
Short Paper: Static and Microarchitectural ML-Based Approaches
For Detecting Spectre Vulnerabilities and A�acks

Chidera Biringa
cbiringa@umassd.edu

University of Massachusetts

Dartmouth, USA

Gaspard Baye
bgaspard@umassd.edu

University of Massachusetts

Dartmouth, USA

Gökhan Kul
gkul@umassd.edu

University of Massachusetts

Dartmouth, USA

ABSTRACT
Spectre intrusions exploit speculative execution design vulnerabil-

ities in modern processors. The attacks violate the principles of

isolation in programs to gain unauthorized private user informa-

tion. Current state-of-the-art detection techniques utilize micro-

architectural features or vulnerable speculative code to detect these

threats. However, these techniques are insufficient as Spectre at-

tacks have proven to be more stealthy with recently discovered

variants that bypass current mitigation mechanisms. Side-channels

generate distinct patterns in processor cache, and sensitive infor-

mation leakage is dependent on source code vulnerable to Spectre

attacks, where an adversary uses these vulnerabilities, such as

branch prediction, which causes a data breach. Previous studies

predominantly approach the detection of Spectre attacks using the

microarchitectural analysis, a reactive approach. Hence, in this pa-

per, we present the first comprehensive evaluation of static and

microarchitectural analysis-assisted machine learning approaches

to detect Spectre vulnerable code snippets (preventive) and Spectre

attacks (reactive). We evaluate the performance trade-offs in em-

ploying classifiers for detecting Spectre vulnerabilities and attacks.

CCS CONCEPTS

• Security and privacy → Static Code and Microarchitectural

Analysis; • Detection→ Machine and Deep Learning.

KEYWORDS

Spectre Vulnerability, Spectre Attack, Gadgets, CPU Processes State

ACM Reference Format:

Chidera Biringa, Gaspard Baye, and Gökhan Kul. 2022. Short Paper: Static

and Microarchitectural ML-Based Approaches For Detecting Spectre Vul-

nerabilities and Attacks. In . , 5 pages.

1 INTRODUCTION
Speculative execution [29] is a `arch method used to improve mod-

ern microprocessor performance. In 2018, Kocher et al. [18] showed

that components that support speculative execution of assembly in-

structions such as branch predictions leave quantifiable side effects

in processor caches along with other shared resources even with

the absence of instruction commit. Spectre attacks [18] are a class of

`arch attacks that pose a significant threat to a computer’s security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

, ,

by revealing private user data through a side-channel cache-timing

attack. Spectre-variant attacks exploit processor branch prediction

to obtain the victim’s data. A holistic and aggressive fix implies re-

thinking the contract between the instruction set architecture (ISA)

and `arch [12]. This realization led to the development of several

detection [11, 20, 26, 34] and mitigation [36] solutions. Currently,

`arch-based detection techniques are dependent on hardware per-

formance measures [4, 20, 21], which dictate the distribution of

cache stress levels – hits or misses over time. However, attacks can

still propagate with adversarial manipulation of the performance

counters profiling tools such as perf. On the other hand, detection

using Spectre vulnerable code snippets [26, 34] is constrained to

known vulnerabilities and side-channel data breaches. Several Spec-

tre mitigation strategies such as LFENCE [14] and Kernel Page Table

Isolation (KPTI) [24] for solving Meltdown attacks [22] attempt to

obtain a viable concession between performance and security. This

approach institutes a strictly enforced security that invariably leads

to a sub-optimal processor performance [23, 27]. Meltdown is an

attack variant similar in principle to Spectre that exploits pipelined

access to memory during out-of-order execution to compromise

and leak user data from the kernel mode of the CPU. Recent studies

in the literature [4, 21, 34, 38] have approached the problem of

Spectre attacks as a learning problem with malicious and benign

classes and consequently applying Machine Learning (ML) classi-

fiers to detect this attacks using either vulnerable victim programs

or hardware performance counters (HPCs).

In this study, we are motivated by: (i) the recent availability of

a significant volume of Spectre gadgets to perform Spectre vul-

nerabilities detection using ML [34], and (ii) a gap in a thorough

presentation of the trade-offs in performance between ML classi-

fiers using vulnerabilities and attacks data. Before 2021, conducting

ML-assisted Spectre vulnerabilities experiments via victim program

was constrained to no more than 17 observations [11, 17], which is

not ideal and attributed to the fact that ML classifiers, especially

neural networks require large volumes of data to be sufficiently

trained and explored [7]. Tol et al. [34] solved this problem by using

a combination of mutational fuzzing and deep learning (DL) to gen-

erate a significant number of Spectre-V1 gadgets suitable for ML

and DL experiments. We approach detecting Spectre attacks from

both signature vulnerabilities in code and behavioral characteristics

in CPU-Processes State (CPS) by leveraging the traces of malicious

activity caused by Spectre attacks in the `arch and detecting Spectre

vulnerabilities using gadgets. We propose a comprehensive perfor-

mance evaluation of static and cache analysis-assisted machine

learning approaches to detect Spectre-vulnerable programs and

attacks.



, , Chidera Biringa, Gaspard Baye, and Gökhan Kul

Outline. The rest of this paper is organized as follows. In §2, we

present the necessary background for this work, §3 briefly discusses

related work. Our methodology is described in §4 and evaluated in

§5. Finally, §6 concludes this paper.

2 BACKGROUND
Speculative Execution. Speculative execution is an optimization

mechanism with significant performance advantages [16]. The pri-

mary goal is to reduce the latency of instructions by utilizing idle

hardware resources while preventing hazards caused by changes

in control order that stall instructions.

Static Analysis. Static analysis is the automated analysis of source

code without its execution [1]. We statically analyze gadgets, which

are victim code vulnerable to Spectre attacks. Although we focus on

Spectre V1, vectors generated during analysis can be easily applied

to other attack variants. Gadgets facilitate the leaking of data using

instruction speculation. There are two main and known types of

vulnerabilities [18] which include: (i) Vulnerability via Victim Code

Exploits (VCE) and (ii) Vulnerability via Return Stack Buffer (RSB)

and Branch Target Buffer (BTB) exploits. Our focus in this paper

is VCE, because VCE is the most common type of Spectre attack

through manipulation of speculative code snippet [21].

`arch Analysis. `arch analysis is the exploration of a microproces-

sor’s functionalities [32]. Researchers have shown the importance

of comprehensively analyzing the `arch to detect side-channel at-

tacks [32]. We leverage this knowledge to inspect modern CPU

special-purpose registers referred as Hardware Performance Coun-

ters (HPC). The HPC is applied to count the occurrences of different

CPU event types, such as CPU clock cycles, independent cache level

cache hits, and cache misses.

Spectre Attack Variants. Spectre variants include: (i) variants

1, CVE-2017-5753 (bounds check bypass on loads) [16], (ii) 1.1,

CVE-2018-3693 (bounds check bypass on stores) [16], (iii) 1.2 (read-

only protection bypass) [16], (iv) 2, CVE-2017-5715 (branch target

injection) [25], (v) 3, CVE-2017-5754 (rogue data cache load) [25],

(vi) 3a, CVE-2018-3640 (rogue system register read) [16], (vii) 4,

CVE-2018-3639 (speculative store bypass) [16], and (viii) CVE-2017-

5715 (branch history injection) [19]. In this paper, CVE-2017-5753

is our focus point.

Spectre Attack Model. In our attack model, we assume the role of

an adversary with the capacity to cause a data breach in the CPU

cache through vulnerable victim functions. Listing 1 is a sample

example from the original Spectre paper [18]. In the given case,

the adversary anticipates the branch condition to return true, the

code is called with an index outside the given array1 [16], and the

processor speculatively executes array1[x] which makes x vul-

nerable. The code execution traces still reside in the cache because

even though the processor finds the branch condition is false, it

does not scrub the cache. The adversary proceeds to launch a cache

timing side-channel attack on the cache (e.g., prime and probe [31])

to uncover [array1[x] * 512]. Prime and probe side-channel is a

self-contained attack and requires no additional information other

than the gadget. An adversary primes temp &= array2[array1[x]

* 512] from caching the data before CPU memory access guar-

antees the availability of target data. Next, it probes the cache to

obtain array2 memory access timing data and ensures the change

in access points using 512 increments. To complete the attack, the

adversary will yield control to a gadget with the capacity to leak

private user information via a side channel.
void victim_function_v01(size_t x) {

if (x < array1_size)

temp &= array2[array1[x] * 512];

}

Listing 1: Exploiting Speculative Execution To Conduct

Bounds Check Bypass on Loads Attack.

3 RELATED WORK
Several research work have been proposed for detecting Spectre

vulnerabilities [26, 30, 34] and attacks [4, 11, 13, 21, 35, 35, 38].

FastSpec [34] merges mutational fuzzing — a testing method to

identify vulnerabilities that lead to software crashes, memory leaks

by feeding it randomized inputs [33], and generative adversarial

networks (GANs) — a subset of generative modeling using DL,

first proposed by Goodfellow [10] — methods to detect Spectre vul-

nerabilities. SpecFuzz [26] detects Spectre-V1 vulnerabilities using

fuzzing to introduce speculative exposure, necessitating the isolated

execution of speculation in instructions to expose vulnerabilities.

Detection tools such as SPECTECTOR [11], KLEESpectre [35], and

SpecuSym [13] utilize symbolic execution to detect speculative vul-

nerabilities in assembly instructions. oo7 [36], and SpecTaint [30]

employs taint analysis to investigate binary files of vulnerable code

snippets that result in data breaches. Although the aforementioned

research studies propose approaches for detecting Spectre vulner-

abilities or attacks. However, to the best of our knowledge, our

work is the first to conduct a comprehensive performance

assessment of ML approaches to detect vulnerabilities and

attacks facilitated by static and `arch analysis.

4 METHODOLOGY
Overall Strategy. Our methodology as shown in Figure 1 is sum-

marily decomposed into four main phases: (i) in §4.1, we collect

benign and malicious Spectre data through performing (a) offline

static analysis on gadgets and (b) online `arch analysis on CPS, (ii)

using observations derived from the previous phase, we select and

extract CPS and gadgets features, (iii) in §4.2, we feed vulnerabili-

ties and attacks observations to machine learning classifiers, and

(iv) finally, in §5 we comprehensive assess the performance of our

classifiers in predicting Spectre vulnerabilities and attacks.

4.1 Data Collection and Feature Extraction
Extracting Gadgets Features Using Static Code Analysis.We

statically analyzed Spectre gadgets [34]. Victim (victim functions

vulnerable to attacks) and non-victim (disassembled Linux libraries)

functions are encoded {1} and {0} respectively. These gadgets in

their raw form are C source code transformed to assembly instruc-

tions. An indispensable component of building predictive models

is to ensure that observations are represented numerically [7]. ML

or DL models such as CNN compute using vectors [28]. Thus, we

solicit the use of word2vec embedding model [9] — a means of

representing words in high-dimensional vectors in relatively low-

dimensional vector space — to represent our corpora. We treat

independent instructions and functions as words and documents.

We describe our analysis and feature extraction in the following

steps: (i) removing non-representative and irrelevant information

such as directory paths, and file format from our corpora, (ii) tok-

enizing observations — entails the splitting of text into independent







Short Paper: Static and Microarchitectural ML-Based Approaches For Detecting Spectre Vulnerabilities and A�acks , ,

6 CONCLUSION
Threats to Validity. Limitations of our work include: (i) semi-

synthetically generated gadgets, (ii) adversarial attacks on classi-

fiers, (iii) lack of granular and ablation analysis on classifiers to

empirically ascertain why certain models perform better than oth-

ers, and (iv) detection focus on Spectre-V1. The aforementioned

threats will be addressed in our future work.

Final Thoughts. Considering the high semantic gap between a

system’s compiler and `arch [6], Spectre attack detection is partic-

ularly challenging to accomplish since ISA shields software from

irregularities occurring in the hardware. Hence, we have presented

a comprehensive performance evaluation of proactive (vulnera-

bility) and reactive (attack) approaches to tackle the problem of

Spectre using machine learning. Furthermore, we recommended

the development and adoption of preventive measures towards

tackling Spectre as recent variants have proved to be more evasive

evidenced by the recent discovery of Spectre-BHB [19].

Acknowledgments. This work has been funded by UMass Dart-

mouth Cybersecurity Center. Usual disclaimers apply. We want to

thank Adnan El-Nasan, Ph.D., for his instruction in CIS 570 (Ad-

vanced Computer Systems) course, where we conceived the original

idea of this work.

REFERENCES
[1] Brian Chess and Gary McGraw. 2004. Static analysis for security. IEEE security &

privacy 2, 6 (2004), 76–79.
[2] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of

cache-based side-channel attacks using hardware performance counters. Applied
Soft Computing 49 (2016), 1162–1174.

[3] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1–42.

[4] Jonas Depoix and Philipp Altmeyer. 2018. Detecting spectre attacks by identify-
ing cache side-channel attacks using machine learning. Advanced Microkernel
Operating Systems 75 (2018).

[5] Mahidhar Dwarampudi and NV Reddy. 2019. Effects of padding on LSTMs and
CNNs. arXiv preprint arXiv:1903.07288 (2019).

[6] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.
Beyond processor-centric operating systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS {XV}).

[7] Aurélien Géron. 2019. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media.

[8] Afshin Gholamy, Vladik Kreinovich, and Olga Kosheleva. 2018. Why 70/30
or 80/20 relation between training and testing sets: a pedagogical explanation.
(2018).

[9] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[11] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez.
2020. Spectector: Principled detection of speculative information flows. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.

[12] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-
software contracts for secure speculation. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1868–1883.

[13] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,
and Zhiqiang Zuo. 2020. SpecuSym: Speculative symbolic execution for cache tim-
ing leak detection. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 1235–1247.

[14] Intel. 2018. Intel Analysis of Speculative Execution Side Channels.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf. Intel White Paper,
Accessed December, 2021.

[15] John D Kelleher, Brian Mac Namee, and Aoife D’arcy. 2020. Fundamentals of
machine learning for predictive data analytics: algorithms, worked examples, and
case studies. MIT press.

[16] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

[17] Paul Kocher. 2018. Spectre Mitigations in Microsoft’s C/C++ Compiler. https://
www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html. Accessed
December, 2021.

[18] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[19] Ravie Lakshmanan. 2022. New Exploit Bypasses Existing Spectre-V2 Mitigations
in Intel, AMD, Arm CPUs. https://thehackernews.com/2022/03/new-exploit-
bypasses-existing-spectre.html. The Hacker News official website.

[20] Congmiao Li and Jean-Luc Gaudiot. 2018. Online detection of spectre attacks
using microarchitectural traces from performance counters. In 2018 30th Inter-
national Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, 25–28.

[21] Congmiao Li and Jean-Luc Gaudiot. 2021. Detecting Spectre Attacks Using
Hardware Performance Counters. IEEE Trans. Comput. (2021).

[22] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 973–990.

[23] Silberstein Mark, Oleksenko Oleksii, and Fetzer Christof. 2018. Speculating
about speculation: on the (lack of) security guarantees of Spectre-V1 mitigations.
shorturl.at/kmnCU. ACM SIGARCH, Accessed December, 2021.

[24] Linton Matt and Parseghian Pat. 2018. More details about mitigations for the
CPU Speculative Execution issue. https://security.googleblog.com/2018/01/more-
details-about-mitigations-for-cpu_4.html. Google Security Blog, Accessed
December, 2021.

[25] Terry Myerson. 2018. Understanding the performance impact of Spectre and
Meltdownmitigations onWindows Systems. Microsoft Security, January 9 (2018).

[26] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In 29th {USENIX}
Security Symposium ({USENIX} Security 20). 1481–1498.

[27] Zhixin Pan and Prabhat Mishra. 2021. Automated detection of spectre and
meltdown attacks using explainable machine learning. In 2021 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 24–34.

[28] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu
Song, and Qiang Yang. 2018. Large-scale hierarchical text classification with
recursively regularized deep graph-cnn. In Proceedings of the 2018 world wide
web conference. 1063–1072.

[29] Jim Pierce and Trevor Mudge. 1994. The effect of speculative execution on cache
performance. In Proceedings of 8th International Parallel Processing Symposium.
IEEE, 172–179.

[30] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and
Tao Wei. 2021. SpecTaint: Speculative Taint Analysis for Discovering Spectre
Gadgets. (2021).

[31] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A Adam Ding. 2018. SCADET: a
side-channel attack detection tool for tracking Prime+ Probe. In Proceedings of
the International Conference on Computer-Aided Design. 1–8.

[32] Hossein Sayadi, Han Wang, Tahereh Miari, Hosein Mohammadi Makrani,
Mehrdad Aliasgari, Setareh Rafatirad, and Houman Homayoun. 2020. Recent
advancements in microarchitectural security: Review of machine learning coun-
termeasures. In 2020 IEEE 63rd International Midwest Symposium on Circuits and
Systems (MWSCAS). IEEE, 949–952.

[33] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

[34] M Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar. 2021. Fastspec:
Scalable generation and detection of spectre gadgets using neural embeddings. In
2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 616–632.

[35] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and
Abhik Roychoudhury. 2020. Kleespectre: Detecting information leakage through
speculative cache attacks via symbolic execution. ACM Transactions on Software
Engineering and Methodology (TOSEM) 29, 3 (2020), 1–31.

[36] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. oo7: Low-overhead defense against spectre attacks
via program analysis. IEEE Transactions on Software Engineering (2019).

[37] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. 2021. Osiris: Automated Discovery of Microarchitectural Side Channels.
arXiv preprint arXiv:2106.03470 (2021).

[38] Yunjie Zhang and Yiorgos Makris. 2020. Hardware-Based Detection of Spectre
Attacks: AMachine Learning Approach. In 2020 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST). IEEE, 1–6.


