Check for
Updates

Semi-Automatic Hybrid Software Deployment Workflow in a
Research Computing Center

Fang (Cherry) Liu
Georgia Institute of Technology
Atlanta, GA, US.A.
fang liu@gatech.edu

J. Eric Coulter
Georgia Institute of Technology
Atlanta, GA, US.A.
j-eric@gatech.edu

Semir Sarajlic
Georgia Institute of Technology
Atlanta, GA, US.A.
ssarajlic10@gmail.com

Ronald Rahaman
Georgia Institute of Technology
Atlanta, GA, US.A.
rrahaman6@gatech.edu

Deepa Phanish
Georgia Institute of Technology
Atlanta, GA, US.A.
deepa.phanish@gatech.edu

Ruben Lara
Georgia Institute of Technology
Atlanta, GA, US.A.
ruben.lara@oit.gatech.edu

Michael D. Weiner
Georgia Institute of Technology
Atlanta, GA, US.A.
mweiner3@gatech.edu

Jeffrey Valdez
Georgia Institute of Technology
Atlanta, GA, US.A.
valdez@gatech.edu

Pam Buffington
Georgia Institute of Technology
Atlanta, GA, US.A.
pam@gatech.edu

ABSTRACT

The software stack is an essential component in any High Perfor-
mance Computing (HPC) cluster, and it is critical to optimize the
usage of the underlying computing resources while simultaneously
providing the best user experience. Georgia Institute of Technol-
ogy (GT) Partnership for an Advanced Computing Environment
(PACE) maintains a heterogeneous system with around 2000 com-
pute nodes across five different clusters on two different schedulers
(Torque and Slurm) and two different parallel filesystems (GPFS and
Lustre). This diversity calls for multiple software stacks that pose
a significant challenge to delivering software support efficiently.
Hardware upgrades, filesystem changes, and scheduler replace-
ments all lead to software stack changes ranging from updating the
MPI libraries to rebuilding the whole stack. In the past five years,
PACE has rebuilt the software stack four times due to these events.
To reduce the build time, Spack, GitLab, and ReFrame tools were
adopted. Spack, an automatic software building tool, allows us to
set up more than half of the software stack quickly; GitLab provides
git tags and issues to handle Dev-Test-Prod workflow coordination
within the team; and ReFrame provides a systematic way to test
the whole software stack automatically. By integrating these three
tools alongside manual software installations, we have created a
semi-automatic hybrid software deployment workflow that is pre-
sented in this paper. We share our experience to contribute to the
body of work and useful tradition of HPC centers sharing their
practices with the community.

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC °23, July 23-27, 2023, Portland, OR, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9985-2/23/07.
https://doi.org/10.1145/3569951.3593607

CCS CONCEPTS

« Software and its engineering — Programming teams.

KEYWORDS

Research Computing Center, HPC Software stack, Spack Tool, au-
tomatic deployment, Reframe

ACM Reference Format:

Fang (Cherry) Liu, Ronald Rahaman, Michael D. Weiner, J. Eric Coulter,
Deepa Phanish, Jeffrey Valdez, Semir Sarajlic, Ruben Lara, and Pam Buff-
ington. 2023. Semi-Automatic Hybrid Software Deployment Workflow in
a Research Computing Center. In Practice and Experience in Advanced Re-
search Computing (PEARC °23), July 23-27, 2023, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3569951.3593607

1 INTRODUCTION

The Partnership for an Advanced Computing Environment (PACE)
center at Georgia Institute of Technology operates as a provider
for a broad spectrum of research computing resources to the Geor-
gia Tech community (in addition to serving the national research
community through collaborations with ACCESS [1] and the Open
Science Grid [4, 9]). As a funded center for Georgia Tech, our pri-
mary focus always returns to providing quality research computing
services, software, and infrastructure to approximately 2000 users
we serve locally. We provide access to, and maintain, five High
Performance Computing (HPC) systems that includes the Phoenix
cluster [18] (ranked #277 on the Top500 November 2020 list), which
are each heterogeneous clusters offering a variety of architectures
and GPU devices. A key piece in providing quality service revolves
around provisioning our systems with up-to-date scientific software
that has been compiled with optimizations to match the architec-
tures of all the hardware available on our local systems.

While system-level software management necessary to run an
HPC system and other types of Cyberinfrastructure (CI) is itself
a topic worthy of deep study, it is an area well served by many
existing tools from Enterprise-grade Linux distributions, configura-
tion management systems, and support contracts with scheduler

https://orcid.org/0000-0002-3383-2191
https://orcid.org/0000-0002-8917-8934
https://orcid.org/0000-0002-7601-0702
https://orcid.org/0000-0001-6710-9244
https://orcid.org/0000-0003-3421-259X
https://orcid.org/0000-0002-1407-7741
https://orcid.org/0000-0001-9821-0441
https://orcid.org/0000-0001-7258-8665
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3569951.3593607
https://doi.org/10.1145/3569951.3593607
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569951.3593607&domain=pdf&date_stamp=2023-09-10

PEARC °23, July 23-27, 2023, Portland, OR, USA

providers; building the software itself correctly is generally not
a deep concern. On the other hand, scientific applications are a
diverse set of research software, developed by the community ac-
cording to a wide variety of standards and practices. Providing these
applications to users in a production environment is an ongoing
challenge.

This is not to imply that the scientific software support ecosys-
tem is utterly lacking in solutions to our common problems! There
are many well-loved community tools that we utilize in our cur-
rent workflow, e.g. Spack [13], Lmod [28], ReFrame [7] and GitLab
Continuous Integration/Continuous Deployment (CI/CD) tools[5].
The research computing community has a long-standing tradition
of sharing solutions and best practices that help deal with the
many common problems presented by supporting computational
researchers. Many of these efforts employ similar toolchains, such
as Lmod and Easybuild[15], the RESIF framework [39] (which is
actually a wrapper around EasyBuild and Lmod). Others, such as
the in-house workflow at The Ohio Supercomputing Center[19],
are closer to our own system, which also utilizes Git and ReFrame.
Other sites have implemented more novel tools for the HPC world,
such as Jenkins+Singularity at the University of Colorado[30] or
the purely functional software management tool Nix[11] at the
GRICAD HPC Center[6]. We do not assert that our site’s entire
workflow represents absolute best practice. On the contrary, our
workflow continually evolves due to our improved knowledge. We
hope some components of our workflow will be helpful to other cen-
ters. Most importantly, we hope that, by publishing our workflow
and discussing the actual time taken to build packages across differ-
ent iterations, we can contribute to and encourage the continued
open exchange of ideas among HPC centers.

This work dives deeply into the motivation, policies, and tool-
ing that represents our current workflow, which has risen out of
continued community support needs, a transition from the Torque
scheduler to Slurm, a growing team, and a growing stable of differ-
ent types of hardware. We also discuss the amounts of time needed
to build (and re-build) the software stack, which is rarely done in
similar works.

2 HISTORY AND MOTIVATION

The HPC scientific software stack is critical for optimally using
the available computing resources on a cluster, making software
support inevitable in any Advanced Research Computing (ARC)
center. In view of this, GT’s PACE center provides a full software
stack and necessary support for GT researchers and their collabo-
rators. In the past, all software were built manually, and the rsync
Linux command was used to deploy it onto the network-mounted
filesystem so that each compute node could access the stack. The
person who built the software was able to test and verify it only on
the compilation machine, and hence, there was no cross-validation
or queue-based testing before deployment.

The last complete manual build on PACE was done in 2018 when
the system was upgraded from RHEL 6 to RHEL 7.4. This was ac-
complished with two full-time staff and multiple undergraduate
students. Among 200 pieces of software in consideration, two-thirds
were built in a span of five months before releasing them to the
users. Due to the time-consuming nature of the workflow, we had

69

Liu and Rahaman, et al.

to prioritize the installations using the high-priority software list
generated from our previous work [3, 27]. Further software installa-
tions were handled based on requests from the users. In the process,
we trained student assistants to learn the HPC system by compiling,
installing, and testing the software. The stack thus deployed was
used until the beginning of 2020.

After finishing migration to the RHEL 7.4 stack, we needed to
build yet another software stack for new hardware in our new
CODA [26, 35] data center, where we moved in the spring of 2019.
We used this opportunity to adopt new tools to increase the team’s
productivity and reduce the time needed to establish a software
stack on a bare-metal machine. We began two initiatives in this
regard: 1) We chose the Spack tool [13], which aims to seamlessly
manage scientific software dependencies. 2) We also decided to
switch from TCL [31] modules to Lmod [24], since Lmod provides
for easy handling of the MODULEPATH hierarchy problem. We
successfully built a RedHat 7.6 stack when the new infrastructure
was migrated to the new CODA data center. The stack contains 239
unique applications, with 115 applications built manually. Using the
Spack tool for half of the software dramatically reduced the labor
required. The new stack was released to users in January 2020 and is
still actively used by GT researchers. PACE staff have been actively
following Spack development and participating in the Spack Slack,
user groups, and BoF sessions in conferences since 2019, and have
built local expertise to support GT researchers on a daily basis. Also,
using Spack has made it easier to port certain complex software
suites — U.S. Department of Energy (DOE)’s Energy Exascale Earth
System Model (e3sm) [29] for example — to PACE in a customized
Spack branch.

When releasing the software stack in 2020, we faced the chal-
lenge of a rapidly growing Spack tool. In order to accommodate new
software, we made multiple Spack-built software stacks co-existing
through a carefully aligned Lmod system.

In 2022, we had to rebuild our software stack from scratch to
facilitate our scheduler migration from Torque/Moab to Slurm. The
center’s lead research software engineer, Fang (Cherry) Liu, led the
project with two new team members and a student assistant. In
contrast to previous timelines, the whole process took just about a
month to set up the initial software stack and complete sanity tests
with the Reframe [7] suite. Research Computing Facilitator (RCF)s
and Research Software Engineer (RSE)s completed additional soft-
ware installation based on user requests. To date, 175 applications
are installed, out of which 108 are built with Spack.

Not long after the Slurm stack was released, we needed to build
yet another stack for newly-bought nodes, which added AMD CPUs
and Nvidia GPUs to an Intel-based instructional cluster. This par-
ticular cluster was still on the Moab/Torque scheduler, since PACE
is migrating systems gradually. For this addition, we had to build a
separate AMD stack as the newly-built Slurm software stack cannot
yet be deployed here, and the Torque stack — last built in 2020 and
highly optimized towards Intel Cascade Lake — was incompatible
with AMD nodes. Following our new process, we quickly rebuilt the
AMD stack with basic compiler and HPC libraries using the Spack
tool, providing a total of 53 packages. Since this is only a temporary
solution until the instructional clusters’ Slurm migration, we did
not add any manually-built software into this stack.

Semi-Automatic Hybrid Software Deployment Workflow in a Research Computing Center

The history above shows the dynamic nature of software man-
agement within an HPC center and the importance of preparedness
for a continuously changing environment. Our center’s experience
in adopting Spack, along with modern software deployment prac-
tices, has increased our work efficiency and team collaboration
by a great deal. The details of our newly- designed workflow are
presented in Section 4. The transitions we have undertaken pave
a clear path to further refine the usage of Spack for better serving
PACE’s mission. The best practice we learned through the past of
years leads us to define the future road map in section 5.

3 SOFTWARE POLICY

PACE publishes a software policy[33] detailing how requests for
additions to the software stack are handled. The policy ensures a
sustainable, functional software stack is available across PACE’s
clusters. The software policy helps us to provide quality software
support with minimal staff time.

In order for software to meet the criteria for installation, software
should benefit at least five cluster users. It must be compatible
with the operating system in use - currently Red Hat Enterprise
Linux 7 - and may not require system-level changes (alternatively,
a container may be employed). We install only current production
code, not experimental or abandoned projects, in order to ensure
the software can be maintained. Most packages are Free and Open-
Source Software (FOSS), while some are licensed at the campus
level or by certain faculty, in which case access may need to be
restricted to those users with licenses.

In order to prioritize support and documentation efforts, PACE
sorts software into tiers. Our data-driven analysis[3] maximizes
the return on these efforts by analyzing historical records of batch
jobs. "Tier 1" software, defined to cover all batch software needs of
75% of researchers on the cluster, is installed by us and the most
widely used. These packages receive detailed usage guides in our
documentation[32]. Approximately 30% of available packages fall
in this category.

"Tier 2" software extends full coverage to 98% of researchers,
representing another 60% of packages. Software in this tier is also
installed and maintained by PACE and receives best-effort support.
Documentation is provided for many of these packages as well, but
at a lower priority.

Additional software not covered by the first two tiers is installed
only upon request and is not automatically included when a full
rebuild of the software stack occurs. These requests are evaluated
based on the guidelines described above. Interactive software pack-
ages, including some that are used only through a GUI, may not
appear in analysis of batch jobs and are therefore excluded from the
tiers. These are also re-installed in new software stack builds upon
request from researchers and receive priority if they were offered
in the prior stack to avoid disruption to ongoing workflows. The
more popular ones receive full documentation like Tier 2 software.

If a requested package does not meet the criteria for inclusion
in our software stack, we provide assistance as needed with a self-
installation in the researcher’s own directories or in a shared direc-
tory for a research group.

We aim to provide a whole software stack refresh every two years
to meet either OS upgrades or software tool upgrades requirements.

70

PEARC ’23, July 23-27, 2023, Portland, OR, USA

4 OVERALL WORKFLOW

For any brand-new stack, we start out by building compilers and
Message Passing Interface (MPI) libraries using Spack in two flavors:
the Mvapich2 [38] MPI library built with the GCC[10] compiler; and
Mvapich2 built with the Intel compiler. Next, we build foundational
libraries, e.g. HDF5 [16], NetCDF [37] and FFTW [12]. Because
many software packages are not compatible with the Intel compiler,
we built most of the software on the GCC stack. In the future, we
plan to compare GCC and Intel-built software performance and
optimize for better performance.

The end-to-end workflow shown in Figure 1 is a five-step pro-
cess for ensuring a high-quality software stack before it goes into
production. Each step of the workflow contains both automated
and manual components.

Our workflow allows six people to work together asynchronously
on the same software stack. This is uncommon in Advanced Re-
search Computing (ARC) support, as in most cases, only one or two
people take care of the entire software stack. Due to a restructur-
ing of the PACE team, the addition of several new members, and
resource requirements spurred by the scheduler migration, many
new PACE RCFs began installing software in 2022. This meant that
organized training efforts were needed. Knowledgeable team mem-
bers offered training sessions, helped new colleagues work through
examples, and provided guidance for any questions that arose, all
while building a pool of talent. We created a clear, step-by-step
documentation for how and where to install new packages, create
modules, manage placement in the repository, and test before de-
ployment. Most training initially focused on manual installations,
with only a few working on Spack packages.

Software Built with Spack Software Built Manually

Git tag with test Software sync over testing environment

Git Issue created for review request Git issue assignee review and approves the change

Git tag with prod Software sync over production environment

Student put docs in git repo, reviewed by staff automatically deploy to docs.pace.gatech.edu

Figure 1: High-Level PACE Software Deployment Workflow

We follow five steps for each installation:

o The Software Building step includes the initial stack-building
task and further distributing incoming user software requests
among multiple team members. While the former mainly
uses the Spack tool, the latter requests can be built either
using Spack or manually on a case-by-case basis. One major
criterion is the ease of installation: software with dependen-
cies that are hard to resolve in Spack are moved to manual
installation. Further, software that need timely addition of
new sub-packages, e.g., LAMMPS [36], and software natively

PEARC °23, July 23-27, 2023, Portland, OR, USA

built with Conda [2], proceed with a manual route, the details
of which are covered in section 4.1.

e The Software Testing step integrates the best practices in
software Dev/Ops with git repositories. In our workflow,
each individual software — either manually built or on the
Spack stack — is in a separate git repo. When a new repo is
built and ready for testing, we tag the repo with a suffix of
test, so our custom-built tool synchronizes the given repo tag
to the test environment as detailed in section 4.2. For testing
anewly built initial Spack stack quickly, we use the ReFrame
tool that can test around 77 software packages efficiently. A
detailed description is in section 4.3.

o The Software Reviewing step allows the software installation
to be peer- reviewed after testing. The requirements for this
step are two-fold: 1) creating a git issue; and 2) assigning the
git issue to another team member for review.

o The Software Production step tags the git repo with a suffix
of prod and our custom-built tool synchronizes the given
repo tag to the production environment. Further details are
provided in section 4.2.

o The Software Documentation is mainly done by undergradu-
ate assistants. We have a git repository for documentation
that uses MkDocs [34] to generate the HTML web pages on
a public website [32].

4.1 Hybrid Software Stack Building

We introduced Spack into PACE’s software stack in 2019 and have
successfully rebuilt it three times since then. We hope that our
experience can help other centers with daily software management.
Spack has many configuration files written in YAML format. Com-
monly used ones include config.yaml, modules.yaml, packages.yaml
and config.yaml, which define the customization for each site’s
building preferences. To keep track of those configurations, we
have created a spack-config git repository. The git branches allow
us to support multiple spack versions and hardware architecture
using a naming convention in the format [arch]-[OS version]-[Spack
version]. Our previous work [25] demonstrates successful adapta-
tion of Spack on PACE by extracting the Spack configuration files
from Spack’s central repo. You can find similar success stories at
other sites as well [21].

The Spack environment [20] aims to group a set of build specs,
allowing easy rebuild. It provides a great way to capture the build’s
provenance and promotes collaborations. We have utilized night
Spack environments in the PACE Slurm stack:

o The base_gcc_apps environment builds applications using
system default GCC 4.8.5

o The base_gcc environment builds GCC 10.3.0 version using
the system default GCC, e.g., GCC 4.8.5 on RHEL 7.9

e The gcc_apps environment builds non-MPI applications
using GCC 10.3.0

e The gcc_mvapich environment builds MVAPICH2 2.3.6
with GCC 10.3.0

e The gcc_mv2_apps environment builds applications with
both MVAPICH?2 2.3.6 and GCC 10.3.0

e The base_intel environment builds intel-parallel-studio@
cluster.2020.4 with base GCC

71

Liu and Rahaman, et al.

e The intel_apps environment builds non-MPI applications
with Intel 2020.4

e The intel_mvapich environment environment builds MVA-
PICH2 2.3.6 with Intel 2020.4

o The intel_mv2_apps environment builds applications with
both MVAPICH2 2.3.6 and Intel 2020.4

Figure 2 shows the spack spec for the intel_mvapich environment.
This spec specifies systemdependent libraries in the packages sec-
tion to avoid duplication. We have also used when_possible unify
for the concretizer section to reduce duplication.

spack:
specs:
- mvapich2@2.3.6 fabrics=mrail file systems=nfs,ufs process_managers=slurm +regcache
threads=multiple +wrapperrpath $gcc@10.3.0
“1ibxm12€2.9.13%gcc@4.8.5
“findutils€4.9.0%gcc@d.8.5
“libpciaccess@0.16%gcc@d. 8.5
“pkgconfel.8.0%gcc@d. 8.5
“slurmécurrentgcc@d.8.s
mirrors: {}
repos: []
upstreams: {}
concretizer:
unify: when_possible
view: false
packages :
pmi:
version:
- current
buildable: false
externals:
- spec: pmilcurrent$gcc€4.8.5 arch=linux-rhel7-x86_64
prefix: /opt/pmix/current
slurm:
version:
- current
buildable: false
externals:
- spec: slurm@current®gcc@d.8.5 arch=linux-rhel7-x86_64
prefix: /opt/slurm/current
rdma-core:
buildable: false
version:
- 15
externals:
- spec: rdma-core@15%gcc@4.8.5 arch=linux-rhel7-x86_64
prefix: /

Figure 2: The intel_mvapich environment spack.yaml (par-
tial)

These night Spack environments empower the team to collabo-
rate during the building process without much dependency between
them, increasing productivity through parallel work. Three staff
members simultaneously built the Slurm stack in the summer of
2022. One built the base GCC compiler and Non-MPI applications
with GCC compilers. The second handled the Intel compiler and
Intel-built Non-MPI applications. Once the base compilers were
ready, the third started to build MVAPICH2 with the GCC compiler
and GCC-build MPI applications. The first to finish non-MPI appli-
cations took care of building MVAPICH2 with the Intel compiler
and Intel-build MPI applications. With three team members work-
ing together, it took about one month to install 108 packages using
the newest Spack release 0.18.

All Spack configuration and environment specs are stored in
the spack-config git repo, along with all utility scripts to make
deployment of configuration and environment YAML files easier.
We also have a wrapper script for building each environment to
reduce repeated typing along with was a management script for
timing all build steps. The most recent rebuild for our Slurm stack
was done on a 24-core Intel Cascade Lake node with 2.70 GHz
Xeon(R) Gold 6226 CPUs. We have captured the build time per
Spack environment as shown in Table 1. The management script
allows us to rebuild the whole stack automatically with just one
click.

Before the software stack was released to researchers, other soft-
ware had to be manually built, including licensed software like

Semi-Automatic Hybrid Software Deployment Workflow in a Research Computing Center

PEARC ’23, July 23-27, 2023, Portland, OR, USA

Table 1: Spack Stack Building Time in Minutes

Build Target | base_gcc_apps| base_gcc base_intel

intel_apps intel mv2_appg gcc_apps gce_mv2_apps

Build Time 106 84 12

25 147 530 140

Gaussian, Ansys, Comsol, and Matlab. Since our Slurm migration
employed a staggered approach, new software requests came in
gradually as more compute nodes were moved from Torque to
Slurm. We put all source packages in a shared location so that all
historical build scripts and source codes are preserved. We con-
tinued to assign software installation requests in a round-robin
fashion among multiple team members with further evaluation on
each software to determine whether Spack was the right tool or not.
Among all software requests since the initial release, there were
more than 50 packages installed manually and around 10 installed
in Spack, demonstrating that a hybrid approach is the best fit for
PACE’s needs.

We have used Lmod [28] to manage the software module hier-
archy. We control package visibility through the folder structure
in <mpi>/< mpi-version>/<compiler>/<compiler-version>. We also
put Spack module files side-by-side with manually-built software
module files to keep all module files in the same location. Figure 3
shows a list of currently available software on PACE systems.

PACE Software on RHEL7
Search for software with "module spider
For docunentation see: https://docs.pace. gatech. edu/

MVAPICH?.3 GCC10 MPT-Compiled Modules
gromacs/2021.5-mva2-yekdyy netlib-scalapack/2.2.0-ma2-2rvSFy
hdf5/1.10.8-mva2-Jzwozk nwchen/7.0..2-mva2-S7u7nt
prmer/3.3
hypre/2.24 ks/5.
pest/2.8-mva2-F3hiur s
porallel-netcdf/1.12.2-ma2-2n67r4 visit/3.3.0
unzy poraview/s. 1.0 Vtk/9.2.0.rcl-ma2
parmetis/4.0.3-ma2-meviyu

petsc/3.17.1-mva2-ptéslg

py-moidpy/3.1.2-maz-rzdjon

abinit/9.6.1-mva2-0jacks quantum-espresso/7.0-ma2-fpjtcp

raxnl/8.2.12-mvo2-ikeiif

1052/2.8.0-mva2-xx0jkd.
arpack-ng/3.8.0-mva2-axydci

cqal/a.
dealii/9.3.3-mva2-uyelSs
elpa/2021.11.001-mva2-p3dxrt
FFtn/3.3.10-mva2-dgxSsz netedf-cox/4.2-va2.
gronacs-gpu/2021.5-mva2-dszesk netedf-fortran/a.s.

-gihyaf
4-mva2-yxSosu
Vodules
k1/20.0.4
ruparser/2.2.5-2bmiSv
mvapich2/2.3.6-ouynal ()
openmpi/a.1.4
pere/8.45-i17kfc
Plplot/5.15.0

6CC10 Compiled
®

adol-¢/2.7.2-FycSno doxygen/1.9.3-s2cnda julia/1.8.0 at/5.15. 4-74chx 26p/0.5.5-0junch
F00t/6.26.04

Spades/3.15.3-1jdgtw

double-conversion/3.1.5-kun2xé julio/1.7.3 netis/5.1.0-kinbbu udunits/2.2.28-eowzp
Core Modules
grace/s.1.25
951/2.7.1-swidgw
qurobi/9.5.0
cuda/11.6.0-udjzhg qurobi/9.5.2
cuda/11.7.0-7sdye3 hpox/2.12
cudnn/8.4.1 Pwloc/1.11.8-wA36u
curl/7.83.0-bp3fog
1

crake/3.23.1-3270b1
cons01/6.0
comsol/6.1

refrane/3.11.0-j7euzs
ruby/3.1.0-3a0ef4

ROCker/0.1.0

vhpe/22.11
oce/0.18.3-chikghu
openblos/0.3.18-nk2wz)
openblas/0.3.20-7um3t6
opency/4.5.4-dofva
open;dk/11.0.15_10-3uakrj
intel-£bb/2020.3-vnczun orca/s.2.1

inte1/20.0. P unity/latest
dk/1.8.0-hdolxd pace-slum/2022.06
keras/2.9.0 parallel/20210922-qv537
pere/8.45-xbl6as
pere2/10.39-srkpkl
perl/5.34.1-Svonwt
pipsecker/1.0.0

®

bedtools2/2.30.0-nlxpvg
blast-plus/2.10.1

V7
Flex/2.6.4-utm7z
Fribidi/1.0.12-33416y
gatk/4.2.6.1-16r63
gaussian/16
gec-conpatibility/10.3.0
9cc/8.3.0-rvdav?
6c/10.3.0-057x6h
9i/2.35.2-ndrw2
aro/6.2.1-mbxst

yasn/develop-74pdno

Yasw/1.3.0-3w25¢ ()

()
nvhpe-byo-compiler/22.11

clustal-onega/1.2.4-2r3hyd) nvhpc-nompi/z2.11 rdna-core/15-t43af2

Where:
Module is loaded
D: Default Module

Figure 3: User View of PACE Software Stack Module Hierar-
chy

4.2 Software Stack Deployment

PACE has actively adopted modern software development practices
in our daily operational workflow to improve efficiency and ensure
quality of service. We mapped the Dev-Test-Prod workflow to the
software deployment procedure and integrated GitLab with our
workflow for productivity and collaboration. Figure 4 shows how
software is deployed in the PACE system.

The Compilation node serves as a Dev environment, where
RCFs and RSEs build the software. This node is configured with the
same Operating System (OS) stack as the cluster’s compute nodes.

72

* Add the
software into

* Run test

« Peer review

« Tag the repo
with prod tag

« Run Sync
« Update user

Compilation Production
node gitrepo

« Tag the repo

with test tag

« Run sync

Environment

Figure 4: High-Level Software Deployment Workflow

This Dev environment also helps us to determine missing system
libraries, which would be added to the compute nodes’ OS stack
later. In our system, Spack-built software are in one git repository;
all module files are in a separate git repository; and each manually-
built software is kept in a separate git repository. We observed
some performance bottle-neck when committing large binary files
and a large number of small files into git repository. E.g. it took a
long time to commit Matlab and Anaconda. We started to explore
some alternatives. After the software is built successfully, the new
binaries and its build script are added to the given software’s git
repository and tagged with the common.intel.test tag. Next, the
software is synced to the Test environment. To make this step more
efficient, we have created these in-house tools:

® pace-set-git-tag is a bash script to set a tag for the reposi-
tory with rollback capabilities. It needs to run within the git
repository; one can either set an arbitrary tag for the given
repository or a specially-formatted <cluster>.<architecture>.
<deployment> tag. It first saves the existing tag with <tag>
<current timestamp> for rollback assurance and then creates
the new tag pointing to the current head. It can also remove
old tags.

pace-status-packages is a bash script doing QA checks for tags.
In the past, we had two tags per cluster; five clusters together
gave us ten tags. This tool allowed us to easily confirm the
tags’ correctness and whether they were pointing to the
right git commit or not.

pace-sync-packages is a bash script dealing with actual sync
to the destination filesystem. PACE puts the software stack
on the different volumes for the different stages: the Dev
volume is on the local disk of the compilation node for
quick building, while the Test and Production volumes are on
network-mounted NetApp [14] storage. The following com-
mand syncs over all git repositories with the given tag to the
Test environment: pace-sync-packages —tag common.intel.test
—path /storage/coda-apps/test One can also choose to sync
only one repository at a time, for which the sync script up-
dates only the selected one as well as the modules repository,
shortening the time to update.

Once the packages are synced over to the Test Environment,
the person who installed the software conducts testing first, then
creates a GitLab issue with the label needs- review along with de-
tailed steps to run the test, and lastly assigns the issue to another
person. A second person reviews the installation and changes the

PEARC °23, July 23-27, 2023, Portland, OR, USA

git issue label to reviewed, after which an RSE changes the git issue
label to prod-sync and assigns it to the Cyberinfrastructure (CI)
team. The use of Git issues, labels, and assignees lays out clear
workflows across multiple teams, increasing work efficiency and
quality.

Finally, the CI team syncs the new packages to the Production
Environment, and the assigned RCF or RSE communicates to
the user who requested the software, completing the end of the
software deployment cycle.

Git and GitLab have increased our workflow efficiency overall,
but for some of our packages, Git is not the most efficient method for
distribution. We face two inefficient cases: repos with a very large
number of small files; and repos with a small number of very large
files. These cases are known to be problematic for Git, especially
since they fall outside of the original use case for Git (tracking
text files for source code in a software project). Fortunately, Git
developers have made steady progress in improving both of these
cases. For a large number of small files, the inefficiencies result from
the index and untracked cache, and performance optimizations
can be enabled with the "feature.manyFiles" [8] option in Git
2.29 and later. The object database becomes inefficient for a small
number of large files, and the best solution is to move large files out
of the object database. To support increasing demand for containers
at PACE since 2020, a single Singularity images repository was
created to install all containers. As there are 50 containers in the
repo now, it slowed git add/commit/status processes greatly when
a new SIF-formatted image is added, as each can be several GB.
Git and GitLab offer native support for Git LES (large file storage),
which can store large objects in the LFS cache on the client side
and the LFS store on server side. Deployment of Git LFS greatly
increased speed for managing our container deployments.

4.3 Verification and Validation

ReFrame[7] is a new framework for writing regression tests for
HPC systems. It aims to abstract away the complexity of the inter-
actions with the underlying HPC system, allowing users to write
quickly-portable regression tests, focusing only on the software
functionality. We have used ReFrame to execute sanity regression
tests on packages in the PACE Test Environment since 2020, config-
uring it for 139 different applications. Student assistants created all
test cases, and the ReFrame instance has been integrated with our
GitLab CI/CD pipeline. Each time a new test is added, new packages
are verified in the Test environment. There was also a scheduled
nightly test. We upgraded the ReFrame test suite with our 2022
stack, and only 77 applications have been included so far. Currently,
the test suite can be run manually, and the integration with CI/CD
is ongoing, as we integrate more test cases through the efforts of
student assistants.

4.4 User-Facing Documentation

Most of our user-facing software documentation is created by stu-
dent assistants, who are undergraduate students mentored by PACE
RCFs. We document the most widely-used packages[3] with full
details, include example Slurm scripts to launch jobs and simple
example input files that researchers can run to learn how to use the

73

Liu and Rahaman, et al.

software. Graphical applications are documented with screenshots,
usually from our Open OnDemand[17] instance.

The students write documentation in markdown files, and we
use mkdocs[34] to build a full html site of user documentation,
which includes guides to cluster usage, storage options, policies, and
more, alongside software guides. The markdown and html pages
are maintained in a git repository, and the built site of html page is
synced daily to the web hosting service, making the documentation
publicly available on our website[32].

5 FUTURE ROAD MAP

In the future, our software stack must adapt to the increasing het-
erogeneity of our site’s clusters. In response to our stakeholders,
we are purchasing nodes with a larger variety of CPU and GPU
architectures. We will require strategies to deploy several different
builds of the same software with a minimal amount of staff effort.
We hope to leverage Spack environments, spec matrices [22], and
stacks [23] more effectively.

Currently, we compile our software stack for an instruction set
that is common to all our CPUs. Specifically, we limit our software’s
optimizations to AVX2 instructions, since both our Intel Cascade
Lake and AMD Zen 3 processors support it. This vastly simplifies
deployment while losing the advantage of the AVX-512 instruc-
tions supported by Cascade Lake. To solve this, we plan to list both
compiler vendor and CPU target in a spec matrix within a single en-
vironment. For our site, our spec matrix would have a spec list with
"gce target=x86_64_v3" for both Cascade Lake and Zen 3; and
"intel target=cascadelake" for Cascade Lake only. It leaves
room for integrating the AOCC compiler for our Zen 3 processors
by extending the spec list with "aocc target=zen3". For many
applications, we will need to deploy separate builds for NVIDIA and
AMD GPUs. In this case, separate environments may be more fea-
sible. Not all packages have CUDA and/or ROCm support, so a full
spec matrix would need many exceptions listed. While this is a well-
supported capability in Spack, we’ve found it difficult to manage for
the wide ranges of GPU support. Instead, it appears more feasible
to have one NVIDIA environment that lists packages with only
CUDA support and lists "+cuda" under "packages:require:all".
Likewise, a second AMD environment would list only ROCm pack-
ages and "+rocm" under "packages:require:all". We also see
there is an opportunity to make the production sync step fully
automated by adding automatic testing before the scheduled file
synchronization.

6 CONCLUSION

An Advanced Research Computing (ARC) facility like PACE can dra-
matically benefit from innovative tools for daily operational support.
This paper details our modern workflow and software deployment
life cycle at PACE, where we have demonstrated that automatic
software building using Spack is a scalable and sustainable solution.
Further, adopting a Dev-Test-Prod workflow has enabled parallel
work distribution across a growing staff while ensuring high qual-
ity of software builds. Testing with ReFrame will further enable us
to make the workflow fully automatic in the future. As stated in
Section 5, we also plan to refine Spack configurations to continue
supporting an increasingly heterogeneous set of hardware.

Semi-Automatic Hybrid Software Deployment Workflow in a Research Computing Center

ACKNOWLEDGMENTS

We are grateful to the entire PACE team for their ideas, contribu-
tions, and feedback in this work. Special thanks go to Research
Computing Facilitation team members Marian Zvada and Grigori
Yourganov for their daily support to our users; and Matt Guidry for
supporting production deployments. We also want to thank former
PACE Research Software Engineers Nuyun Zhang, Kevin Manalo,
and Christopher Stone for their valuable contribution to the 2020
software stack and setting up the software policies and procedures.

REFERENCES

(1]
(2]

(3

=

N
fust

i}

[14

[15]

[16]

[17]

[18]

ACCESS. 2022. NSF: An Advanced Computing and Data Resource. https://access-
ci.org/.

Inc Anaconda. 2017. Conda: an open source package management system. Re-
trieved 03.03.2023 from https://docs.conda.io/en/latest/

Mehmet Belgin, Tyler A. Perini, Fang (Cherry) Liu, Nuyun Zhang, Semir Sarajlic,
Andre McNeill, Paul Manno, and Neil C. Bright. 2019. A data-driven support strat-
egy for a sustainable research software repository. Concurrency and Computation:
Practice and Experience 31, 20 (2019), e5338. https://doi.org/10.1002/cpe.5338
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5338 €5338 cpe.5338.
Mehmet Belgin, Semir Sarajlic, Ruben Lara, Laura Cadonati, Nepomuk Otte,
Ignacio J. Taboada, Gregory L. Beyer, Norman B. Bonner, Michael Brandon,
Pam Buffington, J. Eric Coulter, Aaron Jezghani, David Leonard, Fang (Cherry)
Liu, Paul D. Manno, Craig A. Moseley, Trever C. Nightingale, Ronald Rahaman,
Kenneth J. Suda, Peter Wan, Michael D. Weiner, Deirdre Womack, Dan Zhou,
Marian Zvada, Andre C. McNeill, Neil C. Bright, Robert W. Gardner, Paschalis
Paschos, Lincoln Andrew Bryant, Judith Lorraine Stephen, James Alexander Clark,
Peter F. Couvares, Brian Hua Lin, Todd Tannenbaum, and Gregory Thain. 2022.
Buzzard: Georgia Tech’s Foray into the Open Science Grid. In PEARC22: Practice
and Experience in Advanced Research Computing 22. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3491418.3535135
GitLab B.V. 2023. GitLab CI/CD Documentation. https://docs.gitlab.com/ee/ci/.
Bruno Bzeznik, Oliver Henriot, Valentin Reis, Olivier Richard, and Laure Tavard.
2017. Nix as HPC Package Management System. In Proceedings of the Fourth
International Workshop on HPC User Support Tools (Denver, CO, USA) (HUST17).
Association for Computing Machinery, New York, NY, USA, Article 4, 6 pages.
https://doi.org/10.1145/3152493.3152556

Swiss National Supercomputing Centre. 2016. ReFrame: A framework for writing
regression tests for HPC systems. https://reframe-hpc.readthedocs.io/en/stable/.
Git Community. 2021. feature.manyFiles in Git 2.29 Reference Manual. Retrieved
03.03.2023 from https://git-scm.com/docs/git-config/2.29.0#Documentation/git-
config.txt-featuremanyFiles

The OSG Consortium. 2023. NSF: Open Science Grid. https://osg-htc.org/.

Free Software Foundation. 2023. GCC, the GNU Compiler Collection. Retrieved
03.03.2023 from https://gcc.gnu.org/

NixOS Foundation. 2020. How the Nix Package Manager Works.
https://nixos.org/guides/how-nix-works.html.

Matteo Frigo and Steven G. Johnson. 2005. The Design and Implementation of
FFTWS3. Proc. IEEE 93, 2 (2005), 216-231. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam
Moody, Bronis R de Supinski, and Scott Futral. 2015. The Spack package manager:
bringing order to HPC software chaos. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, Austin, TX, 1-12.

Gartner and Magic Quadrant. 2022. NetApp Storage System. Retrieved 03.03.2023
from https://www.netapp.com/

Markus Geimer, Kenneth Hoste, and Robert McLay. 2014. Modern Scientific
Software Management Using EasyBuild and Lmod. In Proceedings of the First
International Workshop on HPC User Support Tools (HUST °14). IEEE Press, New
Orleans, Louisiana, 41-51. https://doi.org/10.1109/HUST.2014.8
The HDF Group. 2006. Hierarchical Data Formats
https://www.hdfgroup.org/solutions/hdf5/.

Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, Eric Franz, Trey
Dockendorf, and Brian L. McMichael. 2018. Open OnDemand: A web-based
client portal for HPC centers. Journal of Open Source Software 3, 25 (2018), 622.
https://doi.org/10.21105/joss.00622

Aaron Jezghani, Semir Sarajlic, Michael Brandon, Neil Bright, Mehmet Belgin,
Gregory Beyer, Christopher Blanton, Pam Buffington, J. Eric Coulter, Ruben Lara,
Lew Lefton, David Leonard, Fang (Cherry) Liu, Kevin Manalo, Paul Manno, Craig
Moseley, Trever Nightingale, N. Bray Bonner, Ronald Rahaman, Christopher
Stone, Kenneth J. Suda, Peter Wan, Michael D. Weiner, Deirdre Womack, Nuyun
Zhang, and Dan Zhou. 2022. Phoenix: The Revival of Research Computing

(HDF5).

74

[19

[20

)
=

[22

[23

[24]

I
i

[26

[27

™
&,

[29

[30

[31

(32]

[34

[35

[36]

[37

[38

[39

PEARC ’23, July 23-27, 2023, Portland, OR, USA

and the Launch of the New Cost Model at Georgia Tech. In PEARC22: Practice
and Experience in Advanced Research Computing 22. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3491418.3530767
Samuel Khuvis, Zhi-Qiang You, Heechang Na, Scott Brozell, Eric Franz, Trey
Dockendorf, Judith Gardiner, and Karen Tomko. 2019. A Continuous Integration-
Based Framework for Software Management. In Proceedings of the Practice and
Experience in Advanced Research Computing on Rise of the Machines (Learning)
(Chicago, IL, USA) (PEARC ’19). Association for Computing Machinery, New
York, NY, USA, Article 28, 7 pages. https://doi.org/10.1145/3332186.3332219
Lawrence Livermore National Laboratory. 2013. Spack Environments
(spack.yaml). Retrieved 03.03.2023 from https://spack.readthedocs.io/en/latest/
environments.html

Lawrence Livermore National Laboratory. 2021. Spack Configuration Files from
Different Sites. Retrieved 03.03.2023 from https://github.com/spack/spack-
configs

Lawrence Livermore National Laboratory. 2023. Spec Matrices. Retrieved
03.03.2023 from https://spack.readthedocs.io/en/latest/environments.html#spec-
matrices

Lawrence Livermore National Laboratory. 2023. Stack Tutorial. =~ Retrieved
03.03.2023 from https://spack-tutorial.readthedocs.io/en/latest/tutorial_stacks.
html

J Layton. 2015. Lmod-alternative environment modules. Re-
trieved 03.03.2023 from http://www.admin-magazine.com/HPC/Articles/Lmod-
Alternative-Environment-Modules

Fang (Cherry) Liu, Mehmet Belgin, Nuyun Zhang, Kevin Manalo, Ruben Lara,
Christopher P. Stone, and Paul Manno. 2022. ProvBench: A performance prove-
nance capturing framework for heterogeneous research computing environ-
ments. Concurrency and Computation: Practice and Experience 34, 10 (2022), €6820.
https://doi.org/10.1002/cpe.6820

Fang Cherry Liu, Michael D. Weiner, Kevin Manalo, Aaron Jezghani, Christopher J.
Blanton, Christopher Stone, Kenneth Suda, Nuyun Zhang, Dan Zhou, Mehmet
Belgin, Semir Sarajlic, and Ruben Lara. 2021. Human-in-the-Loop Automatic Data
Migration for a Large Research Computing Data Center. In 2021 International
Conference on Computational Science and Computational Intelligence (CSCI). IEEE,
Las Vegas, NV, 1752-1758. https://doi.org/10.1109/CSCI54926.2021.00068

Fang Cherry Liu, Weijia Xu, Mehmet Belgin, Ruizhu Huang, and Blake C. Fleischer.
2017. Insights into Research Computing Operations Using Big Data-Powered
Log Analysis. In Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact (New Orleans, LA, USA)
(PEARC17). Association for Computing Machinery, New York, NY, USA, Article
31, 8 pages. https://doi.org/10.1145/3093338.3093351

Lmod. 2021. A New Environment Module System. Retrieved 03.03.2023 from
https://lmod.readthedocs.io/en/latest/

U.S. Department of Energy. 2023. Energy Exascale Earth System Model. Retrieved
03.03.2023 from https://e3sm.org/

Zebula Sampedro, Aaron Holt, and Thomas Hauser. 2018. Continuous Integration
and Delivery for HPC: Using Singularity and Jenkins. In Proceedings of the Practice
and Experience on Advanced Research Computing (Pittsburgh, PA, USA) (PEARC
’18). Association for Computing Machinery, New York, NY, USA, Article 6, 6 pages.
https://doi.org/10.1145/3219104.3219147

TCL. 1996. Environment Modules. Retrieved 03.03.2023 from https://modules.
sourceforge.net/

GT PACE Team. 2019.
https://docs.pace.gatech.edu/.
GT PACE Team. 2020. Introduction to PACE Software Repository.
https://docs.pace.gatech.edu/software/softwarePolicy/.

MkDocs Team. 2014. Project Documentation with Markdown.
https://www.mkdocs.org/.

Georgia Tech. 2019. Coda at Tech Square.
//coda.gatech.edu/

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P.S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton. 2022. LAMMPS - a
flexible simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales. Comp. Phys. Comm. 271 (2022), 108171. https:
//doi.org/10.1016/j.cpc.2021.108171

UCAR. 2023. Network ~ Common
https://www.unidata.ucar.edu/software/netcdf/.
The Ohio State University. 2001. MVAPICH: MPI over InfiniBand, Omni-Path,
Ethernet/iWARP, RoCE, and Slingshot. ~ Retrieved 03.03.2023 from https://
mvapich.cse.ohio-state.edu/

Sebastien Varrette, Emmanuel Kieffer, Frederic Pinel, Ezhilmathi Krishnasamy,
Sarah Peter, Hyacinthe Cartiaux, and Xavier Besseron. 2021. RESIF 3.0: Toward
a Flexible & Automated Management of User Software Environment on HPC
Facility. In Practice and Experience in Advanced Research Computing (Boston, MA,
USA) (PEARC °21). Association for Computing Machinery, New York, NY, USA,
Article 33, 4 pages. https://doi.org/10.1145/3437359.3465600

PACE Cluster Documentation.

Retrieved 03.03.2023 from https:

Data Form (NetCDF).

https://docs.conda.io/en/latest/
https://doi.org/10.1002/cpe.5338
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5338
https://doi.org/10.1145/3491418.3535135
https://doi.org/10.1145/3152493.3152556
https://git-scm.com/docs/git-config/2.29.0#Documentation/git-config.txt-featuremanyFiles
https://git-scm.com/docs/git-config/2.29.0#Documentation/git-config.txt-featuremanyFiles
https://gcc.gnu.org/
https://www.netapp.com/
https://doi.org/10.1109/HUST.2014.8
https://doi.org/10.21105/joss.00622
https://doi.org/10.1145/3491418.3530767
https://doi.org/10.1145/3332186.3332219
https://spack.readthedocs.io/en/latest/environments.html
https://spack.readthedocs.io/en/latest/environments.html
https://github.com/spack/spack-configs
https://github.com/spack/spack-configs
https://spack.readthedocs.io/en/latest/environments.html#spec-matrices
https://spack.readthedocs.io/en/latest/environments.html#spec-matrices
https://spack-tutorial.readthedocs.io/en/latest/tutorial_stacks.html
https://spack-tutorial.readthedocs.io/en/latest/tutorial_stacks.html
http://www.admin-magazine.com/HPC/Articles/Lmod-Alternative-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Lmod-Alternative-Environment-Modules
https://doi.org/10.1002/cpe.6820
https://doi.org/10.1109/CSCI54926.2021.00068
https://doi.org/10.1145/3093338.3093351
https://lmod.readthedocs.io/en/latest/
https://e3sm.org/
https://doi.org/10.1145/3219104.3219147
https://modules.sourceforge.net/
https://modules.sourceforge.net/
https://coda.gatech.edu/
https://coda.gatech.edu/
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/
https://doi.org/10.1145/3437359.3465600

	Abstract
	1 Introduction
	2 History and Motivation
	3 Software Policy
	4 Overall Workflow
	4.1 Hybrid Software Stack Building
	4.2 Software Stack Deployment
	4.3 Verification and Validation
	4.4 User-Facing Documentation

	5 Future Road Map
	6 Conclusion
	Acknowledgments
	References

