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ABSTRACT
Besides Intel’s SGX technology, there are long-running discussions
on how trusted computing technologies can be used to cloak mal-
ware. Past research showed example methods of malicious activities
utilising Flicker, Trusted Platform Module, and recently integrating
with enclaves. We observe two ambiguous methodologies of mal-
ware development being associated with SGX, and it is crucial to
systematise their details. One methodology is to use the core SGX
ecosystem to cloak malware; potentially affecting a large number
of systems. The second methodology is to create a custom enclave
not adhering to base assumptions of SGX, creating a demonstration
code of malware behaviour with these incorrect assumptions; re-
maining local without any impact. We examine what malware aims
to do in real-world scenarios and state-of-art techniques in malware
evasion. We present multiple limitations of maintaining the SGX-
assisted malware and evading it from anti-malware mechanisms.
The limitations make SGX enclaves a poor choice for achieving a
successful malware campaign. We systematise twelve misconcep-
tions (myths) outlining how an overfit-malware using SGXweakens
malware’s existing abilities. We find the differences by comparing
SGX assistance for malware with non-SGX malware (i.e., malware
in the wild in our paper). We conclude that the use of hardware
enclaves does not increase the preexisting attack surface, enables
no new infection vector, and does not contribute any new methods
to the stealthiness of malware.
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• Security and privacy → Security in hardware; Malware and
its mitigation; Software security engineering; Security requirements.
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1 INTRODUCTION
Today it is highly likely that the majority of commodity systems
are exposed to malicious software due to their highly complicated
software stack. One of the revolutionising techniques in fighting
malware is to utilise trusted hardware enclaves. However, using
enclaves has also provoked discussions, and misconceptions leading
to myths about whether attackers can utilise these enclaves for
adversarial purposes. Similar to end-user computers, home IoT
deployments suffer from the same problem. Nowadays, most home
Internet of Things (IoT) deployments contain insecure, untrusted,
outdated devices installed in houses, permanently spying on users.
We consider the malware living in commodity systems and home
IoT deployments as the malware in the wild.

An example of malware in the wild is a light bulb in a smart
house. The light bulb may contain a full Linux software stack, al-
ways online in the network, sniffing and spying on the home WiFi
network, and constantly leaking user assets. We group these types
of harmful IoT devices as Evil Light Bulbs (ELB), as the malware
living in a highly noisy commodity environment. Trusted hard-
ware technologies, e.g., Trusted Execution Environments (TEE),
also fight back against ELB by securing the IoT deployments 1.
We examine whether malware in ELB can utilise trusted hardware
to be more powerful in attacks towards industrial IoT and smart
home IoT deployments. Our arguments and the misconceptions
discussed in Section 3 for wild malware and enclave-based malware
in computers are also valid for ELB in IoT deployments.

Paper Structure: We structured this paper into four main cate-
gories. First, we describe the frequently seen characteristics of an
ideal malware. Second, we demonstrate existing malware evasion
techniques and high-scale, effortless malware distribution tech-
niques. We show non-TEE malware evasion techniques and a de-
livery campaign for two reasons; (1) to define the assumptions
and review the scope of malware detection, (2) to demonstrate a
real-world scenario on scalable infection to give readers an under-
standing of malware in the wild. Third, we systematically evaluate
twelve misconceptions on malware in TEE and present why these
myths are far from the truth in practice. Finally, we compare the
malware in the wild with enclave-based malware and see if utilising
enclaves provides any additional benefits to malware in practice.

Theme: The theme of this paper is to evaluate TEE-assisted
malware development from the perspective of malware developers
(bad actors), understand malware characteristics and requirements,
1https://www.iotsecurityfoundation.org/best-practice-guide-articles/device-secure-
boot/
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and evaluate systematically whether TEE assistance can fulfill the
implementation details of a stronger malware. Section 4 relates
to this theme by comparing a TEE assisted malware with wild
malware in a system. The relation of Section 5 to the paper’s theme
is to discuss the remaining aspects potentially being abused by
bad actors, and how these aspects should be considered in future
trusted hardware designs.We do not intend to discuss how attackers
should be developing malware in next-generation TEE. We show
why attackers would find developing malware with TEE infeasible.
We hypothesise that malware in TEE gives no new advantages
to attackers; we will discuss how it brings disadvantages in some
cases.

Contributions: This study presents the most comprehensive
collection of misconceptions about malware in enclaves to date.
Our novel contribution is that we systematically show why mal-
ware becomes weaker due to trusted hardware. We also clarify the
ambiguity of malware in an SGX-enclave and the malware in the
core SGX ecosystem.

Concepts: Throughout the paper, we may use the following
synonyms. Wild malware refers to malware in commodity sys-
tems, malware in the untrusted world, ELB in IoT deployments, or
malware in a highly noisy system. Enclave-based malware refers
to a malicious code placed in a custom developed enclave, SGX-
malware, SGX-based malware, malware based on trusted hardware,
or malware in TEE. In order to distinguish the core SGX ecosystem
from custom developed enclaves, we provide a detailed definition
in Section 1.3.

1.1 Scope of Malware
Malware presence can be in various forms; virus, worm, trojan,
zombie/botnet, phishing/spam, spyware, keylogger, sniffer and ran-
somware. Throughout this paper, we refer to this section for the
precise scope of the malware. We take into account specifically the
malicious software targeting Windows PCs. Nevertheless, most of
our systematisation can also be valid for Linux distributions and OS
X systems (Intel, non-ARM). Malware targeting other commodity
operating systems, advanced persistent threats (APT), and other rel-
atively harmful software can be explored outside of this paper. We
keep relatively badly behaving software outside of the malware def-
inition. A bad program is one, when found and analysed by an AV
company, is subsequently detected by their malware detection sys-
tems. Finally, we consider malware as malicious software tailored
for disruption, damage and unauthorised access to the commodity
computer system. We describe the characteristics of malware in
more detail in Section 1.2. Similar to malware in a single computer,
an IoT deployment with tens of devices in a house suffers from the
same problems due to ELB.

1.2 Characteristics of Malware
The ideal malware must 2 have the characteristics listed below for
a successful malware campaign. However, one of the fundamental
issues is that these characteristics can also be seen in benign and
legitimate software. Having these characteristics in benign soft-
ware makes malware detection a challenging task for anti-malware
mechanisms.
2Others may structure these characteristics or malware patterns in an alternative way.

1.2.1 Persistence across boot cycles/load at startup. Themal-
ware must be able to reload itself whenever the system is available.
This can be done via scheduled events, registry entries, drivers and
functions in other processes. Section 3.5 presents the persistence
aspect of enclave-assisted malware.

1.2.2 Communication on demand. Ideally, the malware must
be able to communicate with the author to receive commands or
leak information whenever required. Communication might be nec-
essary for reselling the network of victims, fetching a new payload
or ready-to-use new exploits, or equippingmalware with up-to-date
zero days to be exploited. A secure communication channel is also
required for the key management; whether the keys are managed
locally or through external servers, the malware must have a direct
or indirect key management channel. We present the communica-
tion aspects in Section 3.3 and Section 3.6, and key management
aspects in Section 3.2 and Section 3.4.

1.2.3 Full Un-Detection (FUD). The malware must remain fully
undetected throughout its life cycle against any possible detection
mechanisms. At a minimum, this can be done via resilience to all
anti-virus software products in the market. FUD checks can be done
offline via automated environments without leaking the know-how
of malware. We present the arguments on detection in Section 3.1
and Section 3.7.

1.2.4 Access to system calls/APIs. Ideal malware must be able
to access kernel functionalities, system calls, and Application Pro-
gramming Interfaces (APIs) present for low-level operations. Access
to the full system is especially necessary for targeted attacks where
a victim user’s core assets are extracted. Section 3.8 presents the
arguments on syscalls.

1.2.5 The highest possible privileges. The malware must es-
calate into privilege levels present in a system as high as possible.
Most attacks may begin at the lowest level of permissions; however,
successful malware must be equipped with the necessary payloads
to exploit the rest of the system. Section 3.5 and Section 3.9 present
the arguments on malware privileges.

1.2.6 Unrestricted resources and assets. Ideally, malwaremust
be able to use all system resources without restrictions. Resources
may refer to all devices/components other than computational abil-
ities and full memory access. These resources may also contain the
target user assets and valuable information. We present the argu-
ments on resources in Section 3.10 and on user assets in Section 3.4.

1.2.7 Infect more targets, audience and availability. Ideally,
malware must aim to infect more victims in a campaign. Infection
rate can be a success measure for malware. A malicious attack
targeting one specific system might fall into the APT category. For
compatibility, the target system must fulfil the requirements of
the malware at infection time. Further, if the malware has specific
dependencies to operate, these dependencies must continue to be
available.We present the arguments on target victims in Section 3.11
and malware availability in Section 3.3.

1.2.8 Maximise revenue/profit and long-termmaintenance.
The goal of malware should be to increase its profit above all. The
monetisation of a campaign might be a way to see the profit, but the
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overall damage or the information extracted can also be of profit
to the malware authors. The malware would require maintenance
for long terms jobs or while reselling or in case of an ownership
transfer. Section 3.6 and Section 3.12 present arguments on malware
maintenance.

1.3 Focused TEE: The SGX Ecosystem
TEE provide hardware-assisted new security capabilities as spec-
ified in Global Platform documentations 3. We focus on Intel’s
Software Guard eXtensions (SGX), widely available for commodity
systems today in the market. SGX-enabled hardware products allow
applications to be executed in a protected memory region called
an enclave. Enclaves aim to protect sensitive workloads, process
secret information and provide strong isolation for applications. To
examine better whether enclaves can fundamentally help to cloak
malware in contrast to its design goals, we briefly describe the SGX
ecosystem. SGX was introduced in new hardware instructions (host
+ user level4, and VMM instructions added), and is a hardware-level
feature, implemented as xucode5 in the CPU package. The imple-
mentation can be considered more or less as executing on the ring
level minus three (-3), and SGX can be configured in the firmware.
The memory amount allocated for SGX is predefined and known at
the system start. The amount of encrypted memory pages that ap-
plications can benefit from depends on the enclave’s requirements
at run time.

Intel provides a native Software Development Kit (SDK) for en-
clave development, which contains trusted libraries (nowadays ab-
solutely required in any enclave) to be imported into enclaves. There
are also other SDKs for enclave development, but we keep them
out of the scope of the core SGX ecosystem. For example, Fortranix
Enclave Development Platform (EDP, https://edp.fortanix.com/), is
one of the most advanced environments to develop secure enclaves,
utilising RUST language. Enclave developers are responsible for
keeping their development environment malware-free, and only
trusted libraries and trusted SDKs must be utilised. Intel’s SGX SDK
provides privileged architectural enclaves such as Launch Enclave,
Quoting Enclave and Platform Service Enclave (LE, QE, PSE) and
others. These are assistive enclaves for the custom enclaves de-
veloped; they are built with Intel’s SGX SDK. Enclaves can have
manufacturing, provisioning and attestation life cycles in their pro-
duction and execution periods. Finally, there are crypto libraries
and protocols (e.g., for communication) utilised in enclaves. These
points define the SGX ecosystem, where SGX itself can be held
responsible for a bad design choice. After all, the custom enclave
code is outside of the SGX ecosystem, and outside of a TEE ecosys-
tem. If the custom enclave contains a vulnerable piece of software
code programmed by the enclave developer, the security guarantees
offered by the hardware may be diminished, and SGX instructions
should not be blamed for such cases. The composition of the under-
lying hardware and the developed software plays a crucial role in
secure application development. Some of the important questions:

3https://globalplatform.org/technical-committees/trusted-execution-environment-
tee-committee/
413 host + 5 user; it depends on if we count actual instructions or SGX leaf instructions.
5Online. https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/secure-coding/xucode-implementing-complex-
instruction-flows.html

• Is persistent-malware taking advantage of any of these fea-
tures in the core SGX ecosystem?

• Does malware gain superior features or become weaker by
utilising these features?

• Where is the actual location of malware (e.g., in the mi-
crocode, or in developer-defined enclave-code)?

1.4 Related Work
There are example studies in the literature [2, 6, 12, 19, 23] for bad
CPU design choices, micro-architectural attacks and the known-to-
be-vulnerable software chunks used in enclaves. When CPU design
choices cause a security issue, microcode can receive a trusted
computing base (TCB) update [3]. In fact, the system’s microcode
gets patched at each boot cycle. If an attack requires full kernel and
OS control, this can be mitigated by a measured boot of a formally
verified kernel. The applications containing vulnerable software
must update their enclave code base and revoke any execution
permissions for the older versions.

We examine the question of whether developing a fine-grained
malware by utilising TEEmakes it stronger orweaker [13, 15, 16, 18].
There are long-lasting discussions based on these questions:

• Can SGX help to deliver malware payloads?
• Can TEE help ransomware (i.e., for operations of data copy/
encryption/ delete, key generation/ storage, persistence, com-
munication)?

• What secret operations can an enclave handle/execute inside
an isolated memory region?

The purpose of enclaves is to allow secret operations; neverthe-
less, any secret operations with malicious intentions are similar
to independent, remote operations. We shall further discuss these
questions in detail in the scope of this paper.

Enterprise-level anti-malware solutions with advanced memory
protections can apply to enclave-based malicious software. Memory
Exploit Mitigation (MEM) from Symantec [14], and other defensive
techniques as Data Execution Prevention (DEP), Address Space Lay-
out Randomization (ASLR), Structured Exception Handling Over-
write Protection (SEHOP) and Return-oriented Programming (ROP)
protections are effective for detection and mitigation purposes [4].

2 EXISTING DIFFICULTIES IN MALWARE
DETECTION

Malware detection in a high entropy system has been a difficult
challenge for decades. The complexity of an end-user’s commodity
system and the similar patterns of benign and malicious software
make malware detection more difficult. We show example meth-
ods of non-SGX malware for malware stealthiness and malware
delivery (i.e., malware without enclaves, malware without trusted
execution environments) in Section 2.1 and Section 2.2. These meth-
ods continue to achieve successful malware campaigns. Throughout
our discussions, we examine whether an enclave-assistance can
make a malware campaign more successful, or result in its quicker
failure. We explain the misconceptions in Section 3. The reason
why we show a non-SGX malware is to be able to compare it with
a potential SGX-based malware systematically and draw a clear
picture of their comparison of whether the existing capabilities
increase or decrease.

https://edp.fortanix.com/
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
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2.1 Case Study: (Non-SGX) Malware Infection
in Memory

Malware in a commodity system (e.g., in Windows PC) can escalate
its privileges to have full memory access. We present three com-
mon techniques for a malicious payload to spread and continue to
execute with benign processes. Depending on how sophisticated im-
plementation a malware has, detection might be very difficult. Most
of these actions can be seen in legitimate software as well. Thus the
malicious behaviour can often bypass the detection mechanisms.

Software-based memory encryption and obfuscation techniques
can hide malware in run-time and make reverse engineering diffi-
cult. We show three of these commonly used techniques. Due to
real-time mutations, e.g., malware polymorphism, old-time static
code analysis and detection techniques (signature-based) can fail.
Failure of static analysis techniques and the rise of dynamic mal-
ware identity motivated the industry to bring promising behaviour-
based dynamic analysis techniques, even if thememory is encrypted
or obfuscated. Today, anti-malware companies use advanced mem-
ory protection and analysis solutions explained in Section 1.4 to
fight back the memory-based evasion techniques. We highlight
the following techniques to comprehend the myths in Section 3;
SGX run-time memory encryption does not give the anti-malware
industry a new challenge.

This paper assumes that users (implementing or using anti-
malware solutions) will not opt for old-time static code analysis
or signature-based detection. If they rely on signatures only (old-
fashioned), some readers may think that enclaves can hide the
code with memory encryption. The code loaded into an enclave
is initially a static binary and is open for inspection or reverse
engineering. The potential threat with enclaves might come at
runtime where an enclave fetches dynamic content (potentially
malicious); this is where we argue that the threat vector is not new
for the anti-malware industry. Section 3.1 on memory encryption
and Section 3.10 on memory access are related to this section.

RunPE: Windows computers utilise portable executable (PE)
format. In the RunPE technique, the malware replaces the memory
content of a legitimate process (i.e., belonging to a benign system
service) with themalicious payload. The payload does not need to be
extracted all at once; malware can extract small pieces of malicious
content depending on its goals and revert back to the original
memory. Linux systems use Executable and Linkable Format (ELF);
a similar technique can be called RunELF, where the content of a
legitimate process is replaced with a malicious payload at runtime.

PE/ELF injection: Malware (e.g., a C binary) in a commodity
system with low-level privileges can access the full content of the
memory. Instead of replacing the process memory, malware can
also allocate a new memory region, inject its payload (PE or ELF)
and align/compute the memory addresses so that the execution
can continue. Similar to the RunPE method, the payload extraction
happens at runtime and does not utilise the persistent storage.

DLL/SO injection: Alternatively, malware can prepare a modi-
fied library, Dynamically Linked Library (DLL) or Shared Object
(SO), containing the malicious functions ready in the persistent
storage to be called. Often in commodity systems, even if the sys-
tem had measured boot, the libraries in the disk can be replaced by
different versions highly likely containing malicious payloads.

2.2 Case Study: (Non-SGX) Drive-by Malware
Distribution

Besides the memory operations for stealthiness, a malware can be
capable of escalating to higher privileges. It is crucial to examine
how it can spread in the first instance and escalate its privileges. We
implemented a scalable malware delivery campaign for this case
study and reported it with responsible disclosure steps. Note that
it is no longer possible to follow the exact steps as (1) Facebook
does not allow the inclusion of third-party video players anymore,
and (2) Adobe no longer supports Flash Player since the end of
2020 6. No real accounts were used in the proof-of-concept (PoC)
experiment, only the test accounts generated by Facebook for bug
bounty purposes were used.

The following PoC is an example of the malware in wild; it gives
us tangible facts to establish a comparison with potential TEE-
assisted malware. We discuss more details of the enclave-assisted
malware and the malware in wild in Section 4.1. Section 3.3 on
malware delivery and Section 3.11 on target victims are related to
this experiment.

Scalable drive-by malware delivery campaign: At the time
of our experiment, Facebook was allowing the embedding of exter-
nally hosted ShockWave Flash (SWF) video players on users’ walls.
We developed a custom video player in ActionScript 3.0, streaming
legitimate content, hosted on our HTTPS-enabled external web
server. Having a TLS connection on the host server was the only
condition by Facebook to cache the custom video player and stream
the videos on users’ walls inline. Once the source link has been
distributed through a high number of shares (e.g., to millions of
users), we updated the initially benign video player containing
known exploits (for OS X, Linux, Windows) available in the public
space 7. Although it is expected for most of the target users to
have up-to-date (non-vulnerable) versions of flash and sand-boxed
browsers, there are a sufficient number of users with vulnerable
software.

We demonstrated a proof-of-concept video to the Facebook se-
curity team, triggering other existing vulnerabilities in the system
(e.g., enabling a drive-by Java downloader, triggering a local media
player’s vulnerabilities, calling system applications and accessing
kernel functions). To infect a system 8, it is sufficient for victim
users to watch a video on their Facebook feed. Initially, the Face-
book security team responded that (1) the nature of the platform
is to allow third-party content to be circulated (2) their internal
whitelisting/blacklisting mechanism can block the source link as
soon as it is detected. Later, (and currently) the functionality of
embedding third-party video players is completely removed. Cru-
cially, we did not need any unknown zero-day vulnerabilities. As
Facebook provided the highly scalable distribution network, we
were able to demonstrate this attack with known exploits that were
not patched by all users. Having known exploit payloads in SWF
video players also proved to us that Facebook’s internal scanning
mechanisms before caching any external resource were inadequate.

6Although flash technology is no longer available, we anticipate that a similar set of
issues can be seen with WebAssembly applications and other client-side containers.
7Known CVEs, existing exploit where the patch is available. The development details
of the exploit itself are out of scope for our paper.
8A similar simplicity of infection can also be seen in an IoT deployment; ELB can cause
infection once the lights are turned on.
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Finally, although the inline video embedding/playing feature is
removed, the danger of distributing malware in social media con-
tinues. It is always possible to change the content of an external
link once it has been shared millions of times. The worst part is
that media contents can be changed depending on user location
and personal views (e.g., political), giving an extended ground for
manipulation. Once a user’s computer is infected, all of the content
in a social media account can be tampered with locally at the client
side through malware. Associating users’ true identities with in-
fected machines gives attackers a highly valuable asset in malware
reselling.

3 MISCONCEPTIONS ABOUT ENCLAVE
ASSISTED MALWARE

Although the public launch of SGX technology was in 2015, SGX-
assisted malware discussions within the research and security com-
munity go back to 2013 [15, 16] at least9. Our goal in this section is
to stretch these claims to study and understand them correctly; this
may result in some of the myths being read as hand-waving.We aim
to give readers an understanding of how dangerous SGX-assisted
malware can be and how future TEE designers can benefit from our
systematisation in order to avoid TEE features being abused by bad
actors to strengthen their malware. Besides our work, Symantec
has also published [14] a written statement that claims behind SGX
malware may not be as bad as it is believed, and they may remain as
myths only. Here in our systematisation, we present them as myths
or misconceptions interchangeably. In accumulation and concise-
ness of these claims, we benefited from past SGX Community Day
discussions and presentations [11].

The structure we create may serve as a template for future dis-
cussions, and may evolve with support or criticism from the com-
munity. In this section, we structure 10 the claims about malware
utilising enclaves especially crafted for SGX-enabled trusted hard-
ware. Similar characteristics and claims are valid for ELB utilising
trusted hardware capabilities to attack IoT deployments internally.
The claims and arguments behind these myths are derived from
ITL resources [15, 16], industry/practitioners conferences 11 [18],
industrial vendor resources [14], and are compiled from Intel’s SGX
Community Days discussions and presentations [11].

3.1 Myth: Enclave’s memory encryption engine
will hide the malware

Relates to the FUD characteristic of malware in Section 1.2.3. Sec-
tion 3.7 presents further arguments on malware detection.

Supporting Arguments: SGX provides a memory encryption
engine for trusted applications. The content of the memory pages
of enclaves is not visible at runtime. For example, the memory
of enclaves cannot be inspected directly. Comparing it to an un-
trusted part of the memory, enclaves can help to hide the malware
(e.g., malicious payload or malicious behaviour).

9Researchers may be able to trace TEE-based malware discussions considering older
technologies with DRTM, TXT or similar.
10Through SGX research community days, community’s written statements, and other
references found in this document.
11https://www.zdnet.com/article/researchers-hide-malware-in-intel-sgx-enclaves/

Counter Arguments: Enclave binaries are inspectable in the
disk, and anyone can dump the initial content of the enclave, as
shown in [8]. The memory locations of enclaves are the most vis-
ible part of the system. The network traffic into the enclaves is
visible; although traffic is encrypted, most of the network analysis
techniques still apply. All of the disk operations, input and output
operations on main memory, the interface operations with the un-
trusted part, usage patterns and CPU utilisation of the enclaves
are visible. These points make enclave-based malware even more
visible than malware in the wild. Hardware-assisted encryption
instead of software-based encryption may give stronger security
guarantees for malware; nevertheless, the actual detection of mal-
ware is only possible through the behavioural patterns. In other
words, detection mechanisms do not necessarily require decryption
of the malware. Tracking malware in a complex and noisy environ-
ment is more difficult than tracking the behaviour of an enclave
which is entirely dependent on resources managed by the OS.

Reference and Rebuttal: [24] states that enclave can hide the
malware, they conclude that malware can benefit from SGX. In
fact, they only download static plain-text data into an enclave, with
no proof of execution or malicious activity where SGX directly
contributes. They ignore multiple facts how the initial enclave was
launched, where did this enclave connect or who supervised it.

3.2 Myth: Enclaves will generate encryption
keys for each malware payload

These arguments relate to malware key management requirements in
Section 1.2.2. We discuss the scalability and ransomware aspects of
key management in Section 3.4.

Supporting Arguments: Enclaves can generate private keys
inside encrypted memory regions. These keys never leave the pri-
vate memory. This can help malware to maintain its key generation
and key storage problems. Further, malware can generate unique
keys for each victim.

Counter Arguments: The instruction used for key generation
EGETKEY is bound to the enclave binary identity. Enclave is mea-
sured at load time once, and any payload that the enclave fetches
later does not change the enclave identity. The source code of
the initial binary is inspectable on the disk. Enclave ID, therefore,
enclave-based derived keys are based on initial binary (object code
can be dumped). Generated sealing keys can be derived from initial
enclave measurement and can be derived from root sealing key as
well. An attacker can produce unique keys for the victims, bound
to hardware and software. But, generating independent keys in an
enclave is similar to generating them at a remote location. The key
point is that the dynamically fetched payload is not part of the key
generation through SGX, it is done through already existing man-
ual efforts. Overall, this does not provide the malware author with
anything new or any superior feature. The main enclave identity
remains the same as the initial binary. Nevertheless, SGX’s newer
Key Sharing and Separation (KSS) feature must be examined sepa-
rately. Although KSS does not change the enclave ID for attestation
purposes, optionally, KSS can include the identity of the newly
fetched payload for sealing key generation. This may give a unique
key based on the payload.

https://www.zdnet.com/article/researchers-hide-malware-in-intel-sgx-enclaves/
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Reference andRebuttal: [1] shows that attackers can generate
public-private key pair inside an enclave and attackers can use
them for encrypting user files with the public key outside of the
enclave. The paper makes many assumptions far from reality that
all conditions must be set for a successful attack. Further, it tries to
solve a problem that does not exist anymore; ransomware gangs
changed how they carry out their attacks. The use of an enclave
for key generation makes the job of attackers more difficult.

3.3 Myth: Enclaves will secretly deliver
malware

These arguments relate to communication aspects in Section 1.2.2
and availability requirements in Section 1.2.7. Section 3.6 presents
communication of malware towards establishing secure channels.

Supporting Arguments: Enclaves can fetch secret payloads
into the private memory regions at runtime. This may allow en-
claves to be a point of malware distribution. Enclaves might be used
as stateless malware carrying embassies.

Counter Arguments: Enclaves do not receive the payloads out
of anywhere arbitrary. The network patterns and their behaviour
can be observed. Further, enclaves are not always available in a
system. An enclave’s responsiveness (i.e., opportunity to real-time
respond to an attacker) is relatively low compared to the system’s
other services. If an enclave allows malicious payload at runtime, it
must utilise public key infrastructure (PKI) to ensure that only the
attacker can fetch a payload. Otherwise, malware reverse engineers
can also inject healing code inside an enclave and extract its private
keys. Overall, attackers utilise classical PKI techniques for malware
delivery as usual, and do not profit directly from SGX’s features. [9]
explains the past use of PKI, for potentially malicious or benign
purposes. SGX enclaves are just another point they might choose
for malware delivery, but their low availability makes them a bad
choice for high-scale infection campaigns. Launch Enclave (LE) is
a special enclave to account for malware in an enclave. It can be
used to determine whether the enclave may be launched on the
platform, utilising launch tokens and policies.

Reference and Rebuttal: [24] states that stalling mechanism
can delay the malware behaviour and help to delivery. Time mea-
surement inside an enclave is difficult, they develop a mechanism
to measure the time, however, the paper does not show any solid
proofs for malware delivery. They ignore the actual infection point
in practice and jump to the behavioural detection discussion.

3.4 Myth: Enclaves will scale and ease
ransomware key management

The following arguments relate to key management in Section 1.2.2
and access to user assets in Section 1.2.6.

Supporting Arguments: Ransomware key management (gen-
erating and storing the keys, or regenerating the keys at a later
stage) can be easily achieved within enclaves. Every victim can have
a unique key based on their machine identity. Similar to any digital
rights management software designed for enclaves, ransomware
can utilise the same features.

Counter Arguments: Using enclaves for a ransomware leaves
more behaviour patterns in a system. Ransomware must still copy
the data into enclaves if files will be used for encryption purposes.

If the enclave generates the keys and gives the secret keys to the
untrusted world for encryption, this would be considered a design
failure for the ransomware. Either the encryption can take place out-
side the enclave with the released public key or inside the enclave.
Outside encryption is susceptible to existing detection mechanisms.
Technically, carrying all of the user’s data into the malicious enclave
is not a feasible operation. The reason is; data transfer is dependent
on outside operations requiring multiple assumptions. Furthermore,
enclave-based key management adds an extra step to the current
ransomware key management mechanisms. The healthiest way
to maintain ransomware keys still remains as remote resources.
Additionally, a ransomware must encrypt a considerable amount of
data over time without being detected, making the existing noise
level of the untrusted world essentially a better choice for malware
authors.

Reference and Rebuttal: [1]’s threat model starts with the as-
sumptions that malware delivery and installations are already done,
system has no anti-virus and no anti-ransomware mechanisms,
they only consider key capturing mechanisms [7] which attackers
already solved since five years. They argue that block-chain based
mechanisms will automate the ransom payments. In overall, their
ransomware is supported more by their assumptions and block-
chain based methods, there is no evidence that use of enclaves
resulted a stronger ransomware.

3.5 Myth: Enclave-assisted malware will be
persistent in the system

These arguments relate to persistence in Section 1.2.1 and malware
privileges in Section 1.2.5. Section 3.9 presents the arguments on privi-
leges at the custom enclave code (ring 3) and privileges of the micro-
code level (ring -3).

Supporting Arguments: SGX-enabled machines can start-up
an enclave whenever it is triggered. This can allow private opera-
tions to be completed on demand. Malware can live in a system as
persistent through enclaves. Lower-level hardware assistance can
enable persistent rootkits in a system.

Counter Arguments: Enclaves themselves are not persistent
pieces of software applications. They have a life cycle of ECREATE
where the enclave is created and EDESTROY to kill the enclave. Such
operations were explained and measured in [10]. Enclaves operate
at the user level (ring 3) and although their execution is supported
by the low-level hardware features, they do not operate at any
lower privilege levels in the system. Enclave-based malware cannot
be persistent on its own. Outside system support for persistence
would create an extra burden. If a malware can be persistent in the
untrusted world, trying to utilise an enclave may only make it less
persistent.

Reference and Rebuttal: [22] states that their malicious oper-
ations can reach persistence through SGX enclaves. They assume
custom enclave code to be vulnerable, not exploiting anything in
the core SGX ecosystem. They claim persistence, but it is completely
dependent on user-level host enclave, in reality, this offers a very
weak persistence.
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3.6 Myth: The malware inside an enclave will
communicate independently

These arguments relate to the communication requirement in Sec-
tion 1.2.2 and the malware control in Section 1.2.8. Section 3.12 presents
further arguments on malware maintenance with ownership transfer.

Supporting Arguments: Malicious code executing inside a
private memory can communicate with the outside world through
HTTP calls and secure channels. This can help to leak information
from the user’s system.

Counter Arguments: For communication, enclaves rely on
untrusted channels. Although enclave-based malware can send
arbitrary data to the outside world, the classical method applies
before malware fetches or copies any private data from the disk
or memory. This is not a new issue; most of the applications in a
commodity computer can steal users’ private files at any moment.
Enclaves, in fact, have more dependencies for their communication
with the outside world. The technical dependencies and libraries
an enclave minimally may need is presented in [10]. An alterna-
tive but larger option can be library OSes, e.g.,with interpreter
enclaves as explained in [9]. They can also leave clear traces of
their communication pattern. Monitoring the whole system’s (host)
communication is more demanding than monitoring an enclave.

Reference and Rebuttal: [24] performs attestation with a re-
mote server and fetch a payload from outside. They ignore the
fact that all communication channels were dependent on untrusted
channels where in reality they would not be able to freely commu-
nicate with any malicious server.

3.7 Myth: TEE-based malware will be FUD
These arguments relate to malware evasion in Section 1.2.3.

Supporting Arguments: Antivirus software products cannot
directly perform a scan on the enclaves’ memory. Enclaves can keep
malicious payloads away from scanners. This can cause a shortcut
in achieving FUD malware.

CounterArguments: An encrypted piece of the non-executing
payload does not harm the system. Enclave software or non-enclave
software can both have pre-encrypted payloads. As soon as a piece
of code starts to execute, the same malware detection mechanisms
apply. A malware inside an enclave must extract instructions to
an untrusted world or perform operations in the main memory in
order to reach valuable user assets (or towards its campaign goals).
Existing research and the techniques on malware detection apply
for malware behaviour in the untrusted world.

Reference and Rebuttal: [20] states that their malware in an
SGX enclave remains completely/entirely invisible to anti-virus soft-
ware and even to ring 0. The argument is ambigious and expected
as their attack does not leave the SGX ecosystem nor enclaves, it
crosses the boundaries of enclave isolation through caches. The
attack can be successful only with the specific requirements and
assumptions. In reality, being invisible to the antivirus mechanisms
means that the malware remains invisible while being actively in-
spected and being in operation against the full system resources
or assets. If their malware attacked to the actual system, it would
be then visible; their invisibility is relying upon having no attack
to the kernel or similar components, hence the kernel does not see
anything.

3.8 Myth: SGX based malware will access
System APIs

These arguments relate to system calls capabilities in Section 1.2.4.
SupportingArguments: Malware can reach system calls,WinAPIs

and kernel functionalities from the enclave. Accessing ring 0 level
resources can boost the capabilities of the malware. Within the
enclave memory, malware can remain hidden and still perform a
scan for vulnerabilities in the system to reach the kernel.

Counter Arguments: Enclaves operate at user level privileges
(ring 3). In order to escalate into higher privileges or to access any
system calls, the malware must go through the untrusted parts of
applications, or perform operations on the main memory [5]. The
malicious behaviour from the enclave towards the system can be
monitored and restricted. Depending on the programming model
and the software development kit, the enclave may have no access
to the system at all. The enclave may be given a Library Operating
System (LibOS) to utilise dependencies internally without needing
to make calls to the outside system.

Reference: [14] answers the questions on what SGX malware
may need to do in order to access system APIs. The arguments
remain valid.

3.9 Myth: Malware will have the highest
privileges through SGX

These arguments relate to malware privileges in Section 1.2.5.
Supporting Arguments: SGX hardware is a microcode imple-

mentation and has the highest privileges in a system. A malware
utilising enclaves can benefit from these high privileges. If malware
operates at ring level minus three, no detection mechanism can
catch its malicious activities.

Counter Arguments: Having a malware inside the core SGX
ecosystem is not the same as having a malware in a custom devel-
oped enclave. Enclaves operate at the user level, and their abilities
are supported by the extended CPU instructions. If a malware ex-
ploits CPU-level bugs on SGX, it might have the highest privileges.
Otherwise, malware in an enclave can only benefit from the user-
level privileges.

3.10 Myth: Enclave assistance will give
malware full memory access

These arguments relate to malware resources in Section 1.2.6.
Supporting Arguments: Untrusted applications cannot see

the memory of trusted enclave applications. But enclaves can see
the memory of the all main memory content. This gives a malware
inside an enclave a superior power. Counter Arguments: Un-
trusted applications can already see the full main memory content.
The ability of enclaves to see the full memory is not a new feature
on top of any other usual application. If an enclave performs opera-
tions on the main memory, the input/output traffic is visible to the
operating system.

3.11 Myth: TEE will help malware to target
more victims

These arguments relate to malware delivery in Section 1.2.7.
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Supporting Arguments: SGX-enabled hardware products are
standardised in Intel CPUs. Since the end of 2015, most of the
new laptops, desktops, and other machines have SGX bit in their
firmware. Users may not be well informed about SGX features and
it might be left default enabled. The applications utilising enclaves
can also drop malware in users’ machines. Having SGX enabled
computers can increase the number of victims infected by malware.
Counter Arguments: From a malware author’s point of view,
non-SGX malware can target more users than a malware tailored
for SGX. A malware targeting the general audience (both SGX-
enabled and non-SGX machines) can infect a higher number of
victims. SGX may be unavailable at any moment; therefore, relying
on SGX being enabled is a poor design choice for malware. The
host can kill an enclave with suspicious behaviour (executing for an
unnecessarily long time, memory operations, suspicious network
traffic) from outside (other than the internal destruction function).
If a malware requires an enclave to be restarted in order to be in
operation, this will make it a very ineffective malware. The malware
must be independent as much as possible; utilising enclaves give
malware a sizeable hump to carry at all times. Intel SGX is no longer
available in consumer devices, unfortunately. Only servers have
Intel SGX at the moment.

3.12 Myth: Malware inside an enclave is easier
to maintain

These arguments relate to malware maintenance in Section 1.2.8.
Supporting Arguments: Enclaves aim to minimise the trusted

computing base. They contain a relatively small amount of code to
make formal verification feasible. Enclaves can fetch a newmalware
payload whenever necessary and act as an update mechanism for
malware. This can make malware maintenance cheap and more sus-
tainable. Counter Arguments: Enclave development has many
dependencies and it is an evolving ecosystem12. A malware de-
signed for enclaves would actually require additional engineering
work to be always compatible. Additional compatibility issues can
cause malware to fail to operate in a high number of systems. Craft-
ing a malware for SGX brings additional development costs, main-
tenance requirements, and lowers the number of target machines
to infect or continue to operate on.

4 THE LIMITATIONS OF SGX-MALWARE
An SGX-based malware is not impossible to produce, but in practice,
such malware would become weaker as explained in Section 3.
Further, we now compare SGX-based malware with a malware in
the wild for their characteristics listed in Section 1.2. Now in this
section, we present systematic limitations (or disadvantages13 for
themalware developers/bad actors) of utilising a TEE for developing
malware. ELB in IoT deployment can deploy attacks against user
assets similar to wild malware in commodity computers. We argue
that using TEE in the development of malicious IoT devices (in the
domain of ELB) will restrict their capabilities for the reasons listed
in the following section.
12https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_SDK_
Release_Notes_Linux_2.16_Open_Source.pdf
13All malware has disadvantages to anyone unfortunate to be infected with it, but we
refer here to disadvantages for a successful malware campaign carried out by malware
authors.

4.1 Enclave-Assisted Malware vs. Malware in
the Wild

Table 1 summarises the malware characteristics examined within
the misconceptions presented in Section 3. An application from an
outside, untrusted world must trigger the enclave-based malware
(i.e., the enclave binary portion). Malware can only communicate
with the outside world through untrusted channels. The behaviour
patterns of input and output streams are visible to detection mecha-
nisms. For system APIs, calls, lower-level support, an enclave needs
assistance from the untrusted world. Malware in an enclave runs
at the user level privileges (ring 3 in monolithic systems). System
resources such as memory, threading, timers and CPU features are
restricted and limited for enclaves. The audience is limited to SGX-
enabled (or TEE enabled) machines only. Key management requires
extra steps to manage the payload with PKI as usual, and enclave
identity does not change based on the payload. Enclave availability
is lower than other system services; enclaves are not in constant
or persistent operation. Enclaves cannot directly access user as-
sets, but must indirectly utilise outside resources for completing an
attack. Malware in the enclave requires specific dependencies in
development and makes updates and reselling more challenging.

4.2 Can SGX boost any characteristics of the
malware?

A wild malware in an untrusted system can place various attacks
against enclaves. In contrast, enclaves are limited and continue to be
more limited in performing attacks on other enclaves and towards
the untrusted world. The design goal of enclaves is to protect the
critical operations from wild malware. Utilising an enclave for a
malware weakens its abilities dramatically.

5 DISCUSSION ON MALWARE AND TRUSTED
EXECUTION ENVIRONMENTS

TEE are introduced to limit the existing abilities of wild malware.
Moving more applications into the TEE domain will eventually
leave wild malware outside the trusted ecosystem. Crucially, TCB
minimisation plays a key role in leaving malicious software outside
of the trusted applications. Including a fully capable operating
system together with the user assets inside an enclave may simply
recreate the untrusted world and its problems again.

5.1 Zero day SGX vulnerabilities in Malware as
a Service (MaaS)

SGX and TEE raised awareness of micro-architectural attacks. Due
to microcode weaknesses, an advanced malware can temporarily
take advantage of vulnerable systems. These zero-day vulnerabili-
ties may be equipped in APTs. However, TCB updates on microcode
and revocation mechanisms make such attacks infeasible in the
long term [3].

To implement an advanced malware with SGX, attackers must
utilise the vulnerabilities in the core SGX ecosystem defined in
Section 1.3. Intel can prevent such attacks by TCB updates. If not
patched, bad actors may sell the security problems of the core SGX
ecosystem in exploit markets for MaaS.

https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_SDK_Release_Notes_Linux_2.16_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_SDK_Release_Notes_Linux_2.16_Open_Source.pdf
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Table 1: Malware in the wild (untrusted high noise system, non-SGX) in comparison to malware in an enclave utilising SGX
features. ⊕ Enclave enhances/strengthens the malware. ⊘ Enclave has no impact. ⊖ Enclave weakens the malware.

Characteristics in Misconceptions Malware in Enclave (ME) Malware/ELB in wild Conclusion (⊕, ⊘, ⊖): and Reason
1.2.1 Persistence in 3.5 Needs to trigger Services, drivers ⊖: ME is less persistent.
1.2.2 Communication in 3.3, 3.6 Needs untrusted channels In high noise ⊖: ME has longer path to communicate.
Key management in 3.2 3.4 Extra steps for payload Existing PKI ⊖: ME has more crypto operations.
1.2.3 Detection in 3.1, 3.7 Visible resources and I/O Existing methods ⊖: ME is more visible by resources.
1.2.4 System calls in 3.8 Needs untrusted assistance Direct access ⊖: ME has longer path to syscalls.
1.2.5 Privileges in 3.5, 3.9 User level/ring 3 Kernel/ring 0 ⊖: ME is less privileged.
1.2.6 Resources in 3.10 Limited/restricted Unlimited ⊖: ME has access to less resources.
Access to user assets in 3.4 Indirectly Direct Access ⊖: ME has longer path to user assets.
1.2.7 Audience in 3.11 CPU-specific Independence ⊖: ME has less number of targets.
Availability in 3.3 Low availability Always On ⊖: ME is less available.
1.2.8Maintenance in 3.6, 3.12 Specific dependencies Easy-to-resell ⊖: ME is more expensive to maintain.

5.2 Potential malware planted inside SGX
ecosystem

In the unlikely event of a core SGX ecosystem including critical
vulnerabilities, a sophisticated malware may be planted into benign
enclaves (e.g., during compiling time, in a development environ-
ment, in SDKs, or trusted libraries). Due to the increased use of
hardware enclaves (i.e., moving of critical user assets into enclaves),
attackers may target the core ecosystem more. Future questions
can be around malware in the core SGX ecosystem, not in a custom
enclave but on a microcode level.

• Are more attacks possible on micro-architectural level to-
wards malware deployment, similar to attacks in ring minus
two or three (ring -2, ring -3) [17, 21, 25–30], System Man-
agement Mode (SMM)?

• Can malware authors infect/exploit the architectural en-
claves with no one noticing?

After all, every software brings an attack vector; however, breaking
the enclave’s security may have a high impact as more critical assets
move into enclaves.

5.3 Malware capabilities in wild, without a TEE
In contrast to SGX-based malware, a typical malware in wild, com-
modity and high noise systems, can utilise all of the system re-
sources such as registry configurations, services, triggered events,
drivers and other hardware devices for spreading and persistence.
Wild malware can hide its communication patterns in high noise,
and distinguishing what belongs to malware behaviour remains an
open challenge. Malware detection techniques with memory analy-
ses apply, but continue to be a challenge as wild malware can abuse
any software package in an untrusted world. Malicious applications
in an untrusted world can often access system calls directly as they
are available to use and not distinguishable from benign use. Most
of the benign software already operates at the kernel level and mal-
ware in the wild continues to abuse any of the existing primitives.
System resources accessing main memory, and other CPU features
are not limited for a wild malware. Enclave independent malware
can target any victim with a commodity computer (e.g., x86). Mal-
ware authors utilise PKI and other crypto techniques in place in
order to manage the master keys of their malware. Availability of

malware in the wild is up as long as the system operates as normal.
Malware in the wild operates in the same environment where user
assets are placed, often giving direct access to valuable information.
Maintenance, updating, and reselling a malware in the wild can be
straightforward by pulling another payload from a new malware
author, or simply via passing/delegating keys to a buyer in a remote
environment.

Malware with or without SGX can be detected with similar capa-
bilities. For example, in a cloud server, bad actors have the freedom
to deploy malicious operations as a client of a cloud company. Com-
pany admins may watch the network traffic for suspicious and
criminal activities or due to complaints. Normally, the attacker or
the server tenant is free to run any software in the rented machine.
Using or not using SGX does not bring any difference to this model.
Alternatively, attackers may want to utilise enclaves for private op-
erations such as domain name generation (to be used in a campaign),
or for planning criminal activities. Private operations, however, re-
quire an active connection and persistent communication to serve.
These are similar possibilities to be handled in remote servers and
enclave utilisation does not bring any immediate benefit to these
use cases.

6 CONCLUSION
We have examined why malware in a trusted execution environ-
ment will become much weaker than operating in a wild, high
noise system. We considered frequently seen characteristics of an
ideal malware. With the use of TEE, these characteristics are ei-
ther still the same as any typical malware in a system, or they are
more restricted than before. In the case studies, we revisited how
a fully undetected and scalable malware infection campaign can
already be in place, without any assistance of trusted hardware.
Malware distribution via social media platforms remains crucial
compared to malware delivery through enclaves. Section 3 showed
the misconceptions about how enclaves operate and why relying
on enclaves for adversarial purposes is a poor design choice. In
contrast, enclaves continue to be a powerful mechanism for pro-
tecting highly valuable user assets against malware. Finally, in the
near future, we may see more enclave-based malware, but they will
be practically weaker than a malware in high entropy, and they
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will not be more superior than the malware samples in untrusted
environments. Known techniques and methods must be applied
to eliminate these attempts. We highlight that the communication
and key management characteristics of the malware are seen in
four myths in our paper. We conclude that for these characteristics,
the use of TEE makes the malware weaker in commodity systems.
Systematisation, categorisation and the definition of the myths can
be done in many ways. In future work, the myths and the charac-
teristics can be extended and studied in more depth to see whether
the arguments hold for future TEE or not. Considering the new
hardware prototypes supporting enclave-like isolated containers,
our structured discussions on malware can help mitigate potential
TEE abuse at the design stage.
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