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Recommender models are hard to evaluate, particularly under offline setting. In this paper, we provide a

comprehensive and critical analysis of the data leakage issue in recommender system offline evaluation. Data

leakage is caused by not observing global timeline in evaluating recommenders e.g., train/test data split does
not follow global timeline. As a result, a model learns from the user-item interactions that are not expected

to be available at prediction time. We first show the temporal dynamics of user-item interactions along

global timeline, then explain why data leakage exists for collaborative filtering models. Through carefully

designed experiments, we show that all models indeed recommend future items that are not available at the

time point of a test instance, as the result of data leakage. The experiments are conducted with four widely

used baseline models - BPR, NeuMF, SASRec, and LightGCN, on four popular offline datasets - MovieLens-

25M, Yelp, Amazon-music, and Amazon-electronic, adopting leave-last-one-out data split.
1
We further show

that data leakage does impact models’ recommendation accuracy. Their relative performance orders thus

become unpredictable with different amount of leaked future data in training. To evaluate recommendation

systems in a realistic manner in offline setting, we propose a timeline scheme, which calls for a revisit of the

recommendation model design.
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1 INTRODUCTION
Recommender systems have gained significant attention from both academia and industry over

the past decade. Many solutions have been proposed, from popularity to nearest neighbor based

methods, then to model-based recommendation algorithms [39, 42, 44, 56]. Come as no surprise,

recent years have witnessed rapid advancement of deep learning based recommender models [52].

Nevertheless, there are also questions on what real progress has been made in this research

area [13], and reports on model performance inconsistency due to different data splitting strategies

and/or other factors [2, 33, 55]. These questions and reports call for a revisit on the evaluation

1
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Table 1. Statistics of the four datasets used in this study

Dataset Time span selected Data filtering #User #Item #Interaction

MovieLens-25M 21/11/2009 to 20/11/2019 No filtering 62, 202 56, 774 9, 808, 925
Yelp 13/12/2009 to 12/12/2019 10-core 116, 655 61, 027 3, 127, 215
Amazon-music 02/10/2008 to 01/10/2018 5-core 11, 651 9, 243 114, 833
Amazon-electronic 05/10/2008 to 04/10/2018 10-core 109, 990 39, 552 1, 752, 238

of recommender system: are recommendation models evaluated in a realistic manner? In fact, in

our recent study, we show that in many studies, the simplest popularity baseline is not evaluated

realistically [25].

Before wemove on to performance evaluation issues, we revisit the recommender system problem

definition. We refer to the recommender system handbook [39] and five survey papers [11, 16, 39,

51, 52] for a generic problem definition of recommender system: learning users’ preferences from

historical data, then to predict the item a user will rate/interact with in the nearer future. This

definition is outlined on the basis of a global timeline, whereby “history” and “future” do not

overlap along the timeline for any particular user at any time point.

The aforementioned definition details a top-𝑁 recommendation task, i.e., recommending 𝑁

items that a user is most interested in. Note that, other than top-𝑁 recommendation, rating

prediction is also a widely studied task in recommender system [17]. A top-𝑁 recommendation

task is fundamentally different from a rating prediction task in recommendation. The latter focuses

on predicting the rating score that a user would give to an item, instead of predicting whether

a user will rate an item. In this paper, we focus on top-𝑁 recommendation task because top-𝑁

recommendation task has been studied more extensively in recent years. Moreover, the ultimate

goal of rating prediction is to find the items a user would give higher ratings and subsequently

recommend the user with the corresponding items. In other words, a rating prediction task is to

boost top-𝑁 recommendation accuracy. Hence, we study top-𝑁 recommendation in this paper.

We argue that although global timeline is specified in the aforementioned recommender system

problem definition, it is not observed in many offline evaluation settings for recommender system.

By “not observing global timeline”, we are referring to the case whereby events are not considered

in chronological order along the global timeline. We argue that ignorance of the timeline leads to

two major issues.

The first issue is that the models designed cannot capture the global temporal context of the user-

item interactions. Temporal context along the timeline in datasets (e.g., Douban [43], Amazon [34])

have been studied in [50, 53]. In this paper, we further introduce three examples to illustrate the

temporal context in MovieLens-25M, Yelp and Amazon-electronic datasets. In Figure 1, we sample

three items from two datasets: MovieLens-25M and Yelp (see Table 1 for the details of the datasets).

Each dataset contains ten-year user-item interactions. We plot the number of interactions the

sampled items received in each year (i.e., items’ yearly popularity) over the ten years. Naturally, the

popularity of items changes over time. In fact, not all items are available for ratings/interactions

from the beginning of the timeline (Year 1). Item 18919 in Yelp receives its very first rating after Year
7 (the seventh year since the beginning of the ten-year time period) and becomes popular from then.

We may consider that this item was first introduced to the review system in Year 7. However, most

recommender models (including popularity-based recommenders) in the literature do not consider

this temporal context in evaluation. Another illustrative example could be the releases of the Ipad

models by Apple. In Figure 2b, we list nine Ipad models and their corresponding official release

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Fig. 1. Popularity of three sampled items from two datasets, over ten-year period (𝑌1 to 𝑌10).
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(a) Activeness of Ipad models

Line
Product 
Name

Product ID in 
Amazon-electronic Dataset

Official  Release Date

Ipad 1 B002C7481G 03 Apr 2010

Ipad 2 B0013FRNKG 11 Mar 2011

Ipad 3 B00746NEJW 16 Mar 2012

Ipad Mini B00746WCEA 02 Nov 2012

Ipad Air B00G2X1VIY 01 Nov 2013

Ipad Mini 2 B00GQDAFKA 12 Nov 2013

Ipad Mini 3 B00OTXGLW0 22 Oct 2014

Ipad Air 2 B00OSKREVG 22 Oct 2014

Ipad Pro B0155KDJWA 11 Nov 2015

(b) Ipad models’ official release dates and
their IDs in Amazon-electronic dataset

Fig. 2. Activeness of Ipad models from Year 2010 to Year 2018, in Amazon-electronic dataset. The table lists
the release date of different Ipad models and their corresponding product ID in Amazon-electronic dataset.

dates. It can be seen that, from 2010 to 2015, new Ipad models have been gradually introduced to

the market. We then match the Ipad models with the products in the Amazon-electronic dataset;

the corresponding product IDs of different Ipad models in the Amazon-electronic dataset can be

found in Figure 2b. Then we plot the activeness (i.e., number of reviews) of the Ipad models in

the Amazon-electronic dataset, in Figure 2a. From the plot, we make two observations: (1) The

activeness of the Ipads in Amazon-electronic can reflect their release dates because the Ipads only

start receiving reviews from their release years; (2) Generally, an Ipad model is more popular near

its release year but slowly losing attentions from consumers after a few years. Taking the timeline

from 2010 to 2018 as an example, if global timeline is not observed, trends like newly released

products and dynamic popularity of a product cannot be well captured.

The second issue is data leakage. In many evaluations, train/test data split does not follow global

timeline (see Table 2 for the commonly used data split strategies). The training set may contain

interactions that happen after the test instances in the test set. Hence, a model learns from future

user-item interactions to predict current user preference, due to collaborative filtering. We will

explain the reason in Section 2. In reality, a model can never access data instances that happen in

future. For example, a model shall not learn from user interactions with Ipad 3 that was released in

2012, to predict user’s preference on Ipad 1 any time in the year of 2010. Learning from interactions

that happen in future contradicts to the problem definition of recommender system. Thus, results

obtained in such evaluation setting may not well reflect a model’s true performance in online

setting.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Table 2. Commonly used data split strategies in offline evaluation of recommender systems. We indicate
whether local timeline (e.g., time specific to a user) or global timeline is observed, and whether a split strategy
leads to data leakage.

Data split strategy Definition of training and test instances Local Global Data

timeline timeline leakage

Random-split-by-ratio

Randomly sample a percentage of user-

item interactions as test instances; the

remaining are training instances.

No No Yes

Random-split-by-user

Randomly sample a percentage of users,

and take all their interactions as test

instances; the remaining instances from

other users are training instances.

No No Yes

Leave-one-out-split

Take each user’s last interaction as a

test instance; all remaining interactions

are training instances.

Yes No Yes

Split-by-timepoint

All interactions after a time point are

test instances; interactions before this

time point are training instances.

No Yes No

In this paper, we conduct a critical analysis on the impact of data leakage in evaluating rec-

ommender system. Note that the notion of data leakage in recommender system was mentioned

in earlier studies [7, 8, 46]. However, to the best of our knowledge, we are the first to provide a

comprehensive explanation on the reason of data leakage, i.e., collaborative filtering not observing

global timeline in offline evaluation (see Section 2). Another main contribution of this paper is

that, through carefully designed experiments, we quantify the impact of data leakage. The crit-

ical analysis of data leakage is done with four popular and strong models on four widely used

datasets: MovieLens-25M, Yelp, Amazon-music, and Amazon-electronic, adopting leave-one-out

data split. The four models, Bayesian Personalized Ranking (BPR) [38], Neural Matrix Factorization

(NeuMF) [20], SASRec [27] and LightGCN [19], are selected for (i) each representing a different

modeling technique, and (ii) all four models are often used as baselines in literature. We summarize

the findings from our experiments as follows:

• All four baseline models recommend “future items” to a past test instance. Here, future items

are the items that are only available in the system after the time point of the test instance.

For example, for a test instance occurred some time in 2013, a model recommends Ipad Pro

which is released two years later in 2015. Recommending future items is a strong evidence

that the mainstream offline evaluation setting, which ignores the global timeline, is invalid.

• “Future training instances” affect user-item interaction distributions. The training set with

“future data” is not reflective of the temporal context at the time point when a test instance

occurs. Hence, the top-𝑁 recommendation lists from experiments with future data differ

from those with no data leakage.

• Data leakage does affect a model’s recommendation accuracy. The impact of data leakage on

recommender models is unpredictable. It is not true that more future data in training leads to

higher accuracy. More future data may improve or deteriorate recommendation accuracy.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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• The ranking orders of the baseline models vary with the inclusion of different amounts

of “future data” in our experiments. Hence, it is impractical and meaningless to compare

recommendation models’ performance when data leakage exists in offline evaluation. We

believe that not observing global timeline in evaluation is a major reason that reproducibility

in recommender system is hard.

Based on our understanding of recommendation system and what we have learned from this

critical analysis, we propose a new timeline scheme for recommender system offline evaluation in

Section 5. The essence of the timeline scheme evaluation is to observe global timeline in evaluation,

which requires recommender models to learn from only historical interactions. We believe that the

timeline scheme facilitates a more realistic evaluation of recommender systems conducted in an

offline setting. After reviewing related studies in Section 6, we conclude this paper in Section 7.

2 DATA LEAKAGE IN OFFLINE EVALUATION
If a model is deployed in production, i.e., an online setting, a global timeline will be naturally

followed. The recommender can only learn from past user-item interactions and make online

recommendations upon request. However, due to limited access to online platforms, recommender

systems in academic research are often restricted to offline evaluation with static datasets [4, 51].

In a typical offline evaluation setting, given𝑚 users and 𝑛 items in a dataset, a𝑚 × 𝑛 user-item

interaction matrix is constructed, where each entry in this matrix indicates the corresponding user-

item interaction. The interaction can be explicit e.g., a score (1 to 5) given by a user to an item, or be

implicit e.g., indicating whether the user purchases/rates/clicks this item (1 for purchase/rating/click

and 0 otherwise). In this paper, user-item interactions are all implicit. That is, if a user rates an item,

we concern the action of rating, not the absolute value of the rating. Thus, we focus on the top-𝑁

recommendation task, which is to predict the “1” entries in the user-item interaction matrix.

To compute recommendation accuracy, a subset of user-item interactions in this𝑚 × 𝑛 matrix is

masked as a test set; the remaining known entries are treated as the training set. A recommendation

model is trained using the training set, then evaluated using the test instances. Listed in Table 2,

many strategies have been used to sample the user-item interactions to be masked to form a test

set [33, 44]. We note that only split-by-timepoint strategy observes global timeline.

In most cases, the entire training set is fed to a recommender as a whole, to learn the recom-

mendation model [9, 44]. That means, the training set is treated as a static set. Although some

time-aware recommendation models [7, 27, 31, 46] do include timestamp information of training

instances as an attribute, they remain taking the entire training set as a static set. These models

may consider local timeline specific to an individual user or item, but are not designed to observe

the global timeline. As a result, these models are inevitably evaluated with data leakage.

2.1 Global Timeline and Local Timeline
In our discussion, we emphasize the importance of considering global timeline. To support our

discussion, we use four large datasets to illustrate the distribution of user-item interactions along

the global timeline. The four datasets are MovieLens-25M
2
, Yelp

3
, Amazon-music

4
, and Amazon-

electronic
5
. From each dataset, we extract interactions within a 10-year period and the statistics of

the datasets are reported in Table 1. Details about the dataset preparation and data filtering (e.g.,
𝑘-core) techniques are reported in Section 3.1.

2
https://grouplens.org/datasets/movielens/25m/

3
https://www.kaggle.com/yelp-dataset/yelp-dataset

4
https://jmcauley.ucsd.edu/data/amazon/

5
https://jmcauley.ucsd.edu/data/amazon/
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(b) Median active time period in years

Fig. 3. Mean and median active time period of users and items in the four datasets.

Naturally, not all users are active for the entire 10-year period, and not every item is available

to be rated (or be interacted with) over the entire 10 years. For instance, a user may register a

Yelp account in 2018 and start to review businesses on Yelp from 2018; a movie that was released

in 2018 can only receive ratings since then. We define the active time period of a user to be the

time duration between the user’s first and last interactions that are captured in a dataset. Similarly,

active time period of an item is the time duration between its first and last interactions received

from any user in a dataset. From the first to the last interaction, the active time period is the local
timeline specific to any particular user or item.

Figure 3 provides a holistic view of the mean and median active time periods of users and items,

derived from the four datasets. Because the items (e.g., movie, music, and restaurants) are different

in nature, the four datasets show different distributions in terms of user and item activeness.

Nevertheless, in all four datasets, mean/median active time of items are much longer than that

of users. Specifically, the mean/median user active time periods in all datasets are shorter than 4

years, which is less than half of the 10-year period covered by the datasets. For MovieLens-25M,

users tend to be active for a very short time period, shorter than 1 year. In fact, for a large number

of users in Movielens dataset, all ratings of a user are recorded within a single day.
6

To further illustrate the distribution of user/item activeness along the global timeline, Figure 4

plots the number of item releases and the number of users’ last interactions occurred in each week.

We consider the time point at which an item receives its very first rating from any user its release

time. The blue line in Figure 4 plots the number of items released in each week in the 10-year

period, or 520 weeks. The other line plots the number of users whose last interactions are recorded
in each week over the 10-year period. Observe that in all four datasets, new items become available

at any time, and users’ last interactions occur at any time.

In summary, not all users are active throughout the duration covered by a dataset, and not all

items are available to be interacted with since the beginning of a dataset along the global timeline.

In addition, as shown in Figure 1, along the global timeline, user-item interactions demonstrate

temporal dynamics. The same observation of temporal dynamics can also be drawn from Figure 2.

6
We note that MovieLens does not provide a reliable timestamp because many users are only active for one day. A similar

observation is made in [48]. Although MovieLens is not a good dataset for this study, we include it due to its extreme

popularity in academic research of recommender system [12, 44].
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Fig. 4. Users’ last interactions and item releases in each week, in the 10-year period. (Best viewed in color)

2.2 Data Leakage in Recommender System
Data leakage is described as “the use of information in the model training process which would

not be expected to be available at prediction time” in Wikipedia.
7
Deemed “one of the top ten data

mining mistakes”, Kaufman et al. give a critical discussion on data leakage [28] and suggest “time

separation” of train and test data as one methodology for avoiding leakage, similar to the split-by-
timepoint strategy listed in Table 2 in our context. Note that data leakage is fundamentally different

from leak in privacy. The former refers to information leakage due to incorrect preprocessing of

dataset for model training processes, while the latter suggests the leakage of personal information

to other parties.

Among the four data partitioning strategies in Table 2, leave-one-out-split, also known as leave-

last-one-out, does observe local timeline of an individual user. Specifically, if a user has a total of 𝑛

interactions in a dataset, the model learns user preference from this user’s first (𝑛 − 1) interactions,
then predicts the user’s last (or 𝑛-th) interaction. At first glance, there is no data leakage with this

split strategy because the model learns from the past history (i.e., 𝑛 − 1 interactions) and predicts a

future (i.e., the 𝑛-th) interaction of the same user. Next, we explain why data leakage occurs for

this split strategy, because of collaborative filtering.

We explain the data leakage problem with an illustration in Figure 5. Assuming a system with a

global timeline from time 𝑡0 to time 𝑡3, three example users 𝐴, 𝐵, and 𝐶 interact with items in the

system. Figure 5a plots the activities of the users and items along the global timeline. The items

are placed in the plot, at the time points they are introduced to the system i.e., their release time.
8

The users are placed in the plot at the time points of their last interactions. For example, the last

rating by user 𝐴 is on item 𝑋 at time 𝑡1, and we do not observe any more interactions by user 𝐴

7
https://en.wikipedia.org/wiki/Leakage_(machine_learning)

8
For easy presentation, we assume that once an item is released for rating, it will stay in the system. That is, we assume an

item will not be removed from the system for simplicity.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://en.wikipedia.org/wiki/Leakage_(machine_learning)


1:8 Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li

C

X Y Z

BA

𝑡1 𝑡2 𝑡3

Time

𝑆𝐴𝐵 𝑆𝐵𝐶

𝑡0

(a) User-item interaction along global timeline.

1…1 ?

1…1 1…1 ?

1…1 ?C

X Y Z

B

A

𝑆𝐴𝐵 𝑆𝐵𝐶

(b) User-item interaction matrix

Fig. 5. Interactions along global timeline, and in matrix form.

after time 𝑡1 in the dataset. 𝑆𝐴𝐵 denotes the set of items rated by both users 𝐴 and 𝐵, and 𝑆𝐵𝐶 are

the items rated by both users 𝐵 and 𝐶 .

Assume that we adopt leave-one-out-split in this illustration, i.e., the last interaction of each user

is masked as a test instance. In Figure 5a, test interactions of the 3 users are indicated by dotted

lines. Figure 5b shows the matrix view of the same example. The test instances are masked with ‘?’,

and we use ‘1 . . . 1’ to indicate the ratings to multiple items in 𝑆𝐴𝐵 and 𝑆𝐵𝐶 .

As aforementioned, without observing global timeline, the entire training set is fed to a recom-

mender as a static set to learn the recommendation model. Because of the common ratings to items

in 𝑆𝐴𝐵 , users 𝐴 and 𝐵 share high level of similarity; similarly, users 𝐵 and 𝐶 share high level of

similarity. By learning their latent representations through collaborative filtering, we may find a

good level of similarity between users 𝐴 and 𝐶 . However, recall that all items are plotted in the

figure at their release time; all items rated by user𝐶 are only available after user𝐴’s last interaction

i.e., time point 𝑡1. In reality, these items and their interactions are not possible to be available at

time point 𝑡1. That is, when predicting user 𝐴’s preference to item 𝑋 , we are using “future data”

that are not expected to be available at the prediction time, leading to data leakage. The model may

even recommend user 𝐴 with items that are rated by user 𝐶 which are “future items”, because of

the learned similarity between users 𝐴 and 𝐶 .

According to Table 2, random split of train/test does not observe either local or global timeline.

Hence random split leads to data leakage for the same reason as leave-one-out-split. As these split

strategies do not observe local timeline, they may learn from a user’s future interactions to predict

the same user’s current interactions.

In a recent study [44], the authors sampled 85 papers on recommender system that were published

in top-tier venues (e.g., SIGIR,WWW, KDD) in 2017 - 2019. Among the 85 papers, 53.7% of the papers

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Fig. 6. Train/test data split for test year 𝑌5 as an example.

adopt random split, 28% of the papers utilize leave-one-out, and 12.3% of the papers adopt split-by-
timepoint. That is, only a very small number of offline evaluations follow the “time separation” of

train and test data to avoid data leakage. The remaining large number of offline evaluations of

recommender systems are conducted without considering the issue of data leakage. Hence, most

reported results do not well reflect a model’s true performance in production setting.

In this section, we show that the context keeps changing along the global timeline. That is, users

may be active or inactive at different time points and items may become available at any time.

Hence, it is important to model the temporal context along the global timeline. Failure to consider

the global timeline in the offline evaluation of recommender system can lead to data leakage. An

immediate question we have is: what is the impact of data leakage? The answer to this question

is an indication of to what extent the reported performance in literature truly reflects a model’s

recommendation accuracy in reality. For instance, if the impact is negligible, then there is no need

to change our way of conducting evaluation. Otherwise, we may need to conduct offline evaluation

in a more realistic manner for fair comparison of various recommendation models. Next, we study

the impact of data leakage from the changes in recommendation results with different severity of

data leakage, in Sections 3 and 4.

3 EXPERIMENT DESIGN AND SETUP
Evaluating the impact of data leakage is not trivial. Existing offline evaluations adopt multiple

train/test split strategies. Among them, only split-by-timepoint does not suffer from data leakage.

To avoid the potential influence of random factors, we adopt leave-one-out split in this study. With

leave-one-out split, a user’s last interaction is masked as a test instance. As shown in Figure 4, a

user’s last interaction may occur at any time point along the global timeline. All interactions that

occur after a user’s last interaction are the “future data” to this particular test instance. Here, “future

data” are interactions from other users. By this definition, the amount of “future data” available to

each individual test instance is different because test instances can occur at any time along the

global timeline. Further, the number of interactions from different users varies significantly. Hence,

we argue that studying the impact of data leakage on individual user is computationally expensive.

For this reason, we do not study the impact of data leakage at the fine-grained level.

We design experiments to simulate different severity of data leakage at a coarse-grained level.

Briefly speaking, we partition the entire dataset into multiple time windows. Each time window

is of the same time interval, i.e., one year. Then in the training set, we add user-item interactions

in different numbers of time windows to simulate different amounts of “future data” available for

training. We term this setting as a coarse-grained level, because we do not consider the differences

of the future data for individual test instance that happen within the test year.
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Given a dataset, we first sort all user-item interactions in chronological order and partition the

data by a fixed time window. Assume that we have a dataset with a global timeline of 10 years

and set the time window to be one year, as shown in Figure 6. We refer interactions that occurred

in the first year as 𝑌1 data. Accordingly, interactions which fall in the last year are referred to as

𝑌10. We select all test instances in 𝑌5 as the subset for evaluation, i.e., the users’ last interactions
fall within year 5. All interactions that occur before 𝑌5, i.e., 𝑌1 to 𝑌4, are “historical interactions”
with respect to the test set in 𝑌5. Correspondingly, we have interactions from 𝑌6 to 𝑌10 as “future

interactions”. We then conduct several runs of experiments to simulate different severity of data

leakage. In the first experiment, the training data consists of all “historical interactions” from 𝑌1
to 𝑌4 and all training instances in 𝑌5, highlighted in green in Figure 6. Training instances in 𝑌5
are the interactions that fall in year 5 and are not any user’s last interaction. The second run’s

training data will further include all interactions in 𝑌6. In the third run, all data in 𝑌7 are added as

additional training instances. This process continues until all user-item interactions till 𝑌10 are
used for training. With this setting, we are able to replicate a gradually intensifying data leakage

problem under leave-one-out-split setting for test instances occurred in 𝑌5. The first run of the

experiment has the least data leakage, whereas the last run suffers the worst data leakage. We study

the recommendation results of the models to quantify the impact of data leakage.

3.1 Dataset
We use MovieLens-25M, Yelp, Amazon-music, and Amazon-electronic datasets in our experiments.

We use these four datasets for two reasons. First, they are all widely used datasets in both time-aware

recommender system and non-time-aware recommender system [44]. Second, all these datasets

contain the timestamps of ratings, so that we can reconstruct the global timeline.

We treat ratings in all four datasets as implicit feedback, and formulate the recommendation

problem as top-𝑁 recommendation rather than rating prediction. From each dataset, we extract 10-

year interaction data and remove duplicated data. The statistics of the four datasets are summarized

in Table 1. As a common practice, we filter inactive users and items with 𝑘-core filtering on Yelp,

Amazon-music, and Amazon-electronic datasets. With 𝑘-core filtering, datasets are filtered until

all users and items have at least 𝑘 interactions. On Yelp and Amazon-electronic, we apply 10-core

filtering. To keep a reasonable number of users and items, we apply 5-core filtering on Amazon-

music. No filtering is applied on MovieLens-25M because the dataset is designed to include only

users who have at least 20 movie ratings. For each dataset, we only keep ratings from users whose

first ratings occurred after the starting day of the 10-year time period (see Table 1). If a user has a

rating before the first day of the 10-year period, the user will be excluded from the dataset. This is

to ensure we have a full picture of every user in the dataset.

We set the time window for evaluation to be 1 year and gradually add “future interactions”

year by year. We conduct evaluations on two test years, 𝑌5 and 𝑌7 respectively. By selecting two

test years for evaluation, we can have a comprehensive understanding, avoiding possible bias in

a specific year. Recall that an increasing number of “future training instances” are added in the

experiment to simulate a worsening data leakage problem, we summarize the number of training

and test instances in different experiments for each dataset, in Table 3.

3.2 Models
Recommender system is a very active research area and a large number of models have been

proposed [39, 52]. In this study, we select four widely used baselines.
9
Each of the four models

belongs to a family of recommendation models.

9
Our implementation is available in GitHub https://github.com/putatu/dataLeakageRec
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Table 3. Number of test and training instances for test years 𝑌5 and 𝑌7. From the test year till 𝑌10, more
future data are made available to training.

Test #Test #Training instances accumulated till adding 𝑌𝑥 ’s data

Dataset year instances 𝑌5 𝑌6 𝑌7 𝑌8 𝑌9 𝑌10

MovieLens 𝑌5 3, 171 2, 489, 066 3, 876, 800 5, 602, 278 7, 243, 348 8, 474, 179 9, 805, 754
-25M 𝑌7 9, 232 - - 5, 596, 217 7, 237, 287 8, 468, 118 9, 799, 693

Yelp

𝑌5 3, 093 878, 494 1, 280, 070 1, 723, 554 2, 203, 266 2, 702, 445 3, 124, 122
𝑌7 7, 241 - - 1, 719, 406 2, 199, 118 2, 698, 297 3, 119, 974

Amazon 𝑌5 829 18, 283 38, 873 71, 227 95, 571 108, 496 114, 004
-music 𝑌7 2, 686 - - 69, 370 93, 714 106, 639 112, 147

Amazon 𝑌5 652 234, 398 479, 507 898, 947 1, 317, 418 1, 607, 543 1, 751, 586
-electronic 𝑌7 8, 747 - - 890, 852 1, 309, 323 1, 599, 448 1, 743, 491

• BPR [38] is a machine learning based model. It proposes to learn a matrix factorization model

by pairwise ranking loss. We tune the hyperparameters of BPR by continuous random search.

We test latent dimension from 8 to 128, learning rate from 1e−6 to 1e−1 and regularization

coefficient from 1e−4 to 1e−1.
• NeuMF [20] is a deep learning based model. The model is a combination of matrix factor-

ization and multi-layer perceptron layers to learn a user-item interaction function. Optimal

hyperparameters are found by continuous random search. We test latent dimension from

8 to 128, learning rate from 1e−5 to 1e−1, number of negative instances from 1 to 4 and

regularization coefficient from 0 to 1e−4.
• SASRec [27] is a sequence-aware recommendation model. It uses a self-attentive network

to model users’ historical interactions and to identify relevant items in a user’s interaction

history for next item prediction. We tune hyperparameters by continuous random search

on learning rate from 1e−5 to 1e−2, maximum historical interactions from 1 to 50, latent
dimension from 8 to 256 and number of blocks from 1 to 4.

• LightGCN [19] is a graph neural network based model. It designs a graph convolutional

network model for recommender system. Hyperparameters are optimized via continuous

random search. We test latent dimension from 8 to 128, number of layers from 2 to 4,
regularization coefficient from 1e−5 to 1e−1 and learning rate from 1e−5 to 1e−1.

The hyperparameters of each model are tuned on the validation set which consists of the

second last interactions of the testing users, as in many existing literature [3, 21, 36]. For each

baseline model, we search hyperparameters for 50 times, and obtain the optimal combination of

hyperparameters. Due to space limit, we omit the presentation of optimal hyperparameters. All

optimal hyper-parameters can be found in our Github.

3.3 Evaluation with Non-sampled Metrics
In offline evaluation, a recommender recommends users with items from a pool of candidate

items. The set of candidate items may not be all items available in the system. According to [5],

there are multiple candidate selection strategies including TestRatings methodology, TestItems
methodology, TrainingItems methodology, AllItems methodology and One-Plus-Random methodology.
In our evaluation, instead of making recommendation from a subset of available items, we obtain

a top-𝑁 recommendation list by considering a total ranking of all available items that can be
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observed in training data for evaluation. That is, we do not use sampled metrics. Sampled metrics

in evaluation is to randomly sample a small number (e.g., 1000) of irrelevant items, then rank the

relevant item only among this small sampled set. A recent study shows that sampled metrics can

be inconsistent with non-sampled metrics, and may not truly reflect a model’s performance [30].

Because we use non-sampled metrics, the absolute values of our results are much lower than the

values reported based on sampled metrics [20, 47]. Understandably, it is much more challenging

to rank a relevant item among all irrelevant items, compared with to rank among a much smaller

sampled set.

We evaluate accuracy of the recommendation models by Hit Rate (HR) and Normalized Dis-

counted Cumulative Gain (NDCG). Specifically, we report HRs and NDCGs of top-20 recommenda-

tions.
10

With the above setup, we analyse the impact of data leakage from two perspectives. First, we

take a detailed look at the top-𝑁 recommendation list for each test instance, and study the impact

of data leakage on these recommendation lists. Second, we study how HR@20 and NDCG@20

change when different amounts of “future data” are added for training.

4 EXPERIMENT RESULTS
Through experiments, we aim to quantify the impact of data leakage from two perspectives: (1)

impact on the list of top-𝑁 recommended items, and (2) impact on recommendation accuracy. In

the remaining part of this section, we present our findings and provide a detailed explanation of

the results.

4.1 Impact on Top-N Recommendation List
Finding 1. Models evaluated in our experiments do recommend future items, which are only

available in the system after the time point of a test instance.

We explain the reason behind data leakage in Section 2.2, with the help of Figure 5. Due to

collaborative filtering, a recommender may learn similarity between users 𝐴 and 𝐶 , illustrated

in Figure 5, then recommends items rated by user 𝐶 to user 𝐴. However, all items rated by user

𝐶 are only available in the system after user 𝐴’s last interaction, hence these items are “future

items” with respect to the time point of user 𝐴’s last interaction, i.e., the test instance for user
𝐴 in leave-last-one-out split setting. Through experiments, we observe that all four models do

recommend future items.

With respect to each test instance in our experiments, we obtain a top-𝑁 recommendation list

from a recommendation model. Then, we count the number of “future items” among these 𝑁

recommended items. Again, “future items” are the items that are released after the timestamp of

this test instance. We set 𝑁 = 20, and present the number of future items in Table 4. Each entry

represents the total number of “future items” recommended among all the recommendation lists

obtained for the test set. We report the numbers obtained for both test years 𝑌5 and 𝑌7. Reflected in
Table 4, with more “future data” included in training from 𝑌6 to 𝑌10 for test year 𝑌5, and from 𝑌8
to 𝑌10 for test year 𝑌7, there is an increasing trend of “future items” recommended by all models

on all datasets.

Recommending “future items” for a test instance is strong evidence of data leakage, and the

current offline evaluation setting is invalid. Following our evaluation, a similar experiment is

conducted in [55]. The authors show that both random-split-by-ratio and temporal-split on a user’s
local timeline result in the recommendations of “future items”, which are invalid recommendations.

10
Similar observations hold on the results of top-{5, 10} recommendations, hence we do not report results of top-{5,10}

recommendations due to space limit.
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Table 4. Among top-20 recommendations, the total number of future items recommended for test instances
in 𝑌5 and 𝑌7, respectively, by the four models.

Model

Dataset MovieLens-25M Yelp Amazon-music Amazon-electronic

Test year 𝑌5 𝑌7 𝑌5 𝑌7 𝑌5 𝑌7 𝑌5 𝑌7

BPR

𝑌5 0 − 0 − 0 − 0 −
𝑌6 0 − 421 − 615 − 79 −
𝑌7 22 0 829 0 970 0 363 0
𝑌8 7 11 2, 365 504 1, 101 651 263 200
𝑌9 6 88 5, 048 287 1, 304 1, 103 499 1, 224
𝑌10 4 81 1, 851 1, 598 1, 197 1, 155 200 583

NeuMF

𝑌5 0 − 0 − 0 − 0 −
𝑌6 3 − 602 − 910 − 28 −
𝑌7 7 0 1, 631 0 1, 501 0 1, 303 0
𝑌8 27 31 3, 260 130 1, 733 878 549 0
𝑌9 22 6 3, 542 1, 177 1, 491 1, 276 729 216
𝑌10 15 1 5, 205 1, 791 1, 577 1, 573 2, 655 326

LightGCN

𝑌5 0 − 0 − 0 − 0 −
𝑌6 11 − 369 − 626 − 37 −
𝑌7 32 0 739 0 1, 050 0 148 0
𝑌8 116 189 1, 070 569 998 632 367 220
𝑌9 22 26 1, 257 979 1, 036 893 262 430
𝑌10 15 58 1, 103 1, 360 1, 152 1, 029 260 470

SASRec

𝑌5 0 − 0 − 0 − 0 −
𝑌6 315 − 967 − 906 − 216 −
𝑌7 442 0 3, 074 0 1, 548 0 625 0
𝑌8 144 489 2, 228 2, 666 1, 814 1, 341 487 1388
𝑌9 342 403 3, 162 2, 893 1, 982 1, 376 20 3, 209
𝑌10 993 386 1, 741 3, 014 1, 980 1, 662 12 2, 479

A recommendationmodel should not have seen the “future items” or any interactions related to these

“future items”. Other than that, recommending “future items” will adversely affect recommendation

accuracy because recommending an item that is not yet available (at the time point of test instance)

will never lead to a hit. In such cases, the recommendation accuracy obtained from the offline

evaluation is an underestimation of the model’s true performance. However, simply filtering future

items from the top-𝑁 list before computing recommendation accuracy is not an option. Through

the presence of “future items”, we show that the current offline evaluation setting is invalid, and

a model shall not learn from the future data that are not available at the time points of the test

instances.
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Finding 2. Top-N recommendation lists vary with increasing amounts of “future data”.

In the previous set of experiments, we tune each run and use the corresponding optimal hyper-

parameters for recommendation. We note that hyperparameters of a model can be confounding

factors for recommendation performance. Hence, in this set of experiments, we remove these

confounding factors by using fixed hyperparameters.
11

Specifically, given a dataset, a baseline model, and a test year (e.g.,𝑌5 or𝑌7), we conduct multiple

runs of experiments, with different amounts of “future data”, as specified in Table 3. Instead of

tuning hyperparameters for each run, we fix the hyperparameters to the optimal values obtained for

the experiment with no data leakage. By fixing the hyperparameters, we now compare the top-𝑁

recommendation sets obtained in different experiments to study the impact of data leakage. That is,

given a test instance, we calculate the Jaccard similarity between the top-𝑁 items recommended in

the experiment without data leakage and the top-𝑁 items recommended in the experiment with

“future data”. Given two recommendation lists 𝐿𝐴 and 𝐿𝐵 , the Jaccard similarity 𝐽 (𝐿𝐴, 𝐿𝐵) is as
follows, by treating a list as a set:

𝐽 (𝐿𝐴, 𝐿𝐵) =
|𝐿𝐴 ∩ 𝐿𝐵 |
|𝐿𝐴 ∪ 𝐿𝐵 |

The lower the similarity score, the more the data leakage affects the training data distribution,

thus the more different the recommended items are from the experiment with no data leakage.

For each experiment, we repeat seven random trials with different seeds. Hence, for each test

instance in each experiment, we have seven sets of top-𝑁 recommendations. We conduct pairwise

comparison between the seven sets of recommendations for the same test instance with no data

leakage, and the seven sets obtained with 𝑥 years of “future training data”. Then we will have

(7 ∗ 7) = 49 similarity values for each test instance. The similarity values are averaged to reduce

random error. In Figure 7, we plot the similarity score distributions of all test instances in each

experiment.
12

We call the similarity obtained from the aforementioned comparisons “extrinsic similarity” in

Figure 7, because the comparisons are done between experiments with different training data

(with and without data leakage). In addition to extrinsic similarity, we further calculate “intrinsic

similarity” which captures the randomness (due to random seeds) in each experiment with the same

training data. Given seven sets of top-𝑁 recommendations for each test instance in each experiment,

we now have (7 × 6)/2 = 21 comparisons, i.e., 21 intrinsic similarity scores for each test instance.

The intrinsic similarity values are averaged for each test instance, and the distributions for all test

instances are plotted in Figure 7 as intrinsic similarity distribution.

Intrinsic similarity sets a reference for extrinsic similarity. The absolute value of extrinsic

similarity alone is not very meaningful because there is randomness in the model training process.

Hence, we interpret extrinsic similarity by comparing it with the corresponding intrinsic similarity.

If the extrinsic similarity distribution is indeed different from its corresponding intrinsic similarity,

then the top-𝑁 recommendations are indeed affected by the existence of “future training data”.

In Figure 7, we plot the results for top-20 recommendations, and we made three observations.

First, whenmore “future data” is included in training of recommendationmodels, extrinsic similarity

tends to decrease. That is, the top-20 recommendation lists become increasingly different from the

lists obtained from the experiment without data leakage. This is again a strong evidence that the

models are affected by the changed user-item interaction distributions due to the “future data” in the

training set. The training set with “future data” is not a good representation of the past context when

11
We conduct experiments with SASRec and LightGCN.

12
Here, we only present comparison results for LightGCN on test year 𝑌5 of MovieLens-25M, as well as SASRec on test

year 𝑌7 of Amazon-electronic. The results for other sets of experiments can be found in our Github.
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(b) Y7, SASRec on Amazon-electronic

Fig. 7. Intrinsic Jaccard similarity is calculated from top-20 recommendations obtained from the seven
runs of experiments on the same training set, but with different seeds. Extrinsic Jaccard similarity is the
similarity scores between top-20 recommendations from the experiments with no data leakage, and the
recommendations with 𝑥 year of “future data” in training.

the test instance took place. According to Figure 7, MovieLens-25M is more affected by the “future

data” than Amazon-electronic. A possible reason is that users in MovieLens dataset are only active

for very short time periods, and the timestamps in MovieLens are not very reliable. “Future data”

thus demonstrate a significantly different context from the user’s last interactions. Another possible

reason is that the recommendation models applied are different on the two datasets. Second, the

intrinsic similarity distributions in experiments with “future data” are different from the intrinsic

similarity distribution in experiment of 0-year future data. It indicates that the presence of “future
data” does affect the recommended items for each test instance. Third, extrinsic similarity becomes

increasingly different from intrinsic similarity when more “future data” is added in training. It

indicates that the extrinsic difference exists due to data leakage, but not by randomness in model

training processes.

Recall that the recommendation problem definition in Section 1 is learning users’ preferences

from historical data, then to predict the item a user will rate/interact with in the near future. We

show that with “future data”, the context of “history” is not well modeled, hence violating the

recommendation problem definition and affecting the recommendation results.

4.2 Impact on Recommendation Accuracy
Finding 3. More “future data” can improve or deteriorate recommendation accuracy, making the

impact of data leakage unpredictable.

Selecting 𝑌5 as the test year, in Figure 8, we plot the HR@20 and NDCG@20 values of BPR,

NeuMF, SASRec, and LightGCN, on the four datasets. The HR@20 and NDCG@20 values are the

average values of three random trials of the same experiments with different seed numbers. By

taking average, we aim to reduce the potential noises from random factors. Recall that we use

non-sampled metrics, as explained in Section 3, the values of each metric reported in Figure 8 are

much lower than the values reported in other papers [20, 47] which use sampled metrics.

Referring to Figure 8, we observe fluctuating patterns for all four models when more “future

data” are added in training, from 𝑌6 to 𝑌10. In particular, ups and downs can be seen for HRs

and NDCGs on MovieLens-25M and Yelp datasets. Similarly, fluctuating pattern can be observed
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Fig. 8. HR@20 and NDCG@20 for BPR, NeuMF, SASRec and LightGCN on test year 𝑌5, along the inclusion
of future data from 𝑌6 to 𝑌10.

for LightGCN on Amazon-music, and for BPR, LightGCN on Amazon-electronic. We also observe

decreasing trend in NeuMF on Amazon-electronic. An increasing pattern is seen for BPR, NeuMF

and SASRec on Amazon-electronic. We observe not much change in HR@20 and NDCG@20 by

SASRec on Amazon-music, the smallest dataset among the four.
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Table 5. Lowest, highest performance changes (in percentage) when having more future data from the test
year till 𝑌10, computed based on the result of not accessing future data in training as reference.

Dataset Metric BPR NeuMF LightGCN SASRec

MovieLens HR@20 −8.0%, +2.3% −4.1%, +0.9% −3.8%, +11.1% −5.3%, +17.2%
-25M NDCG@20 −6.3%, +5.5% −1.5%, +2.0% −9.3%, +6.8% −5.4%, +16.8%

Yelp

HR@20 −17.8%, +9.2% −6.1%, +18.3% −0.3%, +10.8% −13.6%, +1.9%
NDCG@20 −13.9%, +15.4% −6.6%, +18.3% −0.5%, +8.0% −29.0%, −0.6%

Amazon HR@20 +19.3%, +37.2% +39.6%, +65.6% 0%, +22.8% −5.4%, +3.3%
-music NDCG@20 +23.6%, +51.8% +40.2%, +89.5% +1.9%, +32.7% −3.4%, +6.3%
Amazon HR@20 +6.4%, +22.9% −38.1%, +14.3% −9.7%, +22.4% −7.5%, +62.5%
-electronic NDCG@20 +10.3%, +22.0% −35.5%, +13.8% −7.7%, +24.1% −3.3%, +73.0%

In summary, more “future training instances” do not necessarily lead to better or worse recom-

mendation accuracy, but do affect values. Hence, recommendation results become unpredictable

when there are “future data” (with respect to the test instances) in the training set. The same plot

on the test year 𝑌7 can be found in Appendix A. We note that experiments in test year 𝑌7 give

results similar to those of test year 𝑌5. That is, data leakage leads to unpredictable recommendation

performance.

We further summarize the unpredictability of recommendation accuracy in Table 5. In this table,

we use the results of not adding any future data in training as the reference results, and report the

lowest and highest changes in performance when future data are added till 𝑌10. Using the test

year 𝑌5 and HR@20 as an example, HR@20 on 𝑌5 is the reference; we compute the percentage of

changes in HR@20’s when adding future data from 𝑌6 to 𝑌10, and report the lowest and highest

percentage changes between 𝑌6 and 𝑌10.13 Shown in Table 5, with respect to the results of no data

leakage, the performance changes largely in both signs and magnitudes. Specifically, the magnitudes

in Table 5 can be as high as 89.5%, and there is no particular pattern. In short, the impact of data

leakage on recommendation results is unpredictable. Therefore, the recommendation performance

reported from experiments with “future data” is not reflective of the actual performance in a more

practical setting without data leakage.

Finding 4. The evaluated models do not show consistent patterns in terms of their relative perfor-
mance ordering, with the inclusion of additional future data.

Referring to plots on MovieLens-25M, Yelp, Amazon-music, and Amazon-electronic in Figure 8,

ranking order of the four baselines changes when more “future data” are added in training, from

𝑌6 till 𝑌10. We summarize the ranking orders of the four baselines in Table 6. Here, 1 indicates
that the model performs the best (i.e., with the highest HR@20), while 4 refers to the worst among

the four baseline models. We only present the ranking order of each baseline model for the test

year 𝑌5 for the sake of space. More details can be found on Github.

Listed in Table 6, we observe inconsistent ranking orders of the four baseline models when

different amount of “future data” is added for training. Specifically, on MovieLens-25M, although

the sequential recommender SASRec consistently performs the best, there are multiple swaps

between the ranking orders of other recommenders BPR, NeuMF, and LightGCN. We cannot

decide which general recommender will give better recommendation results. Similarly, on Yelp,

13
We only report HR@20 in Table 5. Other metrics like HR@10 and NDCG@10 give similar results.
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Table 6. Ranking order of BPR, NeuMF, SASRec, and LightGCN in terms of HR@20 for test year 𝑌5, with
different amount of “future data”, on four datasets. Here, 1 indicates that the model achieves the highest
HR@20, and correspondingly the best recommendation performance. 4 refers to the worst model in terms of
HR@20 among four baselines.

Dataset Train Year BPR NeuMF SASRec LightGCN

MovieLens-25M

𝑌5 2 3 1 4
𝑌6 3 4 1 2
𝑌7 2 3 1 4
𝑌8 4 2 1 3
𝑌9 3 2 1 4
𝑌10 4 3 1 2

Yelp

𝑌5 3 4 2 1
𝑌6 3 4 2 1
𝑌7 2 4 3 1
𝑌8 3 4 2 1
𝑌9 3 4 2 1
𝑌10 2 4 3 1

Amazon-music

𝑌5 2 4 3 1
𝑌6 1 3 4 2
𝑌7 1 3 4 2
𝑌8 2 3 4 1
𝑌9 2 3 4 1
𝑌10 1 3 4 2

Amazon-electronic

𝑌5 2 3 4 1
𝑌6 2 3 4 1
𝑌7 2 3 4 1
𝑌8 1 3 4 2
𝑌9 2 4 3 1
𝑌10 3 4 2 1

LightGCN performs the best and NeuMF performs the worst, no matter how much “future data” is

added. However, the relative performance ordering between BPR and SASRec is inconsistent and

unpredictable. The inconsistent ranking orders of the four baseline models can also be observed on

both Amazon-music and Amazon-electronic datasets.

Note that all models are tested on the same set of test instances from 𝑌5, and the only difference

is the inclusion of future data (from 𝑌6 to 𝑌10) that are not supposed to be available in 𝑌5.
The inconsistent patterns hinder us from deciding which model would in general give better

recommendation results.

4.3 Summary on Impact of Data Leakage
In summary, in our experiments, we study the results of the recommendation from two perspectives.

One is the top-𝑁 recommended items made by the evaluated models. The other is the recommen-

dation accuracy and the relative performance ranking orders among the four models evaluated.

As a strong evidence of data leakage, we find that “future items” present among the top-𝑁

recommended items. In reality, these “future items” are only available in the system after the

timestamps of the test instances. It is impossible to recommend a phone that is released in 2022
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Data instances in chronological order

Tr Tr Te Tr Tr Tr Te Tr Tr Tr Te

Training instance

Test instance

An incremental RecSys model 

Data instances received so far Future data

Time

Fig. 9. An illustration of the timeline scheme. An incremental recommendation model takes in data instances
along time, and produces recommendations when a test instance is encountered. Or, upon encountering a
test instance, retraining of a batch-learning model is conducted using historical interactions occurred before
the test instance. Test instances are pre-determined by a data split scheme e.g., leave-one-out or random split.

to a user at a time in 2020. Recommending a future item at a past time point is not realistic and

it is a sign of invalid offline evaluation setting. We further show that when more “future data”

are added to the training set, the top-𝑁 recommended items become more dissimilar from the

recommendation lists when there is no data leakage. Again, this result supports our argument that

user-item interaction distributions change along the addition of “future interactions”.

Through experiments, we find that presence of “future data” in training indeed affects recom-

mendation accuracy. We show that HR@20 values differ between experiments with no “future

data” and experiments with “future instances” in training. Hence, when data leakage exists, the

recommendation performance is no longer reflective of a model’s actual performance in realistic or

production setting. We also observe the swapping of ranking positions in terms of recommendation

performance among the four evaluated models. It shows that the presence of “future data” makes

it impossible to compare model performance and to decide which model will perform better in

recommendation. Our findings are consistent with and explain results in earlier studies [33, 44],

that reproducibility of recommendation performance by baseline models is affected by data splitting

strategies. We show that different amount of “future data” leads to unpredictable ranking order,

thus impeding the reproducibility of recommendation performance.

Findings from our experiments call for a revisit of the offline evaluation setting, for a better

simulation of the actual context when the test instances took place.

5 TIMELINE SCHEME: TOWARD A MORE REALISTIC EVALUATION
In Section 1, we argue that not observing global timeline leads to two major issues. One is that the

designed models are not able to capture the global temporal context of user-item interactions. The

other issue is data leakage. Through experiments, we have explored the impact of data leakage

with the leave-one-out data split and commonly used baseline models. In fact, all data split schemes

(e.g., random split) that do not observe global timeline would suffer from the same. The fluctuating

performance also suggests that the performance comparison reported in literature is hard to

reproduce. In this sense, our finding is consistent with the findings reported in [13, 33, 44] which

show inconsistent performances from the recommenders by using different data split schemes. Our

analysis further explains their observations from the perspective of ignoring the global timeline.

Among the commonly used data partitioning strategies listed in Table 2, split-by-timepoint does
not suffer from data leakage problem. Despite that, simply adopting split-by-timepoint may not

necessarily lead to more realistic evaluation of recommenders. Split-by-timepoint sets aside a time

period for evaluation with a predefined time point. All interactions that occurred before the time
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point are used as training instances. If the test time period is too short, there may be not sufficient

test instances to give a fair and unbiased evaluation result. If the test time period is too long,

then the temporal context of user-item interactions during the test period may have changed. For

instance, items show different popularity patterns along the timeline in Figure 1. A long test time

period prevents a model from learning these temporal context changes along the global timeline.

Again, the evaluation results may not be reflective of how the recommender system performs in a

real-time setting. Taking this into account, it would be difficult to decide the duration of the testing

period.

We consider a timeline scheme to be a more reasonable scheme for fair offline evaluation of rec-

ommender models. With the timeline scheme, all user-item interactions are sorted in chronological

order, as illustrated in Figure 9. A subset of the interactions is masked as test instances. The sampling

of test instances can be by random or even by leave-one-out (e.g., each user’s last interaction is

masked as test). A recommender shall take in training instances along the timeline to learn/update

its model. Whenever a test instance is encountered along the timeline, the recommender makes

prediction based on (i) what the model has learned up to that time point, and (ii) the current pool

of available items at that time point. This timeline scheme observes global timeline by design. Not

all training instances are fed to learn the model as a whole. Instead, the training instances are

received along the timeline till the time point when a recommendation is to be made, preventing

data leakage. Test instances are sampled along the timeline, hence the model is able to learn the

temporal context along timeline and make recommendations accordingly.

In the extreme case, the timeline scheme becomes prequential evaluation, a commonly used

evaluation scheme in data stream mining. In prequential evaluation, all data instances are sorted in

chronological order. Each instance is first used to test a model, and then its true label is released to

train the model. In fact, prequential evaluation has been adopted in online recommendations [1, 35,

45]. The timeline scheme can be considered as a relaxed version of the prequential evaluation.

If we relax the timeline scheme, we may use a sliding time window as a test period, e.g., all
interactions occurred in the past few week are used to learn a model to make predictions for the

next week, along the global timeline. In this example, the time window is one week, and the model

is trained/updated on a weekly basis with the interactions available before the test week. Adoption

of this scheme requires consideration of the following factors:

(1) Length of time window. If the time window is set too long, the recommendation model may

encounter severe cold-start issue because many users/items are only active some time after

the starting day of global timeline. If the time window is too short, it may be computationally

expensive because there would be extensively large number of sliding windows. To decide on

the length of time window, data characteristics such as dynamics in the dataset and severity

of cold-start problem in the dataset should be analyzed.

(2) Hyperparameter tuning. As multiple evaluations will be conducted using this scheme, hy-

perparameter tuning strategy becomes an important topic to study. One possible strategy

could be tuning using a subset of time windows [49, 54]. That is, the global timeline can be

divided into 𝑛 time windows. Following the relaxed version of timeline scheme, there would
be 𝑛 − 1 times of evaluations conducted (the first time window will not be tested because the

recommendation model has not learned from any data instances). From the 𝑛 − 1 evaluation

windows, the𝑚 time windows are selected as the validation set for hyperparameter tuning,

with 𝑚 < 𝑛 − 1. The recommendation accuracy on the 𝑚 time windows will be used as

metrics for the selection of hyperparameters. We note that selection of the𝑚 validation time

windows also requires careful designs to avoid data leakage. A possible method is to select
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the𝑚 time windows that happen just before the test set (the time windows set aside for

reporting of the recommendation accuracy).

(3) Interpretation of recommendation accuracy over time. As evaluations can be done in multiple

time windows, multiple sets of recommendation accuracy would be reported. According

to [29, 41], recommendation accuracy can vary over time. A recommendation model may

appear to be the best performing model at the beginning, but becomes less competitive as

time passes. Hence, a research question on the interpretation of the recommendation accuracy

over time is raised. Possible strategies include averaging recommendation accuracy over a

number of time windows or purely considering the recommendation accuracy on the latest

time window.

The aforementioned factors apply in the relaxed version of the timeline scheme with sliding

windows. Factors (2) and (3) are also concerned in the proposed strict version of the timeline scheme.

Careful studies are required before the adoption of the timeline scheme. An example adoption of

the timeline scheme is reported in [29] recently.

We remark that the timeline scheme requires all recommender models to be incremental in nature.

Otherwise, batch based retraining using previous historical interactions is required. The former

calls for new model designs, as the model training/updating is different from batch-learning models,

where all training instances are fed to a model as a whole. The latter calls for a careful design

in retraining strategies. Specifically, one needs to decide on the amount of historical interactions

needed for retraining. Having all the historical interactions in retraining results in an unscalable

solution because the number of historical interactions increases continuously with time. Moreover,

not all historical interactions are useful in learning user preference because preference can change

over time [26]. Nevertheless, solely using a subset of historical interactions may lead to forgetting

of a user’s long-term preference, which is also not desirable in recommender system.

6 RELATEDWORK
Recommender systems are hard to evaluate. In [10], the authors discuss four issues in evaluating

recommender systems. These issues include (i) a recommender could be biased towards highly

reachable items; (ii) log data obtained from a platform with already installed recommender system

could have different distribution from that of interactions obtained from users with no exposure

to any recommender; (iii) high click through rate may not translate to high revenue; and (iv) it

is hard to evaluate a system based on revenue, because it is questionable whether the users will

purchase the items without the recommender. A recent study [32] explores the disagreement

between false-positive metrics and true-positive metrics in evaluating recommender systems. The

authors show that false-positive metrics are affected by popularity biases, but in opposite direction

compared to true-positive metrics. Another work [22] highlights that the datasets used in offline

evaluation of recommender system suffer from bias caused by the deployed system. Hence, new

recommendation models proposed are evaluated based on whether they can reproduce interactions

obtained from the deployed system, but not on whether user’s preferences are predicted well. While

these studies focus on the challenges in evaluating recommender systems in general, we focus

on the issues of not observing the global timeline in offline evaluation, which leads to unrealistic

evaluations, hence inconsistent performance comparisons.

For offline evaluation, researchers have not reached an agreement on how the evaluation shall be

conducted. For example, given a pre-collected static dataset, decisions of offline evaluation settings

rely heavily on the choices of dataset splitting scheme [9, 18, 44]. Reported in [33], the performance

of published models vary significantly by using different data partition schemes, making the pub-

lished results non-comparable. We show that leave-one-out split and any other split that do not
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observe global timeline would lead to data leakage. More importantly, the dynamic contexts behind

user-item interactions cannot be well captured by static models. Said and Bellogín [40] make the

same observations of non-comparable recommendation results when using different data splitting

strategies in offline experiments. The authors of [44] further explore the differences in recommen-

dation results, when using random-split-by-ratio and time-aware-split-by-ratio, through controlled

experiments on MovieLens-1M, Yelp, Epinions, and Amazon electronic datasets. Random-split-

by-ratio randomly samples test data from the whole dataset; time-aware-split-by-ratio considers

global timeline and splits dataset into training and test sets by a fixed timestamp. The authors

observe that random-split generally leads to better performance than time-aware-split. Based on

our study, we argue that this comparison is not very meaningful because random split has the issue

of data leakage, hence the recommendation results obtained are unrealistic. Similarly, the authors

in [15] show discrepancy between recommendation results obtained from random-split-by-user and
strict-temporal cutoff. They conclude that recommendation results obtained from offline evaluation

setting that does not consider time, do not reflect the actual performance of a recommender in real

life.

Our work is essentially different from the aforementioned papers. We study the non-reproducible

results from the perspectives of data leakage rather than the data splitting strategies. Precisely,

we do not compare dataset splitting strategies, but explore whether and how data leakage exists

in splitting strategy. We also show that data leakage leads to non-comparable recommendation

results. Through analysis of the user/item active time period and temporal dynamics of user-item

interactions, we argue that split-by-timepoint may not be a good choice.

“Time” factor in offline evaluation of recommender system is also studied in [6, 8, 29, 41]. The

authors of [8] acknowledge that a more realistic setting for evaluation of recommendation model

is to strictly follow a global timeline. They show that a stricter experiment setting that follows

the global timeline leads to different recommendation results from the less strict experiment

setting. The authors of [6] highlight that a recommender system constantly evolves with new

items and new users entering the system. They propose a temporal leave-one-out strategy to

handle the dynamic properties of recommender system. Temporal leave-one-out setting treats

each user independently. For each user, it sorts his/her interactions in chronological order. When

sliding through a user’s local timeline, recommendation is made upon observing a new interaction.

Recommendation is made by considering only historical interactions that happened before the

timestamp of the new interaction. Temporal leave-one-out is similar to our proposed timeline scheme.
The key difference is that temporal leave-one-out works on user-level and evaluate every interaction

observed while our timeline scheme samples interactions from the entire dataset for evaluation.

The “time” factor is also considered by the authors of [29, 41]. They conduct experiments to study

how recommendation performance changes over time with more interactions being observed. It

is shown that a recommendation model’s performance varies over time and it is not true that

a recommender model will consistently outperform the other models at any time. This finding

suggests context changes over time in recommendation. Hence, it further confirms that experiment

setting with data leakage is not valid, because the training set is not reflecting the context when a

past test instance takes place.

We are not the first to note the issue of data leakage, but the first to offer a comprehensive critical

study on this issue from the perspective of “global timeline”. Many researchers have indicated

that time-independent data partition strategies may result in leakage of “future information” in

training [7, 8, 33, 46]. The data leakage problem, using the leave-one-out strategy as an example, is

also briefly discussed in [23–25, 33]. Although the data leakage problem has been raised, there is a

lack of systematic study on the impact of data leakage.
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To our best knowledge, our work is the first systematic study on the impact of data leakage. We

note that our study is different from, and in fact not much related to, time-aware recommendation [7]

and sequential recommendation [14]. The key focus of most studies in time-aware recommendation

and sequential recommendation is local timeline specific to users or items. We focus on the issue of

ignoring “global timeline” in offline evaluation of recommenders in general, which is applicable to

all recommender problems, including time-aware and/or sequential recommendations.

Stream-based recommender models, as its name suggests, generally follow a global timeline.

Some studies [1, 35, 37, 54] adopt prequential evaluation or enhanced version in their experiments.

For example, the instances in the initial time period (e.g., first three months of a year) can be used

to train a model in batch mode, and prequential evaluation is adopted in the remaining time period,

on each new instance [1]. That is, after the initial training period, the user-item interactions are

fed to the model in chronological order. Given a new interaction, the recommender model first test

the recommendation performance on this interaction and report the performance score. Then the

new interaction is used to trained or finetune the recommendation model. Prequential evaluation

can be on a set of new interactions [37, 49, 54], as a relaxed version of the former type. Here,

a recommender model is finetuned periodically using instances that occur in the specified time

period. In [45], the authors present an overview of stream-based recommender systems and discuss

how to conduct statistical tests for robust evaluation of online incremental recommender models.

However, a large number of models published in literature are not incremental in nature. In this

paper, through experiments, we highlight the issues of ignoring global timeline in training and

evaluating these batch-learning models, i.e., non-incremental models.

7 CONCLUSION
In this paper, we provide a critical analysis on data leakage in offline evaluation of recommender

systems. The key message is to observe the global timeline in offline evaluation.

We show the temporal dynamics of users and items through their average active time in four

major datasets and highlight that users’ last interactions may occur at any time point, and items

may be released at any time point along the global timeline. Due to the nature of collaborative

filtering, if the train/test data split does not observe the global timeline and all training instances

are fed to the recommender as a whole, then the model could learn from data instances that are

not available at the time point of the test instance. Through carefully designed experiments, we

show that models with data leakage do recommend future items which are not available to the

system at the time point of a test instance. We also show that more future data leads to a more

different recommendation lists from the model with no data leakage, for the test instances. Based

on recommendation accuracy measures, we show that the impact of data leakage is unpredictable,

hence the results reported in literature may not truly reflect performance of recommendation

models in online setting. Data leakage does affect the relative performance ranking order of the

evaluated models. As a result, it is hard to conclude based on the published literature which models

are more likely to give better recommendation results in online setting.

Based on our understanding of the problem definition of recommender system and what we have

learned from this critical analysis, we propose the timeline scheme for a more realistic evaluation

of recommender system in an offline setting. Again, the key idea is to follow global timeline and a

model shall only learn from interactions that are available before a test instance. The test instances

shall also spread along the global timeline to enable models to learn from the temporal context

changes. Nevertheless, the proposed timeline scheme requires all models to be incremental, i.e.,
able to learn from the increasingly available training instances along the global timeline. Otherwise,

retraining of batch-learning recommendation models is required. We note that a large number of

proposed models in literature are not capable of incremental learning. Meanwhile, retraining of
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batch-learning models, i.e., taking all training instances as a whole, may not be feasible because it

is difficult to decide on the amount of historical interactions needed for retraining.
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A ADDITIONAL EXPERIMENT RESULTS
A.1 Impact of Data Leakage on Recommendation Performance of Test Year Y7
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Fig. 10. HR@20 and NDCG@20 for BPR, NeuMF, SASRec and LightGCN on test years 𝑌7.
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