈
𝑒′ − 𝛾 · (−𝑥 · p𝑢 + _ · o𝑈𝑒′)

11: o𝐼𝑒 ← o𝐼𝑒 − 𝛾 · (𝑦 · q𝑖 + _ · o𝐼𝑒 )
12: o𝐼

𝑒′′ ← o𝐼
𝑒′′ − 𝛾 · (−𝑦 · q𝑖 + _ · o𝐼𝑒′′)

13: 𝑏𝑈𝑒 ← 𝑏𝑈𝑒 − 𝛾 · (𝑥 + _ · 𝑏𝑈𝑒 )
14: 𝑏𝑈

𝑒′ ← 𝑏𝑈
𝑒′ − 𝛾 · (−𝑥 + _ · 𝑏𝑈𝑒′ )

15: 𝑏𝐼𝑒 ← 𝑏𝐼𝑒 − 𝛾 · (𝑦 + _ · 𝑏𝐼𝑒 )
16: 𝑏𝐼

𝑒′′ ← 𝑏𝐼
𝑒′′ − 𝛾 · (−𝑦 + _ · 𝑏𝐼𝑒′′)

17: end for
18: end for

To predict the score for (𝑢, 𝑖, 𝑒) triplet, we replace o𝑈𝑒 and o𝐼𝑒 in Eq. (5) with o𝑈 +𝑒 and o𝐼+𝑒 . Then
we use Eq. (7) as the objective function, which can be optimized via back-propagation. In Eq. (8),
we adopt the multiplication operation simply to verify the feasibility of incorporating semantic
features. The model may be further improved by more sophisticated operations, e.g., multi-layer
perceptron (MLP), but we leave the exploration for future work.

Notice that, BPER is a general method that only requires the IDs of users, items and explanations,
which makes it very flexible when being adapted to other explanation styles (e.g., images [9]).
However, it may suffer from the common cold-start issue as with other recommender systems.
BPER+ could mitigate this issue to some extent, because besides IDs it also considers the semantic
relation between textual explanations via BERT, which can connect new explanations with existing
ones. As the first work on ranking explanations for recommendations, we opt to make both methods
relatively simple for reproducibility purpose. In this way, it is also easy to observe the experimental
results (such as the impact of explanation task on recommendation task), without the interference
of other factors.

4.4 Relation between BPER, BPER+, CD, and PITF
In fact, our Bayesian Personalized Explanation Ranking (BPER) model is a type of Tensor Factoriza-
tion (TF), so we analyze its relation to two closely related TF methods: Canonical Decomposition
(CD) [3] and Pairwise Interaction Tensor Factorization (PITF) [37]. On the one hand, in theory
BPER can be considered as a special case of the CD model. Suppose the dimensionality of BPER is
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(a) Our Bayesian Personalized Explanation Ranking
(BPER)

(b) Our BERT-enhanced BPER (BPER+)

(c) Canonical Decomposition (CD)

(d) Pairwise Interaction Tensor Factorization
(PITF)

Fig. 3. Tensor Factorization models. The three matrices (i.e., P, Q, O) are model parameters. Our BPER and
BPER+ can be regarded as special cases of CD, while PITF can be seen as a special case of our BPER and
BPER+.

2 · 𝑑 + 2, we can reformulate it as CD in the following,

𝑝𝐶𝐷
𝑢,𝑘

=

{
` · 𝑝𝑢,𝑘 , if 𝑘 ≤ 𝑑

`, else

𝑞𝐶𝐷
𝑖,𝑘

=

{
(1 − `) · 𝑞𝑖,𝑘 , if 𝑘 > 𝑑 and 𝑘 ≤ 2 · 𝑑
1 − `, else

𝑜𝐶𝐷
𝑒,𝑘

=


𝑜𝑈
𝑒,𝑘
, if 𝑘 ≤ 𝑑

𝑜𝐼
𝑒,𝑘
, else if 𝑘 ≤ 2 · 𝑑

𝑏𝑈𝑒 , else if 𝑘 = 2 · 𝑑 + 1
𝑏𝐼𝑒 , else

(9)

where the parameter ` is a constant.
On the other hand, PITF can be seen as a special case of our BPER. Formally, its predicted score

𝑟𝑢,𝑖,𝑒 for the user-item-explanation triplet (𝑢, 𝑖, 𝑒) can be calculated by:

𝑟𝑢,𝑖,𝑒 = p⊤𝑢 o
𝑈
𝑒 + q⊤𝑖 o𝐼𝑒 =

𝑑∑︁
𝑘=1

𝑝𝑢,𝑘 · 𝑜𝑈𝑒,𝑘 +
𝑑∑︁

𝑘=1
𝑞𝑖,𝑘 · 𝑜𝐼𝑒,𝑘 (10)

We can see that our BPER degenerates to PITF if in Eq. (5) we remove the bias terms 𝑏𝑈𝑒 and 𝑏𝐼𝑒
and set the hyper-parameter ` to 0.5, which means that the two types of scores for users and items
are equally important to the explanation ranking task.
Although CD is more general than our BPER, its performance may be affected by the data

sparsity issue as discussed before. Our BPER could mitigate this problem given its explicitly
designed structure that may be difficult for CD to learn from scratch. When comparing with PITF,
we can find that the parameter ` in BPER is able to balance the importance of the two types of
scores, corresponding to users and items, which makes our BPER more expressive than PITF and
hence likely reach better ranking quality.
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In a similar way, BPER+ can also be rewritten as CD or PITF. Concretely, by revising the last part
of Eq. (9) as the following formula, BPER+ can be seen as CD. When o𝐵𝐸𝑅𝑇𝑒 = [1, ..., 1]⊤, BPER+ is
equal to BPER, so it can be easily converted into PITF. The graphical illustration of the four models
is shown in Fig. 3.

𝑜𝐶𝐷
𝑒,𝑘

=


𝑜𝑈
𝑒,𝑘
· 𝑜𝐵𝐸𝑅𝑇

𝑒,𝑘
, if 𝑘 ≤ 𝑑

𝑜𝐼
𝑒,𝑘
· 𝑜𝐵𝐸𝑅𝑇

𝑒,𝑘
, else if 𝑘 ≤ 2 · 𝑑

𝑏𝑈𝑒 , else if 𝑘 = 2 · 𝑑 + 1
𝑏𝐼𝑒 , else

(11)

4.5 Joint-Ranking on BPER (BPER-J)
Owing to BPER’s flexibility to accommodate various explanation styles as discussed before, we
perform the joint-ranking on it. Specifically, we incorporate the two tasks of explanation ranking
and item recommendation into a unified multi-task learning framework, so as to find a good solution
that benefits both of them.
For recommendation, we adopt Singular Value Decomposition (SVD) model [23] to predict the

score 𝑟𝑢,𝑖 of user 𝑢 on item 𝑖:

𝑟𝑢,𝑖 = p⊤𝑢 q𝑖 + 𝑏𝑖 =
𝑑∑︁

𝑘=1
𝑝𝑢,𝑘 · 𝑞𝑖,𝑘 + 𝑏𝑖 (12)

where 𝑏𝑖 is the bias term for item 𝑖 . Notice that, the latent factors p𝑢 and q𝑖 are shared with those
for explanation ranking in Eq. (5). In essence, item recommendation is also a ranking task that can
be optimized using BPR criteria [36], so we first compute the preference difference 𝑟𝑢,𝑖𝑖′ between a
pair of items 𝑖 and 𝑖 ′ to a user 𝑢 as follows,

𝑟𝑢,𝑖𝑖′ = 𝑟𝑢,𝑖 − 𝑟𝑢,𝑖′ (13)

which can then be combined with the task of explanation ranking in Eq. (7) to form the following
objective function for joint-ranking:

min
Θ

∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

[ ∑︁
𝑖′∈I/I𝑢

− ln𝜎 (𝑟𝑢,𝑖𝑖′) + 𝛼
∑︁

𝑒∈E𝑢,𝑖

( ∑︁
𝑒′∈E/E𝑢

− ln𝜎 (𝑟𝑢,𝑒𝑒′) +
∑︁

𝑒′′∈E/E𝑖

− ln𝜎 (𝑟𝑖,𝑒𝑒′′)
)]
+ _ | |Θ| |2𝐹

(14)

where the parameter 𝛼 can be fine-tuned to balance the learning of the two tasks.
We name this method BPER-J where J stands for joint-ranking. Similar to BPER, we can update

each parameter of BPER-J via stochastic gradient descent (see Algorithm 2).

5 EXPERIMENTAL SETUP
5.1 Datasets
To compare the ranking performance of different methods, it is expected that the datasets contain
user-item-explanation interaction triplets. The datasets could be manually constructed as in [49],
but we are not given access to such datasets. Therefore, we adopt three public datasets3 [27],
where the explanations are automatically extracted from user reviews via near-duplicate detection,
which ensures that the explanations are commonly used by users. Specifically, the datasets are

3https://github.com/lileipisces/EXTRA
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from different domains, including Amazon Movies & TV4, TripAdvisor5 for hotels and Yelp6 for
restaurants. Each record in the three datasets consists of user ID, item ID, and one or multiple
explanation IDs, and thus results in one or multiple user-item-explanation triplets. Moreover, each
explanation ID appears no less than 5 times. The statistics of the three datasets are presented in
Table 2. As it can be seen, the data sparsity issue on the three datasets is very severe.

Algorithm 2 Joint-Ranking on BPER (BPER-J)
Input: training set T , dimension of latent factors 𝑑 , learning rate 𝛾 , regularization coefficients 𝛼

and _, iteration number 𝑇
Output: model parameters Θ = {P,Q,O𝑈 ,O𝐼 , b, b𝑈 , b𝐼 }
1: InitializeΘ, including P← R |U |×𝑑 ,Q← R |I |×𝑑 ,O𝑈 ← R |E |×𝑑 ,O𝐼 ← R |E |×𝑑 , b← R |I |, b𝑈 ←
R |E |, b𝐼 ← R |E |

2: for 𝑡1 = 1 to 𝑇 do
3: for 𝑡2 = 1 to |T | do
4: Uniformly draw (𝑢, 𝑖, 𝑒) from T , 𝑒 ′ from E/E𝑢 , 𝑒 ′′ from E/E𝑖 , and 𝑖 ′ from I/I𝑢
5: 𝑟𝑢,𝑒𝑒′ ← 𝑟𝑢,𝑒 − 𝑟𝑢,𝑒′ , 𝑟𝑖,𝑒𝑒′′ ← 𝑟𝑖,𝑒 − 𝑟𝑖,𝑒′′ , 𝑟𝑢,𝑖𝑖′ ← 𝑟𝑢,𝑖 − 𝑟𝑢,𝑖′
6: 𝑥 ← −𝛼 · 𝜎 (−𝑟𝑢,𝑒𝑒′), 𝑦 ← −𝛼 · 𝜎 (−𝑟𝑖,𝑒𝑒′′), 𝑧 ← −𝜎 (−𝑟𝑢,𝑖𝑖′)
7: p𝑢 ← p𝑢 − 𝛾 · (𝑥 · (o𝑈𝑒 − o𝑈𝑒′) + 𝑧 · (q𝑖 − q𝑖′) + _ · p𝑢)
8: q𝑖 ← q𝑖 − 𝛾 · (𝑦 · (o𝐼𝑒 − o𝐼𝑒′′) + 𝑧 · p𝑢 + _ · q𝑖 )
9: q𝑖′ ← q𝑖′ − 𝛾 · (−𝑧 · p𝑢 + _ · q𝑖′)
10: o𝑈𝑒 ← o𝑈𝑒 − 𝛾 · (𝑥 · p𝑢 + _ · o𝑈𝑒 )
11: o𝑈

𝑒′ ← o𝑈
𝑒′ − 𝛾 · (−𝑥 · p𝑢 + _ · o𝑈𝑒′)

12: o𝐼𝑒 ← o𝐼𝑒 − 𝛾 · (𝑦 · q𝑖 + _ · o𝐼𝑒 )
13: o𝐼

𝑒′′ ← o𝐼
𝑒′′ − 𝛾 · (−𝑦 · q𝑖 + _ · o𝐼𝑒′′)

14: 𝑏𝑖 ← 𝑏𝑖 − 𝛾 · (𝑧 + _ · 𝑏𝑖 )
15: 𝑏𝑖′ ← 𝑏𝑖′ − 𝛾 · (−𝑧 + _ · 𝑏𝑖′)
16: 𝑏𝑈𝑒 ← 𝑏𝑈𝑒 − 𝛾 · (𝑥 + _ · 𝑏𝑈𝑒 )
17: 𝑏𝑈

𝑒′ ← 𝑏𝑈
𝑒′ − 𝛾 · (−𝑥 + _ · 𝑏𝑈𝑒′ )

18: 𝑏𝐼𝑒 ← 𝑏𝐼𝑒 − 𝛾 · (𝑦 + _ · 𝑏𝐼𝑒 )
19: 𝑏𝐼

𝑒′′ ← 𝑏𝐼
𝑒′′ − 𝛾 · (−𝑦 + _ · 𝑏𝐼𝑒′′)

20: end for
21: end for

Table 3 shows 5 example explanations taken from the three datasets. As we can see, all the
explanations are quite concise and informative, which could prevent from overwhelming users, a
critical issue for explainable recommendation [18]. Also, short explanations can be mobile-friendly,
since it is difficult for a small screen to fit much content. Moreover, the explanations from different
datasets well suit the target application domains, such as “a wonderful movie for all ages” for
movies and “comfortable hotel with good facilities” for hotels. Explanations with negative sentiment
can also be observed, e.g., “the place is awful”, which can be used to justify why some items are
dis-recommended [53]. Hence, we believe that the datasets are very suitable for our explanation
ranking experiment.

4http://jmcauley.ucsd.edu/data/amazon
5https://www.tripadvisor.com
6https://www.yelp.com/dataset/challenge
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Table 2. Statistics of the datasets. Density is #triplets divided by #users × #items × #explanations.

Amazon Movies & TV TripAdvisor Yelp
# of users 109,121 123,374 895,729
# of items 47,113 200,475 164,779
# of explanations 33,767 76,293 126,696
# of (𝑢, 𝑖) pairs 569,838 1,377,605 2,608,860
# of (𝑢, 𝑖, 𝑒) triplets 793,481 2,618,340 3,875,118
# of explanations / (𝑢, 𝑖) pair 1.39 1.90 1.49
Density (×10−10) 45.71 13.88 2.07

5.2 Compared Methods
To evaluate the performance of explanation ranking task, where the user-item pairs are given, we
adopt the following baselines. Notice that, we omit the comparison with Tucker Decomposition
(TD) [43], because it takes cubic time to run and we also find that it does not perform better than
CD in our trial experiment.

• RAND: It is a weak baseline that randomly picks up explanations from the explanation
collection E. It is devised to examine whether personalization is needed for explanation
ranking.
• RUCF: Revised User-based Collaborative Filtering. Because traditional CF methods [38, 39]
cannot be directly applied to the ternary data, we make some modifications to their formula,
following [22]. The similarity between two users is measured by their associated explanation
sets via Jaccard Index. When predicting a score for the (𝑢, 𝑖, 𝑒) triplet, we first find users
associated with the same item 𝑖 and explanation 𝑒 , i.e.,U𝑖 ∩U𝑒 , from which we then find
the ones appearing in user 𝑢’s neighbor set N𝑢 .

𝑟𝑢,𝑖,𝑒 =
∑︁

𝑢′∈N𝑢∩(U𝑖∩U𝑒 )
𝑠𝑢,𝑢′ where 𝑠𝑢,𝑢′ =

|E𝑢 ∩ E𝑢′ |
|E𝑢 ∪ E𝑢′ |

(15)

• RICF: Revised Item-based Collaborative Filtering. This method predicts a score for a triplet
from the perspective of items, whose formula is similar to Eq. (15).
• CD: Canonical Decomposition [3] as shown in Eq. (4). This method only predicts one score
instead of two for the triplet (𝑢, 𝑖, 𝑒), so its objective function shown below is slightly different
from ours in Eq. (7).

min
Θ

∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

∑︁
𝑒∈E𝑢,𝑖

∑︁
𝑒′∈E/E𝑢,𝑖

− ln𝜎 (𝑟𝑢,𝑖,𝑒𝑒′) + _ | |Θ| |2𝐹 (16)

where 𝑟𝑢,𝑖,𝑒𝑒′ = 𝑟𝑢,𝑖,𝑒 − 𝑟𝑢,𝑖,𝑒′ is the score difference between a pair of interactions.
• PITF: Pairwise Interaction Tensor Factorization [37]. It makes prediction for a triplet based
on Eq. (10), and its objective function is identical to CD’s in Eq. (16).

To verify the effectiveness of the joint-ranking framework, in addition to our method BPER-J,
we also present the results of two baselines: CD [3] and PITF [37]. Since CD and PITF are not
originally designed to accomplish the two tasks of item recommendation and explanation ranking
together, we first allow them to make prediction for a user-item pair (𝑢, 𝑖) via the inner product
of their latent factors, i.e., 𝑟𝑢,𝑖 = p𝑇𝑢q𝑖 , and then combine this task with explanation ranking in a
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Table 3. Example explanations on the three datasets.

Amazon Movies & TV
Great story
Don’t waste your money
The acting is great
The sound is okay
A wonderful movie for all ages

TripAdvisor
Great location
The room was clean
The staff were friendly and helpful
Bad service
Comfortable hotel with good facilities

Yelp
Great service
Everything was delicious
Prices are reasonable
This place is awful
The place was clean and the food was good

multi-task learning framework whose objective function is given below:

min
Θ

∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

[ ∑︁
𝑖′∈I/I𝑢

− ln𝜎 (𝑟𝑢,𝑖𝑖′) + 𝛼
∑︁

𝑒∈E𝑢,𝑖

∑︁
𝑒′∈E/E𝑢,𝑖

− ln𝜎 (𝑟𝑢,𝑖,𝑒𝑒′)
]
+ _ | |Θ| |2𝐹 (17)

where 𝑟𝑢,𝑖𝑖′ = 𝑟𝑢,𝑖 − 𝑟𝑢,𝑖′ is the difference between a pair of records. We name them CD-J and PITF-J
respectively, where J denotes joint-ranking.

5.3 Evaluation Metrics
To evaluate the performance of both recommendation and explanation, we adopt four commonly
used ranking-oriented metrics in recommender systems: Normalized Discounted Cumulative
Gain (NDCG), Precision (Pre), Recall (Rec) and F1. We evaluate on top-10 ranking for both
recommendation and explanation tasks. For the former task, it is easy to find the definition of the
metrics in previous works, so we define those for the latter. Specifically, the scores for a user-item
pair on the four metrics are computed as follows,

rel𝑝 = 𝛿 (Top(𝑢, 𝑖, 𝑁 , 𝑝) ∈ E𝑡𝑒𝑢,𝑖 )

NDCG(𝑢, 𝑖, 𝑁 ) = 1
𝑍

𝑁∑︁
𝑝=1

2rel𝑝 − 1
log(𝑝 + 1) where 𝑍 =

𝑁∑︁
𝑝=1

1
log(𝑝 + 1)

Pre(𝑢, 𝑖, 𝑁 ) = 1
𝑁

𝑁∑︁
𝑝=1

rel𝑝 and Rec(𝑢, 𝑖, 𝑁 ) = 1���E𝑡𝑒𝑢,𝑖 ���
𝑁∑︁
𝑝=1

rel𝑝

F1(𝑢, 𝑖, 𝑁 ) = 2 × Pre(𝑢, 𝑖, 𝑁 ) × Rec(𝑢, 𝑖, 𝑁 )
Pre(𝑢, 𝑖, 𝑁 ) + Rec(𝑢, 𝑖, 𝑁 )

(18)
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where rel𝑝 indicates whether the 𝑝-th explanation in the ranked list Top(𝑢, 𝑖, 𝑁 ) can be found in
the ground-truth explanation set E𝑡𝑒𝑢,𝑖 . Then, we can average the scores for all user-item pairs in
the testing set.

5.4 Implementation Details
We randomly divide each dataset into training (70%) and testing (30%) sets, and guarantee that each
user/item/explanation has at least one record in the training set. The splitting process is repeated for
5 times. For validation, we randomly draw 10% records from training set. After hyper-parameters
tuning, the average performance on the 5 testing sets is reported.
We implemented all the methods in Python7. For TF-based methods, including CD, PITF, CD-J,

PITF-J, and our BPER and BPER-J, we search the dimension of latent factors 𝑑 from [10, 20, 30, 40,
50], regularization coefficient _ from [0.001, 0.01, 0.1], learning rate 𝛾 from [0.001, 0.01, 0.1], and
maximum iteration number 𝑇 from [100, 500, 1000]. As to joint-ranking of CD-J, PITF-J and our
BPER-J, the regularization coefficient 𝛼 on explanation task is searched from [0, 0.1, ..., 0.9, 1]. For
the evaluation of joint-ranking, we first evaluate the performance of item recommendation for
users, followed by the evaluation of explanation ranking on those correctly predicted user-item
pairs. For our methods BPER and BPER-J, the parameter ` that balances user and item scores for
explanation ranking is searched from [0, 0.1, ..., 0.9, 1]. After parameter tuning, we use 𝑑 = 20,
_ = 0.01, 𝛾 = 0.01 and 𝑇 = 500 for our methods, while the other parameters 𝛼 and ` are dependent
on the datasets.

The configuration of BPER+ is slightly different, because of the textual content of the explanations.
We adopted the pre-trained BERT from huggingface8, and implemented the model in Python with
PyTorch9. We set batch size to 128, 𝑑 = 20 and 𝑇 = 5. After parameter tuning, we set learning rate
𝛾 to 0.0001 on Amazon, and 0.00001 on both TripAdvisor and Yelp.

6 RESULTS AND ANALYSIS
In this section, we first compare our methods BPER and BPER+with baselines regarding explanation
ranking. Then, we study the capability of ourmethods in dealingwith varying data sparseness. Third,
we show a case study of explanation ranking for both recommendation and disrecommendation,
and also present a small user study. Lastly, we analyze the joint-ranking results of three TF-based
methods.

6.1 Comparison of Explanation Ranking
Experimental results for explanation ranking on the three datasets are shown in Table 4. We see
that each method’s performance on the four metrics (i.e., NDCG, Precision, Recall, F1) are fairly
consistent across the three datasets. The method RAND is among the weakest baselines, because it
randomly selects explanations without considering user and item information, which implies that
the explanation ranking task is non-trivial. CD performs even worse than RAND, because of the
sparsity issue in the ternary data (see Table 2), for which CDmay not be able to mitigate as discussed
in Section 4.2. CF-based methods, i.e., RUCF and RICF, largely advance the performance of RAND,
as they take into account the information of either users or items, which confirms the important
role of personalization for explanation ranking. However, their performance is still limited due
to data sparsity. PITF and our BPER/BPER+ outperform the CF-based methods by a large margin,
as they not only address the data sparsity issue via their MF-like model structure, but also take

7https://www.python.org
8https://huggingface.co/bert-base-uncased
9https://pytorch.org
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Table 4. Performance comparison of all methods on the top-10 explanation ranking in terms of NDCG,
Precision, Recall and F1 (%). The best performing values are boldfaced, and the second best underlined.
Improvements are made by BPER+ over the best baseline PITF (* indicates the statistical significance over
PITF for 𝑝 < 0.01 via Student’s t-test).

NDCG@10 (%) Precision@10 (%) Recall@10 (%) F1@10 (%) Training Time
Amazon Movies & TV

CD 0.001 0.001 0.007 0.002 1h48min
RAND 0.004 0.004 0.027 0.006 -
RUCF 0.341 0.170 1.455 0.301 -
RICF 0.417 0.259 1.797 0.433 -
PITF 2.352 1.824 14.125 3.149 1h51min
BPER 2.630* 1.942* 15.147* 3.360* 1h56min
BPER+ 2.877* 1.919* 14.936* 3.317* -
Improvement (%) 22.352 5.229 5.739 5.343 -

TripAdvisor
CD 0.001 0.001 0.003 0.001 5h32min
RAND 0.002 0.002 0.011 0.004 -
RUCF 0.260 0.151 0.779 0.242 -
RICF 0.031 0.020 0.087 0.030 -
PITF 1.239 1.111 5.851 1.788 7h9min
BPER 1.389* 1.236* 6.549* 1.992* 9h43min
BPER+ 2.096* 1.565* 8.151* 2.515* -
Improvement (%) 69.073 40.862 39.314 40.665 -

Yelp
CD 0.000 0.000 0.003 0.001 12h7min
RAND 0.001 0.001 0.007 0.002 -
RUCF 0.040 0.020 0.125 0.033 -
RICF 0.037 0.026 0.137 0.042 -
PITF 0.712 0.635 4.172 1.068 11h27min
BPER 0.814* 0.723* 4.768* 1.218* 16h30min
BPER+ 0.903* 0.731* 4.544* 1.220* -
Improvement (%) 26.861 15.230 8.925 14.228 -

each user’s and item’s information into account using latent factors. Most importantly, our method
BPER significantly outperforms the strongest baseline PITF, owing to its ability of producing two
sets of scores, corresponding to users and items respectively, and its parameter ` that can balance
their relative importance to explanation ranking. Lastly, BPER+ further improves BPER on most
of the metrics across the three datasets, especially on NDCG that cares about the ranking order,
which can be attributed to the consideration of the semantic features of the explanations as well as
BERT’s strong language modeling capability to extract them.
Besides the explanation ranking performance, we also present the training time comparison of

the three TF-based methods in Table 4. For fair comparison, the runtime testing is conducted on the
same research machine without GPU, because these methods are all implemented in pure Python
without involving deep learning framework. From the table, we can see that the training time of
the three methods is generally consistent on different datasets. CD takes the least time to train,
PITF needs a bit more training time, while the duration of training our BPER is the longest. This is
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Fig. 4. The effect of ` in BPER on explanation ranking in three datasets. NDCG@10, Pre@10 and F1@10 are
linearly scaled for better visualization.

quite expected since the model complexity grows larger from CD to PITF and BPER. However, the
slightly sacrificed training time of BPER is quite acceptable because the gap of training duration
between the three methods is not very large, e.g., 5h32min for CD, 7h9min for PITF and 9h43min
for BPER on TripAdvisor dataset.
At last, we further analyze the parameter ` of BPER that controls the contributions of user

scores and item scores in Eq. (5). As it can be seen in Fig. 4, the curves of NDCG, Precision, Recall
and F1 are all bell-shaped, where the performance improves significantly with the increase of `
until it reaches an optimal point, and then it drops sharply. Due to the characteristics of different
application domains, the optimal points vary among the three datasets, i.e., 0.7 for both Amazon
and Yelp and 0.5 for TripAdvisor. We omit the figures of BPER+, because the pattern is similar.
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Fig. 5. Ranking performance of three TF-based methods w.r.t. varying sparseness of training data on Amazon
dataset.

6.2 Results on Varying Data Sparseness
As discussed earlier, the sparsity issue of user-item-explanation triple-wise data is severer than that
of traditional user-item pair-wise data. To investigate how different methods deal with varying
spareness, we further remove certain ratio of the Amazon training set, so that the training triplets to
the whole dataset ranges from 30% to 70%, while the testing set remains untouched. For comparison
with our BPER and BPER+, we include the most competitive baseline PITF. Fig. 5 shows the ranking
performance of the three methods w.r.t. varying spareness. The ranking results are quite consistent
on the four metrics (i.e., NDCG, Precision, Recall and F1). Moreover, with the increase of the
amount of training triplets, the performance of all three methods goes up linearly. Particularly, the
performance gap between our BPER/BPER+ and PITF is quite large, especially when the ratio of
training data is small (e.g., 30%). These observations demonstrate our methods’ better capability in
mitigating data sparsity issue, and hence prove the rationale of our solution that converts triplets
to two groups of binary relation.

6.3 Qualitative Case Study and User Study
To better understand how explanation ranking works, we first present a case study comparing our
method BPER and the most effective baseline PITF on Amazon Movies & TV dataset in Table 5.
The two cases in the table respectively correspond to recommendation and disrecommendation.
In the first case (i.e., recommendation), there are three ground-truth explanations, praising the
movie’s “special effects”, “story” and overall quality. Generally speaking, the top-5 explanations
resulting from both BPER and PITF are positive, and relevant to the ground-truth, because the two
methods are both effective in terms of explanation ranking. However, since PITF’s ranking ability
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Table 5. Top-5 explanations selected by BPER and PITF for two given user-item pairs, corresponding to
recommendation and disrecommendation, on Amazon Movies & TV dataset. The ground-truth explanations
are unordered. Matched explanations are emphasized in italic font.

Ground-truth BPER PITF
Special effects Special effects Great special effects
Great story Good acting Great visuals
Wonderful movie This is a great movie Great effects

Great story Special effects
Great special effects Good movie

The acting is terrible The acting is terrible Good action movie
The acting is bad Low budget
The acting was horrible Nothing special
It’s not funny The acting is poor
Bad dialogue The acting is bad

BPER's
60.0%

PITF's
40.0%

Whose explanation list is semantically
closer to the ground-truth?

Fig. 6. Result of user study on explanations returned by two methods on Amazon Movies & TV dataset.

is relatively weaker than our BPER, its explanations miss the key feature “story” that the user also
cares about.

In the second case (i.e., disrecommendation), the ground-truth explanation is a negative comment
about the target movie’s “acting”. Although the top explanations made by both BPER and PITF
contain negative opinions regarding this aspect, their ranking positions are quite different (i.e., top-3
for our BPER vs. bottom-2 for PITF). Moreover, we notice that for this disrecommendation, PITF
places a positive explanation in the 1st position, i.e., “good action movie”, which not only contradicts
the other two explanations, i.e., “the acting is poor/bad”, but also mismatches the disrecommendation
goal. Again, this showcases our model’s effectiveness for explanation ranking.

We further conduct a small scale user study to investigate real people’s perception towards the
top ranked explanations. Specifically, we still compare our BPER with PITF on Amazon Movies &
TV dataset. We prepared ten different cases and hired college students to do the evaluation. In each
case, we provide the movie’s title and the ground-truth explanations, and ask the participants to
select one explanation list that is semantically closer to the ground-truth. There are two randomly
shuffled options returned by BPER and PITF, respectively. A case is valid only when at least two
participants select the same option. The evaluation results are shown in Fig. 6. We can see that on
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Fig. 7. The effect of 𝛼 in three TF-based methods with joint-ranking on two datasets. Exp and Rec respectively
denote the Explanation and Recommendation tasks. F1@10 for Rec is linearly scaled for better visualization.

60% of cases our BPER’s explanations are closer to the ground-truth than PITF’s, which is quite
consistent with their explanation ranking performance.

6.4 Effect of Joint-Ranking
We perform joint-ranking for three TF-based models, i.e., BPER-J, CD-J and PITF-J. Because of the
consistency in the experimental results on different datasets, we only show results on Amazon
and TripAdvisor. In Fig. 7, we study the effect of the parameter 𝛼 to both explanation ranking
and item ranking in terms of F1 (results on the other three metrics are consistent). In each sub-
figure, the green dotted line represents the performance of explanation ranking task without
joint-ranking, whose value is taken from Table 4. As we can see, all the points on the explanation
curve (in red) are above this line when 𝛼 is greater than 0, suggesting that the explanation task
benefits from the recommendation task under the joint-ranking framework. In particular, the
explanation performance of CD-J improves dramatically under the joint-ranking framework, since
its recommendation task suffers less from the data sparsity issue than the explanation task as
discussed in Section 4.2. It in turn helps to better rank the explanations. Meanwhile, for the
recommendation task, all the three models degenerate to BPR when 𝛼 is set to 0. Therefore, on the
recommendation curves (in blue), any points, whose values are greater than that of the starting
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Table 6. Self-comparison of three TF-based methods on two datasets with and without joint-ranking in terms
of NDCG and F1. Top-10 results are evaluated for both explanation (Exp) and recommendation (Rec) tasks.
The improvements are made by the best performance of each task under joint-ranking over that without it
(i.e., in this case the two tasks are separately learned).

Amazon TripAdvisor
Exp (%) Rec (‰) Exp (%) Rec (‰)

NDCG F1 NDCG F1 NDCG F1 NDCG F1
BPER-J

Non-joint-ranking 2.6 3.4 6.6 8.1 1.4 2.0 5.3 7.1

Joint-ranking Best Exp 3.3 ↑ 4.6 ↑ 5.7 ↓ 7.1 ↓ 1.6 ↑ 2.4 ↑ 5.0 ↓ 6.4 ↓
Best Rec 2.6 ↕ 3.5 ↑ 7.1 ↑ 8.7 ↑ 1.5 ↑ 2.1 ↑ 6.3 ↑ 8.0 ↑

Improvement (%) 26.9 35.3 7.6 7.4 14.3 20.0 18.9 11.3
CD-J

Non-joint-ranking 0.0 0.0 6.5 7.9 0.0 0.0 4.5 4.8

Joint-ranking Best Exp 2.6 ↑ 3.7 ↑ 5.5 ↓ 6.7 ↓ 1.7 ↑ 2.4 ↑ 4.6 ↑ 5.2 ↑
Best Rec 1.9 ↑ 2.9 ↑ 6.8 ↑ 8.2 ↑ 9.6 ↑ 1.5 ↑ 4.9 ↑ 5.6 ↑

Improvement (%) Inf Inf 4.6 3.8 Inf Inf 8.9 16.7
PITF-J

Non-joint-ranking 2.4 3.2 6.5 7.7 1.2 1.8 4.3 4.7

Joint-ranking Best Exp 3.0 ↑ 4.2 ↑ 6.4 ↓ 8.0 ↑ 2.0 ↑ 2.9 ↑ 6.0 ↑ 7.6 ↑
Best Rec 2.8 ↑ 3.7 ↑ 7.1 ↑ 8.5 ↑ 2.0 ↑ 2.8 ↑ 7.0 ↑ 8.9 ↑

Improvement (%) 25.0 31.3 9.2 10.4 66.7 61.1 62.8 89.4

point, gain profits from the explanation task as well. All these observations show the effectiveness
of our joint-ranking framework in terms of enabling the two tasks to benefit from each other.

In Table 6, we make a self-comparison of the three methods in terms of NDCG and F1 (the other
two metrics are similar). In this table, “Non-joint-ranking” corresponds to each model’s performance
with regard to explanation or recommendation when the two tasks are individually learned. In other
words, the explanation performance is taken from Table 4, and the recommendation performance
is evaluated when 𝛼 = 0. “Best Exp” and “Best Rec” denote the best performance of each method on
respectively explanation task and recommendation task under the joint-ranking framework. As we
can see, when the recommendation performance is the best for all the models with joint-ranking,
the explanation performance is always improved. Although minor recommendation accuracy is
sacrificed when the explanation task reaches the best performance, we can always find points
where both of the two tasks are improved, e.g., on the top left of Fig. 7 when 𝛼 is in the range of 0.1
to 0.6 for BPER-J on Amazon. This again demonstrates our joint-ranking framework’s capability in
finding good solutions for both tasks.

7 CONCLUSION AND FUTUREWORK
To the best of our knowledge, we are the first one that leverages standard offline metrics to evaluate
explainability for explainable recommendation. We achieve this goal by formulating the explanation
problem as a ranking task. With this quantitative measure of explainability, we design an item-
explanation joint-ranking framework that can improve the performance of both recommendation
and explanation tasks. To enable such joint-ranking, we develop two effective models to address
the data sparsity issue, which were tested on three large datasets.
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As future work, we are interested in considering the relationship (such as coherency [24] and
diversity) between suggested explanations to further improve the explainability. In addition, we
plan to conduct experiments in real-world systems to validate whether recommendations and
their associated explanations as produced by the joint-ranking framework could influence users’
behavior, e.g., clicking and purchasing. Besides, the joint-ranking framework in this paper aims
to improve the recommendation performance by providing explanations, while in the future, we
will also consider improving other objectives based on explanations, such as recommendation
serendipity [8] and fairness [41].
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