
Virtual Device Farms for Mobile App Testing at Scale
A Pursuit for Fidelity, Efficiency, and Accessibility

Hao Lin†, Jiaxing Qiu†∗, Hongyi Wang†∗, Zhenhua Li†B, Liangyi Gong‡

Di Gao†, Yunhao Liu†, Feng Qian§, Zhao Zhang∗, Ping Yang∗, Tianyin Xu¶
†Tsinghua University ∗ByteDance Inc. ‡CNIC of CAS §University of Southern California ¶UIUC

ABSTRACT
Virtual devices based on device emulation have been widely
used in lab research of mobile app testing for their efficiency
and low cost. However, it remains controversial to use vir-
tual devices for app testing in industry, given the inherent
difficulties of high-fidelity emulation across diverse mobile
systems and devices. Hence, mobile app companies still rely
on physical device farms or services like AWS Device Farm.
This paper presents our effort to analyze, improve, and

effectively use virtual devices for large-scale testing ofmobile
apps like Douyin. Our goal is to understand the fidelity of
virtual devices and to explore how to better utilize virtual
devices to improve the efficiency and accessibility of mobile
app testing in industrial settings. Our study is conducted on
a massive commercial testing infrastructure that deploys a
physical device farm and its virtualized counterpart.

We show that high-fidelity app testing can be achieved by
sensible design and implementation of virtual device farms.
With that, we find that major discrepancies are no longer
caused by commonly believed factors like hardware hetero-
geneity and system customizations, but due to non-standard,
uncoordinated, and occasionally defective vendor-specific
services and drivers, as well as defense mechanisms against
malicious app behavior. We present effective solutions to ad-
dress those problems to significantly improve testing fidelity.
We also share our experiences of using virtual device farms
to substantially improve the efficiency and accessibility of
mobile app testing, without compromising safety.
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1 INTRODUCTION
Mobile app testing, especially for Android, is known to be
challenging due to the openness of the ecosystem—Android
phone vendors extensively customize hardware and system
components, leading to significant behavioral differences
across hundreds of phone models released every year. As
a result, comprehensive testing of mobile apps against dif-
ferent device models incurs high cost for purchasing and
operating phones. Today, mobile app companies either build
their own device farms or pay for cloud services like AWS
Device Farm [1] and Google Firebase Test Lab [31]. For ex-
ample, Douyin [18], a mobile app with 842 million users,
is tested on a large-scale physical device farm consisting of
∼6,000 phones, operated by a dedicated team of 15 engineers.

A natural direction to reduce the operation cost of contin-
uous mobile app testing is to use virtual device farms, where
mobile devices are emulated on commodity servers using
virtualization techniques [22, 78]. Virtual device farms are
scalable, elastic, and cost-effective. Virtual devices are much
easier to manage compared with physical devices. For exam-
ple, it is easier to repair or replace hardware components of
a server, compared with a mobile device. In addition, virtu-
alization enables useful features for testing and debugging,
such as instrumentation [51], snapshot [17], and memory
introspection [16, 76] not offered by physical devices.
In fact, virtual devices have been extensively used by

lab research of mobile app testing [10, 12, 15, 15, 17, 19, 23–
25, 34, 44, 52, 55, 61–63, 70–72, 74, 77]. While being a
common practice in research papers on software testing, it
remains controversial to use virtual devices for mobile app
testing across diverse device models in industry. The main
concern comes from the inherent difficulties of high-fidelity
device emulation across the diverse, opaque, and ever-
growing customized devices—the discrepancies between the
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physical and virtual devices may impair test results, leading
to both escapes of bugs and false alarms [33, 67, 68]. For mo-
bile apps with a global user base, seemingly small-numbered
discrepancies could have magnified impacts.

In this paper, we confront the essential problems of using
virtual device farms for large-scale, continuous mobile app
testing in industrial settings. We present an effort to analyze,
improve, and effectively use virtual devices for mobile app
testing at scale, across thousands of different mobile systems
and device models. Our goal is to (1) quantitatively under-
stand the fidelity of virtual devices and its impact on test
results, and (2) explore how to better utilize virtual device
farms in today’s industrial mobile app testing infrastruc-
tures to drastically improve the efficiency and accessibility
of large-scale mobile app testing.
Understanding virtual devices for testing. We analyze
the real-world test results of of Douyin and nine other global-
scale mobile apps developed by Douyin’s partners from Jan.
1 to Mar. 31 in 2022. The testing takes a total of 618 hours on
103 versions of the ten apps. For each app version, we run
automated tests on both the physical and the virtual device
farms. We then perform comparative analysis on the test
results from the virtual and the physical devices to measure
fidelity and understand discrepancies.
Our study shows that with sensible design, implemen-

tation, and configuration, virtual device farms can achieve
high-fidelity mobile app testing for diverse device models.
Specifically, the vast majority (92.4%) of test failures (caused
by native crash, Java/Kotlin exception, app-not-responding
error, and so forth) that occurred on physical devices can
be reproduced on virtual devices, with only 1.8% false posi-
tives (test failures that only manifest on virtual devices). We
analyze the root causes of discrepant test results in depth,
including both false negatives (test failures that cannot be
reproduced on virtual devices) and false positives.

Counterintuitively, the device emulator’s lack of support
for vendor-specific hardware is not a major root cause of
discrepancies; on the contrary, defective drivers of common
hardware contribute to 27.6% of the discrepancies. Note that
Android HAL does define standard hardware types [3], but
provides no abstractions for vendor-specific hardware. Thus,
mobile apps rarely access vendor-specific hardware, except
for a small number of vendor apps. However, bugs in com-
mon hardware drivers (e.g., for MediaTek SoCs) caused many
failures on physical devices, but not on virtual devices. The
reason is that virtual devices do not use those drivers which
depend on proprietary and undocumented hardware specifi-
cations such as register functions and MMIO behaviors.

Vendor-specific Android framework customizations incur
few discrepancies either; however, vendor-specific system
services are the main root causes of discrepancies (46.2%

false negatives and 87.8% false positives). The compatibility
of Android framework customizations is largely attributed
to specifications enforced by Android CTS (Compatibility
Test Suite) and VTS (Vendor Test Suite). However, CTS and
VTS do not check interfaces between stakeholders. As a
common case, add-on system services (typically for graphics
acceleration and enhancement) often break specifications of
other stakeholders, leading to unexpected test results.
Moreover, certain types of discrepancies are specific to

regional mobile app ecosystems. For example, due to a lack
of well-regulated app stores like Google Play, mobile users
of certain regions are more prone to malicious apps. In re-
action, many phone vendors in those regions deploy very
aggressive defense mechanisms to limit app behavior; how-
ever, such mechanisms cause side effects on regular apps,
such as resource leaks and data corruption. Mobile app test-
ing on related devices manifests up to 1,025× more frequent
occurrences of certain failures than on other devices.
Improving virtual device fidelity. Our analysis drove a
series of efforts that significantly improved the fidelity of
virtual devices for app testing. Specifically, we have been fo-
cusing on addressing misalignments among stakeholders via
active outreach and communication. We started by support-
ing vendor-specific performance optimization mechanisms
and malicious app defenses on the corresponding virtual
devices. For defective mechanisms or implementations that
violate Android specifications, we go beyond device emula-
tion and actively contribute bug fixes to the vendors.

A key challenge is to develop and validate bug fixes with-
out source code, as vendor-specific components are often
proprietary. We address the challenge by implementing a
dynamic binary patching technique which enables us to effec-
tively prototype bug fixes and validate them before reporting
to the vendors. The binary patching is based on in-memory
instruction rewriting and binary trampoline injection, with
in-situ app execution contexts preserved upon failures. The
technique and practice can serve as a foundation for collabo-
rations between untrusted stakeholders.

As a result, 63% of our reported issues have been confirmed
and our suggested fixes have been merged to the code bases
of relevant stakeholders. Hence, the recall of mobile app
testing on virtual devices increases from 92.4% to 94.7%, and
the precision grows from 98.2% to 99.1%.
Continuous app testing using virtual device farms. Our
efforts reshaped the mobile app testing infrastructure of
Douyin. Mobile app testing no longer relies entirely on the
physical device farms before app releases, which is not only
costly but also hard to afford continuous testing.

Based on the virtual device farm, we developed a continu-
ousmobile app testing pipeline to enable continuous integra-
tion and deployment (CI/CD) [58, 64, 69]. Figure 1 shows our
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continuous app testing pipeline, compared with the early
practice. The testing pipeline continuously tests every code
or configuration change on virtual devices first, which can
capture the vast majority of logic and functional bugs and
provide prompt feedback to developers. We only use the
physical device farm to test aggregated code/configuration
changes to capture hardware-specific bugs upon app releases.
The continuous testing pipeline accelerates the end-to-

end app development workflow by around 40%. Moreover,
it reduced the test time on the physical device farm by 4×,
leading to a reduction of operation cost by more than 3×.
Virtual devices as a service. We recently started to make
our virtual devices an accessible service upon request, tar-
geting app developers who cannot afford numerous physical
devices. Preliminary feedback indicates that compared to
developers’ current testing practices using a small number
of physical devices, our service helps detect 3–10× more
bugs. Also, the feedback shows that our major conclusions
can generalize to a broader range of apps.
Contribution. This paper makes five main contributions:

• A large-scale study of virtual devices for mobile app test-
ing, with in-depth analysis on testing fidelity, its impacts
on test results, and root causes of discrepancies.

• The design, implementation, and configuration of a high-
fidelity virtual device farm for mobile app testing.

• Techniques and practices for improving virtual device
fidelity for app testing based on dynamic binary patching.

• Experiences and practices of effectively using virtual de-
vice farms for continuous testing of mobile apps at scale.

• Preliminary experiences of virtual devices as a service for
app developers who cannot afford physical device farms.

Research artifacts (including code and data) are available at
https://Android-Emulation-Testing.github.io.

2 TESTING INFRASTRUCTURE
This section presents the design, implementation, and con-
figuration of both the physical and virtual device farms we
build and operate for Douyin. To our knowledge, we are
the first to share detailed information of large-scale testing
infrastructures for mobile apps with millions of users.

2.1 Physical Device Farm
It is known that Android apps behave differently on different
devices due to hardware and software customizations [40,
42, 53, 73]. Without comprehensive testing, apps are subject
to logic and functional bugs that disrupt user experiences.

To capture bugs of Douyin, its development team hasmade
extensive efforts to build a massive physical device farm (dis-
tributed across the US and China), dedicated to testing the

Develop Test

Physical Device Farm

Report Bugs Heavy Workload

(a) Traditional app testing.
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Virtual Device Farm

Report Bugs

Yes, Final Test
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Workload

Ready for 
Release?

Report Bugs
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Continuous 
Testing Service

Test

(b) Continuous app testing.

Figure 1: Mobile app testing workflow: (a) traditional
app testing on physical device farms only, and (b) con-
tinuous app testing using virtual device farms.

app before its public version releases. The device farm de-
ploys devices of the top-5000 Android phone models owned
by the users of Douyin in early 2019 (one device is purchased
per model). At the beginning of each year, new devices are
purchased based on the statistics of model popularity and
some obsolete devices are retired (obsolete devices are those
owned by fewer than 1,000 users of Douyin).
As of Jan. 2022, the physical device farm operates a total

of 5,918 devices. These devices run Android OSes whose ver-
sions range from 5.0 to 12; only 1.7% of them run vanilla An-
droid. To test the app under different networks, 15% devices
are equipped with SIM cards for accessing cellular networks
(including 5G); the others are connected to the Internet via
600 WiFi access points (APs); each AP offers 1 Gbps of access
bandwidth, supporting ∼10 devices.

Operating the large fleet of physical devices is laborious. A
dedicated team of 15 engineers performs daily device main-
tenance and system monitoring. For ease of management,
all the devices in one location are connected to a centralized
management platform via USB ports, which provides power
supply and the ability of distributing adb shell commands.
In early 2019, Douyin spent more than 1M US dollars

in building the initial device farm. The operation cost has
gradually grown beyond the construction of physical infras-
tructures. In particular, since the physical devices run tests
continuously, their average lifespan is merely 10 months
before the occurrence of serious hardware failures such as
battery swelling and screen wear-out. In total, it costs over
0.6M dollars per year for device upgrades and replacements,
not including the yearly salaries of the maintenance team,
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carrier plan expenses of cellular-capable devices, mainte-
nance cost of WiFi networks, power usage, etc.
Cloud-based mobile app testing services such as AWS

Device Farm [1] and Google Firebase Test Lab [31] are not
a solution for Douyin. First, the number of available device
models is insufficient. AWS Device Farm currently provides
the most diverse device models, which only includes 136
models, while Douyin aims at over 5,000 models. Second, the
device unit price for continuous testing can be more than 200
dollars per month, exceeding the physical farm’s device unit
price—100 dollars per month. Third, they pose considerable
restrictions on app testing. Take AWS Device Farm as an
example, the test app size needs to be less than 4 GB, the
maximum number of parallel-running devices is 5, and the
maximum test time is 2.5 hours, which are insufficient for
conducting large-scale testing. Finally, it is hard to customize
their testing mechanisms.

2.2 Virtual Device Farm
We started exploring the promise of testing mobile apps like
Douyin on virtual devices in May 2021. We build a virtual de-
vice farm as a digital twin of the physical farm, also deployed
across the US and China. In the virtual device farm, we run
5,918 virtual devices based on Android emulators on 395
ARM commodity servers. Each virtual device corresponds
to a physical one. For each server, we use the configuration
of a 64-core ARM v8.2 CPU @2.6 GHz, 128 GB of DRAM,
1 TB of NVMe SSD storage, and 1 Gbps of NIC bandwidth.
We decide to deploy 395 servers based on load testing that
verifies that 395 servers have sufficient resources to support
5,918 virtual devices concurrently.
Using ARM servers for virtual device farms has consid-

erable advantages over x86 servers. First, an ARM server is
∼23% cheaper than an x86 server for the same number of
CPU cores and memory/storage capacity [82]. Second, the
natural affinity between ARM servers and Android phones
(all of which employARMCPUs) avoids the need for dynamic
binary translation (DBT) from the ARM instructions of An-
droid apps to the x86 instructions of server CPUs [32, 36]. In
fact, few mobile apps have x86-native libraries.

Each virtual device is configured to have the same number
of CPU cores, the same memory and storage sizes, and the
same display resolution as its physical counterpart. We pin
each virtual core to a physical core to resemble CPU locality.
Although the underlying network of the virtual device is
wired Ethernet, we configure its virtual network to be the
same as that of the physical device, because different network
types use different framework- and HAL-layer components
in Android, e.g., WiFiManager [7] and DcTracker [6] are
used by WiFi and cellular networks respectively.

For the software stack, the host OS is Ubuntu Server for
ARM 20.04 LTS, with KVM/ARM [14] enabled to accelerate
the virtualized CPU and memory. For the emulator and the
guest OS, we choose the Cuttlefish variant of Google An-
droid Emulator (or Cuttlefish GAE in short) [5] to run AOSP.
Unlike the classic GAE that hooks many framework-level
mechanisms into the guest OS to emulate mobile hardware
(e.g., GPU and sensors), Cuttlefish GAE removes such guest
modifications to ensure consistent framework-level behavior
with physical devices running vanilla Android. It then multi-
plexes host-side hardware (e.g., storage, network, and GPU)
via virtio [57] for high-throughput I/O; for the other hard-
ware components (e.g., camera, microphone, and various
sensors), it provides pure software emulation at the HAL.
To match vendors’ app-related customizations, we also

install the vendor-specific app service platforms, i.e., a col-
lection of installable vendor apps and SDKs such as GMS
(Google Mobile Services) and HMS (Huawei Mobile Services),
on each virtual device based on the corresponding physical
device. We do not port other system-level components (in-
cluding system services and hardware drivers) since they
have intricate dependencies on proprietary software and
hardware that are extremely hard to emulate [54]. For ex-
ample, Xiaomi’s system services need access to their cloud
services, which we cannot provide. Qualcomm drivers rely
on the MSM Android Kernel Subsystems, and follow their
own hardware specifications to implement register I/O and
MMIO, which are usually proprietary and hard to emulate.
Building the virtual device farm costs ∼0.2M US dollars,

the vast majority of which comes from renting the ARM
servers. The cost is 5× cheaper than that of building the phys-
ical device farm. Also, servers are more resilient to failures
of hardware components, because they are manufactured
in a modularized manner—each component can be replaced
separately, as opposed to the coupled design of many mobile
devices. On average, a server has a lifespan of 5+ years, signif-
icantly longer than the lifespan of mobile devices, resulting
in considerable reduction of amortized cost.

Other than the construction cost, virtual device farm, as a
software solution, significantly reduces operation cost. Cut-
tlefish GAE’s support for multi-tenancy and WebRTC-based
data streaming also improves the scalability and manage-
ability of the solution. Compared with the 15-engineer team
for the physical device farm, the maintenance team for the
virtual device farm only consists of four engineers.

3 TESTING AND DEBUGGING TOOLS
This section introduces our tools for automated app testing
and root-cause analysis of large-scale test results.
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3.1 Test Case Generation
We run automated mobile app tests on each pair of phys-
ical and virtual devices. We employ an enhanced version
of the Monkey UI/Application exerciser to generate input
events and monitor failure occurrences during a test run. We
enhance the Monkey tool based on a state-of-the-art model-
based UI test technique [50] to generate effective streams
of UI events (including touch and swipe). Compared to the
vanilla Monkey tool which randomly generates events and
often falls into invalid or cyclic actions [72], our enhanced
tool increases Activity coverage by 2× to 3× in practice.
By default, we run the tests for six hours on a pair of physi-
cal and virtual devices; running the tests longer can hardly
increase Activity coverage. The tests terminate as long as
a failure occurs on either the physical or the virtual device.

3.2 Collecting Failure Information
During the test, we monitor app failures, such as Java/Kotlin
exceptions in Android Runtime, native crashes triggered by
fatal signals like SIGSEGV, and app-not-responding (ANR)
events (i.e., the app does not respond to user input or system
broadcast for five seconds). Upon such events, it is vital to
collect failure information for in-depth postmortem analysis.
The data collection needs tomeet the following requirements:
(1) Failure data should be collected comprehensively to help
postmortem debugging, (2) Data collection should be light-
weight and storage-efficient to avoid overloading test devices
or servers, and (3) Errors during the data collection should
be handled reliably.
Upon a failure, we collect three common information

sources: (1) Android logcat that contains apps’ log out-
puts, (2) system resources like opened file descriptors, and
(3) execution context like the call stacks and register values.

We also collect (4) in-situ memory dump which contains
important debugging information, particularly useful for
failure analysis of proprietary components. However, con-
ventional coredump of process memory contains hundreds
of MBs of data for a single failure event (after compression).
To reduce storage overhead, we safely remove data sections
that are irrelevant to the failure or can be recovered offline,
e.g., JVM memory when a failure is rooted in native code,
static resources (like fonts) that are recoverable, inaccessi-
ble private memory segments, and unused stack data. The
pruning achieves 15× to 103× reduction of storage overhead,
resulting in <3 MB memory image after gzip compression.

When a failure occurs, four dedicated native processes are
launched to capture the four types of in-situ information de-
scribed above. If one process fails, the others are not affected.
We also customize the signal handler of the four processes
for self recovery and logging.

3.3 Root Cause Analysis
For failures rooted in app code or standard Android
components, debugging is done by inspecting the source
code of the app and/or the Android system based on the
captured Java/Kotlin and native call stacks. Unfortunately,
discrepancy-related failures often stem from proprietary
components, where source code is unavailable. For propri-
etary Java/Kotlin components, we use decompilation tools
to inspect the code.
However, proprietary native binaries are typically not

compiled with debugging information—the call stacks alone
(with vendor-specific function symbols and call relations)
are insufficient for root cause analysis. To debug such is-
sues, app developers often need to inspect instructions and
memory/register data involved during a proprietary vendor-
specific function call. We develop a failure analysis technique
based on binary taint backtracing [13, 75] to reconstruct the
instruction and data flows related to a failure event.

Specifically, we extract binary instructions related to “taint
objects” (i.e., illegal memory addresses or registers that con-
tain such addresses), by reversely tracing the instructions
that are used to pass, execute, or modify taint objects at run
time. Our method works in the following three steps.
Taint object extraction. To extract the taint object(s) for a
failure event, we first identify the faulty instruction (denoted
as 𝐼𝑓 ) that directly results in the failure in the call stacks, and
then analyze the operation (i.e., read, write, or execute) of 𝐼𝑓
to acquire taint object(s) from operands of 𝐼𝑓 . Specifically, if
𝐼𝑓 is a read instruction, we mark its source operands as the
taint objects. Otherwise (𝐼𝑓 is a write or execute instruction),
its destination operands are marked as the taint objects.
Binary backtracing. Starting from the address of 𝐼𝑓 in the
offending binary, we reversely examine instructions to locate
where the taint object(s) originate from, to figure out the
more closely related taint object(s). Typically, this is achieved
by examining whether the destination operand of a previous
instruction (denoted as 𝐼𝑝 ) is a taint object, meaning that 𝐼𝑝
has modified the taint object.

Once the examination reaches the boundary between func-
tions, i.e., function call instructions, we jump to the caller
instruction identified from the call stacks. The above oper-
ations are performed until all the proprietary functions in
the call stacks have been examined; meanwhile, the taint
objects (together with their historic values if possible) and
the corresponding instructions are recorded.
Enriching call stacks. We enrich incomplete call stacks
by incorporating the above information of taint objects and
associated instructions into the corresponding proprietary
function call. So, debugging can focus on failure-related in-
struction and data flows.
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Table 1: The mobile apps and their corresponding “sub-apps” used in the paper.

ID App Functionality # Sub Apps # Users # Releases Test Time
1 Douyin Video streaming, shopping, social media, map, education, etc. 31 842M 12 72 hours
2 Douyin Lite Video streaming, communication, travel, photography, etc. 41 210M 12 72 hours
3 Xigua Video Video streaming, payment, shopping, 3D gaming, etc. 24 180M 12 72 hours
4 Toutiao News feed, shopping, web browsing, 3D gaming, etc. 33 530M 12 72 hours
5 Toutiao Lite News feed, video streaming, security checking, payment, etc. 29 130M 12 72 hours
6 Lark Communication, email, video conference, cloud storage, etc. 1 9.4M 5 30 hours
7 Helo Social media, video streaming, communication, etc. 1 50M 12 72 hours
8 Fizzo Novel E-book, shopping, 3D gaming, social media, etc. 14 10M 5 30 hours
9 Xingfu Li E-commerce, video streaming, finance, communication, etc. 5 7.5M 12 72 hours
10 Resso Music Music streaming, communication, social media, etc. 1 40M 9 54 hours

Table 2: The top-10 most frequent types of failures on all physical and virtual devices. App-ID is the ID in Table 1.

No. Percent. App-ID Location Exception/Signal Root Cause
1 29.5% 1–4, 10 App NullPointerException (Java) Bad resource handling during activity lifecycle shifts
2 15.3% 1, 2, 4, 9 Third-party NullPointerException (Java) Defects in OPPO market SDK
3 7.0% 9 App NullPointerException (Java) Null object reference in app module
4 6.9% 4 App NullPointerException (Java) Attempt to cast null reference to non-null Kotlin class
5 5.7% 5 App ClassNotFoundException (Java) Failed resolution of app Java classes
6 5.1% 2 App NullPointerException (Java) Method parameter specified as non-null is null
7 4.7% 3 App ClassCastException (Java) Incompatible Java class casts
8 3.0% All App OutOfMemoryError (Java) Out of memory when allocating Bitmap objects
9 2.0% 8 App NullPointerException (Java) Method invocation on null app objects
10 1.4% All App OutOfMemoryError (Java) Out of memory when creating new threads

4 OVERALL STUDY RESULTS
We collect the test results of Douyin between Jan. 1 and
Mar. 31 in 2022. For each version release of Douyin, we run
automated tests (§3.1) with comparative analysis on both the
physical and virtual device farms. To verify the generality
of our results, we also run tests on nine other global-scale
popular mobile apps upon their app releases, as listed in
Table 1. The nine other apps are from commercial partners
of Douyin and thus we can acquire their source code. Note
that all the ten apps are independently developed. Some of
them adopt the Android plugin practice [8] to modularize
functionalities in “sub-apps”, each coming with a standalone
APK. In total, we test 180 sub-apps that cover various types.

During the three-month testing, a total of 805,423 fail-
ure events have been captured. 390,286 failure events oc-
cur on physical devices, while the other 415,137 occur on
virtual devices. Among them, 2.45% are hardware-specific
failures related to both the hardware devices and their sys-
tem components, including hardware system services (e.g.,
AudioFlinger), hardware libraries (e.g., GPU render libraries),
HAL libraries, and kernel drivers. The hardware-specific
failures involve almost all the common mobile hardware, in-
cluding the camera, GPS, Bluetooth, NFC, USB, WiFi, cellular,
and GPU. The other failures are app-level failures (92.64%)
and software system failures (4.91%).

Note that all the study and analysis were conducted under
a well-established IRB. No personally identifiable informa-
tion was collected throughout the study.
Root causes. Our root cause analysis (§3.3) reveals 873
failure types with different root causes, among which 762
occur on physical devices and 485 occur on virtual devices,
with 374 types in common. Among the 374 common failure
types, 99% of them have similar occurrence frequencies on
both physical and virtual devices. On the other hand, the
remaining 1% occur much more frequently (up to 1025×) on
physical devices than on virtual devices. We will discuss the
frequency discrepancy in §5.4.
Note that the top-10 most frequent failure types are the

same on physical and virtual devices. Table 2 lists those types
which account for 84.2% and 77.1% of the total failure events
on physical and virtual devices, respectively.

We look into the failure frequency from the perspectives of
both the Android system and apps. First, as Android evolves
from 5.0 to 12, many system-level changes are made, which
could change failure characteristics. Figure 2 shows the aver-
age failure frequency per device per test run for each Android
version. We can see a decreasing trend of failure frequency
on both physical and virtual devices. The reduction of failure
events can be attributed to many new features and bug fixes
of Android. For example, we find that the deadlock issue in
the background garbage collection of ART JVM in Android
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versions 5 and 6 [26] and the incorrect handling of page faults
in the FUSE filesystem in Android versions 5–7 [28] cause
a number of (2.1%) failure events in early Android versions.
These issues have been fixed since Android v8.

While these bugs are only resolved in new Android ver-
sions for vanilla Android, we also observe that some phone
vendors (e.g., Xiaomi) actively backport the bug fixes of new
Android versions to devices that run old Android versions
if possible. The backport practice partially explains why in
Figure 2 the average failure frequencies on physical devices
are lower than on virtual devices across Android versions—
physical devices with old Android versions benefit from the
backporting of vendors while virtual devices running vanilla
Android do not. Lastly, Figure 3 shows the average failure
frequency per device per test run for each app. We can see
that failure frequencies vary significantly across apps. For
example, Lark and Helo fail 50% less frequently than the
other apps. The reason is that the two apps do not involve
complex video processing and web browsing modules.

5 FIDELITY AND DISCREPANCIES
In this section, we present an in-depth analysis of the fi-
delity of virtual devices for mobile app testing. Our goals are
two-fold. First, we measure the fidelity of our virtual device
farm (§2.2) to assess the feasibility and promises of using
virtual devices for app testing against massive, diverse phys-
ical device models in industrial settings. Second, we look
into discrepant test results between the virtual and physical
devices and understand their root causes. In this way, we can
further improve fidelity by developing effective solutions to
address the manifested discrepancies (see §6).

5.1 Overall Fidelity
With the virtual device farm described in §2.2, we observe
very high fidelity of using virtual devices for mobile app
testing. Among the total of 390,286 failure events that are
captured on the physical devices (see §4), the vast majority
(92.4%) of them are also manifested and captured on the

Table 3: The 27 phone vendors and the number of de-
vice models per vendor (# Models) in our study. The
country/region (Region) is where the vendor obtains
the most sales revenue. C/VTS shows whether a device
model is CTS/VTS-compliant.
Vendor # Models Region C/VTS Precision Recall
Samsung 1863 US Y 98.6% 93.2%
Xiaomi 959 China Y 98.5% 94.3%
Huawei 901 China Y 98.5% 91.5%
Vivo 540 China Y 98.5% 94.7%
OPPO 291 China Y 98.4% 90.0%
Honor 198 China Y 98.1% 91.6%
Redmi 193 China Y 98.3% 94.9%
Meizu 179 China Y 95.6% 72.4%
LG 119 Korea Y 96.8% 94.7%
Docomo 84 Japan Y 97.1% 95.7%
Motorola 82 US Y 96.9% 93.8%
Infinix 77 US Y 97.4% 95.7%
Realme 66 China Y 97.4% 94.1%
Tecno 61 S. Africa Y 97.7% 96.4%
Google 54 US Y 97.3% 89.6%
Lenovo 44 China Y 96.2% 92.0%
Sony 39 Europe Y 97.9% 89.5%
Oneplus 38 India Y 96.1% 90.7%
Smartisan 29 China N 88.7% 83.0%
Vsmart 28 Vietnam Y 96.6% 89.2%
Asus 17 Europe Y 96.2% 88.2%
ZTE 17 China Y 97.6% 87.9%
Alcatel 14 US Y 97.8% 89.9%
Blackshark 11 China Y 97.6% 91.8%
Nubia 6 China Y 95.8% 88.2%
Alldocube 5 China Y 95.9% 92.6%
Blackview 3 US Y 95.6% 89.1%

corresponding virtual devices. Meanwhile, the false positives
are low—only a small percentage (1.8%) of failure events
that occurred on virtual devices are not manifested on the
physical devices. So, taking the test results from the physical
device farm as the ground truth, virtual devices have as high
as 98.2% precision and 92.4% recall, despite hardware and OS
differences. Figure 4 shows the precision and recall per app.
The fidelity characteristics are similar across the apps (note
that the y-axes all start from 90%).
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Table 4: The top-5 most frequent types of false negatives.

No. Percent. App-ID Location Exception/Signal Root Cause
1 14.9% All AOSP SIGABRT (Native) Integer overflow during implicit conversions
2 9.1% All Meizu SIGSEGV (Native) Improper null-terminations of C/C++ strings in vendor modules
3 8.9% All MediaTek SIGSEGV (Native) Errors in MediaTek’s GPU drivers
4 5.2% All Samsung SIGSEGV (Native) Array index out of bounds in vendor modules
5 4.1% 2, 3, 5–10 OPPO SecurityException (Java) Permission denial when querying autostart permission

Our results refute a common belief that vendor-specific
hardware could largely impair the fidelity of app testing
when virtual devices are used [20, 47, 48, 53, 59, 73]. It is
true that vendor-specific hardware can hardly be emulated
precisely. However, as shown by our results, vendor-specific
hardware does not result in major discrepancies. The main
reason is that Android HAL specifies the interface of stan-
dard hardware types [3] and mobile apps can only access
device hardware by passing the hardware type to the HAL
interface. Thus, except for a small number of vendor apps, it
is non-trivial for the vast majority of apps to access vendor-
specific hardware beyond Android HAL. In fact, as per our
knowledge, none of the studied apps (Table 1) accessed any
vendor-specific hardware and we believe that they well rep-
resent today’s market apps in different app stores.
On the other hand, vendor-specific customizations on

vanilla Android system components also rarely incur dis-
crepancies. We give the credit to the active development of
Android Compatibility Test Suite (CTS) and Vendor Test Suite
(VTS), which are unit-level compatibility tests to ensure func-
tional consistency of standardAndroid components after ven-
dor customizations. Only CTS/VTS-compliant phone models
are entitled to the “Powered by Android” trademark [30]. In
Table 3, Smartisan, which is not CTS/VTS compliant, has the
lowest precision and recall. For the 26 phone vendors who
pass CTS/VTS, the precisions and recalls stay above 95% and
87% respectively except for Meizu (we discuss the Meizu case
in §5.2). In addition, with CTS/VTS being more mature and
complete in newer Android versions, virtual device fidelity
is also increasing, as shown in Figure 5 (in the 11th page).

5.2 False Negatives
A false negative refers to a test failure that only manifested
on a physical device. Table 4 lists the root causes of the
five most frequently occurring false negatives during the
tests. As shown, false negatives are mostly rooted in the
native code of system components. The implication is that
the discrepancies could have system-level impacts on any
apps running on the virtual devices instead of individual
apps. Hence, understanding them is necessary.

Surprisingly, themost frequent false negatives (accounting
for 14.9%) are caused by an AOSP bug. The bug is triggered
when Android initiates vendor-specific system services [29].

During the initiation of a vendor-specific system service,
Android uses the system boot time to calculate a timeout
threshold for the service. Regretfully, in this process, An-
droid mistakenly assigned the 64-bit system boot time value
to a 32-bit program variable without explicit type casting,
resulting in an integer overflow. As a consequence, the run-
time sanitizer would throw a SIGABRT signal and crash the
foreground app (e.g., Douyin). Note that the integer overflow
is only manifested when the Android device has been booted
for longer than 231-1 milliseconds (≈25 days).

For most system services, the bug is not triggered because
those services are initiated during system booting so the time
is not long enough to trigger the integer overflow. However,
certain vendor-specific services are initiated on demand, and
thus trigger the bug. The bug affects all Android systems
with versions earlier than v12. The triggering condition (a
long time after booting) is hard to be caught by CTS/VTS. It
is not captured on virtual devices because their AOSP system
does not have on-demand vendor-specific system services.

The remaining false negatives are mostly caused by bugs
in other vendor-specific system services or drivers. In particu-
lar, we find that the root causes tend to reside in non-standard
functionalities in vendor-specific services, and problematic
hardware drivers. For example, the second most frequent
root cause (responsible for 9.1%) is a buggy null-termination
of C/C++ strings in the super-resolution module of Meizu’s
systems, which is used for enhancing the resolution of videos.
Similarly, a bug in the graphics drivers of several old Me-
diaTek SoCs incurs 8.9% of the false negatives. The false
negatives are not captured by virtual devices due to the in-
herent difficulties of running proprietary system services
and hardware drivers in virtual devices as discussed in §2.2.

5.3 False Positives
A false positive refers to a test failure that only manifested
on a virtual device. Table 5 shows the five most frequent
types of false positives. We find that 87.8% of them root in
the graphics subsystem of virtual devices. As a result, apps
with video streaming features (e.g., Douyin, Douyin Lite, and
Xigua Video) have low precisions, as shown in Figure 4.

The root causes of the graphics related failures lie in the
subtle differences between the graphic resources used by An-
droid and the emulators. Typically, to render and display a
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Table 5: The top-5 most frequent types of false positives.

No. Percent. App-ID Location Exception/Signal Root Cause
1 53.4% All AOSP, Emulator SIGSEGV (Native) Graphics resource format inconsistency
2 7.3% All Emulator SIGABRT (Native) Missing graphics buffer allocator
3 6.8% All AOSP, Emulator SIGSEGV (Native) Graphics buffer overrun (due to graphics format inconsistency)
4 5.1% All Third-party SIGSEGV (Native) Null pointer dereference in third-party media player
5 4.7% 1–5, 7–10 Emulator SIGSEGV (Native) Rendering issues in the graphics driver used by emulators

graphic resource like an image or a video frame, the graphics
subsystem of Android would first populate a graphics buffer
with the resource’s raw bytes following the resource format
(e.g., RGBA and YUV). During the rendering process of the
resource, the graphics subsystem then reads and decodes
the buffered content based on the resource format. This sim-
plifies graphics resource sharing, because the producer and
consumer of a resource only need to reach a consensus on
the resource format for data sharing, avoiding sending com-
plex metadata of the format. In this case, the correctness of
the design relies on consistent interpretation of the resource
format between the producer and the consumer. For physical
devices, it is easy to ensure consistency, as the producer and
the consumer belong to the same Android system.

On the other hand, the design caused discrepancies in the
virtual devices. In order to accelerate graphics rendering,
the virtual devices send graphic resources produced by An-
droid to the host so that the host GPU can be multiplexed
for graphics rendering. However, the host GPU driver’s def-
initions of certain resource formats (e.g., the YV12 format
for video frames) are different from those of Android in a
number of subtle and undefined manners. For instance, the
inconsistent data alignments (which are undefined in stan-
dard documents [2]) led to illegal memory access when the
host attempts to read the graphics buffer based on its own
interpretation of the format.
The other false positives include database errors, system

service outages, and problematic 32-bit binary support. The
first two are mostly caused by data corruption on the vir-
tual disks due to crashes—virtual devices do not have power
failure protection like physical devices. The last one occurs
because our servers’ Kunpeng 920 SoC only supports the
AArch64 instruction set. Therefore, 32-bit binaries are exe-
cuted via a binary compatibility layer offered by the server
manufacturer, which is not sufficiently tested and sometimes
incurs issues like illegal memory alignment. We expect that
these false positives can be significantly reduced with ARM’s
removal of 32-bit support in its latest ARMv9 architecture,
which forces all Android apps to provide 64-bit support.

5.4 Frequency of Discrepancies
As mentioned in §4, 1% of the failures occur more frequently
(up to 1025×) on physical devices than on virtual devices.

These frequent discrepancies may well conceal the high-
priority issues of apps in production. Thus, it is important to
understand the frequency characteristics of discrepancies.
An initial investigation reveals that the frequent discrep-

ancies mostly occurred on the Android phones manufactured
by six Chinese vendors, i.e., Xiaomi, Huawei, Vivo, OPPO,
Honor, and Redmi. Delving deep into the regional phenome-
non, we discover that these frequent discrepancies are rooted
in these vendors’ aggressive strategy for suppressing back-
ground activities of the apps under test [11]. Specifically,
unlike AOSP which would normally notify a target app be-
fore killing it for a graceful termination, the Android systems
customized by these vendors aggressively throttle a back-
ground app by simultaneously killing all the processes in
the app’s process group with no grace period. This can eas-
ily trigger resource leaks or data corruption, thus leading
to more frequent failures on the physical devices than on
virtual devices running AOSP.

We reached out to the concerned vendors and our close
communications reveal that their aggressive strategies are
purposed for inhibiting the background keep-alive behavior
of malicious apps. One typical example is the dual-process co-
awakening behavior—since Android independently manages
the lifecycle of each process of an app, the app can lock a file
in one of its process (P1), and meanwhile monitors the status
of P1 by attempting to lock the same file in the other process
(P2). If P1 is killed, P2 will acquire the lock and immediately
revive P1. Similarly, P1 protects P2 from being killed.

According to the six vendors, malicious behaviors as such
are common inmany Chinese apps, and have caused a variety
of undesirable user experiences like fast battery drain and
poor UI responsiveness. As an effective countermeasure, the
aggressive background inhibition strategy is deployed, with
the cost of more frequent app failures. This dilemma largely
stems from the unavailability of GMS and Google Play in the
corresponding regions, where phone users often download
unverified apps from third-party app markets and websites.

6 IMPROVING EMULATION FIDELITY
To improve the virtual device fidelity for mobile app test-
ing, we have built on our insights to address various dis-
crepancies, including those across boundaries of different
components and interests of stakeholders. We did not limit
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ourselves to pure technical solutions, but also coordinate
stakeholders in the mobile industry and convince them to
incorporate our solutions. The efforts are rewarding—we
have managed to eliminate most of the discrepancies to date.

6.1 Techniques and Practices
Learning from the root cause analysis (§5), we have been
taking actions to address discrepancies by improving (1)
the Android emulator (§6.1.1), (2) AOSP on virtual devices
(§6.1.2), and (3) vendor-specific customized Android systems
on physical devices from different phone vendors (§6.1.3).

6.1.1 Graphics resource format extension. As discussed
in §5.3, the vast majority of false positives stem from the
subtle differences between the graphic resources used by
Android and emulators. To address this issue, we extend
the resource format within the host-side graphics library
by adding Android-specific formats based on the resource
definitions of Android. Hence, the host-side graphics library
can correctly recognize and decode the graphics buffers pop-
ulated by Android. We have also reported the issues and the
fixes to the development team of GAE, who have confirmed
and fixed the issue in the latest kernel branch [27].

6.1.2 Background management strategy support. In
§5.4 we explained that the frequency discrepancies mostly
stem from the aggressive background app inhibition strate-
gies of certain vendors in their customized Android sys-
tems. After extensive discussions with the vendors, we un-
derstand that these vendors are reluctant to change their
strategies in favor of their user interests and experiences.
Thus, to practically reduce the frequency discrepancies, we
selectively port the background management strategy to
the corresponding virtual devices. We do so by customizing
ActivityManagerService (the system service for manag-
ing app activities in Android) in the AOSP systems of the
virtual devices. Specifically, to mimic vendors’ strategies,
when killing a background app, we first collect all the pro-
cess information within the app’s process group and then
immediately kill all the processes.

6.1.3 Dynamic binary patching. To reduce false nega-
tives (§5.2), we need a new approach for quickly prototyping
and deploying our proposed fixes to the defects and bugs in
specific vendors’ proprietary system components. According
to our experience, vendors are often not well motivated to fix
seemingly app-specific issues, unless we can provide strong
evidence on the root causes and offending components. To
this end, we need to address the major challenges that propri-
etary vendor-specific components are immutable and reside
mostly in the read-only system partition of Android. Thus,
we cannot simply patch a vendor-specific component by
directly replacing it without root privileges.

Our key insight for addressing this challenge is that more
than 80% of the offending components in our study were in
fact system or hardware libraries whose binaries are loaded
into an app’s address space during the app’s run time. This
is not a coincidence, but stems from the fact that the prob-
lematic components usually modify an app’s behavior and
outputs, and thus need to live in the app’s memory space;
otherwise, the failures in the components are most likely iso-
lated from the app (with address space isolation). With this
insight, we develop a dynamic binary patching technique to
realize in-memory manipulation of offending components.
Upon the startup of an app, we locate the base address

of the offending component’s binary that we wish to patch.
Combining the base address and binary taint analysis (see
§3.3), we can calculate the address of the offending instruc-
tions we wish to patch in the binary’s code segment. Finally,
by resetting the write privilege of the corresponding mem-
ory region via the mprotect system call (no root privileges
required), we can rewrite the original instructions or insert
trampolines into the binary, so that the buggy implementa-
tions can be overwritten or bypassed. In this way, we can
quickly validate the effectiveness of our proposed fixes, so
as to enable productive collaborations with the vendors.
Leveraging this approach, we were able to provide ef-

fective patches for 73% false negatives. For the remaining
cases, we find that they are associated with special vendor
services/executables that cannot be modified by our tech-
nique. We then report the root causes and solutions to all the
corresponding stakeholders including phone vendors (e.g.,
Huawei, Honor, and Meizu) and hardware manufacturers
(e.g., MediaTek). As of Jul. 1st, 2022, we have received the
stakeholders’ confirmations for all the reported issues, and
63% of our suggested fixes have been adopted into their code
bases. The other reports are still under review.

6.2 Evaluation
On July 1st, 2022, we have installed the latest patches re-
leased by phone vendors and hardware manufacturers (via
system upgrades) on our physical devices, and applied all the
software fixes to our virtual devices. Using the same testing
infrastructure and methodology as in §2 and §3, we run the
tests for the ten studied apps for another three months from
Jul. 1st to Sep. 30th in 2022.
Results. The recall on the virtual device farm increased
from 92.4% to 94.7%, and the precision increased from 98.2%
to 99.1%. As shown in Figure 6, for individual apps, the false
positive rate is reduced by 10%–64%, while the false negative
rate is reduced by 18%–42%. In particular, for the device mod-
els that have received upgrade patches for fixing the issues
we reported, their average recall has improved from 92.3% to
97.6%. Also, after applying our enhancements to the graphics
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Figure 5: Precision and recall of the
test results on virtual devices for
each Android version.
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Figure 6: Test precision/recall on our
virtual devices for each app, before
and after enhancements.
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Figure 7: Failure frequency differ-
ence between virtual and physical de-
vices after enhancements.

subsystem of virtual devices, the three video streaming apps
no longer show considerable precision differences compared
to the other apps.

Figure 7 shows the distribution of the frequency difference
between physical and virtual devices for each type of test
failure occurring during the evaluation. With our support
for the background management strategy on related virtual
devices, we find that the median frequency difference is now
smaller than 3%, as compared to the 70% median difference
before our enhancements. Also, the maximum frequency
difference is reduced from 1025× to 2×, which in fact stems
from a long-tail failure type that accounts for only 0.08% of
failure events on physical devices.

7 CONTINUOUS MOBILE APP TESTING
With all the understandings (§5) and efforts (§6) for improv-
ing virtual device fidelity, we reshaped the testing practice of
Douyin, which was entirely based on physical device farms,
to modern continuous testing with virtual device farms.

7.1 Virtual Devices for Continuous Testing
Without the virtual device farm, all the tests of Douyin before
its version releases were directly conducted on the physi-
cal device farm. The results were high operation cost and
reduced device lifetime, making it difficult to apply modern
testing practices [58, 64, 69] to enable continuous integration
and deployment (CI/CD).
With high-fidelity virtual devices, we developed a con-

tinuous mobile app testing pipeline to enable continuous
integration and deployment, as illustrated in Figure 1. The
idea is to combine the efficiency of virtual devices and the
safety of physical devices—virtual devices are used to con-
tinuously test code and configuration changes to detect the
vast majority of logic and functional bugs, while physical
devices are used only upon app releases as the last-level
defense to capture hardware-specific issues. We do not in-
tend to remove physical device farms, because (1) we aim at
eliminating all issues before release—given the popularity

of Douyin, a small number of false negatives could lead to
major issues especially for specific vendors, and (2) with the
virtual device farm taking most of the workloads, the cost of
running tests on physical devices is minimized.

Specifically, after unit testing, code/configuration changes
are automatically integrated into executables and distributed
to virtual devices for automated UI-driven testing. Bugs are
reported to developers when failures are identified. Before
the app’s public releases, we conduct testing on physical
devices to uncover the remaining bugs, which are mostly
related to vendor-specific system services or drivers (§5.2).
Since our continuous testing has captured most app-level
bugs (which account for 93% of all bugs), tests on physical
devices are much less frequently interrupted by test failures.
We analyzed the continuous testing pipeline in produc-

tion with the ten studied apps from Jan. 1st to Feb. 28th in
2023. The new pipeline reduces test interruptions due to
test failures on the physical devices by 12×, leading to 4×
reduction of test time on the physical device farm. The reduc-
tion comes from savings of data collection overhead and test
restart time. Moreover, continuous testing enables us to over-
lap development and testing, accelerating the end-to-end app
development workflow by around 40%. Last but not least,
the device lifespan is lengthened by 1.5× on average, and
maintenance efforts are greatly reduced, including a smaller
operation team and less network and power consumption.
The result is ∼3× reduction in the total operation cost.

7.2 Virtual Devices as a Service
We have recently started to share the virtual device farm
as a service (termed VDaaS) with interested app developers,
targeting individual or startup developers who do not have
sufficient resources to test their apps. To use VDaaS, devel-
opers first integrate our SDK into their apps, which provides
failure information collection (§3.2) and root cause analysis
(§3.3). Then, they submit the app’s APK file to our service
for testing with a default of six hours. After that, the test
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results are returned to the developers. From Jan. 1st to Feb.
28th 2023, 28 apps have been tested on our service.

We collected feedback from the developers, which shows
that VDaaS helped detect 3× to 10× more bugs than their
existing practices. We analyzed false positives and negatives
of VDaaS reported by developers. VDaaS achieved 99.3%
precision and 96.2% recall. With our enhancements to virtual
devices (§6.1.3), VDaaS was able to uncover many vendor-
specific problems previously unknown to the developers.
It is encouraging that most of our findings can be gen-

eralized to a broader range of apps. Notably, we still find
that vendor-specific hardware is not among the major root
causes, while vendor-specific system services and drivers
cause the most false negatives. However, with our fixes of
graphics resource misalignment (§6.1.1), the false positives
are mainly due to data corruptions of virtual disks, for which
we are developing protection mechanisms based on reliable
virtual disk formats like qcow2. For failure frequencies, we no
longer observe significant discrepancies due to the support
for vendor-specific background management (§6.1.2).

We are considering commercializing VDaaS by making it
an accessible testing service. The adoption of VDaaS would
in turn enable us to continuously improve virtual device
fidelity for a wider variety of apps.

8 DISCUSSION AND FUTUREWORK
Addressing vendor-specific discrepancies. As discussed
in §5.2, vendor-specific system services and drivers are
still major threats to the testing fidelity of virtual devices.
However, precisely emulating the complete array of
vendor-specific services and drivers is impractical given
the insurmountable engineering efforts. On the other hand,
there is still room for reducing their impacts and further
improving testing efficiency via cooperation between virtual
and physical devices.
One direction is to remote the app’s interactions (e.g.,

function call, system call, and I/O operation) with propri-
etary components to the corresponding physical devices.
This approach will allow us to bypass the need for hard-
ware emulation with real devices. Prior work has demon-
strated the feasibility of remoting a driver’s I/O operations
to a physical device to achieve executing the driver in a vir-
tual device [65, 80]. However, these approaches face several
challenges in large-scale production. First, they need to mod-
ify the OSes of the physical devices for executing remoted
low-level I/O operations. Second, remoting can significantly
reduce performance, which could result in timeout failures.
Third, the scalability of prior approaches is inherently lim-
ited by the dependent physical devices. To realize the idea

in practice, we would need to explore feasibility of lever-
aging high-level APIs, designing more efficient remoting
techniques [21, 22], and effective hardware multiplexing.
Towards cross-component compatibility tests. As dis-
cussed in §5.1–§5.3, while vendors’ customizations to stan-
dard system components are not among the major root
causes of discrepancies, their specific add-on services lead to
the most discrepancies, especially when the add-ons silently
modify app behavior or outputs. We realize that such issues
are hard to detect with CTS/VTS, because they are unit-level
tests focusing on the correctness and behavioral compati-
bility of individual components, rather than integration of
multiple components from different stakeholders.
Without cross-component integration testing and analy-

sis, it is hard to detect those critical issues that only mani-
fest on the boundaries of components [66]. Note that cross-
component testing and analysis would need the cooperation
of different stakeholders. Google’s recent initiative, CTS-
Developer [4] that allows app developers to add CTS tests,
is a good starting point.
Issues of regional mobile app ecosystems. It is believed
that regional distinctions, which mainly lie in service plat-
forms (e.g., GMS) and app markets (e.g., Google Play), are a
major source of test result discrepancies [68]. In practice, we
are able to avoid issues of service platforms by aligning the
service platform of a virtual device with that of its physical
counterpart. However, as shown in §5.4, regional differences
in the app market could lead to ecosystem corruption, and
thus have unexpected repercussions on stakeholders’ strate-
gies and policies, e.g., the adversarial mechanism design of
certain Chinese vendors and apps. Thus, to enhance the test-
ing fidelity on virtual devices, it is also important to pay
attention to the conflicts of interest among stakeholders.

9 THREATS TO VALIDITY
Our study focuses on Douyin and its partner apps (Table 1).
These apps and their sub-apps represent a variety of func-
tionalities of popular apps. On the other hand, there is an
inherent risk that our results may be specific to the studied
apps and may not apply to all apps. For example, our study
may not apply to vendor apps that are more likely to use
vendor-specific features of system services and hardware.
Also, the studied apps are developed by professional app
development teams of Douyin with rigorous software engi-
neering practices and automatic tooling. As a commercial
app, Douyin has always treated compatibility as a first-class
principle in its development; testing with physical device
farms is such an example. We expect different character-
istics of apps that are developed by individual developers
or startup companies, which may have implications on the
fidelity of virtual devices.
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Moreover, we focus on functional correctness and de-
tect failures with explicit symptoms such as native crash,
Java/Kotlin exception, and app-not-responding error. Testing
non-functional properties, such as energy, performance, and
privacy and security, is very different from functional test-
ing and our results are unlikely to generalize. For example,
virtual devices are hard to emulate the energy consumption
of physical devices with high fidelity, given the inherent dif-
ferences between server and mobile hardware. Hardware- or
device-independent abstractions for performance and energy
could be useful [9, 38, 39, 41].
Lastly, our tests are automated UI-driven tests that are

subject to the nondeterminism of dynamic UI elements (e.g.,
video and news content created by AI-based recommenda-
tion algorithms and UI layout changes upon refresh). Al-
though we cannot avoid such nondeterminism, we have
taken actions to minimize their impacts: (1) we synchronize
the test execution on the physical and virtual devices, such
as test time, network type, app account, etc.; (2) we run the
tests long enough until a stable code coverage; and (3) we
reproduced the common types of false positives and false
negatives on the physical and virtual devices.

10 RELATED WORK
With mobile apps becoming the ubiquitous form of end-user
software, mobile app testing has been an active topic of
software testing research [10, 12, 15, 17, 19, 23–25, 34, 35,
37, 44, 45, 52, 55, 56, 62, 70, 74, 77, 79]. The majority of lab
research on Android app testing relies on virtual devices
to scale beyond the expensive physical devices [10, 12, 15,
19, 24, 25, 43, 49, 62, 70, 74, 77, 81]. However, it is unclear
whether virtual devices could achieve reliable test results
for app testing in industry settings, especially for global-
scale apps like Douyin which are used by a large user base
with very diverse mobile devices. Our work presents a deep
analysis into virtual devices for app testing and serves as an
enabler of using virtual devices for efficient CI/CD.
In fact, a number of advanced mobile testing techniques

are built on top of virtualization features or capabilities [17,
34, 70–72]. For example, time-travel testing [17] uses the
snapshot capability of virtual devices to checkpoint and re-
store app states that can help achieve high code coverage.
Dynodroid [51] instruments framework services of Android
inside a virtual device to monitor the reaction of apps upon
input events, in order to guide test input generations. Droid-
Scope [76] leverages the memory introspection capability of
virtual devices to reconstruct OS- and Java-level activities
(e.g., invoked Java VM instructions) of an app to detect mali-
cious behavior. Some of these techniques can potentially be
applied in virtual device farms for app testing at scale.

The concept of virtual device fidelity was studied by secu-
rity research on malware detection [15, 23–25, 46, 55, 60, 77].
The goal is to prevent malware from recognizing that it is
running on a virtual device by checking system signatures
and configurations. Our work focuses on large-scale app
testing which is a fundamentally different problem.

11 CONCLUSION
This paper presents our effort to analyze, improve, and ef-
fectively use virtual devices for large-scale testing of mobile
apps such as Douyin. Our work shows that virtual devices
can provide immense utilities for effective continuous app
testing at scale, despite their inherent difficulties of high-
fidelity emulation across diverse mobile systems and hard-
ware devices. Our experiences show that, with careful design,
implementation, and configuration, the essential fidelity gap
can be effectively closed to achieve high-fidelity app testing.
Although it is still hard to rule out all possible discrepancies,
high-fidelity virtual device farms can substantially improve
developer productivity as well as the sustainability of physi-
cal device farms. Furthermore, the elasticity and accessibility
of virtual devices could enable new testing infrastructures
as services for mobile apps, benefiting app developers who
cannot afford large physical device farms.
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A ARTIFACT APPENDIX
A.1 Abstract
The artifact of this paper is hosted at GitHub. The artifact con-
tains all the (anonymized) failure data collected in our com-
parative study of physical and virtual device farms, and eval-
uation scripts that reproduce all the major tables and figures
(except Table 1 whose data are inherently included in the ta-
ble and thus is not additionally provided by the artifact) in the
paper. We also offer our scripts in Google Colab Notebook,
which enables push-button reproduction of the tables and
figures without any additional runtime setup.
Artifact Claim: Our artifact contains all the data of our
large-scale comparative study. You can replicate all the rele-
vant results in Section 4 and Section 5 using the dataset we
provided in our GitHub repository. Our artifact currently
does not contain the detailed app failure traces after our
enhancements in Section 6, and does not offer access to our
proprietary virtual and physical farms for the reproduction
of the study (which is highly expensive and time-consuming),
due to commercial constraints.
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A.2 Artifact check-list (meta-information)
• Data set: Our dataset is included in the repository and is
automatically decompressed by the evaluation scripts.

• Run-time environment: You can directly reproduce all
the major results via our online Google Colab Notebook
without runtime setup. If you wish to run the evaluation
scripts locally, the Python 3 runtime is required. All the
other dependencies can be installed via a pip3 install -r
requirements.txt command at the repository root.

• Execution: The execution takes approximately 2 minutes.
• Output: The output includes Table 2-5 and Figure 1-6 in
the paper.

• Experiments: Follow our README in the GitHub repos-
itory or the Google Colab Notebook. If you are using Co-
lab, the experiments should be as simple as clicking on the
Runtime—Run All button.

• Howmuch disk space required (approximately)?: None
if you are using the Colab. Local evaluation requires at least
3 GB for storing the dataset.

• How much time is needed to prepare workflow (ap-
proximately)?: One minute.

• How much time is needed to complete experiments
(approximately)?: Three minutes.

• Publicly available?: Yes.
• Workflow framework used? No, but scripts are provided
to automate the result reproduction.

• Code licenses (if publicly available)?: We use the GNU
General Public License v3.0 (GPLv3) license for the code.

• Data licenses (if publicly available)?: The data license is
also GPLv3.

• Archived (provide DOI)?: 10.5281/zenodo.8260603.

A.3 Description
A.3.1 How to access. Choose either of the following meth-
ods to access our artifact.
• GitHub: https://github.com/Android-Emulation-Testing/
emu-fidelity-ae.

• Google Colab: https://colab.research.google.com/drive
/19DYtr3yrJs6aKrXXyKWrBbMsCEvw46qw?usp=
sharing

The GitHub repository contains all the code and data which
you can playwith locally, while Google Colab offers an online
interactive interface that can reproduce all the major results
without environmental setup.

A.3.2 Software dependencies. Local execution of the evalua-
tion scripts require the Python 3 runtime and the Python-Pip
package management tool. All the other dependencies can
be installed via a pip3 install -r requirements.txt
command at the repository root.

A.4 Installation
Google Colab. You can directly click on the Google Colab
link in your browser (Chrome, Microsoft Edge, Firefox, or
Safari) to access our Colab.
Local Experiments.
• If you wish to replicate our results using the dataset in the
artifact, first clone the repository from GitHub:
git clone https://github.com/Android-Emulation-Testin
g/emu-fidelity-ae.

• Install Python 3 and Python3-Pip if your environment
does not contain it.

• At the root directory of the cloned repository, execute the
pip3 install -r requirements.txt command.
The README files in both Colab and GitHub provide a

detailed description of the structure of our dataset.

A.5 Experiment workflow
You can go with either one of the following approaches for
result replication depending on your specific requirements.
The Colab offers a quick start to reproduce our figures and
tables with a single click, but is read-only and thus cannot be
modified to realize other functionalities. The local approach
requires downloading the dataset and basic setup of the
Python environment, but can be tailored to your specific
requirements, such as building your own scripts to examine
the dataset.

A.5.1 Reproduction with Google Colab. You can use the Co-
lab to execute our evaluation scripts that produce Table 2-5
and Figure 1-6 in the paper. Table 1’s data are inherently
included in the table and thus is not additionally provided.
The page is already executed upon accesses, but you can
always re-execute it. To do this, click the Runtime tab at the
top left of the Colab web page, and click the Run All button
to execute the scripts.

Each figure/table’s reproduction code has been organized
in a separate cell in the page. Each cell can be executed inde-
pendently. However, to execute any of the cells for plotting
the figures or printing the tables, your should execute the
top-three cells first to setup the environment and dataset.

After the execution of a cell, you should see the figures or
tables displayed below the cell. The tables are printed in the
form of text.

A.5.2 Local Reproduction of Figures and Tables. Having
cloned the repository from GitHub, first read the README.md
file that describes the structure of our dataset, and how to
setup the environment.
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Next, execute the python3 plot.py command at the root
directory of the repository to reproduce the figures and ta-
bles. The figures will be saved to the fig folder at the root
directory of the repository, while the tables will be printed to
stdout, which usually should be the terminal/console you
are using to run the above command.

A.5.3 Result Replication with the Dataset (Optional). You
can also choose to build your own data analysis scripts to
examine our dataset. We provide a detailed description of the
dataset’s structure in the repository’s README file, which
is organized as a CSV file. Basically, each row of the dataset
represents a single failure (in physical or virtual devices),
while each colum contains an attribute of the failure, such as
the failure call stack, failure reason, and device model. You
can separate failures in physical devices and virtual devices

via the device model attribute, which is virt for virtual
devices. By aggregating data over different attributes of the
failures, you can replicate most of the statistics described in
Section 4 and Section 5. We also offer basic data processing
utility in our plotting script (plot.py).

A.6 Evaluation and expected results
The produced figures and tables should match there corre-
spondences in the paper. We have marked each output figure
or table with their ID in the paper. They are expected to
match the figures, tables, or statistics described in Section 4,
5, 6. Note that since we do not provide detailed app failure
traces after our enhancements in Section 6, Figure 5 and Fig-
ure 6 (which show enhancement effectiveness) can only be
produced by our figure plotting script and cannot be derived
from the dataset.

690


	Abstract
	1 Introduction
	2 Testing Infrastructure
	2.1 Physical Device Farm
	2.2 Virtual Device Farm

	3 Testing and Debugging Tools
	3.1 Test Case Generation
	3.2 Collecting Failure Information
	3.3 Root Cause Analysis

	4 Overall Study Results
	5 Fidelity and Discrepancies
	5.1 Overall Fidelity
	5.2 False Negatives
	5.3 False Positives
	5.4 Frequency of Discrepancies

	6 Improving Emulation Fidelity
	6.1 Techniques and Practices
	6.2 Evaluation

	7 Continuous Mobile App Testing
	7.1 Virtual Devices for Continuous Testing
	7.2 Virtual Devices as a Service

	8 Discussion and Future Work
	9 Threats to Validity
	10 Related Work
	11 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results


