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Abstract

We consider Waveform Relaxation (WR) methods for partitioned time-integration of
surface-coupled multiphysics problems. WR allows independent time-discretizations on inde-
pendent and adaptive time-grids, while maintaining high time-integration orders. Classical
WR methods such as Jacobi or Gauss-Seidel WR are typically either parallel or converge
quickly.

We present a novel parallel WR method utilizing asynchronous communication tech-
niques to get both properties. Classical WR methods exchange discrete functions after
time-integration of a subproblem. We instead asynchronously exchange time-point solutions
during time-integration and directly incorporate all new information in the interpolants. We
show both continuous and time-discrete convergence in a framework that generalizes existing
linear WR convergence theory. An algorithm for choosing optimal relaxation in our new WR
method is presented.

Convergence is demonstrated in two conjugate heat transfer examples. Our new method
shows an improved performance over classical WR methods. In one example we show a
partitioned coupling of the compressible Euler equations with a nonlinear heat equation,
with subproblems implemented using the open source libraries DUNE and FEniCS.
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1 Introduction

We consider multiphysics problems, which are comprised of coupled systems with different physics.
In particular, we consider problems with a bidirectional surface coupling. I.e., the subproblems
interact via a lower dimensional interface. Examples are within fluid structure interaction in the
simulation of blood flow in large arteries [4], cooling of rocket engines [12, 13] or gas quenching
[33].

We follow the partitioned approach, which allows re-use of existing codes and solving the
subproblems with different computational methods on individual grids. Our focus is time-
integration. We want to solve subproblems using independent and higher-order time-discretizations
on adaptive time-grids. Additionally, we want to perform time-integration of the subproblems
in parallel, on top of a parallelization in space.

A technique that promises to meet all these requirements is the so called Waveform relaxation
(WR). An iteration requires solving the subproblems on a time window. Thereby, continuous
interface functions, obtained via suitable interpolation, are provided from the respective other
problem. WR methods were originally introduced in [15] for systems of ordinary differential
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equations (ODEs), and used for the first time to solve time dependent PDEs in [6, 7]. WR
appears in the literature under a variety of names: Waveform relaxation/iteration, dynamic
iteration/relaxation and Picard(-Lindelöf) iteration.

The most common type of WR methods are Gauss-Seidel (GS) WR, solving all subproblems
in sequence, and Jacobi WR, which solves all subproblems in parallel. However, the parallelism
of Jacobi WR typically comes at the cost of slower convergence rates, due to less information
exchange.

In this article, we construct a novel and inherently parallel WR method with more information
exchange than Jacobi WR. Our ansatz to increase communication is to exchange the results of
each timestep directly after computation. Any new information is directly incorporated by
updating the interpolants, affecting their subsequent evaluations. This increases the information
exchange and thus enhances convergence rates. We use asynchronous One-sided-communication
that allows solving subproblems in parallel and does not require function calls on the receiving
processor.

WR methods require convergence acceleration to achieve fast convergence rates. We consider
classical convergence acceleration by weighting updates using relaxation parameters, which are
highly problem specific [11, 21]. Other acceleration techniques involve using an additional convo-
lution relaxation term [11, 28] or Krylov-subspace acceleration [17], see [17] for a wider overview
of different acceleration techniques. However, many of these are not applicable in the partitioned
approach. Black-box convergence acceleration techniques such as quasi-Newton methods can
also be applied to WR and have been shown to work well [29].

With classical WR methods, data dependencies between the subproblems are fixed. In
our new method, dependencies can vary in time and differ in each iteration, since One-sided-
communication is not deterministic. We present an analytical description of our new method
and convergence proofs in the continuous and time-discrete setting for linear problems. This
generalizes existing WR theory [11].

We present an algorithm for optimal relaxation in our new method. Here, optimal relaxation
critically depends on the realized communication, which is not deterministic. Thus, we deduce the
realized communication between the subsolvers in every timestep and choose suitable relaxation
for each time-point solution.

We demonstrate our method using two conjugate heat transfer test cases, showing conver-
gence in both. In the first test case, two coupled heterogeneous linear heat equations, performance
results show a runtime speed-up of our new method compared to classical Jacobi and GS WR
methods. The second experiment is a gas quenching test case, which consists of the compress-
ible Euler equations coupled to a nonlinear heat equation. Here, we demonstrate a black-box
coupling of heterogeneous space discretizations and subsolver codes. The fluid is solved using a
finite volume discretization implemented in DUNE [1] and the solid is solved via a finite element
discretization implemented in FEniCS [16].

The paper is structured as follows: We first introduce general continuous and time-discrete
WR methods in Sections 2 and 3. In Section 4 we provide a brief overview over the principles of
one-sided asynchronous communication. We formalize our new approach in Section 5 and present
a first algorithm. We discuss convergence in the linear case in Section 6, showing time-discrete
and continuous convergence. Our algorithm for choosing optimal relaxation for two coupled
problems is shown in Section 7. Finally, we show numerical results, followed by summary and
conclusions.

2 Continuous Waveform Relaxation

Consider the following coupled system of initial value problems

v̇(t) = g(t,v(t),w(t)), v(0) = v0 ∈ Rdv ,
ẇ(t) = h(t,v(t),w(t)), w(0) = w0 ∈ Rdw ,

t ∈ [0, Tf <∞]. (1)

We now define a general continuous Waveform Relaxation method. Given v(k) and w(k), a single
iteration consists of solving two differential equations and performing two relaxation steps as
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follows:

˙̂v(k+1)(t) = g
(
t, v̂(k+1)(t),w

(k)
∗ (t)

)
, v̂(k+1)(0) = v0, t ∈ [0, Tf ], (2a)

v(k+1) = v(k) + Θv(v̂
(k+1) − v(k)), (2b)

˙̂w(k+1)(t) = h
(
t,v

(k)
∗ (t), ŵ(k+1)(t)

)
, ŵ(k+1)(0) = w0, t ∈ [0, Tf ], (2c)

w(k+1) = w(k) + Θw(ŵ(k+1) −w(k)), (2d)

with nonsingular diagonal matrices Θv ∈ Rdv×dv , Θw ∈ Rdw×dw for relaxation. Extensions to
more than two systems are straight-forward, c.f. [30]. The specific WR method is defined by

the choices for v
(k)
∗ and w

(k)
∗ . The trivial initial guesses for v(0) and w(0) are to extrapolate the

initial value.
The most common WR methods are Gauss-Seidel (GS) and Jacobi WR, c.f., [30, 31]. Con-

tinuous GS WR is given by

v
(k)
∗ = v(k+1) and w

(k)
∗ = w(k). (3)

GS WR is sequential, which makes it sensitive to the order of the systems in (1).
Jacobi WR is given by

v
(k)
∗ = v(k) and w

(k)
∗ = w(k), (4)

which allows parallel computation of (2a), (2b) and (2c), (2d).
The iteration is commonly terminated if

‖y(k+1)(Tf )− y(k)(Tf )‖ < ‖y(k+1)(0)‖TOLWR, (5)

i.e., via the relative update measured at t = Tf , where updates tend to be the largest. Here, y
is a subset of the unknowns of v resp. w that h resp. g in (1) depends on.

3 Time-discrete Waveform Relaxation

We enable the use of independent time-grids and time-integration schemes by using interpolants
of the respective discrete solutions in the right-hand sides of (2a) and (2c).

We denote discrete solutions by

v(k) := {v(k)
n }n=0,...,N

(k)
v

and w(k) := {w(k)
n }n=0,...,N

(k)
w
,

on time-grids 0 = t
(v),(k)
0 < . . . < t

(v),(k)

N
(k)
v

= Tf and 0 = t
(w),(k)
0 < . . . < t

(w),(k)

N
(k)
w

= Tf . The

interpolants are as follows:

I(v(k)) ∈ C
(

[0, Tf ];Rdv
)

and I(w(k)) ∈ C
(

[0, Tf ];Rdw
)
.

Here, we omit the time-grids as input to the interpolants for ease of notation. We obtain a
time-discrete WR method by using discrete time-integration to solve

˙̂v(k+1)(t) = g
(
t, v̂(k+1)(t), I(w

(k)
∗ )(t)

)
, v̂(k+1)(0) = v0, t ∈ [0, Tf ], (6a)

˙̂w(k+1)(t) = h
(
t, I(v

(k)
∗ )(t), ŵ(k+1)(t)

)
, ŵ(k+1)(0) = w0, t ∈ [0, Tf ]. (6b)

Here, one chooses v
(k)
∗ , w

(k)
∗ in accordance with e.g., (3) or (4). We consider polynomial interpo-

lation.
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Relaxation is performed in the discrete data-points as follows

v(k+1)
n = (I −Θv) I(v(k))(t(v),(k+1)

n ) + Θvv̂
(k+1)
n , n = 1, . . . , N (k+1)

v , (7a)

w(k+1)
n = (I −Θw) I(w(k))(t(w),(k+1)

n ) + Θwŵ
(k+1)
n , n = 1, . . . , N (k+1)

w . (7b)

See Algorithm 1 for a pseudocode of time-discrete Jacobi WR. We use interpolation with evalua-
tion at run-time. I.e., we define the interpolants once using fixed data-structures for v ∗ and w ∗.
We then update v ∗ and w ∗ during the iteration, affecting the results of subsequent evaluations.
Our discrete initial guesses for v(0) and w(0) are to extrapolate the initial value.

Pseudocode: Time-discrete Jacobi WR

Process 0 (p0)
1: w(0) discrete initial guess
2: Initialize w ∗ and I(w ∗)
3: for k = 0, . . . , kmax − 1 do
4: w ∗ ← w(k) Update interpolant

5: v̂(k+1) ← Discr. solve (6a)
6: v(k+1) ← Relaxation (7a)
7: v(k+1) → Send to p1
8: w(k+1) ← Recv. from p1
9: Check (5), break if true

10: end for

Process 1 (p0)
v(0) discrete initial guess
Initialize v ∗ and I(v ∗)
for k = 0, . . . , kmax − 1 do
v ∗ ← v(k) Update interpolant

ŵ(k+1) ← Discr. solve (6b)
w(k+1) ← Relaxation (7b)
w(k+1) → Send to p1
v(k+1) ← Recv. from p1
Check (5), break if true

end for

Algorithm 1: Pseudocode of the time-discrete Jacobi WR method. Obtaining the initial guesses

may involve communication. Here, v
(k)
∗ and w

(k)
∗ in (6) are defined by (4).

4 One-sided communication

The standard in parallel computations is Point-to-Point communication, primarily using MPI Send
and MPI Recv. Here, every MPI Send requires a matching MPI Recv function call. This works
well for algorithms with fixed synchronization points, e.g., the termination check in Algorithm 1.
Here, we want to perform time-integration of the subproblems in parallel on independent grids,
exchanging information after each timestep.

We solve this by using One-sided communication, also called remote memory access (RMA)
[20, Chpt.11], which is asynchronous. Since it is non-standard, we give a brief overview over the
associated concepts and methods. It is also worth noting that RMA via MPI is not available in
mpi4py, requiring an implementation in C++ or Fortran.

MPI Window objects and their allocated memory facilitate RMA. One accesses the memory
associated with a given window via MPI Get (read) or MPI Put (write) operations. The memory of
a target window is only accessible during access periods. We use passive target synchronization,
in which a processor creates an access period on a target window (including windows on its own
memory) by locking and unlocking the target window using MPI Win (un)lock. This does not
require active participation in terms of function calls on the processor of the targeted window.
An additional parameter in the MPI Win (un)lock call can specify the type of lock to ensure
exclusive access for writing or shared access for reading, preventing access conflicts. The order
in which locks are obtained is determined at runtime and can differ with each execution, which
means RMA is not deterministic.

The RMA memory model uses public and private copies of windows. All MPI Put and MPI Get
operations act on the public copy. However, the present variable values are given by the private
window copies. As such, a process needs to synchronize its public and private window copies to
obtain any updates received via MPI Put operations. This is done explicitly using MPI Win sync.
Some RMA functions perform this synchronization implicitly, note that MPI Barrier does not.
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5 Waveform relaxation with asynchronous time-integration

While Jacobi WR is parallel, convergence rates are typically slower than those of GS WR, due to
less information exchange. The goal is to develop a parallel WR method with more information
exchange than Jacobi WR and thus a faster convergence rate. Our ansatz is to use asynchronous
communication already during time-integration to increase the information exchange.

We start with the parallel Algorithm 1 and modify it to increase communication. First,
we expose the interpolant data v ∗ and w ∗ via MPI Window objects. Thus, remote updates
are directly incorporated in subsequent interpolant evaluations. Next, we move relaxation and
communication to the time-step level, i.e., into the time-stepping loop. We asynchronously
communicate new time-point solutions, remotely updating the corresponding values in v ∗ resp.
w ∗ on the other process, using MPI Put.

Algorithm 2 shows the pseudocode for two coupled problems, with a different number of
timesteps Nv 6= Nw for each subproblem and with constant relaxation. In Section 7 we present
an algorithm with variable relaxation, based on the realized communication.

Pseudocode: WR with asynchronous time-integration

Process 0 (p0)
1: w(0) discrete initial guess
2: Initialize w ∗ ← w(0) and I(w ∗)
3: Expose w ∗ via MPI Window

4: for k = 0, . . . , kmax − 1 do
5: for n = 1, . . . , Nv do

6: v̂
(k+1)
n ← Solve* (6a)

7: v
(k+1)
n ← Relaxation (7a)

8: v
(k+1)
n → MPI Put to v ∗ on p1

9: end for
10: Sync. + Termination check
11: end for

Process 1 (p1)
v(0) discrete initial guess
Initialize v ∗ ← v(0) and I(v ∗)
Expose v ∗ via MPI Window

for k = 0, . . . , kmax − 1 do
for n = 1, . . . , Nw do

ŵ
(k+1)
n ← Solve* (6b)

w
(k+1)
n ← Relaxation (7b)

w
(k+1)
n → MPI Put to w ∗ on p0

end for
Sync. + Termination check

end for

Algorithm 2: New proposed method using asynchronous communication during time-integration.
Obtaining the initial guesses may involve communication. Solve* denotes a single discrete
timestep in solving (6a) resp. (6b), with the interpolants defined in Line 2 in the right-hand
sides.

Our new method is defined by

(v
(k)
∗ )n =

{
v

(k+1)
n , if available

v
(k)
n , else

, (8)

w
(k)
∗ analogous. Availability is determined at run-time, by the present data when evaluating the

interpolant. Since asynchronous communication is not deterministic, v
(k)
∗ and w

(k)
∗ can vary for

different timesteps and with k. Due to remote updates, evaluations of the interpolants for the
same t and k, but at different real-life times can differ.

The corresponding continuous WR method is (2), with v
(k)
∗ and w

(k)
∗ varying in both time

and with k.

5.1 Variable relaxation

With our new method, v
(k)
∗ and w

(k)
∗ vary with t and k. It is possible that we obtain Jacobi or

GS WR. Since optimal relaxation matrices can notably differ for Jacobi and GS WR, constant
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relaxation is unlike to achieve optimal convergence acceleration in our new method. We instead
consider relaxation varying with t and k:

v(k+1)(t) = v(k)(t) + Θ(k+1)
v (t)

(
v̂(k+1)(t)− v(k)(t)

)
,

w(k+1)(t) = w(k)(t) + Θ(k+1)
w (t)

(
ŵ(k+1)(t)−w(k)(t)

)
,

(9)

where Θ
(k+1)
v (t) and Θ

(k+1)
w (t) are non-singular diagonal matrices. We first discuss convergence

results, since these provide us the necessary insight on how to choose relaxation. Following that,
we extend Algorithm 2 to variable relaxation in Section 7. There, we present a concrete approach

to determining v
(k)
∗ and w

(k)
∗ at runtime, to then choose appropriate relaxation for each timestep.

6 Convergence Analysis

Similar to [9, 10, 24, 25] we analyze convergence in the linear setting. We first present the
established WR theory, before extending it to include our new method. Consider the following
monolithic system

Bu̇(t) +Au(t) = f(t), u(0) = u0 ∈ Rd, t ∈ [0, Tf <∞], B nonsingular, (10)

with B, A ∈ Rd×d, and f Lipschitz-continuous. Here, one can express classical WR methods
such as Jacobi and GS WR via constant splittings [9, 24]

B = MB −NB and A = MA −NA, MB nonsingular, (11)

and the iteration

MBu̇
(k+1)(t) +MAu

(k+1)(t) = NBu̇
(k)(t) +NAu

(k)(t) + f(t),

u(k+1)(0) = u0, t ∈ [0, Tf ].
(12)

The particular splitting (11) depends on the WR method, e.g., Jacobi or GS WR, and includes
constant relaxation (2b), (2d). We omit dependencies of the splitting matrices on the relaxation
matrices in (11) for readability.

Consider for example the following system of ODEs:(
B1 B2

B3 B4

)
︸ ︷︷ ︸

B

(
v̇(t)
ẇ(t)

)
︸ ︷︷ ︸

u̇(t)

+

(
A1 A2

A3 A4

)
︸ ︷︷ ︸

A

(
v(t)
w(t)

)
︸ ︷︷ ︸

u(t)

=

(
f1(t)
f2(t)

)
︸ ︷︷ ︸

f(t)

,

(
v(0)
w(0)

)
︸ ︷︷ ︸

u(0)

=

(
v0

w0

)
︸ ︷︷ ︸

u0

,

with t ∈ [0, Tf ] and B1, B4 nonsingular. Then, Jacobi WR, without relaxation, is given by(
B1 0
0 B4

)
u̇(k+1)(t) +

(
A1 0
0 A4

)
u(k+1)(t)

=

(
0 −B2

−B3 0

)
u̇(k)(t) +

(
0 −A2

−A3 0

)
u(k)(t) + f(t),

with t ∈ [0, Tf ] and u(k+1)(0) = u0. The inherent parallelism of this method is reflected by the
block-diagonal structure of the matrices on the left-hand side.

One determines the convergence properties of continuous WR methods by analyzing the
iteration (12). Similarly, time-discrete WR methods are described via time-discretizations of
(12).
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6.1 Time-discrete WR with asynchronous communication

We now consider the time-discrete case. Similar to [10, 25], we use convergent and zero-stable
m-step linear multistep methods (LMM), see e.g. [8, Chap.3.2], on matching time-grids with the
constant step-size ∆t = Tf/N . A m-step LMM applied to (10) is

m∑
`=0

(a`B + b`∆tA)un+` = ∆t
m∑
`=0

b` f(tn+`), n = m. . . ,N, (13)

which defines the discrete monolithic solution. A particular LMM is defined by its coefficients
a`, b` and requires starting values u`, ` = 0, . . . ,m− 1.

Classical WR methods such as GS and Jacobi WR can be described by time-discretizations
of (12). Using the same LMM, this is

m∑
`=0

(a`MB + b`∆tMA)u
(k+1)
n+` =

m∑
`=0

(a`NB + b`∆tNA)u
(k)
n+` + b`∆tf(tn+`), n = m. . . ,N,

with starting values u
(k)
` = u`, ` = 0, . . . ,m− 1, ∀k ≥ 0.

We can describe Algorithm 2 by an analogous iteration, where the splitting matrices (11) can
differ for each `, n and k. That is, we consider

m∑
`=0

(
a`M

(k+1)
B,n,` + b`∆tM

(k+1)
A,n,`

)
u

(k+1)
n+`

=
m∑
`=0

(
a`N

(k+1)
B,n,` + b`∆tN

(k+1)
A,n,`

)
u

(k)
n+` + b`∆tf(tn+`), n = m. . . ,N.

(14)

Here, the concrete matrices M
(k+1)
B,n,` and M

(k+1)
A,n,` are, for each `, n and k, determined by v

(k)
∗ and

w
(k)
∗ , as emerging from the realized communication in e.g., Algorithm 2, including relaxation.

These matrices fulfill the splitting property B = M
(k+1)
B,n,` −N

(k+1)
B,n,` , A analogous, by which the

discrete monolithic solution defined by (13) is a fixed point of the discrete WR method defined
by (14).

We define the discrete WR error as

e(k)
n := un − u(k)

n .

Taking the difference between (13) and (14) shows that it fulfills

m∑
`=0

C
(k+1)
n,` e

(k+1)
n+` =

m∑
`=0

D
(k+1)
n,` e

(k)
n+`, (15)

with
C

(k)
n,` := a`M

(k)
B,n,` + b` ∆tM

(k)
A,n,`, D

(k)
n,` := a`N

(k)
B,n,` + b` ∆tN

(k)
A,n,`.

The starting values u
(k+1)
` define the starting errors e

(k+1)
` , ` = 0, . . . ,m− 1.

In the following theorem we show convergence in the form of ‖e(k)
n ‖ → 0, for k →∞, for all

n = m, . . . , N . It is an extension of the convergence result from [10]. There, we have constant
splittings, whereas in our method the splittings vary with n, ` and k. Here ‖ · ‖ : Rd → R is a
norm and we similar use ‖ · ‖ to denote the induced matrix norm.

Theorem 6.1. Let the splittings

B = M
(k)
B,n,` −N

(k)
B,n,` and A = M

(k)
A,n,` −N

(k)
A,n,`, M

(k)
B,n,` nonsingular,

7



with
C(k)
n,m nonsingular, ‖C(k)

n,m

−1
D(k)
n,m‖ < 1, n = m, . . . , N (16)

and an initial guess

e(0) :=

(
e(0)
m

T
, . . . , e

(0)
N

T
)T
∈ Rd(N−m+1)

be given. Then, the solution of the discrete WR method defined by (14) converges to the solution
of (13).

Proof. We consider the so called ”all-at-once system” system, which is the system for all timesteps
of a given iteration. This is

C(k+1)e(k+1) = D(k+1)e(k),

with

C(k) :=



C
(k)
m,m 0 . . . . . . . . . 0
... C

(k)
m+1,m

. . .
...

C
(k)
m2,0

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 C
(k)
N,0 . . . C

(k)
N,m


,

D(k) :=



D
(k)
m,m 0 . . . . . . . . . 0
... D

(k)
m+1,m

. . .
...

D
(k)
m2,0

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 D
(k)
N,0 . . . D

(k)
N,m


,

with C, D ∈ R(d(N−m+1))×(d(N−m+1)). Using standard index notation for C(k) to reference the
above blocks, its inverse is

C(k)−1
=


G

(k)
1,1 0 . . . 0
...

. . .
. . .

...
...

. . . 0

G
(k)
N−m+1,1 . . . . . . G

(k)
N−m+1,N−m+1

 ,

G
(k)
i,j =


(
C

(k)
i,j

)−1
, i = j

−
(
C

(k)
i,i

)−1∑i−1
`=1C

(k)
i,` G`,j , i 6= j

.

The inverse C(k)−1
only requires inverses of its diagonal blocks C

(k)
n,m, for which we assume

existence, see (16). Since the resulting iteration matrix C(k)−1
D(k) is block lower-triangular, we

8



get the following forward elimination:

e(k+1)
m = C(k+1)

m,m

−1
D(k+1)
m,m e(k)

m ,

e
(k+1)
m+1 = C

(k+1)
m+1,m

−1
D

(k+1)
m+1,me

(k)
m+1

+

(
G

(k+1)
2,1 D(k+1)

m,m +C
(k+1)
m+1,m

−1
D

(k+1)
m+1,m−1

)
e(k)
m ,

e
(k+1)
m+2 = C

(k+1)
m+2,m

−1
D

(k+1)
m+2,me

(k)
m+2

+

(
G

(k+1)
3,2 D

(k+1)
m+1,m−1 +C

(k+1)
m+2,m

−1
D

(k+1)
m+2,m−1

)
e

(k)
m+1

+

(
G

(k+1)
3,1 D(k+1)

m,m +G
(k+1)
3,2 D

(k+1)
m+1,m−1 +C

(k+1)
m+2,m

−1
D

(k+1)
m+2,m−1

)
e(k)
m ,

e
(k+1)
m+3 = . . . .

(17)

We get ‖e(k+1)
m ‖ = 0, k → ∞ from ‖C(k+1)

m,m

−1
D

(k+1)
m,m ‖ < 1. With e

(k+1)
m vanishing and

‖C(k+1)
m+1,m

−1
D

(k+1)
m+1,m‖ < 1, we get ‖e(k+1)

m+1 ‖ = 0, k → ∞. By induction we get ‖e(k+1)
n ‖ = 0,

k →∞, for all n = m, . . . , N , which implies ‖e(k+1)‖ = 0, k →∞.

The assumption of C
(k)
n,m nonsingular in (16) is a solvability assumption on the occurring

linear systems in (15). The growing number of terms on the right hand sides in (17) shows the

potential for initial growth of ‖e(k)‖, even if the iteration matrix may be normal.

Remark 6.2. Consider Algorithm 2 with matching time-grids, i.e., N = Nv = Nw and constant

relaxation. Then, the splitting matrices M
(k)
B,n,` resp. M

(k)
A,n,` match either those of Jacobi or GS

WR for each `, n, k, due to matching (v
(k)
∗ )n and (w

(k)
∗ )n, for each n, see (8). Thus, one only

needs to consider three distinct cases for the matrices (16). Each one of these is a convergence
requirement for either Jacobi or GS WR. Consequently, time-discrete convergence of Jacobi and
GS WR (in either ordering of (1)) means (16) is met.

6.2 Continuous WR with asynchronous communication

We now consider continuous WR methods with w
(k)
∗ and v

(k)
∗ in (2a), (2c) varying with t and k.

By straight-forward substitutions of v̂(k+1) and ŵ(k+1) in the variable relaxation steps (9) into
(2), we get the iteration

M
(k+1)
B (t)u̇(k+1)(t) +M

(k+1)
A (t)u(k+1)(t)

= N
(k+1)
B (t)u̇(k)(t) +N

(k+1)
A (t)u(k)(t) + f(t), u(k+1)(0) = u0, t ∈ [0, Tf ],

(18)

with splittings

B = M
(k)
B (t)−N (k)

B (t), A = M
(k)
A (t)−N (k)

A (t), M
(k)
B (t) nonsingular, (19)

t ∈ [0, Tf ], k > 0. Here, we omit the dependencies on the relaxation matrices for readability.
In the previous section, we considered the convergence of the fully discrete WR iteration

(14) for ∆t fixed for k → ∞, which gives (13). Here, we instead discuss the convergence of the
continuous iteration (18) for k →∞. Before doing so, we would like to point out that we cannot
guarantee that we obtain (18) from (14) in the limit ∆t → 0. The reason is that the splittings

chosen and thus the matrices M
(k+1)
B,n,` resp. M

(k+1)
A,n,` in (14) can change with every time step.

This would yield M
(k)
B , M

(k)
A discontinuous everywhere in the limit and (18) would not be well

defined.

9



The typical scenario for (14), as implemented via Algorithm 2, is that splittings match those
of Jacobi WR until one subsolver is at least one timestep ahead of another subsolver. From

then on, the splitting matrices match those of GS WR. I.e., for a given k, M
(k)
B and M

(k)
A are

piece-wise constant, with a single discontinuity.
We thus assume that the limit has only a finite number of jumps and consider (18) in a piece-

wise sense with piece-wise Lipschitz-continuous data. This guarantees existence of a piece-wise
solution of (18) for all k > 0. Additionally, we assume that splitting matrices corresponding

to the same time-point, in the same iteration, are identical. E.g., in (14) both M
(k+1)
B,n,` and

M
(k+1)
B,n+1,`−1 correspond to tn+`. This can be guaranteed by implementation, storing interpolant

evaluations. Now we analyze the convergence properties of (18) under these assumptions.
Consider (10) with A, B, f time-dependent and piece-wise Lipschitz-continuous. Then the

solution is

u(t) = e−C(t)

(
u0 +

∫ t

0
eC(s)B−1(s)f(s)ds

)
, (20)

where

C(t) =

∫ t

0
B−1(s)A(s)ds.

We can apply this solution formula to (18). Replacing u̇(k) via integration by parts and perform-
ing lengthy, but straight-forward rearrangements, yield the solution:

u(k+1)(t) = K(k+1)(t)u(k)(t) +

∫ t

0
K(k+1)
c (s)u(k)(s)ds+ϕ(k+1)(t), (21)

with

K(k)(t) = M
(k)
B

−1
(t)N

(k)
B (t),

C(k)(t) =

∫ t

0
M

(k)
B

−1
(s)M

(k)
A (s)ds,

K(k)
c (t) = eC

(k)(s)−C(k)(t)

(
M

(k)
B

−1
(s)NA(s)− d

ds

(
eC

(k)(s)
)
K(k)(s)− d

ds
K(k)(s)

)
,

ϕ(k)(t) = e−C
(k)(t)

((
I −K(k)(0)

)
u0 +

∫ t

0
eC

(k)(s)M
(k)
B

−1
(s)f(s)ds

)
,

(22)

where
d

ds

(
eC

(k)(s)
)

=

∫ 1

0
eαC

(k)(s) dC(k)(s)

ds
e(1−α)C(k)(s)dα,

c.f. [32].
Consider the continuous WR error

e(k) := u(k) − u, (23)

where u is the solution to (10). Taking the difference between (21) and (20) gives:

e(k+1)(t) = K(k+1)(t)e(k)(t) +

∫ t

0
K(k+1)
c (s)e(k)(s)ds, e(k+1)(0) = 0, t ∈ [0, Tf ].

For the following theorem, we define the (vector) function norm ‖e‖[0,t] := supτ∈[0,t] ‖e(τ)‖ and

(matrix) function norm ‖A‖[0,t] := supτ∈[0,t] ‖A(τ)‖, based on the induced matrix norm. This

result is an extension of a convergence result in [9], to the situation where splittings vary with t
and k.

10



Theorem 6.3. Let splittings (19) with M
(k)
B , M

(k)
A and e(0) piece-wise Lipschitz-continuous for

all k > 0 be given. Then, the error (23) fulfills

‖e(k)‖[0,t] ≤

 k∑
j=0

(
k

j

)
K max(t)k−jKmax

c (t)j
t j

j!

 ‖e(0)‖[0,t],

where K max(t) := supk∈N ‖K(k)‖[0,t] and Kmax
c (t) := supk∈N ‖K

(k)
c ‖[0,t], c.f. (22).

Proof. To avoid ambiguity for the function norm, we denote the relevant variable by τ . Following
the same principles as in the constant splitting case [9, 14], applications of the triangle inequality,
submultiplicativity and straight-forward upper bounds yield

‖e(k)‖[0,t] =

∥∥∥∥K(k)e(k−1) +

∫ τ

0
K(k)
c (s)e(k−1)(s)ds

∥∥∥∥
[0,t]

≤
∥∥K(k)e(k−1)

∥∥
[0,t]

+

∫ t

0

∥∥K(k)
c (s)e(k−1)(s)

∥∥ds

≤
∥∥K(k)

∥∥
[0,t]

∥∥e(k−1)
∥∥

[0,t]
+
∥∥K(k)

c

∥∥
[0,t]

∫ t

0

∥∥e(k−1)
∥∥

[0,t]
ds.

Repeated application and taking the supremum over k then gives

‖e(k)‖[0,t] ≤

 k∑
j=0

(
k

j

)
K max(t)k−jKmax

c (t)j
∫
. . .

∫
1 ds1 . . . dsj

 ‖e(0)‖[0,t]

≤

 k∑
j=0

(
k

j

)
K max(t)k−jKmax

c (t) j
t j

j !

 ‖e(0)‖[0,t].

Our results is consistent with the time-discrete result of Theorem 6.1 for ∆t→ 0, under the

aforementioned assumptions. The Kmax
c (t) j t

j

j ! term converges super-linearly for j →∞, but can

lead to large error bounds for small j and large t. The asymptotic convergence rate for k →∞
is bounded from above by ‖K max‖[0,t].

7 Variable relaxation algorithm for two coupled problems

We now provide an algorithm and an implementation for variable relaxation when using asyn-
chronous communication. Theorem 6.1, which includes variable relaxation, shows that the dis-
crete asymptotic convergence rate is bounded by

max
n=m,...,N, k>0

∥∥∥C(k)
n,m

−1
D(k)
n,m

∥∥∥ . (24)

These C
(k)
n,m

−1
D

(k)
n,m are the diagonal blocks of the iteration matrix and they depend on the chosen

relaxation. Thus, we choose relaxation to minimize the spectral radii, resp. norms of all diagonal
blocks, which minimizes (24). The optimal relaxation depends on the problem and the splitting.
We discuss how to determine the specific values for our numerical experiments in Section 8.1.2.

Here, we present an algorithm for the separate processes to determine at runtime which
splitting occurs in each timestep. With two coupled problems, there are exactly three cases,
corresponding to Jacobi and GS WR, see Remark 6.2. This algorithm does not have a straight-
forward extension to more than two coupled problems. We consider relaxation of the subset of
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unknowns exchanged between the processors. Furthermore, we consider the more general case
of non-matching time-grids with constant stepsizes.

In the following we reference the subsolver for a given subproblem as process, not excluding
usage of multiple processors to solve a subproblem. The basic structure for the WR iteration
and time-integration are analogous to Algorithm 2. The differences will be within interpolation,
communication and relaxation.

Definition 7.1. In Algorithm 2, we say a process is ahead of another process, if all interpolant
evaluations in the n-th timestep and k-th iteration depend on data-points from the k-th iteration,
rather than the (k − 1)-st iteration.

Definition 7.2. We say a timestep has a local Jacobi shape, if no process is ahead of another
process, and a local GS shape, if one process is ahead of the other.

Our new algorithm for variable relaxation consists of first determining the local shape and

then updating the interpolant, using appropriate relaxation. Thus, we first communicate v̂
(k+1)
n

and ŵ
(k+1)
n to a buffer on the respective other process. Then, that process determines the

local shape and updates the interpolant data v ∗ resp. w ∗ using appropriate relaxation. With
relaxation independent of the local shapes, e.g., Algorithm 2 or constant relaxation, buffers are
not required and one directly updates v ∗ and w ∗.

By comparison with the constant splittings we see the following: Jacobi WR requires no
relaxation during time-integration, see (4), since there is no dependency on the new iterate.
With GS WR, see (3), one only requires relaxation of the incoming data for the process that is
not ahead. Thus, we only update the interpolant during time-integration, if the other process is
ahead. We determine if a process is ahead, based on additionally communicated update indicators.
For each data-point, these indicate if it has been remotely updated. We explain the method to
determine if the other process is ahead later on.

The principle data-structures involved are shown in Figure 1. We denote the time-grids by

Tv = {t(v)
n }n and Tw = {t(w)

n }n, with T = Tv ∪ Tw.
The local shape and thus resulting relaxation is determined by a single process and thus

defined on the time-points of a single time-grid. To ensure consistent relaxation for both inter-
polants, we define them on the shared time-grid T , rather than the time-grid of the respective
other process, as in Algorithm 2. The base interpolant data is determined by the time-grid of
the respective other process, which we interpolate to the shared grid before relaxation.

MPI Window: update ind. (Tw)

MPI Put

MPI Window: buffer ŵ(k+1) (Tw)

MPI Put

I IInterpolant data w ∗ (T )
Relax

Solution: v̂(k+1) (Tv)
time-int. MPI Put

Figure 1: Sketch of the data-structures involved for variable relaxation from the perspective of
the process solving (6a). Iteration indicators and the buffer are MPI Window objects to receive
asynchronous updates via MPI Put from the other process. Their size is determined by the time-
grid used on the other process. When performing relaxation, we update those data-points of
the interpolant that are part of Tw. Any remaining points are computed via interpolation. New
time-point solutions are asynchronously communicated to the buffer of the other process, also
updating the corresponding update indicators.

W.l.o.g., consider the timestep from t
(v)
n to t

(v)
n+1. To determine if the other process is ahead,

we first need to find the smallest enclosing interval [t
(w)
− , t

(w)
+ ] with t

(w)
− , t

(w)
+ ∈ Tw, such that all

12



evaluations of the interpolant during this timestep depend on discrete data points w
(k)
n or w

(k+1)
n

corresponding to the time-points t
(w)
− , . . . , t

(w)
+ . We determine if the other process is ahead by

checking the update indicator at t
(w)
+ . An example for determining the smallest enclosing interval,

on non-matching time-grids, is shown in Figure 2.

Tv
t
(v)
n t

(v)
n+1

Tw
t
(w)
− t

(w)
+

×

Figure 2: Consider linear interpolation and a Runge-Kutta scheme with ci ∈ [0, 1], then t
(w)
− =

max({t ∈ Tw|t ≤ t
(v)
n }) and t

(w)
+ = min({t ∈ Tw|t ≥ t

(v)
n+1}). The figure visualizes the smallest

enclosing interval on non-matching Tv and Tw. The cross marks the time-point for which we
need to check the update indicator, to determine if the other process is ahead.

We use markings for all discrete timepoints t ∈ T , tracking relaxation type and if relaxation
has been performed. All timepoints are unmarked at the beginning of each iteration.

In a given timestep, we mark all unmarked timepoints within the smallest enclosing interval
for appropriate GS relaxation, if the other process is ahead, and for Jacobi relaxation otherwise.
Additionally, if the other process is ahead, we perform relaxation on all not previously relaxed

data-points for t ∈ T : t
(w)
− ≤ t ≤ t(w)

+ , according to their respective markings. Finally, the actual
timestep is computed. This procedure is visualized in Algorithm 3. After time-integration, the

timestep n

Sync. buffer + update indicators

Find enclosing interval

other process ahead?

mark points (GS)mark points (Jacobi)

relax data-points

compute step

Send data

Yes

No

n = n+ 1

Algorithm 3: Timestepping procedure for variable relaxation algorithm with two processes. The
synchronization of buffer and update indicators is performed using MPI Win sync.

processes exchange information on which t ∈ T received GS relaxation and perform according
relaxation on all non-relaxed points (over-ruling any markings for Jacobi relaxation). Afterwards,

any remaining Jacobi relaxation is performed. Lastly, the solutions corresponding to v(k+1)(Tf )

and w(k+1)(Tf ) are exchanged to facilitate a consistent termination check, c.f. (5), on both
processes.
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8 Numerical results

We consider two conjugate heat transfer examples. The first one is two heterogeneous coupled
linear heat equations, which is conform with the linear convergence theory presented in Section
6. We use it to demonstrate convergence of our new method and for a performance comparison
with Jacobi and GS WR.

The second example is a gas quenching test case, inspired by [2, 3], simulating cooling of a
hot steel plate with pressurized air. We model the air using the compressible Euler equations
and the steel plate via the nonlinear heat equation. We use a partitioned coupling of different
spatial discretizations implemented using the packages DUNE [1] and FEniCS [16]. This example
is not conform with the assumptions on Section 6, since it is nonlinear and we use non-matching
time-grids. Yet, we demonstrate that our new method is convergent.

8.1 Coupled heat equations

The model equations are

α1∂tu1(t,x)− λ1∆u1(t,x) = 0, (t,x) ∈ (0, Tf ]× Ω1,

u1(t,x) = 0, (t,x) ∈ [0, Tf ]× Ω1 \ Γ,

u1(t,x) = uΓ(t,x), (t,x) ∈ [0, Tf ]× Γ,

u1(0,x) = u0(x), x ∈ Ω1,

(25)

and

α2∂tu2(t,x)− λ2∆u2(t,x) = 0, (t,x) ∈ (0, Tf ]× Ω2,

u2(t,x) = 0, (t,x) ∈ [0, Tf ]× Ω2 \ Γ,

λ2∇u2(t,x) · n2 = −λ1∇u1(t,x) · n1, (t,x) ∈ [0, Tf ]× Γ,

u2(0,x) = u0(x), x ∈ Ω2.

(26)

Here, λ is the thermal conductivity and the thermal diffusivity D is defined by

D = λ/α, with α = ρcp,

with density ρ and specific heat capacity cp.
The corresponding monolithic problem is a linear heat equation defined on Ω1∪Ω2 with space

dependent material parameters that have a jump in α(x) and λ(x) at the interface. By enforcing
continuity of temperature and heat flux at the interface, the above partitioned formulation is
equivalent to the monolithic problem, in a weak sense [26, Chap.7].

0

1

−1 0 1

Ω1 Ω2

n1
n2

Γ

Figure 3: Geometry of the coupled heat problem.

We consider Tf = 104 and the initial condition u0(x) = 500 sin(π/2(x1 + 1)) sin(πx2). See
Table 1 for the materials considered here and Figure 3 for the geometry.

The subproblems exchange information in the form of interface temperature uΓ = u2

∣∣
Γ

and
the heat flux q := λ1∇u1 · n1.

14



Material α = ρ · cp[J/(Km3)] λ[W/(mK)]

Air 1.293 · 1005 0.0243

Water 999.7 · 4192.1 0.58

Steel 7836 · 443 48.9

Table 1: Material parameters.

8.1.1 Discretizations

We discretize (26) in space using linear finite elements implemented using FEniCS [16], on a
triangulation obtained from a cartesian grid. We use the Crank-Nicolson method to discretize
time. This yields ∫

Ω2

α2(u
(2)
n+1 − u

(2)
n )ϕ+

∆t

2
λ2∇

(
u

(2)
n+1 + u(2)

n

)
· ∇ϕdx

+
∆t

2

∫
Γ

(qn+1 + qn)ϕdS = 0, ∀ϕ ∈ V,

with an appropriate finite element space V . The weak form of (25) is obtained by omitting the
heat flux q and including the Dirichlet-boundary condition at Γ. On Ω1 we use the above weak

form to compute the heat flux qn+1 ≈ q(tn+1), based on u
(1)
n+1, u

(1)
n and qn. We compute the

initial flux q0 required for the interpolant from the initial condition via

q0 = λ1

∫
Γ
(∇u0 · n1)ϕdS.

The WR methods are implemented following the partitioned approach, treating the space-
discretizations of the subsolvers as black-boxes. That is, instead of exchanging discrete interface
unknowns, the subsolvers exchange the interface temperatures resp. heat fluxes corresponding
to points at the interface Γ.

8.1.2 Relaxation

We use single parameter relaxation on either one or both of the discrete exchange variables uΓ

and q, i.e.,

u
(k+1)
Γ (t) = Θ(t)(k+1)û

(k+1)
Γ + (1−Θ(t)(k+1))u

(k)
Γ ,

q(k+1)(t) = Θ(t)(k+1)q̂(k+1) + (1−Θ(t)(k+1))q(k),

with Θ(t)(k+1) ∈ R. To perform the algorithm from Section 5.1, we require relaxation parameters
for Jacobi and GS WR.

Optimal constant relaxation on uΓ for time-discrete GS WR in the Ω1 → Ω2 order has
been determined in [22, 23]. This was done for 1D linear finite elements on a uniform space
discretization and implicit Euler for constant and matching step-sizes. However, results from
[19] show Θopt to be robust, working well in 2D and with the second order in time SDIRK2
scheme.

Here, we use the results in [22] to determine optimal relaxation for the remaining local
shapes, i.e., Jacobi and GS in the Ω2 → Ω1 order. In the Ω1 → Ω2 order, the iteration, including
relaxation, for uΓ and q is given by the following relations [22]:(

uΓ

q

)(k+1)

=

(
(1−Θ)I −ΘS(2)−1

S(1) 0

0 S(1)

)(
uΓ

q

)(k)

+ψ(k).
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Here, ψ(k) are additional terms irrelevant to the iteration matrix. In the 1D case, where S(m) ∈ R,
the optimal choice is Θopt = 1∣∣∣1+S(2)−1

S(1)
∣∣∣ , yielding a zero spectral radius for the above iteration

matrix. Analytical expressions for S(m) have been computed in [22], which are

S(m) =
6∆t∆x(αm∆x2 + 3λm∆t)− (αm∆x2 − 6λ∆t)2sm

18∆t∆x3
,

sm =
N∑
i=1

3∆t∆x2 sin2(iπ∆x)

2αm∆x2 + 6λm∆t+ (αm∆x2 − 6λm∆t) cos(iπ∆x)
.

Similarly, the relations for GS in the Ω2 → Ω1 order, with relaxation on q, are(
uΓ

q

)(k+1)

=

(
0 −S(2)−1

0 (1−Θ)I −ΘS(1)S(2)−1

)(
uΓ

q

)(k)

+ψ(k).

Relaxation with the same Θopt as in the Ω1 → Ω2 case yields a zero spectral radius in 1D. Jacobi
WR with relaxation on both uΓ and q using the same Θ yields(

uΓ

q

)(k+1)

=

(
(1−Θ)I −ΘS(2)−1

ΘS(1) (1−Θ)I

)(
uΓ

q

)(k)

+ψ(k).

In 1D and with S(1)S(2)−1
> 0, which is the case for all material combinations here considered,

the spectral radius is minimal for Θ = 1/(S(1)S(2)−1
+ 1). In particular, the spectral radius with

optimal relaxation is

ρJacobi
opt =

√
S(1)S(2)−1

S(1)S(2)−1
+ 1

.

With ∆x = 1/513, ∆t = 5 and αm, λm for air, water and steel, see Table 1, the spectral radii
are ρJacobi

air-steel = 0.037, ρJacobi
air-water = 0.059 and ρJacobi

water-steel = 0.528.

8.1.3 Results

All numerical experiments were run on an Intel i5-2500K 3.30 GHz CPU with Python 3.6.9,
Open MPI 2.1.1, FEniCS 2019.2.0.dev0 [16]. The code is available at [18].

For GS we denote the different orderings of GS WR by ”GS DN” and ”GS ND”. We use the
result for GS in the ”DN” (Ω1 first) order with TOLWR = 10−11 as the reference result. Despite
the asynchronous method being non-deterministic, results for 5 simulations showed no notable
deviations in the number of iterations, we show the mean result.

First, we consider the error of the interface temperature uΓ, over k, for TOLWR = 10−10,

∆x = 1/513 and N = 200, resulting in a comparable accuracy in space and time. We use u
(k)
Γ

in the discrete interface L2 norm for the termination check (5) and error computation.
Results in Figure 4 show convergence for all considered WR methods, numerically verifying

the result of Theorem 6.1. The convergence rates of our new asynchronous method are in
between Jacobi and GS in all test cases. Performance results in Figure 5 show slight performance
improvements compared to the constant splitting WR methods. This is since our new method
requires less than twice the number of iterations of GS WR and is parallel.
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Figure 4: Left to right: Air-steel, air-water and water-steel. k marks the number of iterations
until (5), with TOLWR = 10−10, is met.

Figure 5: Left to right: Air-steel, air-water and water-steel. We use MPI Wtime to measure the
wall-clock runtime.

8.2 Gas quenching

We now consider an example for the gas quenching application [2, 33]; cooling a hot (steel)
work-piece with air. We model the fluid (air) via the compressible Euler equations

∂tρ+∇ · ρv = 0,

∂tρvi +
2∑
j=1

∂xi(ρvivj + δijp) = 0, i = 1, 2,

∂tρE +∇ · (ρHv) = 0.

(27)

Here ρ, p and v1, v2 are density, pressure and velocities. The enthalpy is H = E+p/ρ with total
energy (per unit mass) E = e + |v|2/2 and specific internal energy e. The system is completed
with the ideal gas law p = (γ − 1)ρ e, where γ is the adiabatic exponent, here γ = 1.4. The
temperature is T = p/(ρ ·R) with the specific gas constant R = 287.058 for dry air.

We model the solid by the nonlinear heat equation

α(u)∂tu(t,x)−∇ · (λ(u)∇u(t,x)) = 0, (t,x) ∈ (0, Tf ]× Ω2,

∇u(t,x) · n = 0, (t,x) ∈ [0, Tf ]× ∂Ω2 \ Γ,

λ(u)∇u(t,x) · nΓ = q(t,x), (t,x) ∈ [0, Tf ]× Γ,

u(0,x) = usolid
0 , x ∈ Ω2.

(28)

Here, we use the material parameters of 51CrV4 steel from [27], which are given by

λ(u) = 40.1 + 0.05u− 0.0001u2 + 4.9e− 8u3, α(u) = 7836cp(u)

cp(u) = −10ln
((

ecp1(u)/10 + ecp2(u)/10
)
/2
)
,

cp1(u) = 34.2e0.0026u + 421.15, cp2(u) = 956.5e−0.012(u−900) + 0.45u.
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The problem geometry, inspired by [3], is shown in Figure 6.
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Figure 6: Geometry, not to scale, for the gas quenching test case.

In Ω1 we define û0
fluid := (ρ0, ρ0v0, 0, E0), with ρ0 = 1.225, T0 = 273.15 and v0 = 0.8Ma.

We use û0
fluid for the inlet boundary and the farfield boundary at the top, on the outlet we

extrapolate interior values to obtain a zero flux. On the bottom we employ a slip boundary
condition. Additionally, at the interface Γ we use TΓ, on the left we set the wall temperature to
T0 and on the right we use ∇T · nΓ = 0.

On Ω1 we discretize (27) in space using a 1st order finite volume discretization, implemented
in DUNE [1, 5]. The is grid shown in Figure 7. We discretize (28) in space using linear finite
elements, implemented using FEniCS [16], on a triangulation obtained from splitting the squares
of a cartesian grid with ∆x = 0.00125, matching Ω1 at the interface.

Figure 7: Grid used in gas quenching test case. Starting from a cartesian grid with ∆x = 0.005
we perform two steps of local grid refinement on all cells whose centres (x1, x2) fulfill the following
criteria: First step: x1 > 0.05, x2 < 0.03 and second step: x1 > 0.08, x2 < 0.02. The resulting
grid consists of 5132 cells.

For the time-discretizazions, we use the Crank-Nicolson method with ∆t = 10−2, c.f. Section
8.1, for the solid. In the fluid we use the SDIRK2 method with ∆t = 2 · 10−4, solving the
nonlinear systems using a Jacobian-free Newton-Krylov method with ILU preconditioning.

We obtain the initial condition u0
fluid on Ω1 for the coupled simulation as follows: We compute

a stationary solution with TΓ = 900, starting with initial conditions û0
fluid and simulating until

Tf = 0.01 with a step-size of ∆t = 10−5. On Ω2 we use the constant initial value usolid
0 = 900.

The problems are coupled using a Dirichlet-Neumann approach. That is, on Ω1 we compute
the heat-flux q as the interface boundary condition on Ω2 and on Ω1, we use the interface
temperature TΓ = u

∣∣
Γ
, computed in Ω2.

We compute the discrete heat-flux by computing

q = κ(T ∗)∇T ∗ · nΓ, (29)

at the interface, where T ∗ is the temperature on Ω1, linearly reconstructed. The heat conduc-
tivity κ in the fluid is given via the Sutherland law by

κ(T )

κref
=

(
T

Tref

)3/2 Tref + Sk
T + Sk

,
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with κref = 0.0241, Tref = 273 and Sk = 194.
For the coupled run, we successively perform WR until Tf = 5, on time-windows of length

0.1. We use the same relaxation as Section 8.1, with relaxation parameters for the air-steel
material combination, see Table 1, ∆t = 10−2 and ∆x = 0.00125, which is the cell-size at the
interface.

Here, the computational load of the subsolvers is not well balanced, since the fluid problem
has more unknowns and requires smaller step-sizes. As a consequence, our new method is almost
identical to GS WR. The load-balancing problem can be resolved by allocating more processors
in the space discretiazion of the fluid problem. This is subject to future work and required for a
sensible performance comparison with Jacobi and GS WR.

Figure 8 shows the WR updates for the first 3 time-windows, which shows the iteration
converges rapidly, as expected [23]. For larger tolerances, chosen in accordance with the errors
in space and time, one requires at most 3− 4 iterations per time-window.

Figure 8 also shows the temperature at the left top tip of the steel plate over time, showing
a steady cooling effect. Figures 9 visualizes the temperature at Tf = 5.

Figure 8: Left: Updates of the interface temperatures in the 2-norm in the first 3 time-windows.
Right: Temperature at the top left tip of the steel plate, (x1, x2) = (0.1, 0.02), c.f., Figure 6,
over time.

Figure 9: Isolines of the temperatures at Tf = 5. Here, the isolines in Ω1 and Ω2 are distinct.

9 Summary and conclusions

In this paper we presented a novel parallel WR method utilizing asynchronous communication
during time-integration. Here, MPI One-sided communication is instrumental in the implemen-
tation of this method. The analytical description and convergence results of our new method
extend existing linear WR theory by including splittings variable in time and iteration. We
present an algorithm for performing optimal variable relaxation for two coupled problems.
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Our new method is unconditionally parallel due to the use of asynchronous communication.
If used for coupled problems with poor load-balancing, our method is equivalent to classical
Gauss-Seidel WR.

Numerical results demonstrate convergence of our method, with a convergence rate faster
than Jacobi WR. Additionally, a performance comparison with two subsolvers with an approxi-
mately equal computational workload, show performance improvements for our new method, in
comparison with Gauss-Seidel and Jacobi WR.

WR methods enable the coupling of subsolvers in a partitioned manner. For our numeri-
cal experiments we implemented our PDE subsolvers using the open source packages DUNE [1]
and FEniCS [16], and developed suitable adapters to facilitate this coupling. This coupling is
shown to work well in a conjugate heat transfer test case. There, we couple the compressible
Euler equations with a nonlinear heat equation, using finite volume resp. linear finite element
discretizations in space.
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D. Kempf, R. Klöfkorn, M. Ohlberger, and O. Sander, “The DUNE framework: Basic
concepts and recent developments,” Computers and Mathematics with Applications, vol. 81,
pp. 75–112, 2021.

[2] P. Birken, “Numerical Methods for the Unsteady Compressible Navier-Stokes Equations,”
Habilitation Thesis, Kassel University, 2012.

[3] P. Birken, K. J. Quint, S. Hartmann, and A. Meister, “A time-adaptive fluid-structure
interaction method for thermal coupling,” Computing and Visualization in Science, vol. 13,
no. 7, pp. 331–340, 2010.

[4] P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni,
“Fluid-structure interaction simulation of aortic blood flow,” Computers and Fluids, vol. 43,
no. 1, pp. 46–57, 2011.
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