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GPS-assisted Indoor Pedestrian Dead Reckoning

HENG ZHOU , Osaka University, Japan
TAKUYA MAEKAWA ∗, Osaka University, Japan

Indoor pedestrian dead reckoning (PDR) using embedded inertial sensors in smartphones has been actively studied in the

ubicomp community. However, PDR relying only on inertial sensors su�ers from the accumulation of errors from the sensors.

Researchers have employed various indoor landmarks detectable by smartphone sensors such as magnetic �ngerprints caused

by elevators and Bluetooth signals from beacons with known coordinates to compensate for the errors. This study proposes a

new type of indoor landmark that does not require additional device installation, e.g., beacons, and training data collection

in a target environment, e.g., magnetic �ngerprints, unlike existing landmarks. This study proposes the use of GPS signals

received by a smartphone to correct the accumulated errors of the PDR. While it is impossible to locate the smartphone

indoors using GPS satellites, the smartphone can receive signals at a window-side area through windows from satellites

aligned with the orientation of the window normal. Based on this idea, we design a machine-learning-based module for

detecting the proximity of a user to a window and the orientation of the window, which enables us to roughly determine

the absolute coordinates of the smartphone and to correct the accumulated errors by referring to positions of window-side

areas found in the �oor plan of the environment. A key technical contribution of this study is designing the module, such

that it can be trained based on data from environments other than the target environment yet work in any environment by

extracting GPS-related information independent of wall orientation. We evaluated the e�ectiveness of the proposed method

using sensor data collected in real environments.

CCS Concepts: • Human-centered computing—Ubiquitous and mobile computing systems and tools;

Additional Key Words and Phrases: Indoor localization system, pedestrian dead reckoning, GPS satellite information

ACM Reference Format:

Heng Zhou and Takuya Maekawa . 2022. GPS-assisted Indoor Pedestrian Dead Reckoning. Proc. ACM Interact. Mob.

Wearable Ubiquitous Technol. 6, 4, Article 166 (December 2022), 36 pages. https://doi.org/10.1145/3569467

1 INTRODUCTION

1.1 Background and Problems

To achieve accurate positioning in indoor environments where GPS is not available, ubiquitous and mobile
computing researchers have focused on indoor pedestrian dead reckoning (PDR) using embedded inertial sensors
in smartphones because PDR has various practical applications, such as indoor navigation, augmented reality,
and healthcare monitoring [21]. However, PDR relying only on inertial measurement units (IMUs) has two main
drawbacks: i) accumulated errors of the estimated walking trajectory occur owing to the drift of the gyroscope
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(a) Detecting window-side area
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(b) Identifying orientation of window-side area

Fig. 1. Basic idea of using GPS signal information to detect indoor landmarks. (a) When a smartphone is close to a window, it
receives strong GPS signals, enabling us to know whether the smartphone is at a window-side area. (b) When a smartphone
is close to a window facing the east, it receives strong GPS signals of a satellite from the east, enabling us to know the
orientation/direction that the window faces.
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Fig. 2. Heat map in a floor generated using signals from a GPS satellite. Each gray circle indicates an observation point. The
azimuth of the satellite was approximately 40 degrees (relative to the north) during the data collection.

and errors in stride prediction, and ii) as the absolute coordinates cannot be estimated by the inertial sensors,
information regarding the initial position (and initial moving direction) of the trajectory is required.

To address the �rst problem, researchers have used indoor “landmarks” that can be detected by various sensors
in smartphones to correct the accumulated errors [1]. For example, some researchers used the Bluetooth module
in a smartphone to detect nearby Bluetooth Low Energy (BLE) beacons installed in the environment [37, 42].
When the Bluetooth module detects a BLE beacon placed at a certain position, the smartphone’s position estimate
is corrected with respect to the position of the beacon. In addition, several researchers used magnetic sensors in
smartphones to detect the magnetic �eld emitted from some infrastructure, such as elevators, and set them as
landmarks [23, 29]. Furthermore, location-speci�c activities and actions, such as sleeping in the bedroom [18]
or climbing the staircase [1, 15], can be tracked by smartphone sensors and used as landmarks. These methods,
when used in conjunction with map matching, enable us to achieve PDR without any information regarding the
initial position [3, 41]. Because the above landmark-based methods opportunistically correct the accumulated
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errors, e.g., errors can be corrected only when a user approaches an elevator, which emits a strong magnetic �eld,
it is important to increase the density of landmarks by fully leveraging the diverse sensors in a smartphone. To
e�ciently add landmarks in an environment, the cost of installation of extra devices, such as BLE beacons, and
the cost of training data collection for each environment to detect landmarks, such as magnetic �ngerprints and
human activities, need to be considered.

1.2 Approach

In this study, we propose to use landmarks that do not require installation of new devices or pre-acquisition of
training data in a target environment. Speci�cally, this paper proposes to use GPS signals to correct accumulated
errors of PDR. GPS satellites are existing infrastructure and do not require extra installation cost. However,
as GPS satellites cannot be used to measure the coordinates indoors, they cannot be used to correct the PDR
accumulated errors. In this research, we propose to focus on the fact that, at window-side areas inside buildings,
we can receive GPS signals from several GPS satellites, although these GPS satellites cannot provide location
measurements. Compared to areas far from the windows, the smartphone receives stronger GPS signals at areas
near the windows as shown in Fig. 1 (a); therefore, it is possible to estimate the timing when the smartphone is
at close vicinity to the window. Fig. 2 shows a heat map in a �oor generated from signals from a GPS satellite
located at the upper right direction of this �gure. The signals were measured by a smartphone during walking.
As shown in the �gure, when the smartphone was close to window-side areas facing the satellite orientation, it
received strong signals from the satellite.

Moreover, the signal from a GPS satellite contains information about the azimuth of the satellite, enabling us
to estimate which direction the window is facing. For example, when the smartphone is at the window-side of an
outer wall facing east in a building, the signal strength from GPS satellites in the eastern direction will be stronger,
as shown in Fig. 1 (b). Therefore, when the signal strength from GPS satellites located at the eastern direction is
strong, it can be estimated that the smartphone is located at the window-side of the eastern wall. As a result, we
regard these window-side areas detected by GPS satellite information as landmarks to correct PDR accumulated
errors. However, we cannot uniquely identify a single landmark, i.e., window-side area, based on GPS information
because the target building usually has multiple window-side areas close to walls facing the same orientation. To
deal with this problem, we leverage map matching using the �oor plan including information about obstacles,
i.e., inner walls, of the target environment to eliminate the ambiguity.
In addition, in this study, we explore PDR that does not require initial positions as inputs by leveraging GPS

signals. As mentioned above, GPS signals can be used to identify the time C and the orientation > of a window-side
area the smartphone is in. In other words, we can generate some candidates of the absolute coordinates of the
smartphone at time C within window-side areas facing said orientation > . Then, from the absolute coordinates at
time C , the absolute coordinates at time 0 (i.e., initial position) can be estimated by back-tracking the movement
using inertial sensors with map matching, as shown in Fig. 3. As shown above, we can implement PDR, which
does not require known initial positions. Note that, as mentioned above, when there are multiple window-side
areas close to walls facing the same orientation, there exist multiple position candidates at time C . Because the
walking direction relative to the window normal at time C is also unknown, it is necessary to generate a candidate
moving toward each direction (from 0 to 360 degrees) and then back/forward-track each candidate, which is
computationally expensive. Although it is possible to measure the walking orientation at time C through the
digital compass in the smartphone, its accuracy is low indoors owing to magnetic interference. Therefore, in this
study, a digital compass is used together with GPS signal information to roughly estimate the walking direction.
The walking direction is estimated based on the idea that the GPS signal strength gradually increases as the user
walks toward a window.
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The proposed method is composed of a window-side detector and a window orientation classi�er for window-
side landmark detection, and then, by incorporating them into the PDR module, the method corrects PDR
accumulated errors. In the window-side detector and window orientation classi�er, we use time-series GPS
signals to estimate the proximity to window-side areas and the orientation of the window normal of a window-side
area at each time step. In addition, a walking direction predictor in the proposed method estimates a walking
direction relative to the window normal by using GPS signals. Note that, to reduce installation costs of indoor
landmarks, this study assumes that training data for detecting window-side areas, window orientation prediction,
and walking direction prediction are collected in environments other than the target environment. However, the
shapes and orientations of outer walls of di�erent buildings are also di�erent, and positions of GPS satellites
change with time (training data collection time vs. test data collection time), making it di�cult to detect GPS
landmarks independent of environments, which is the technical challenge of this study. To deal with these issues,
we develop modules for window-side detection, window orientation prediction, and walking direction prediction
that can be used in an environment with any outer wall orientations by extracting GPS-related information
independent of the wall orientation and positions of GPS satellites.

1.3 Contributions

Our study provides three main research contributions.

• To the best of our knowledge, this study is the �rst work that corrects accumulated errors of indoor PDR by
using window-side GPS landmarks that do not require additional infrastructure and training data collected
in the target environment.

• To achieve GPS-assisted indoor PDR, we design the window-side detector, window orientation classi�er,
and walking direction predictor, which are incorporated into the PDR method. The technical contributions
of this study are i) the designs of these modules that can be trained in environments other than the target
environment by extracting environment-independent features of GPS signals, and ii) a novel pipeline of
e�ciently introducing GPS signal information into inertial sensor data to achieve accurate PDR.

Possible positions at time t

Predicted position at time 0
Correct back-tracking trajectory
Wrong back-tracking trajectory
Window-side area

Collision with walls

Fig. 3. Back tracking smartphone positions from time C when the smartphone is detected to be near window-side areas
facing the upper direction of this figure. Position candidates at time C are generated within multiple window-side areas
facing the upper direction because we cannot know which window-side area facing the upper direction the smartphone is in.
Then, we back-track the smartphone positions based on inertial sensor data by generating movement paths (trajectories)
toward various directions because the movement direction is also unknown. When a movement path collides with a wall, the
path is eliminated as a wrong trajectory. Forward-tracking is also conducted in a similar way.
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• Extensive experiments on di�erent trajectories collected in real environments showed the feasibility of
GPS landmarks.

2 RELATED WORK

2.1 Pedestrian Dead Reckoning (PDR)

2.1.1 Conventional PDR. PDR systems have been developed as a solution to navigation in indoor environments
or in areas with weak and unstable GPS signals. The main advantage of PDR relying on inertial sensors is the
robustness against environmental di�erences, as it uses accelerometer readings to detect steps to estimate walking
distance and uses gyroscope signals to compute the heading direction [30]. From accelerometer data, the PDR
systems detect the user’s step. A peak detection algorithm is used that leverages a centered moving average
to smoothen the acceleration magnitude and applies windowed peak detection to �nd peaks related to heel
impact [19]. For walking distance estimation, the distance travelled by the user is determined by the cumulative
strides. The stride represents the distance travelled by the user within one step. Most step-length estimation
methods are based on empirical methods using walk frequency (step frequency) and acceleration variance as
main factors [35]. Gyroscope readings are directly used for the heading direction so that angular velocity can be
iteratively integrated to generate the relative direction. However, the main problem of PDR is the accuracy of
the heading direction part because the drift of the gyroscope will cause errors that accumulate with time. To
improve the accuracy of PDR, researchers have focused more on reducing errors of heading direction estimation
[2, 28]. Currently, a popular solution, named Zero Velocity Updates (ZUPTs), is generally used that can close
the integration loop of angular velocity periodically by applying external constraints to the PDR system to deal
with the drift [10, 11]. In such methods, they initially detected the stance phase and applied zero velocity during
stance duration. Finally, with a given known starting position, it can integrate each step’s displacement with
direction change to get a full trajectory [22].

2.1.2 Machine Learning-based PDR. Unlike conventional PDR systems with step displacement segmentation and
stride estimation, state-of-the-art neural network-based PDR systems are based on batch processing of a raw
inertial data window to estimate the formula of displacement and angular change [4, 40]. Although raw inputs
(acceleration and angular velocity) are independent of continuous IMU measurement, they have strong temporal
dependencies and represent walking activities. Therefore, a deep recurrent neural network (RNN), especially
long-short term memory (LSTM), can capture these dependencies and can take advantage of them to restore
potential connections between data features and walking characteristics. To employ neural network-based PDR in
low-end devices like smartphones, Chen et al. [5] designed a PDR method based on convolution neural networks.
In this study, we leverage state-of-the-art neural-network-based PDR as the basis and integrate our GPS landmark
module to correct accumulated errors of the PDR method.

2.2 Landmark-assisted PDR

As PDR systems relying only on inertial sensors su�er from accumulated errors, mobile and ubiquitous computing
researchers have developed PDR systems that correct accumulated errors by leveraging various smartphone
sensors to detect indoor landmarks. These systems employ sensors in smartphones to detect some “unusual”
positions and mark them as landmarks. When a smartphone user approaches or passes by a landmark, the PDR
systems correct the position estimate to the position of the landmark. Currently, there are many methods to
detect indoor landmarks. Abdelnasser et al. [1] classi�ed landmarks that can be used in indoor environments into
two categories by data features: Seed Landmarks (SLMs) and Organic Landmarks (OLMs). SLMs are positions
known priori that exhibit obvious changes in sensors in smartphones, such as elevators and staircases [15, 16],
whereas OLMs are positions that can be not physical but have obvious signatures by clustering data from sensors,
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Table 1. Comparison of di�erent types of landmarks

Landmark type

Training data
collected in ad-
vance in target
environment

Installation
of additional
infrastructure

Spatial am-
biguity of
landmarks

Density of land-
marks

Magnetic �ngerprinting Yes No Low High
Visible light communication No Yes Low Depends on # devices

Wi-Fi �ngerprinting Yes No Middle High
Bluetooth �ngerprinting Yes Yes Middle High

Bluetooth proximity detection No Yes Low Depends on # devices
Acceleration-based stair detection No No High Low

Activity recognition Yes No Middle Middle/High
GPS (proposed approach) No No Middle/High Middle

such as Wi-Fi or GSM signals [6, 39]. For example, positions without any Wi-Fi and GSM signals in a building
can be used as OLMs.
Wireless signalling devices have been widely used as indoor landmarks, e.g., BLE beacons for proximity

detection and Wi-Fi APs for creating Wi-Fi �ngerprints [7, 44]. Abnormal magnetic �elds detected in indoor
environments have also been used as indoor landmarks [23, 29]. Lee et al. [29] used a robot to collect magnetic
�elds in all areas in the target building and then picked areas with abnormal magnetic �elds. After labelling them
and training a convolutional neural network for detecting the magnetic landmarks, these landmarks could be
detected by smartphones. In addition, visible light has been used as indoor landmarks [20, 26]. Sakshi et al. [20]
used visible light communication-based indoor positioning where light emitted by dedicated bulbs is used to send
position signals for identi�cation. Therefore, a smartphone can know its position after receiving the signals from
LED lamps by obtaining information from a database storing LED lamp identi�ers and their positions. Moreover,
location-speci�c activities and actions, e.g., ascending/descending a stair, have been used as landmarks [18, 43].
A method called ActionSlam aims to build landmarks by activity recognition to improve PDR [18]. In their work,
they used di�erent sensors to record some daily activities, such as eating or opening/closing doors, and then
created a ground truth map with action landmarks marked at positions where they expected the corresponding
actions to happen. However, many of these methods require substantial costs regarding equipment installation
and/or training data collection. We summarize features of these methods and our proposed GPS landmarks
in Table 1. While the proposed GPS landmarks have signi�cant advantages on the costs pertaining to device
installation and training data collection, the spatial ambiguity of the landmarks is high when a target environment
has multiple window-side areas facing the same orientation. Therefore, this study leverages map matching and
GPS-based walking direction prediction to reduce the ambiguity. While the acceleration-based landmarks using
staircases also do not require device installation and training data collection, the acceleration-based landmarks
are sparse in many cases.
Note that we do not believe that error correction using GPS landmarks will replace other types of indoor

landmarks. As smartphones have various sensors, landmark-based error correction should be implemented by
using various types of landmarks to increase the density of landmarks located in a target environment. We believe
that the proposed GPS landmark is one of the landmarks with the lowest installation costs because it does not
require extra infrastructure or training data in the target environment.
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2.3 Indoor Positioning with GPS

Few studies have investigated indoor positioning using GPS. Kjærgaard et al. [25] investigated the positioning
performance of a dedicated GPS receiver and mobile phones in indoor environments. While the positioning
error of the dedicated receiver was below 10 meters, the error of GPS receivers embedded in mobile phones was
considerably higher. Ochiai et al. [12, 32] achieved indoor positioning using GPS signals based on a �ngerprinting
approach, which required a site survey to be conducted in the target environment. In contrast, we have developed
environment-independent models for window-side detection and wall orientation prediction based on GPS signals.
Fujiwara et al. [13] employed GPS signals to locate indoor static air conditioners to provide location-aware
air conditioning services. In contrast, this study is the �rst study that locates moving smartphones indoors by
integrating GPS landmarks into PDR systems.

2.4 Multi-modal Indoor Localization

With the development of smartphones and small sensing devices, various sensors can be equipped in a single
device. Fusion of the multi-modal sensors has become a trend in the studies on indoor localization. These studies
correct the deviations in walking direction by using various sensors such as Wi-Fi modules, magnetometers, and
cameras [27, 31, 38]. For example, Venkatnarayan et al. [38] proposed a Wi-Fi based indoor localization method
without �ngerprints. In their study, they used Wi-Fi signal to calculate the travelled distance by a subject as
well as an accelerometer to predict the distance, and then used the Kalman �lter to correct the wrong walking
direction by fusing the distance estimates. In addition, several studies [8, 36] predict semantics of a user’s current
location, e.g., living room and kitchen, by using multi-modal sensor data such as acceleration data and sound data.
For example, Dissanayake et al. [8] extracted location-speci�c sensor data motifs from acceleration data based on
GINI impurity. Tachikawa et al. [36] used a magnetometer, barometer, and microphone to extract location-speci�c
features, and then estimated room-level location semantics by using modi�ed decision trees. In our study, we
incorporate information about GPS satellites into IMU-based PDR.

3 PROPOSED METHOD

3.1 Preliminaries

We assume that a pedestrian holds a smartphone with an accelerometer, gyroscope, digital compass, and GPS
module. From these sensors, we obtain time-series sensor data S = {S8 ,S2 ,S6}, where S8 is the time-series of
6-axis inertial measurement data composed of accelerometer and gyroscope data, S2 represents the time-series
of orientation (relative to the north), and S6 represents the time-series of GPS satellite data. In addition, B8C is IMU
data at time C , B2C is orientation data at time C , and B

6
C is GPS information containing the elevation angle, azimuth,

and signal strength of visible satellites at time C .
Moreover, we assume that the �oor plan information (like Fig. 3) of a target �oor is given. The �oor plan

information contains the outer shape and orientation of each wall. In this study, we de�ne the orientation of a
wall as the angle (relative to north) of the line that runs perpendicular to the surface of that wall. The �oor plan
information also contains positional information of each window, i.e., which wall the window is installed on. The
window-side area is de�ned as an area within 3F m from the window, where 3F refers to the distance from the
window. Furthermore, the �oor plan information contains positional information about inner walls in the �oor,
which is used for map matching.

3.2 Overview

3.2.1 Modules. Figure 4 shows an overview of the proposed method, which consists of the following three main
modules.
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Fig. 4. Overview of the proposed method

• Neural PDR module: This is composed of the walking distance predictor and walking direction change
predictor, which predict the walking distance and relative change of walking direction within a time
window, respectively, by employing accelerometer and gyroscope data.

• GPS landmarkmodule: This is used to �nd GPS landmarks. It is composed of three sub-modules: window-
side detector, window orientation classi�er, and walking direction predictor. The window-side detector
employs GPS information to estimate whether the smartphone user is within a window-side area at each
time C . When the user is estimated to be in a window-side area at time C , the window orientation classi�er
estimates the orientation of that window. The walking direction predictor predicts the walking direction
relative to the window normal when the user is in a window-side area, which is used to reduce the
computation cost in the trajectory estimation module.

• Trajectory estimation module: This is based on a particle �lter and fuses outputs of the above modules
to predict a walking trajectory. It is composed of three sub-modules: �rst window-side position generator,
forward-tracking, and backward-tracking. When the GPS landmark module �rst detects the user in a
window-side area facing orientation > at time C8 , the �rst window-side position generator generates random
candidate positions in window-side areas facing > with walking direction predicted from the walking
direction predictor. Then, forward-tracking is performed by employing results from the neural PDR module
and map matching to reproduce the trajectory from time C8 to subsequent times. Note that the outputs of the
window-side detector and window orientation classi�er at each time step are used to correct accumulated
errors of the neural PDR module. Meanwhile, backward-tracking is performed to recover the trajectory
before the user �rst approaches the window-side area from time C8 to time 0.

3.2.2 Procedures. The procedures of these modules are explained as follows. (i) First, we suppose that the user
starts walking from an initial position at time 0. At that time, it is impossible to determine the user’s trajectory
because the absolute initial position is unknown. (ii) Then, we assume that the user passes through a window-side
area. If the window-side detector and window orientation classi�er detect the user entering a window-side area
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facing orientation > at time C8 with high con�dence, the �rst window-side position generator of the trajectory
estimation module generates candidates of position estimates at time C8 within window-side areas facing the
estimated orientation > . At that time, the walking directions of the candidates at time C8 are determined based on
an estimate by the walking direction predictor. (iii) Subsequently, on the one hand, based on the output of the
neural PDR module, the trajectory estimation module uses map matching to back-track the trajectory from time
C8 to time 0. (iv) On the other hand, the trajectory after time C8 is also forward-tracked with the output of the
neural PDR module. In the forward- and back-tracking, according to predictions by the window-side detector
and the window orientation classi�er, the accumulated errors of the trajectory are corrected.

3.3 Neural PDR Module

In this module, we estimate the walking distance and walking direction change in a, -sec time window (, = 1

in this study) to reconstruct a trajectory. Fig. 5 shows the relationship between the user coordinates and estimates
by this module (i.e., walking distance and walking direction change). For example, the walking distance at time C ,
i.e., 3 (C ) , corresponds to the distance between the position at time C and that at time C − 1. In addition, the walking
direction change at time C , i.e., \ (C ) , corresponds to the angle between the two movement vectors: a vector whose
source and destination are coordinates at times C − 2 and C − 1, respectively, and a vector whose source and
destination are coordinates at times C − 1 and C , respectively. Because it is implemented using state-of-the-art
neural network-based methods [4, 9, 40], we explain this module brie�y. We will explain the way of acquiring
ground truth, i.e., 3 (C ) and \ (C ) in Fig. 5, later. Note that the time unit of C in 3 (C ) is “seconds.” Therefore, time
C − 1 in 3 (C−1) denotes 1 second before time C in 3 (C ) .

𝑑("#$)𝑑("#&)

𝑑("#')

𝑑("#()

𝑑(")

𝜃("#&)

𝜃("#')

𝜃("#()

𝜃(")

time t-3 (s)

time t-4 (s)
time t-5 (s) time t-2 (s)

time t-1 (s)

time t (s)

Fig. 5. Displacement 3C and relative walking direction change \C at each time step. In our implementation, we predict 3 (C )
and \ (C ) for each second by using sensor data between time C − 1 (s) and C , and re-construct a movement path by using the
predicted values.

3.3.1 Walking Distance Predictor. The inputs for the walking distance predictor is a 1-s window of accelerometer
and gyroscope data s8C = {B8

C−,8
, ..., B8C−1, B

8
C }, where,8 corresponds to the 1-s window size. The input is fed into a

neural network for distance prediction composed of an LSTM layer containing 32 units with the Recti�ed linear
unit (ReLU) activation function, a dropout layer, and an output layer with the linear activation function (Fig.
6). The output of this network is the displacement 3 (C ) between time C − 1 (s) and time C (s), as shown in Fig 5.
That is, when we predict 3 (C ) , we employ acceleration data collected between time C − 1 (s) and time C (s). The
model training is done by using the Adam optimizer [24] to minimize the mean squared error (MSE) between the
estimate and ground truth.

3.3.2 Walking Direction Change Predictor. The inputs for the walking direction change predictor is a 1-s window
of gyroscope data. A neural network for directional change prediction is composed of a bi-directional LSTM layer
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refers to time-series data of accelerometer and gyro-
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Fig. 9. Architecture of window orientation classifier. The
output %>C refers to the probability of user in the window-
side area whose orientation faces > at time C . Note that
the probabilities of all other orientations like > − 90 and
> + 90 are predicted by the same classifier.

containing 32 units with the ReLU activation function, a fully connected layer containing 8 units with the ReLU
activation function, and an output layer with the linear activation function (Fig. 7). The output of the walking
direction change predictor is the angular change in walking direction Δ\ (C ) between time C − 1 (s) and time C (s),
as shown in Fig 5. The model training is also done by using the Adam optimizer to minimize the MSE between
the estimate and ground truth.

3.4 GPS Landmark Module

3.4.1 Window-side Detector. The window-side detector estimates whether the user is in a window-side area or
not at each time step. In this study, a window-side area refers to an area within 3F m from a window. Fig. 10
shows a time-series of signal strengths of GPS satellites when a smartphone user approached a window-side area
from a position away from the window side and then moved away. We can observe that as the user walks closer
to the window-side, some GPS signals become stronger. Based on this observation, we use the time-series of
signal strengths from top-#� satellites in terms of their signal strengths as inputs of the window-side detector,
where #� refers to a hyperparameter regarding the number of satellites.
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Fig. 10. Time-series of signal strengths from GPS satellites when a smartphone user approaches a window-side area and
moves away from the area. PRN refers to a pseudo random noise code of a satellite signal, which can be used to identify the
satellite.

The inputs of thewindow-side detector are extracted from a timewindow of GPS information s
6
C = {B

6

C−,6
, ..., B

6
C−1, B

6
C },

where,6 is the window size. The time-series of the signal strengths of top-#� satellites, which have top-#�

largest mean signal strength within s
6
C , are chosen as inputs for the window-side detector (Fig. 8). In other words,

the input is #� -dimensional time-series with the length of,6 , whereas #� satellites are sorted in the descending
order of the mean signal strength. By using the input, we can judge if the smartphone is in a window-side area
independent of environments and positions of GPS satellites. The output of the window-side detector is a binary
value at time C , i.e., “True” or “False,” which indicates whether the user is in a window-side area or not at time C .

The window-side detector is a binary classi�er consisting of two bi-directional LSTM layers with 64 and 32
nodes using the ReLU activation function, a densely connected layer with 16 nodes using the ReLU activation
function, and an output layer with the softmax activation function. The network is trained to minimize the binary
cross entropy loss by using the Adam optimizer.

3.4.2 Window Orientation Classifier. When the window-side detector determines that the user is in a window-
side area, the window orientation classi�er will estimate the orientation of the window, i.e., window normal,
which is identical to that of the outer wall onto which that window is installed. We design the window orientation
classi�er based on our idea that when a smartphone is located close to a window, the signals arriving from
satellites whose azimuth aligns with the orientation of that window are stronger than those from other satellites,
as shown in Fig. 1 (b).

Note that the window orientation classi�er (and the other machine learning models) is trained in environments
where the orientation of a wall can be di�erent from that of the target environment. Therefore, the window
orientation classi�er should be designed so that it can deal with a wall facing any orientation. To achieve this, we
design the window orientation classi�er so that it predicts whether the orientation of the window of interest
is facing a certain candidate orientation or not, i.e., binary classi�cation—“True” vs. “False”—by mainly using
information about GPS satellites whose azimuth aligns with that orientation. Provided that the �oor plan of the
target environment is available, orientation candidates can be obtained from the �oor plan (e.g., north, west,
east, south candidates for a building consisting of four walls: north, west, east, south). That is, the window
orientation classi�er determines whether the window of interest faces each candidate orientation, and the
orientation candidate with the highest probability of “True” is regarded as the orientation that the window of
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(a) Selecting GPS satellites positioned at four
di�erent orientations; > , > − 90, > − 180, > + 90.
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Fig. 11. Selecting GPS satellites used for inputs of the window orientation classifier. (a) We select satellites close to each
of the four di�erent orientations: > (window normal), > − 90, > − 180, > + 90. Signals from satellites at > are expected to be
strong when a smartphone is close to the window. (b) Top-#� satellites with smallest _ are selected for each orientation.

interest faces. With this design, we can determine whether a window of interest faces any orientation, achieving
an environment-independent classi�er.
The inputs of the window orientation classi�er are also extracted from a time window of GPS information

s
6
C = {B

6

C−,6
, ..., B

6
C−1, B

6
C }. To determine whether the orientation of the window of interest aligns with the orientation

candidate > , the input of the window orientation classi�er is calculated using information of GPS satellites existing
in four orientations (> , > + 90, > − 90, > − 180), as shown in Fig. 11 (a). When the window faces > , signals from
satellites positioned at > are expected to be stronger than those from the other orientations. As for > , we �nd
top-#� satellites whose angle between its azimuth and > is small, as shown in Fig. 11 (b). Then, we use the
time-series of signal strength, absolute angle _ between the window normal and azimuth of the satellite, and
elevation angle of each top-#� satellite as the inputs. Note that these satellites are sorted in ascending order of _.
For the other orientations, i.e., > + 90, > − 90, and > − 180, we use the same procedure to extract the time-series of
each orientation. As a result, the inputs of the window orientation classi�er are 4 × 3 × #� dimension time-series
with the length of,6 . Note that the 4 refers to the four orientations and the 3 to the signal strength, absolute angle,
and azimuth time-series. Here we selected 4 because many buildings has walls with four di�erent orientations.

The output of the window orientation classi�er is a binary value, i.e., “True” vs. “False,” which indicates whether
the window orientation is > or not at time C .

The neural network for the window orientation classi�er is a binary classi�er consisting of one bi-directional
LSTM layer containing 16 units with the ReLU activation function, a Batch-Normalization layer, and an output
layer with the softmax activation function (Fig. 9). The network is trained to minimize the binary cross entropy
loss by using the Adam optimizer.
As mentioned above, the window orientation classi�er is trained in environments where the walls can be

oriented di�erently from the target environment. Therefore, using a four-class classi�er to determine the window
orientation would result in a limited performance. For instance, if the training environment is composed of four
walls facing north, east, south, and west, the trained classi�er will not be able to deal with a test environment
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Fig. 12. Three classes of walking direction.When a smartphone
user walks toward the window (wall), the direction is classified
as “entering.” When the user walks parallel to the wall surface,
it is classified as “parallel.” Otherwise, it is classified as “others.”
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also comprising four walls but which face northwest, southwest, southeast, and northeast. Similarly, the trained
classi�er will be unable to handle a test environment if it is composed of three or �ve walls. In contrast, a binary
classi�er like ours outputs a binary value which indicates the probability that the orientation of a window that
the user is close to is identical to orientation > . Thus, regardless of the number of walls in the test environment,
we can predict the binary value for each wall by setting the normal of the wall as > . For example, if the �rst
wall faces the northeast, we calculate inputs of the orientation classi�er by using satellites located around the
northeast direction and predict a binary value (probability) by using these inputs. Likewise, if the second wall
faces north, we calculate inputs of the orientation classi�er by using satellites located around the north direction
and predict a binary value by using those inputs. After performing the procedure for each wall, we take the wall
with the highest probability and output the estimated wall orientation.

3.4.3 Walking Direction Predictor. The walking direction predictor employs digital compass and GPS data to
estimate the rough direction of walking when the user is estimated as having entered a window-side area. The
trajectory estimation module, which is described below, is designed to estimate the trajectories before and after
the time when the user initially enters the window-side area, based on the predicted walking direction. The
output of the walking direction predictor is either of three classes: entering, parallel, and others, as shown in Fig.
12. “Entering” means that the user walks toward the nearby window, and we de�ne “entering” as the range of
angles between the walking direction and the wall normal line from -45 degrees to 45 degrees. “Parallel” means
that the user walks parallel to the wall (window) surface. It is not de�ned as strictly parallel but as the range of
angles between the user’s forward direction and the wall normal line from 45 degrees to 135 degrees or from -45
degrees to -135 degrees. “Others” means that the user leaves the window-area, and we de�ne “others” as the
range of angles between the walking direction and the wall normal line from 135 degrees to 225 (-135) degrees.
The inputs of the walking direction predictor are extracted from a time window of digital compass data

s
2
C = {B2

C−,2
, ..., B2C−1, B

2
C }, where,2 is window size, and a time window of GPS information s

6
C = {B

6

C−,6
, ..., B

6
C−1, B

6
C }.

Assume a window of interest facing orientation > . Because the digital compass outputs the azimuth that is relative
to the north, we convert the orientation outputs to relative angles toward > , and employ the time-series of the
relative angles as the input. In addition, like the window orientation classi�er, we �nd the #� satellites that exist
in the orientation > , and employ those elevation, relative angle (angle between satellite azimuth and orientation
>), and signal strength time-series data as the input of the walking direction predictor.
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As shown in Fig. 13, the walking direction predictor has a bi-directional LSTM layer with 32 nodes and the
tanh activation function that processes orientation data, and another bi-directional LSTM layer with 32 nodes
that processes GPS data. The network is trained to minimize the categorical cross-entropy loss by using the
Adam optimizer.

3.5 Trajectory Estimation Module

The proposed method employs a particle �lter [17], which is usually used to estimate inner states of a non-linear
system and also used in map matching-based human tracking [33, 34], for user tracking because it enables us to
easily combine outputs from the GPS landmark module and neural PDR module. In the particle �lter, a particle at
time C is one of the position candidates of the user at time C . As shown in Fig. 3, the �rst window-side position
generator generates user position candidates (particles) in window-side areas facing direction >8 that the user is
predicted to position at time C8 when the user is detected initially entering a window-side area. When there are
multiple window-side areas facing >8 , the user’s position at time C8 is ambiguous. Then, the trajectory before and
after time C8 is estimated by the particle �lter with map matching. By map matching, the estimated candidates
(particles) that collide with walls are discarded to eliminate the ambiguity of the user position as shown in Fig. 3.

3.5.1 First Window-side Position Generator. As mentioned above, at each time step the window-side detector
estimates whether or not the user is in a window-side area. When #2 consecutive detections of the user in a
window-side area occur after the user starts walking, where #2 is a hyperparameter regarding the number of
window-side detections, the user is determined to have entered the window-side area. Using the orientation
> predicted by the window orientation classi�er at the �rst detection time C8 , we generate candidates for the
user’s absolute coordinates at time C8 , as shown in Fig. 3. Speci�cally, #8 particles are randomly generated in the
window-side areas facing > , where #8 is a hyperparameter regarding the number of generated particles. Then,
we assign an initial rough walking direction to each particle according to the estimated probabilities of the three
walking direction classes. Therefore, we make a weighted random selection for the walking direction class of the
particle, such that the choice is weighted in favor of classes with greater probability, because our preliminary
investigation revealed that the classi�cation accuracy of the walking direction predictor is not perfect. When
“entering” is selected, the initial walking direction of a candidate at time C8 is randomly selected from > − 45 to
> + 45, as shown in Fig. 12. In the case of “parallel,” the walking direction is randomly chosen from > + 45 to
> + 135 or > − 135 to > + 45. Because the “others” class can be interpreted as the user not entering a window-side
area, in this case the particle is discarded.
In addition, to reduce computational cost, we discard initial particles that may have incorrect positions or

walking directions. Assume that C8 is the �rst window-side detection time and C8+#2
is the last time of the �rst

consecutive window-side detection. We calculate the trajectory between time C8 and time C8+#2
for each initial

particle using the outputs of the neural PDR module. When all predicted positions within the trajectory are
in a window-side area, the particle is used in forward-tracking/backward-tracking. Otherwise, the particle is
discarded.

3.5.2 Forward-tracking. The user’s trajectory after time C8 is estimated by the particle �lter using outputs of the
neural PDR module, as shown in Fig. 14. In the particle �lter, a particle ?8 at time C represents a candidate of
the user’s position at time C , containing information regarding the indoor coordinates GC?8 , walking orientation

>C?8 , and weightsFC
?8
. The output of the GPS landmark module is used to correct the accumulated errors in the

trajectory. For example, when the GPS landmark module estimates that the user is in window-side areas facing a
certain orientation, a low weight is assigned to particles outside these areas. In addition, the weights of particles
that collide with the wall are all set to 0.
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Fig. 14. Tracking a smartphone user with the particle filter from time C8 at which the user is detected to be on the blue
window-side area. Several movement paths were generated by the particle filter by varying the displacement and movement
orientation, and then the paths colliding with the walls were deleted. The user is detected as being in the green window-side
area at time C8+5. Therefore, the position estimate at time C8+5 within the green area can be estimated as the true user position
at time C8+5.
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Fig. 15. Position candidates, i.e., particles, at time C are sampled from the candidate area, which is determined based on 3̂C
and \̂C

The tracking algorithm based on the particle �lter works in iterations of a three-step process: sampling, weight
calculation, and re-sampling. In the sampling process, new particles at time C are generated from each particle at
the previous time step (i.e., time C − 1) based on a motion model. The generated particles show prior estimates of
the user location at time C . In the weight calculation process, the particle weights are computed based on outputs
of the GPS landmark module and the �oor plan. In the re-sampling process, particles are re-sampled according to
their weights.
[Sampling] In the sampling process, we sample the coordinates of the 8-th particle at time C from a candidate area
as shown in Fig. 15, which is determined based on the coordinates at time C − 1 and the predicted displacement
and change of direction at time C by the neural PDR module. The motion model to sample GC?8 is de�ned as follows:

GC?8 = GC−1? 9
+ N(3̂C , f3 )®E

C
?8
,

where N(`, f) is the normal distribution with the mean ` and standard deviation f , 3̂C is an estimate of displace-
ment at time C by the walking distance predictor, f3 is a hyper-parameter, and ? 9 represents the 9-th particle,
which is a position estimate at time C − 1. Assume that #? particles at time C are generated from ? 9 at time C − 1
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and ?8 is one of them. ®EC?8 is a unit vector that indicates the walking direction of ?8 at time C , and the direction

∠®EC?8 is determined by the following formula:

∠®EC?8 = >C−1? 9
+ N(\̂C , f> )

where \̂C is an estimate of the change of walking direction at time C by the walking direction change predictor
and f> is a hyper-parameter. Then, >C?8 is updated as follows.

>C?8 = ∠®E
C
?8

[Weight calculation] For each time step C , we calculate initial weights of sampled particles so that a particle
located at the center of the candidate area shown in Fig. 15 at time C has high weight. The weight for ?8 is
calculated asFC

?8
= F3 ·F> , where

F3 =

{

CDF(3?8 ,N(3̂C , f3 )), if 3?8 ≦ 3̂C

1 − CDF(3?8 ,N(3̂C , f3 )), otherwise
and F> =

{

CDF(\?8 ,N(\̂C , f> )), if \?8 ≦ \̂C

1 − CDF(\?8 ,N(\̂C , f> )), otherwise

In addition, 3?8 is a sampled displacement of ?8 , \?8 is a sampled direction change of ?8 , and CDF() shows the

cumulative distribution function. As shown in the above equations, when value of 3?8 or \?8 is closer to 3̂C or \̂C ,
respectively, the weight of ?8 becomes larger. We then update the particle weights by using the �oor plan and
outputs of the GPS landmark module. First, when a particle collides with an inner or outer wall de�ned in the
�oor plan, its weight is set to 0. Then, we update their weights only when the window-side detector output is
True by using the following equation.

FC
?8

=

{

U ·F3 ·F> + %F
C + %>2C , if the particle in a window-side area facing orientation >2

U ·F3 ·F> , otherwise

where U is a hyper-parameter, %F
C is the probability of “True” class by the window-side detector at time C , and %>2C

is the probability for orientation candidate >2 by the window orientation classi�er. By this equation, the weight of
a particle in window-side areas facing the estimated orientation > by the window orientation classi�er becomes
large.
[Re-sampling] From the weighted samples, we re-sample #A particles according to their weights. Here, the
probability with which a particle is re-sampled is proportional to its weight. The posterior estimate of the user’s
position at time C is the weighted average position of the #A particles.

3.5.3 Back-tracking. We also back-track the user’s trajectory before time C8 by the particle �lter. The basic
procedure is almost identical to the procedure of forward-tracking. Note that it back-tracks the user’s trajectory
from the position at time C8 to that at time 0 by reversing movement vectors.

4 EVALUATION

4.1 Experimental Se�ings

Because the proposed method is independent of the PDR models, we employed both a user-dependent and a
user-independent PDR model to evaluate our method.

4.1.1 Environments. We collected sensor data at 21 di�erent experimental environments, divided into two
datasets. For the �rst dataset, we asked a participant to collect data at our four main environments (buildings)
to investigate the user-dependent PDR model. For the second dataset, we collected data both at the four main
environments and at the seventeen additional environments from �ve di�erent participants per environment.
Details of the four main environments are shown in Fig. 16 and Table 2. Environment A is an o�ce �oor on
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Table 2. Experimental environments used in this study. Float shows float glass. ALC stands for autoclaved lightweight
aerated concrete.

Env. Floor Size Type Window/wall

A 2F 22.9m x 43.2m O�ce Float/ALC
B 6F 21.7m x 41.9m O�ce Float/ALC
C 3F 22.2m x 26.2m Multipurpose Float/ALC
D 3F 35.4m x 49.2m Library Float/Concrete

the 2nd �oor and there are four window-side areas, which are located near the north and south staircases, in
the west open space, and in the east conference rooms. There is one short neighboring building and one tall
building located to the west and south of Environment A, respectively. Environment B is also an o�ce �oor
on the 6th �oor. There are two window-side areas, located in the west room and in the east room. The curved
walls in Environment B are approximated as straight lines in a �oor map used in our method. As Environment
B is on the 6th �oor, there are no neighboring buildings to the west or east. Environment C is a multipurpose
room on the 3rd �oor, where metallic barriers are installed on the exterior walls. These metallic barriers interfere
with GPS signals. In addition, there are tall buildings located on both sides of the building (left and right in the
picture). Environment D is a library environment on the 3rd �oor, where walls are very thick. Although there are
windows on all sides, there are many desks on the south and north window-side areas. There is one neighboring
tall building (located to the right in the �gure). Refer to Table 26 in the appendix for detailed information about
the additional environments.

4.1.2 Data Collection. We used a Google Pixel 4 with Android 10 to collect IMU, orientation, and GPS data with a
self-developed application and used another Google Pixel 3a with Android 10 to collect ground truth with ARCore
[14] simultaneously. We employed ARCore to acquire the user’s coordinates at 1 Hz, and then we calculated
3 (C ) and \ (C ) , i.e., the ground truth of the neural PDR module, from the coordinates. Referring to information
regarding positions of window-side areas in the �oor map, the ground truth of the GPS landmark module is also
calculated from the positions by ARCore. In this study, all the sensor data were collected at the default sampling
rates of the smartphone. The sampling rates of the accelerometer, gyroscope, digital compass, and GPS receiver
are 100 Hz, 50 Hz, 50 Hz, and 1 Hz, respectively. Then, the acceleration data were downsampled to 50 Hz. GPS
data comprise the elevation angle, azimuth angle, signal strength, and PRN (identi�er) of each visible satellite.
When we collected each walking trajectory in an environment; a participant holding a smartphone randomly
walked in the environment so that the participant passed a window-side area at least once. Table 3 lists the
number of trajectories and total duration of the data recorded at each environment for the �rst dataset, which
was collected by one participant. For additional experiments, which will be introduced later, Motorola G pro and
Sharp Aquos Sense4 Plus smartphones were used. Refer to Table 26 in the appendix for the number of trajectories
and total duration of the data recorded in each environment for the second dataset. When collecting the second
dataset, we asked participants to carry two smartphones: one in a hand and the other in a shirt pocket. We also
asked the participants to change the walking speed to simulate di�erent walking patterns, such as uninterrupted
walking and strolling. When the participant carrying the smartphones passed by a window-side area, we asked
additional subjects to stand between the participant and the window. We recorded approximately 15 trajectories
from each participant at each environment by locating 0, 1, or 2 people blocking the GPS signals and collecting
�ve trajectories per condition. Note that the obstacle participants were located at one window-side area in each
environment.
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(a) Environment A

(b) Environment B

(c) Environment C

(d) Environment D

Fig. 16. Floor plans of the experimental environments. Window icons represent locations of windows installed. The colored
rectangles with diagonal stripes represent corresponding window-side areas inside the building and di�erent colors correspond
to di�erent orientations. In addition, a colored arrow shows the normal of the corresponding window. The red crosses mark
private areas in these environments, which we were unable to enter.

4.1.3 Evaluation Methodology. For the window-side detector, which is a binary classi�er, we used classi�cation
accuracy (ratio of correctly classi�ed instances) and confusion matrices to evaluate it. For the window orientation
classi�er and window direction predictor, we also used classi�cation accuracy to evaluate them. For the trajectory
estimation module, we calculated the mean absolute error (MAE) between the ground truth coordinates and the
weighted average of posterior estimates of particles in survived trajectories for each time step for an evaluation
metric. Note that when all particles collide with the wall at time C , the method cannot output results. In such a
case, it ignores walls only at time C .

In the evaluation of the trajectory estimation module, we compared the proposed method with other methods,
listed in the following:
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Table 3. Overview of dataset in each environment

Env. # of trajectories Total data duration

A (Pixel) 22 53 min 41 sec
A (Aquos) 13 40 min 05 sec
A (Moto) 14 42 min 29 sec
B (Pixel) 6 13 min 29 sec
C (Pixel) 20 38 min 31 sec
D (Pixel) 10 46 min 44 sec

• neural PDR: This is regarded as a state-of-the-art neural network-based method. Only map matching
based on the particle �lter and PDR results by the neural PDR module were used. In addition, initial position
and direction were given.

• W/oWOC: This is a variant of the proposed method that does not use results from the window orientation
classi�er. Because thewindow orientation classi�er is not included in thismethod, the amount of information
regarding a GPS landmark is limited. This method is used to investigate the e�ect of the information.
Thanks to the window-side detector, this method is able to recognize when the user is at a window-side
area. However, it cannot identify the orientation of the window. Therefore, the �rst window-side position
generator produces particles in all the window sides. In the re-sampling process, only the results of the
window-side detector are used to calculate particle weights. That is, when we calculate the particle weight,
%>2C = 0. Note that the number of initial particles generated is the same as in the proposed method.

• W/o WDP: This is a variant of the proposed method that does not use results from the walking direction
predictor. That is, this method cannot identify the walking direction at the �rst window-side position.
Therefore, the walking directions of the particles at the �rst window-side position are randomly sampled
from all directions (0–360 degrees). This method is used to investigate the e�ect of the initialization. Note
that the number of �rst window-side particles generated is the same as in the proposed method.

In addition, to investigate the e�ectiveness of the modules in the proposed method, we also applied the
following simple methods for window-side detection and window orientation classi�cation:

• Thresholding: This is a threshold-based window-side detector that uses a decision stump, i.e., a one-level
decision tree, to determine if a user is close to a window-side based on the overall signal strength. The
input feature for the detector is the average strength of the signals from all the visible satellites computed
within a time window starting at time C . The output is a binary value, “True” or “False,” which indicates
whether the user is in a window-side area at time C .

• Sudden-change: This method determines the window orientation based on the sudden increase in the
strength of the signals from the GPS satellites. When a user is detected in a window-side area at time C , we
analyze the strength time-series of the GPS satellite signals within the current and previous time windows
(i.e., those starting at C and C −, , respectively), each containing,6 samples, where, is 1 s. When we
detect a sudden increase in a GPS satellite signal strength at time C , we search the wall (window orientation
class) whose normal is the closest to the azimuth of each of the satellites. Then we employ the majority
voting to select a window orientation class, which is an estimate of the window orientation classi�cation.
When we do not detect sudden increases in the current time window, we analyze the previous windows,
i.e., C vs. C −, , C vs. C − 2, , . . . and so on. Note that, when we detect a sudden increase, we calculate the
average satellite signal strength within the current and previous windows. When the average strength at C
is 2B times larger than that at C −, , we assume that the sudden change occurs in the satellite at time C .
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Table 4. Experimental parameters used in this experiment

Parameter Value Description

,8 50 window size in neural PDR module
#� 6 top-#� satellites are used as inputs
,6 5 window size in GPS landmark module
,2 5 window size in walking direction predictor
f3 0.05 standard deviation of normal distribution when sampling displacement
f> 20° standard deviation of normal distribution when sampling direction change
#2 5 #2 consecutive window-side detections are used in the �rst window-side position generator
#8 5000 #8 particles generated by the �rst window-side position generator
#? 50 #? particles generated from each particle from each time step in sampling
#A 20 re-sampled #A particles after weight calculation

• Angle-regression: In our method, we employ a binary window orientation classi�er. In contrast, the angle
regression method directly outputs the orientation of the window. The inputs for the method are signal
strength, azimuth, and elevation angle time-series from each of the #� satellites with the highest average
signal strength. The network structure of this method is identical to our method except for the output layer,
which employs a linear activation function that produces a numeric value corresponding to the orientation.
The network is trained to minimize the mean absolute error between an estimated value and the ground
truth of the orientation of the closest window, using the Adam optimizer. After obtaining an output from
this method, we select the wall whose normal is closest to the estimated window orientation.

The user-dependent models were evaluated by running the �rst dataset through a “leave-one-environment-out”
cross-validation, where one environment was used as a testing environment while the others were used to
train the window-side detector, window orientation classi�er, and PDR module. Considering that, unlike the
user-independent setting, the user-dependent PDR model was expected to achieve a precise prediction of the
walking distance and direction change, we evaluated the main components of the proposed method, namely the
window-side detector and window orientation classi�er, in detail when a PDR module yielded optimal accuracy.
Note that our method is independent of a PDR module. Therefore, we can replace the current neural PDR module
with any state-of-the-art method that is eventually proposed. Note that, in this main experiment, we used only
the data from Google Pixel.

To evaluate the user-independent models using the second dataset, we split the environments into �ve training
environments (Environments A, B, E, H, and K) and sixteen test environments. Note that, when a participant
was included in a test environment, we did not use the training data from the same participant in the training
environments. In addition, we trained a window-side detector, window orientation classi�er, and walking direction
predictor for both the smartphone in the hand and the one in the pocket. Furthermore, we investigated the e�ect
of various environments and the user-independent PDR model, which is greatly a�ected by the di�erence in
walking patterns among participants, on the performance of the proposed method.

Table 4 shows experimental parameters used in this study.

4.2 Results of 1st Dataset

4.2.1 Performance of the Window-side Detector. Table 5 shows the classi�cation accuracy of the window-side
detector in each environment. Note that we calculate the accuracy only for positions where GPS signals are
available. When a smartphone is far from window-side areas and it does not receive any GPS signals, we can
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Table 5. Classification accuracy of the window-side detector for each environment

Env. A Env. B Env. C Env. D

3F = 2 82.3% 70.7% 70.9% 68.1%
3F = 3 81.5% 71.4% 74.9% 76.0%
3F = 4 80.6% 68.0% 72.0% 76.7%

W
indow

-side probability

11 m

7.
3 

m

Fig. 17. Heat map of window-side probabilities for a trajectory in Environment A. The gray circles indicate observation
points.

easily assume that the smartphone is not in a window-side area. As shown in the table, the window-side detector
achieved relatively better accuracy when 3F = 3, which was used in our method, compared to the other settings.
However, the classi�cation results for these three settings are not very di�erent. Fig. 17 shows a heat map of
class probabilities of the “window-side” for a trajectory in Environment A. As shown in the �gure, it is di�cult to
detect strong GPS signals when positioned more than 5 m away from a window. The �gure also indicates that
the window-side detector yields false detections in areas approximately �ve meters from a window. In addition,
as shown in Table 5, the classi�cation accuracy in Environment B is poorer than that in the other environments.
This could be because the window-side areas in that environment are small, as shown in Fig. 16. Because the total
stay duration in the window-side areas was short, the classi�cation accuracy was greatly a�ected by detection
errors just after entering/leaving the window-side areas.
Fig. 18 shows the confusion matrix for 3F = 3 in each environment. In addition, Table 6 lists the sensitivity

and speci�city of the window-side detector (3F = 3). As can be observed, many window-side instances in
Environments A and C were mistakenly classi�ed as non-window-side cases. As shown in the lower right corner
of Fig. 17, even when a smartphone is close to a window, the window-side classi�er outputs low window-side
probabilities. This can be caused by the presence of pillars at window-side areas. Similarly, as shown in Fig. 18 and
Table 6, many non-window-side instances in Environments B and D were mistakenly classi�ed as window-side
cases. This is because of a short delay in the reception of GPS signals by the smartphones, which greatly a�ects
the classi�cation accuracy because window-side areas in these environments are small.

Table 7 shows the classi�cation accuracy of the Thresholding method. As indicated by the results, the accuracy
of this simple method, which employs the average strength of the signals from all the visible satellites within a
time window, is comparatively low. The results in Environment B are particularly poor compared with those in
other environments. This can be because overall signal strengths in Environment B were weaker than those in
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Fig. 18. Confusion matrices of window-side detector results for 3F = 3 in each environment

Table 6. Sensitivity and specificity of the window-side detector for 3F = 3 (window-side corresponds to the positive class)

Env. A Env. B Env. C Env. D

sensitivity 69.4% 92.8% 70.5% 84.3%

speci�city 86.2% 64.4% 80.8% 66.0%

Table 7. Classification accuracy of window-side detection for the Thresholding method

Env. A Env. B Env. C Env. D

Thresholding 59.7% 28.5% 49.9% 61.2%

Proposed 3F = 3 81.5% 71.4% 74.9% 76.0%

other environments. Because the Thresholding method learns a threshold for the overall signal strength based on
training data from other environments, the environmental di�erences signi�cantly a�ected it. In contrast, the use
of a recurrent neural network enables the proposed method to individually analyze signal strength time-series
from each satellite.

4.2.2 Performance of the Window Orientation Classifier. Table 8 shows the classi�cation accuracy of the window
orientation classi�er in each environment. As shown in the results, the window orientation classi�er achieved
very high accuracy in Environments A, B, and D. The reason behind the poor accuracy in Environment C
compared to the other environments may be di�culties in orientation classi�cation at the top-right corner of the
environment, as shown in Fig. 16 (c). Because a smartphone receives signals from two directions at a corner, the
classes for both directions have high probabilities. However, incorrect classi�cation at the corners does not a�ect
the �nal PDR performance signi�cantly. In addition, Table 9 and Fig. 19 show the detailed classi�cation results of
the proposed window orientation classi�er. The accuracy of the 1st and 3rd walls in Environment A was low,
resulting in the low macro-averaged accuracy in that environment. However, because the window-side areas
corresponding to the walls (windows) are small, only a few data instances collected.

Table 10 shows the accuracy of the window orientation classi�er based on the sudden signal strength change
when the 2B threshold increases from 1.1 to 1.3. When 2B was larger than 1.3, we could hardly detect any sudden
change except in Environment A. As indicated by the results, the orientation classi�cation accuracy using the
sudden change method was considerably lower than that using the proposed method, which is due to the signals

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 166. Publication date: December 2022.



GPS-assisted Indoor Pedestrian Dead Reckoning • 166:23

Table 8. Overall classification accuracy of the window orientation classifier for each environment

Env. A Env. B Env. C Env. D

3F = 2 89.5% 100% 59.5% 96.7%
3F = 3 87.3% 100% 69.9% 96.7%
3F = 4 81.5% 100% 64.7% 96.4%

Table 9. Detailed classification accuracy of window orientation classifier and macro average of accuracy (3F = 3)

Env. A Env. B Env. C Env. D

1st wall 36.5% 100% 42.7% 96.1%

2nd wall 98.4% 100% 91.9% 97.7%

3rd wall 16.1% n/a 100% n/a

4th wall 99.1% n/a n/a n/a

macro average 62.5% 100% 78.2% 96.9%

(a) Environment A (b) Environment B (c) Environment C (d) Environment D

Fig. 19. Confusion matrices of window orientation classifier results for 3F = 3 in each environment, with the number in
parentheses showing the wall angle relative to the north

received from satellites that are not oriented perpendicular to the window close to the user. We found that, while
the signals that a smartphone receives from such satellites are weak, their strengths sometimes suddenly increase
even when the satellites are not oriented in the direction of the window normal. However, the classi�cation
accuracy was signi�cantly higher in Environment D than in other environments. This can be because the walls of
this building were made of thick concrete. Thus, in many cases in which the smartphone was close to a window,
the signals from satellites not oriented in the direction of the window normal were blocked by the thick walls.
Therefore, we can easily identify the directions of the environment’s windows through this simple method.

Table 11 shows the classi�cation accuracy and mean absolute error (MAE) based on the angle regression. As
with our proposed method, in Environments A and C, the classi�cation accuracy is lower and the MAE is higher
than in other environments. However, the classi�cation accuracy based on angle regression is slightly lower than
that obtained with our proposed approach, which may be attributed to the limited variation in ground truth
labels, i.e., the angle relative to the north. Assuming a training environment with four walls, only four values
(angles) are possible for the ground truth labels, which are not su�cient for the regression task.
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Table 10. Classification accuracy of orientation classification for the Sudden-change method

Env. A Env. B Env. C Env. D

Sudden-change (2B = 1.1) 31.8% 42.3% 39.6% 84.1%

Sudden-change (2B = 1.2) 28.6% 35.9% 38.8% 76.4%

Sudden-change (2B = 1.3) 24.3% 64.7% 45.3% 73.3%

Proposed 87.3% 100% 69.9% 96.7%

Table 11. Classification accuracy and mean absolute error (MAE) of orientation classification for the Angle-regression method

Env. A Env. B Env. C Env. D

classi�cation accuracy 67.30% 97.50% 54.40% 89.10%

MAE in degree 41.56 20.37 70.64 21.98

Table 12. Classification accuracy when smoothing esimates of window orientation classifier

Env. A Env. B Env. C Env. D

Proposed 87.3% 100% 69.9% 96.7%

Smooth (3 windows) 87.6% 100% 71.2% 96.8%

Smooth (5 windows) 87.9% 100% 75.1% 96.9%

The window orientation classi�er outputs an estimate of the orientation class for each time step. We can
remove sporadic errors of these estimates by using a moving average �lter, although this approach causes a loss
of real-time trajectory prediction. Note that, because estimates of the window-side detector frequently change
in time due to the existence of window-side obstacles such as pillars, this approach may not work well in the
window-side detector. Table 12 shows the results of applying this smoothing approach to window orientation
classi�cation. For example, the “Smooth (3 windows)” row shows the classi�cation accuracy of the moving
average �lter with a window size of three. That is, we calculate the average classi�cation probability for each
direction averaging the previous, current, and next prediction, and take the orientation class with the highest
average probability. As indicated by the results, the moving average �lter improved the classi�cation accuracy.
Speci�cally, the improvement in Environment C is signi�cant, indicating that sporadic classi�cation errors
frequently occur in this environment. As mentioned above, the classi�cation errors occurred at the corner of the
environment. Because the orientation of the window-side area where the user is does not change frequently, this
approach is e�ective for the window orientation classi�er.
Here we also investigate a mathematical method to determine the window orientation at each time step by

calculating a weight score of each window orientation as follows.

,> =

=BC
∑

:=1

(1 − _:
180

) × ((:

=BC
,

where =BC is the number of visible satellites, _: represents the absolute angle between the window normal
and azimuth of the satellite : as mentioned above and ((: stands for signal strength of : . Then, we compared
,> of each window orientation and select the largest one as an estimate at each time step. The classi�cation
accuracy based on this method in Environments A, B, C, and D was 50.2%, 100%, 50.1% and 96.6%, respectively.
For Environments B and D, the mathematical method can also achieve high accuracy, similar to our proposed
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Table 13. Classification accuracy of the walking direction predictor for each environment by three methods

Env. A Env. B Env. C Env. D

GPS+magnetic 55.9% 51.4% 48.0% 66.2%

only magnetic 50.2% 55.0% 36.3% 60.4%

only GPS 53.9% 48.6% 48.0% 48.8%

Table 14. Positioning errors of the four methods in each environment. Note that neural PDR requires information about the
initial position and initial walking direction.

Positioning error (m) Env. A Env. B Env. C Env. D

neural PDR 2.595 1.791 2.180 3.978

W/o WOC 6.380 2.762 7.321 12.741

W/o WDP 2.995 2.558 3.247 5.528

Proposed 1.819 1.316 1.267 2.672

method. However, in the other environments, this method cannot get ideal results, much lower than results
by the proposed method. This can be because, Environments B and D have only two window orientations, i.e.,
binary classi�cation, and the window orientations of the two window side areas are opposite, making it easier to
distinguish between these areas. However, the other environments have three or four window orientations, and
the smartphone can receive some signals from the same satellites even when the smartphone is in window-side
areas with di�erent window orientations. This factor may confound the judgment of this mathematical method.
In contrast, our method based on machine learning performed well in di�erent environments.

4.2.3 Performance of the Walking Direction Predictor. Table 13 shows the classi�cation accuracy of the walking di-
rection predictor. As shown in the table, while the classi�cation accuracy of the proposed method (GPS+magnetic)
is not perfect, it outperforms methods that employ a single sensor. In addition, because the accuracy of these
methods is higher than the random guess ratio (i.e., 33%), they can be useful for generating the walking directions
of particles produced by the �rst window-side position generator. The classi�cation accuracy for ‘only magnetic’
is poor in Environment C. This might be because of magnetic �uctuations in the environment. In addition, the
classi�cation accuracy for ‘only GPS’ is poor in Environment D. This can be attributed to the thick walls in
Environment D that block GPS signals. While the walking direction predictor requires GPS time-series as its
inputs, the walls prevented the collection of long time-series, which can be necessary for achieving precise
classi�cation. However, by combining GPS and magnetic readings, the proposed method (GPS+magnetic) can
achieve stable performance in the experimental environments.

4.2.4 Performance of Trajectory Prediction. Table 14 shows the positioning errors of the PDR methods in each
environment. As shown in the table, the proposed method signi�cantly outperformed the state-of-the-art neural
PDR even though the proposed method does not use information about the initial position and initial walking
direction. When the duration of a trajectory is long, all the particles sometimes collide with the inner and outer
walls owing to accumulated errors in neural PDR. In such cases, because the method ignored the wall only at
that time (i.e., when all the particles were eliminated by map matching), the positioning errors of the neural PDR
method increased. The positioning errors in Environment D were larger than those in the other environments
because the size of Environment D is large and the window-side areas are sparse, resulting in large accumulated
errors.
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Fig. 20. Examples of estimated trajectories in Environment A. The red line represents the predicted trajectory with the
methods and blue do�ed line represents the ground truth. The first window-side position is detected as the first#2 consecutive
detections of ‘window-side.’

W/o WOC (window orientation classi�er) sometimes failed to generate good particles when the subjects were
�rst detected in window-side areas. Because W/o WOC generates particles at all window-side areas, while the
number of generated particles is identical to that of the proposed method, the probability with which particles
are generated at actual positions is lower than that of the proposed method, resulting in the poor performance of
W/o WOC. The performance of W/o WDP (walking direction predictor) was also poorer than that of the proposed
method. Although the performance of the walking direction predictor was not very high, the positioning error
of the proposed method was much smaller than that of W/o WDP, which randomly determines the walking
direction when a user �rst enters a window-side area. The impact of the walking direction predictor was higher
than we had expected.
Fig. 20 shows examples of trajectories estimated by the methods associated with ground truth trajectories.

As mentioned above, because all particles are sometimes eliminated by map matching, the methods sometimes
generate trajectories that pass through the walls. However, the proposed method based on GPS information
can correct the accumulated errors of the neural PDR module. Speci�cally, the window orientation classi�er
enables us to narrow down the candidates for window-side positions. As shown in Fig. 20 (b), W/o WOC usually
failed to generate good �rst window-side positions. W/o WDP also sometimes failed to generate good walking
directions for �rst window-side positions. In this example, W/o WDP could not �nd a path that starts with the
right window-side area (purple area). In contrast, because the proposed method generated many particles with
correct walking directions at the �rst window-side position, the proposed method could �nd a path that starts
with the right window-side area.
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Table 15. Prediction results of each module for Aquos phone and Motorola phone

Window-side Window orientation Walking direction Positioning error (m)

Aquos 85.80% 90.70% 69.80% 1.721

Moto 87.90% 88.80% 70.30% 1.776
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Fig. 21. Confusion matrices of window-side detector results for 3F = 3 for di�erent devices

4.2.5 Device Heterogeneity. The main evaluation in this study employed sensor data collected from a Pixel 4
smartphone. However, sensor sensitivity can depend on smartphone products. Here, we tested our method trained
on sensor data from the Pixel 4 in Environments B-D by employing sensor data from the Motorola and Sharp
Aquos smartphones (Table 3) as test data. Table 15 and Fig. 21 show the results of this experiment. As shown in
the table and confusion matrices, the window-side classi�cation performance for these smartphones are very
high, indicating the limited e�ect of the device di�erence. Similarly, the performance of the window orientation
classi�er and walking direction predictor was not signi�cantly di�erent from that of the Pixel 4. In addition, the
positioning errors for these smartphone are small in this experiment. Based on these results, we were unable to
identify the e�ects of device di�erences on the proposed method.

4.2.6 Number of Generated Particles by First Window-side Position Generator. According to the estimated walking
direction, the �rst window-side position generator samples the walking direction of each �rst window-side
particle at time C8 as described in Section 3.5.1. In contrast, the W/o WDP method randomly selects the walking
directions of these particles from all directions (0–360◦). Therefore, the performance of W/o WDP degrades
when the number of �rst window-side particles #8 is small, which is related to the computational costs of W/o
WDP. Here, we investigate the e�ect of #8 on the PDR performance. Table 16 shows the positioning errors of
this experiment. As shown in the results, when we reduce #8 , the positioning error for W/o WDP signi�cantly
increases. Although the error for the proposed method also increases as #8 decreases, the error for the proposed
method is much smaller than that for W/o WDP. As mentioned above, the walking direction predictor can
suppress performance degradation when we use a small #8 to reduce the computational cost.

4.2.7 E�ect of Wall Materials. This study assumes that GPS signals are blocked by walls. Here we investigate
the e�ect of the wall material on the received signal strength. Fig. 22 shows heat maps of class probabilities
for “window-side” when a smartphone was close to a wall without windows. As shown in the �gure, when the
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Table 16. Positioning errors [m] when #8 is varied for W/o WDP and the proposed method in Env. B

100% 80% 50%

W/o WDP 2.995 3.788 4.730

Proposed 1.819 2.171 2.905

thick wall (concrete)

thin wall 
(aluminum)

3 m3 m

Fig. 22. Heat map of window-side probabilities when a smartphone was closed to a thin/thick wall. The gray circles indicate
observation points.

1 m 1 m

10m 7 m

tall building (four-story) tall building (four-story)

Fig. 23. Heat map of window-side probabilities when a smartphone was close to a thin or thick wall. These environments are
the first floors of buildings. The gray circles indicate observation points.

smartphone was close to the concrete wall, GPS signals were completely blocked by the wall. However, when the
smartphone was close to the thin wall, the window-side detector mistakenly classi�ed the observation points
into the window-side class. The experiment revealed that when we created a �oor map of a building with thin
walls, the areas around these walls should be de�ned as window-side areas.

4.2.8 E�ect of Nearby Tall Buildings. Because our method relies on GPS signals observed at window-side areas, it
is a�ected by nearby tall buildings that can interfere with the signals. We collected GPS signals from window-side
areas in buildings with nearby tall buildings. The distance between the window-side area in the �rst environment
and its nearby building is approximately 10 m. The distance between the window-side area in the second area
and its nearby building is approximately 7 m. Fig. 23 shows heat maps of class probabilities for “window-side.”
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Fig. 24. Heat map of window-side probabilities when the smartphone was close to a tall window. The gray circles indicate
observation points.

The �gure indicates that it is possible to detect window-side areas, even when there are tall buildings close to an
environment of interest. The �gure also shows that the signal strength for the 10-meter nearby building was
stronger than that for the 7-meter nearby building.

4.2.9 E�ect of Window Height . Our experimental environments (A–D) are standard �oors with a �oor-to-ceiling
height of approximately 3.5 m. Here, we collected GPS data in an environment with a tall window (approximately
3.5 m). There are no tall buildings around this environment.
Fig. 24 shows a heat map of class probabilities for “window-side.” As shown in the �gure, the smartphone

received strong signals even when the distance between the smartphone and the window was approximately 2 m.
However, the detection range of “window-side” was not signi�cantly di�erent from that in our experimental
environments.

4.3 Results of 2nd Dataset

4.3.1 Performance of Walking Distance and Walking Direction Change Prediction. Table 17 summarizes the MAEs
obtained from the �rst and second datasets for the prediction of the walking distance and direction change. As
shown in the results, the performance of the walking direction change predictor was not very di�erent between
the two datasets. In contrast, the MAE of the walking distance prediction with the second dataset is larger than
that with the �rst dataset, although the error was only 0.08 meters. This performance di�erence may be caused
by the use of various subjects to train the walking direction change predictor.

4.3.2 Performance of Trajectory Prediction . Table 18 presents the positioning errors obtained when running
the second dataset through the four methods when participants held a smartphone in their hand. As with the
�rst dataset, in this case, the proposed method also achieved a very high positioning performance in a variety of
environments, demonstrating the robustness of the proposed method. Although the performance of the neural
PDR module was slightly poorer than that in the �rst dataset, it was not signi�cantly a�ected by the positioning
performance. However, the MAEs in Environments D, J, O, R for the proposed method were somewhat larger
than those in the other environments. The MAE in Environment D was also large in the user independent model
because the window-side areas are sparse in the environment. The performance of the window-side detector was
poor in Environments J, O, and R, as explained below, resulting in the large MAE in the environments.
Table 19 presents the positioning performance of the proposed method when the smartphone was in a shirt

pocket. The performance in this case is much poorer than that when the smartphone was held in the hand. This is
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Table 17. MAEs of walking distance and walking direction change prediction

walking distance (m) walking direction change (rad)

1st dataset 0.05 0.08

2nd dataset 0.08 0.09

Table 18. Positioning errors (m) of the user-independent models when participants held a smartphone

Env. Neural PDR W/o WOC W/o WDP Proposed

C 1.780 7.552 2.503 1.157
D 2.268 10.595 5.074 1.703
F 2.585 6.697 2.059 0.974
G 1.681 8.544 3.261 1.516
I 2.828 1.969 1.471 1.099
J 2.018 5.526 4.185 1.698
L 3.458 5.664 2.031 1.480
M 2.121 1.739 1.731 0.931
N 1.195 2.298 2.474 1.076
O 2.639 3.809 2.768 1.590
P 2.742 1.767 2.321 1.068
Q 2.241 1.510 2.241 0.990
R 2.509 3.830 2.354 1.525
S 1.801 2.079 1.367 1.205
T 2.475 3.133 2.512 0.973
U 2.096 6.308 3.633 1.090

because the performance of the window-side detector and window orientation classi�er is very poor, as explained
next.
Table 20 lists the positioning errors of the proposed method for di�erent numbers of obstacle participants

standing close to the window in each environment. As shown in the results, the number of obstacle participants
did not greatly a�ect the positioning performance. This can be because, in general, the size of a window is still
su�ciently large to capture GPS signals even when people are standing between the smartphone user and the
window when the user is close to the window.

4.3.3 Performance of theWindow-side Detector. Table 21 presents the classi�cation results of the user-independent
window-side detector when the smartphone was in the hand of the participant. As indicated by the results,
the performance of the window-side detector is similar to that under the user-dependent setting in many
environments, thus con�rming the robustness of the window-side detector. However, the classi�cation accuracy
in Environments J, O, Q, and R was poorer than that in the remaining environments. This can be explained
by the presence of tall buildings close to one side of Environments J, O, and Q. In addition, there are large
eaves at one side of Environment R, which seem to block GPS signals in the corresponding window-side areas.
As mentioned above, the positioning performance in Environments J, O, and R was poor, indicating that the
classi�cation performance of the window-side detector signi�cantly a�ects the positioning performance of our
method. The positioning performance in Environment Q was high even though the classi�cation performance
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Table 19. Positioning errors (m) of the user-independentmodels for the proposedmethodwhen participants held a smartphone
or inserted a smartphone in a shirt pocket

Env. hand pocket

C 1.157 2.257
D 1.703 2.214
F 0.974 1.411
G 1.516 1.954
I 1.099 1.622
J 1.698 2.041
L 1.480 2.138
M 0.931 1.393

Env. hand pocket

N 1.076 1.573
O 1.590 2.180
P 1.068 1.499
Q 0.990 1.570
R 1.525 1.386
S 1.205 1.611
T 0.973 1.505
U 1.090 1.591

Table 20. Positioning errors (m) of the user-independent models when the number of obstacle participants standing close to
a window is di�erent (0, 1, 2)

Env. 0 1 2

C 1.136 1.115 1.191
D 1.767 1.770 1.585
F 0.825 1.192 0.957
G 1.365 1.631 1.545
I 1.041 1.086 1.184
J 1.761 1.537 1.800
L 1.507 1.306 1.632
M 0.949 1.004 0.838

Env. 0 1 2

N 1.071 1.129 1.043
O 1.826 1.618 1.109
P 1.127 1.004 1.072
Q 0.955 0.948 1.035
R 1.579 1.491 1.505
S 1.082 1.342 1.329
T 1.091 0.956 0.853
U 0.817 1.266 1.204

Table 21. Classification results of user-independent window-side detector when smartphones were in the hands

Env. Accuracy Sensitivity Speci�city

C 71.9% 87.1% 26.9%
D 81.2% 81.8% 80.7%
F 83.4% 80.9% 85.9%
G 76.2% 79.4% 68.4%
I 84.1% 72.1% 87.8%
J 73.0% 69.3% 75.8%
L 76.0% 79.9% 72.2%
M 76.8% 71.5% 80.5%

Env. Accuracy Sensitivity Speci�city

N 72.9% 76.2% 70.8%
O 70.1% 56.4% 81.0%
P 77.4% 74.3% 79.2%
Q 69.5% 65.1% 76.5%
R 69.6% 40.1% 90.2%
S 89.1% 83.3% 92.5%
T 91.5% 83.5% 93.7%
U 74.0% 62.9% 84.9%

was poor because the environment has many walls/obstacles and the map matching-based method could correct
trajectories based on the information.
As shown in Table 22, the classi�cation accuracy when the smartphone was in the pocket was poorer than

that when it was in the hand. While the smartphone can receive strong/stable GPS signals in the pocket when
a participant is facing the window, the signals were blocked by the participant’s own body when facing the
direction opposite to the window.
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Table 22. Classification results of user-independent window-side detector when smartphones were in the pockets

Env. Accuracy Sensitivity Speci�city

C 61.8% 66.3% 48.6%
D 75.8% 66.4% 83.9%
F 72.4% 48.7% 96.3%
G 52.7% 39.7% 84.9%
I 87.4% 57.0% 96.9%
J 67.5% 58.0% 74.7%
L 64.4% 45.3% 82.5%
M 70.9% 47.2% 87.4%

Env. Accuracy Sensitivity Speci�city

N 62.7% 59.1% 65.1%
O 64.3% 64.4% 64.2%
P 76.7% 79.9% 74.9%
Q 60.2% 41.5% 90.5%
R 68.3% 46.7% 83.4%
S 81.3% 64.6% 91.2%
T 86.0% 76.7% 88.7%
U 59.8% 29.3% 89.5%

Table 23. Classification results of user-independent window orientation classifier when smartphones were in the hands

Env. Overall accuracy Macro accuracy

C 67.4% 78.5%
D 100% 100%
F 99.6% 96.1%
G 97.8% 96.9%
I 96.3% 92.5%
J 95.4% 94.0%
L 79.2% 80.8%
M 100% 100%

Env. Overall accuracy Macro accuracy

N 83.2% 53.3%
O 83.9% 68.0%
P 70.1% 83.0%
Q 88.7% 82.8%
R 71.8% 68.3%
S 99.7% 96.9%
T 83.1% 84.9%
U 77.1% 66.6%

Table 24. Classification results of user-independent window orientation classifier when smartphones were in the pockets

Env. Overall accuracy Macro accuracy

C 65.5% 73.8%
D 99.7% 99.7%
F 95.9% 83.8%
G 78.7% 83.5%
I 99.0% 99.0%
J 81.4% 81.1%
L 66.0% 64.3%
M 99.0% 99.2%

Env. Overall accuracy Macro accuracy

N 68.6% 50.7%
O 68.0% 70.5%
P 48.8% 74.1%
Q 82.9% 69.1%
R 54.3% 55.5%
S 72.6% 75.4%
T 85.9% 85.9%
U 69.1% 65.5%

4.3.4 Performance of the Window Orientation Classifier. Table 23 introduces the classi�cation results of the
user-independent window orientation classi�er when the participants held the smartphone in their hands. Overall,
the classi�cation accuracy under this setting was very high in most of the environments, even though the classi�er
was trained on data from other participants. The classi�cation accuracy in Environment C was poorer than
that in other environments. As in the case of the �rst dataset, the classi�cation results at the corners were poor.
However, as mentioned above, the in�uence of the corners when determining the position was limited.
As shown in Table 24, the classi�cation performance of the user-independent window orientation classi�er

was also de�cient when the participants carried the smartphone in the shirt pocket, which can also be attributed
to the signal blocking caused by the participant’s body.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 166. Publication date: December 2022.



GPS-assisted Indoor Pedestrian Dead Reckoning • 166:33

Table 25. The proportion of each kind of failed trajectories in the total number of trajectories in the four environments

Category 1 Category 2 Category 3

Ratio 6% 8% 4%

4.4 Discussion

4.4.1 Failed Trajectories. We investigated the reasons for failed trajectory predictions made by the proposed
method using the �rst dataset, assuming that a trajectory with an MAE greater than 3 meters is a failed one. As a
result, the failed trajectories were categorized into three types. Table 25 shows the proportion of the total number
of trajectories in the four environments corresponding to each type.

(1) False positive predictions by the window-side detector near the window-side areas. A false positive
prediction by the window-side detector denotes a case where a user, despite not being in a window-side
area, was predicted as being there at time C . When we identify the prediction at time C as a false positive
prediction but the subject was in the window-side area at C − 1, the trajectory estimation module was likely
to predict that the possible position of the user at time C was still in the window-side area, which may
cause an accumulated trajectory error after time C . This issue was observed when a subject is at a boundary
of a window-side and non window-side areas.

(2) All possible particles traversing the nearby wall. Corresponds to the case where the subject is near a
wall (i.e., that the distance between the subject and wall is extremely small) at time C − 1 and turns around
that wall at time C , resulting in the prediction that all possible particles collide with that wall at time C . As
a consequence, a null weight is assigned to all particles and the trajectory estimation module randomly
chooses the particles. This problem is caused by two factors: a large error in the predicted change of walking
direction, and a small f> (hyperparameter of the particle �lter regarding the walking direction variance).

(3) Symmetric building structure & lack of information on walls or other obstacles. There is a special
condition in Environment D: the �oor plan is symmetric but wall information is insu�cient. Therefore, it
is likely that the map matching-based trajectory estimation module predicted trajectories whose shape was
similar to the ground truth, but each location was di�erent (translation in 2D geometry).

We found that the second category of failed trajectories is the most frequent, posing a challenging problem for us.
A simple solution would be to increase the value of f> , but this approach requires that we generate more particles
in each time step to ensure better accuracy, increasing the computation cost. Another simple approach would be
that the system generates other random particles which do not collide with the wall at time C . In future studies,
we plan to focus on this problem. In addition, we plan to address the �rst and third types of failed trajectories by
improving the accuracy of the window-side detector and adding more obstacle information.

4.4.2 Detecting Corners in a Floor. There is an environment that has windows on both sides of a corner area,
where a smartphone can receive signals from the direction of each of the two windows. If we can detect when a
user is at a corner, we can precisely predict the user’s position. However, because the availability of environments
with windows on both sides of a corner area is limited, we plan to implement a corner detection module that can
be trained with limited data.

4.4.3 Limitations. Because our proposed GPS landmarks rely on GPS satellites, they cannot be used in under-
ground environments. In addition, GPS landmarks cannot be used to distinguish between multiple �oors in a
multi-�oor environment. However, as mentioned in the Introduction, because smartphones are equipped with
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various sensors, GPS landmarks can be used with other types of landmarks that can distinguish between multiple
�oors. We believe that the advantage of GPS landmarks is their ease of installation, as shown in Table 1. In
addition, this is the �rst study to demonstrate the feasibility of using GPS landmarks.

5 CONCLUSION

This paper presented a new type of indoor landmark based on GPS signals that can be used to correct accumulated
errors of IMU-based PDR. GPS landmarks can be observed without installing a new signalling infrastructure. In
addition, we designed the GPS landmark module for detecting GPS landmarks so that it is trained on sensor data
collected in environments other than the target environment. We evaluated the PDR system equipped with the
GPS landmark module on sensor data collected from real environments. The experiment revealed that the GPS
landmark module provides indoor contexts useful for correcting accumulated errors of PDR. As a part of our
future work, we plan to explorer other applications of indoor contextual information acquired by GPS satellites.
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A APPENDIX

Table 26. Overview of the 2nd dataset. The data were collected from five subjects in each environment.

Env. Floor Size Type # of trajectories Total data duration

A 2F 22.9m x 43.2m O�ce 47 1 hr 28 min 25 sec

B 6F 21.7m x 41.9m O�ce 73 1 hr 24 min 15 sec

C 3F 22.2m x 26.2m Multipurpose 70 1 hr 10 min 31 sec

D 3F 35.4m x 49.2m Library 74 1 hr 31 min 20 sec

E 5F 20.9m x 46.5m O�ce 65 1 hr 22 min 19 sec

F 5F 28.0m x 28.0m O�ce 63 1 hr 09 min 50 sec

G 3F 27.6m x 48.0m Convention center 68 1 hr 22 min 51 sec

H 2F 12.6m x 20.0m Multipurpose 68 1 hr 29 min 25 sec

I 2F 22.0m x 28.0m Community center 59 1 hr 17 min 28 sec

J 2F 22.5m x 33.4m Community center 75 1 hr 12 min 31 sec

K 1F 30.0m x 26.7m Multipurpose 75 1 hr 22 min 10 sec

L 3F 37.4m x 17.5m Conference center 74 1 hr 45 min 43 sec

M 2F 28.5m x 17.5m Workshop 62 1 hr 12 min 11 sec

N 1F 24.0m x 31.5m Multipurpose 65 1 hr 21 min 49 sec

O 2F 21.8m x 15.2m Conference center 74 1 hr 25 min 33 sec

P 4F 23.7m x 28.3m Seminar rooms 75 1 hr 32 min 04 sec

Q 2F 18.6m x 62.0m Conference center 72 1 hr 21 min 04 sec

R 2F 22.6m x 13.6m Multipurpose 75 1 hr 38 min 20 sec

S 3F 37.0m x 40.0m Cultural hall 72 1 hr 35 min 04 sec

T 4F 6.2m x 30.0m O�ce 56 1 hr 31 min 52 sec

U 9F 15.3m x 33.0m O�ce 45 1 hr 02 min 24 sec
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