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ABSTRACT

Smartphones are moving towards the full-screen design for
better user experience. This trend forces front cameras to be
placed under screen, leading to Under-Screen Cameras (USC).
Accordingly, a small area of the screen is made translucent
to allow light to reach the USC. In this paper, we utilize the
translucent screen’s features to inconspicuously modify its
pixels, imperceptible to human eyes but inducing perturba-
tions on USC images. These screen perturbations affect deep
learning models in image classification and face recognition.
They can be employed to protect user privacy, or disrupt the
front camera’s functionality in the malicious case. We de-
sign two methods, one-pixel perturbation and multiple-pixel
perturbation, that can add screen perturbations to images
captured by USC and successfully fool various deep learning
models. Our evaluations, with three commercial full-screen
smartphones on testbed datasets and synthesized datasets,
show that screen perturbations significantly decrease the
average image classification accuracy, dropping from 85% to
only 14% for one-pixel perturbation and 5.5% for multiple-
pixel perturbation. For face recognition, the average accuracy
drops from 91% to merely 1.8% and 0.25%, respectively.

CCS CONCEPTS

• Security and privacy → Usability in security&privacy;
• Computing methodologies → Adversarial learning.
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1 INTRODUCTION

The pursuit of immersive user experience has encouraged
full-screen design in mobile devices. A key innovation en-
abling full-screen design is the Under-Screen Camera (USC)

technology, which positions the camera beneath the screen,
maintaining the device’s sleek aesthetics without compro-
mising functionality. This novel design, which prioritizes an
increased screen-to-body ratio, is now prevalent in consumer
devices such as smartphones like Samsung Galaxy Fold3/4,
ZTE AXON 20/30/40, Xiaomi MIX4, and K50S, and laptops
like Thunderobot T-BOOK 14 and Samsung Blade Bezel.

To allow visible light reach the USC and thereby preserve
its photographic capabilities [3], a small region of the device’s
screen is made translucent, leading to a Translucent Screen
Region (TSR) that positions above the USC. Motivated by this
new feature of full-screen consumer devices, in this paper,
we propose the concept of Screen Perturbation, which modifies

the pixels displayed on the TSR to nullify deep learning models

such as image classification and face recognition models.

The proposed screen perturbation is a double-edged sword.
On one hand, it can serve as a defensive mechanism. Like
traditional front cameras, hackers can exploit USCs through
camfecting [66] to capture images and record videos. With
the rise of deep learning models in security-critical applica-
tions like face authentication [65], these illegally captured
images can be used to train extensive models capable of rec-
ognizing millions of individuals without their consent. To
tackle this security risk, users can leverage the TSR to embed
adversarial perturbations into captured images, thereby pro-
tecting themselves from unauthorized deep-learning mod-
els. For instance, an unauthorized face recognition system
would fail to correctly identify users based on these per-
turbed images, as depicted in Figure 1. Users can proactively
activate specific screen pixels during their interactions with
the smartphone, ensuring that any images covertly captured
by USC are not correctly identified by unauthorized facial
recognition models. Importantly, this does not interfere with
other functionalities, such as the motion detection capability
of USC. On the other hand, the TSR can be exploited by mali-
cious attackers. They can embed adversarial perturbations
into captured images to launch adversarial attacks, aiming
to disrupt legitimate face recognition systems or fool image
classification models. To fully harness the potential of screen
perturbation and mitigate its risks, we must address several
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Figure 1: Illustration of screen perturbation in defending unautho-

rized face recognition: carefully-selected pixels on the translucent

screen are lit up, which are ‘imperceptible’ to human eyes, but could

cause an unauthorized system to misrecognize the user Alice as Bob.

unique challenges. For simplicity of presentation, we de-
scribe these challenges and our solutions and contributions
from the attacker’s perspective in the rest of this section.
To launch adversarial attacks that can fool applications

such as face recognition and image classification, the attacker
needs to manipulate the content displayed in the TSR to
embed adversarial perturbations in the formed images. This
is challenging because the modification in the TSR needs to
be carefully designed such that the changes are imperceptible
to the users, while the generated image perturbations are
powerful enough to fool the deep learning models.

To achieve this goal, the first challenge is to understand the
impact of the TSR’s perturbation on the formed image at the

USC. Current studies [67, 74, 75] have discovered that when
the translucent screen is not illuminated, it can still scatter
and absorb light, leading to a lower signal-to-noise ratio and
resulting in a color shift in the formed image; we refer to this
as passive perturbation. However, the effect of the screen’s
illuminated pixels on the images captured by the USC has
never been explored. Our research reveals that when the TSR
is lit for displaying content, the illuminated screen pixels
embed various translucent speckled color blocks and color
shifts in the formed image. We term this active perturbation.
Factors such as whether the pixels in the TSR are illuminated,
their colors, and their brightness levels strongly affect these
perturbations added to the formed image. To address this,
we develop a comprehensive model to study the impact of
both passive perturbations and active perturbations on USC’s
image formation. Building upon this model, we successfully
create a USC image simulator that generates both passive
and active perturbations on captured images simultaneously,
allowing us to quantitatively understand the impact of screen
perturbation on the under-screen image formation.
The second challenge is to determine which TSR pixels

to manipulate and how, in order to ensure that the created

screen perturbation can successfully fool deep learning mod-

els. Although the size of TSR is small (only about 0.1 cm2),
it contains several thousand to twenty thousand pixels. For
example, the smartphone Fold4, AXON30, and MIX4 have
58∗58, 108∗60, and 108∗60 pixels within their TSR, respec-
tively. Each pixel has multiple R/G/B sub-pixels, making it
challenging to identify the most suitable pixels for creating

the screen perturbation and how to light them up (using
optimal colors and brightness). The simplest way could be
to light up all the pixels in the TSR at a proper brightness
level to create the screen perturbation. However, this is inef-
ficient and the created screen perturbation will be striking,
and therefore, users can perceive it.

To address this challenge, we present the chromaticity de-
struction and morphology destruction modules. Specifically,
the chromaticity destruction determines the optimal color of
the screen perturbation and maximizes its attacking region
and energy intensity. The morphology destruction module
optimizes the position and brightness of the screen-pixel
perturbations. Leveraging these two modules, we design a
one-pixel perturbation approach, wherein modifying only a
single pixel on the screen (less than 1‰ of the pixels in the

translucent screen region) we can reduce the average image
classification accuracy of six deep learning models from 85%
to 14%, and reduce the average face recognition accuracy of
two deep learning models from 91% to 1.8%. To enhance at-
tack efficiency, we propose a multiple-pixel perturbation that
modifies only a few screen pixels (less than 1% of the pixels in

the translucent screen region) to generate perturbation with
a higher adversarial strength, thereby further decreasing the
average accuracy of image classification and face recognition
to as low as 5.5% and 0.25%, respectively. We summarize our
contributions as follows:

• To our best knowledge, we are the first to discover this
critical security phenomenon of USC.
• We analyze the imaging formation of USC both theoreti-
cally and experimentally. Theoretical models are successfully
established, and we build an image captured on the USC sim-
ulator based on those models.
• We design and implement one-pixel and multiple-pixel
perturbations including chromaticity and morphology de-
struction modules, which could generate imperceptible but
powerful screen perturbations to fool deep learning models.
• We thoroughly evaluate the system on a dataset collected
by three smartphones equipped with USC and synthesized
datasets generated using our USC image formation simulator.

2 PRIMER ON SCREEN PERTURBATION
2.1 Structure of Translucent Screen Region

In Under-Screen Camera (USC) smartphones [1, 2, 31, 68, 69],
the front-facing camera is placed under a small ‘translucent’
screen area known as the Translucent Screen Region (TSR),
which is built on translucent cathode material. As shown
in Figure 2(b), the TSR has a different pixel layout from the
normal screen region, and can be considered as an RGBG
array that consists of multiple screen-pixel units. Figure 2(c)
shows a typical structure of the screen-pixel unit, which is
made up of three R/G/B subpixel sets. Depending on the
manufacturer, a R/G/B subpixel set can contain multiple
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Normal screen region Screen-pixel unit
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Figure 2: Illustration of (a) smartphone with a under-screen camera;

(b) micrograph of the translucent screen region and the normal

screen region; and (c) a typical structure of the screen-pixel unit.

subpixels of the same color. For example, in the design shown
in Figure 2(c), the R/G/B subpixel set is made up of two red
subpixels, four green subpixels, and two blue subpixels.

We can further divide the TSR into three functional areas:

• Screen-non-pixel area (the white area) allows visible
light to pass through the screen.
• Control-circuit area (the black area) is mainly used to
control the circuit wiring of the screen, and has a lower light
transmission rate than the screen-non-pixel area.
• Screen-pixel area (the RGB color matrix) consists of
R/G/B subpixel sets that can be lit up to display contents.

2.2 Under-Screen Image Perturbations

The unique structure of the TSR introduces two types of per-
turbation during image formation. First, as the TSR is placed
above the camera, the screen-non-pixel and the control-
circuit areas introducepassive perturbations on the formed
images. As shown in Figure 3(b), passive perturbations are
embedded into the image even when the TSR is inactive and
the screen is completely turned off due to light scattering and
absorption from the fine pixel pitch [75]. The passive pertur-
bation causes a lower signal-to-noise ratio and color shifts
in the image [67, 74, 75]. In addition, as shown in Figure 3(c),
when the screen is lit up for display, the screen-pixel area
introduces active perturbations to the image. The lighting
of different R/G/B subpixel sets embeds various translucent
speckled color blocks and color shifts in the final image.

3 SYSTEM OVERVIEW
3.1 Threat Model

In this work, we investigate and demonstrate that the new
type of screen perturbation is a double-edged sword for users.
On one hand, malicious attackers can exploit it to embed
adversarial perturbations into captured images, launching
adversarial attacks aimed at disrupting the performance of
legitimate face recognition systems [54] or fooling image
classification models [28]. On the other hand, benign defend-
ers, e.g., users, can leverage screen perturbation to protect
themselves from unauthorized deep learning models. For in-
stance, users can proactively activate specific screen pixels in
use. Thus, any images covertly captured by the under-screen

Active TSR

Conventional camera

USC

Inactive TSR

(a)

(b)

(c)

USC

Figure 3: Images formed in different scenarios: (a) pristine image is

captured by a traditional front-facing camera; (b) the TSR is inactive

but still introduces passive screen perturbation; (c) the TSR is active

and introduces both passive and active screen perturbations.

camera would not be correctly identified by unauthorized
facial recognition models [53, 65], while other functionalities,
such as the motion detection capability of the under-screen
camera, would remain unaffected. Next, we motivate our sys-
tem design from the perspective of the attacker/defender’s
goal, capability, and background knowledge.
Attacker/defender’s goal.We consider an attacker/defender
aims to manipulate the content displayed in the TSR to gener-
ate and embed adversarial perturbations to images captured
by the under-screen camera. As a result, a machine learning
model (referred as targetmodel) trained on images captured
by a standard camera should exhibit low accuracy for those
corrupted images. The alterations to the displayed content
should be imperceptible and should not interfere with the
normal content displayed on the device screen.
Attacker/defender’s capability and background knowl-
edge. We begin by assuming that a benign or malicious
application is installed by the attacker or defender. This ap-
plication has the ability to control all screen-pixel units in
the TSR and can modify the content displayed on the screen.
Android platforms do not restrict UI settings, allowing any
applications to set their own UI displays and perturb the
camera input. For devices such as Samsung Galaxy Z Fold
4, ZTE AXON 30, and Xiaomi MIX 4 which we investigate
in this work, the content displayed on the TSR can be eas-
ily modified using the Android Canvas Drawing API [12].
We also assume that these screen-pixel modifications are
not confined to a single application but can be implemented
across different applications, as Android systems support
UI modifications between various applications, including
multi-window settings [13] and notification pop-ups [14].
Next, we assume that the attacker or defender has access to
an uncorrupted image for obtaining object information. This
image can be sourced from various places, such as a social
media selfie, and doesn’t need to be taken in run-time. For
benign applications, users can take an uncorrupted image
themselves. For malicious applications, an attacker could
use a victim’s social media selfie as an uncorrupted image.
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Figure 4: Modeling the effective under-screen lens aperture.

Lastly, the attacker/defender can generate different screen
perturbations by modifying the content displayed on the
screen for various usage scenarios. These modified pixels on
the screen are invisible to the naked eye, ensuring that they
do not affect the user’s normal use of the smartphone in be-
nign applications and do not alert the user to the embedded
screen perturbation in malicious applications. To consider
a more realistic scenario, we assume the attacker/defender
lacks knowledge about the target model’s implementation
details used to classify captured images, but they have access
to a surrogate model for the task, which could have differ-
ent architecture and hyper-parameters from target models.
For simplicity, we describe our design from the attacker’s
perspective in the rest of the paper.

3.2 Overall Design

We first establish image formation models as our design’s
theoretical basis. We model the active perturbation from the
screen-pixel area (in Section 4.2) and simulate how color,
brightness, and position of the subpixel set affect the ac-
tive perturbation. We also model the passive perturbation
from the screen-non-pixel area (in Section 4.3). Our under-
screen image formation pipeline synthesizes images affected
by both perturbations. Building on our theoretical models,
we devise mechanisms to configure the TSR for subtle yet
effective perturbations, including the chromaticity destruc-
tion module (in Section 5.2) and the morphology destruction
module (in Section 5.3). To enhance the attack efficiency, we
design the multiple-pixel perturbation (in Section 5.4).

4 MODELING USC’S IMAGE FORMATION

We first introduce the concept of blur kernel, then specialize
it to model the active and passive screen perturbations.

4.1 Blur Kernel

Light diffraction through the TSR in a camera system can
cause image degradation due to the comparable size of the
screen-non-pixel area and the visible light wavelength [75].
Following Fourier optics principles [21], wemodel this diffrac-
tion phenomenon using the blur-kernel, which is also known
as the point spread function [67]. The blur kernel mathemat-
ically depicts the spread of light around a point light source
in an image, characterizing the blurring effect of an imaging

system or physical medium on the image. The blur kernel
is the squared magnitude of the scaled Fourier transform of
the under-screen aperture function 𝑓 (𝑥,𝑦), derived from the
product of the camera lens aperture and the TSR:

𝑓 (𝑥,𝑦) = 𝑔(𝑥,𝑦)𝑜 (𝑥,𝑦), (1)

where (𝑥,𝑦) represents the coordinates of the screen-pixel
unit. The camera lens is approximated as a thin lens with
an aperture function 𝑔(𝑥,𝑦), while the TSR is modeled as a
function 𝑜 (𝑥,𝑦) that maps the light transmission properties
of coordinates (𝑥,𝑦) in the TSR to a range between 0 and 1.
A value of 1 indicates that light can fully pass through the
TSR, whereas a value of 0 indicates that light cannot pass
through the TSR. The blur kernel is defined as follows:

𝑘 (𝜆, 𝐹 ) =

���� 1

𝜆𝑟0
𝐹

(
𝑥

𝜆𝑟0
,

𝑦

𝜆𝑟0

)����2 , (2)

where 𝜆 is the wavelength of light, 𝑟0 is the focal length
of the camera lens, and 𝐹 (𝑢, 𝑣) is the Fourier transform of
the under-screen aperture function 𝑓 (𝑥,𝑦). The (𝑢, 𝑣) is the
mapping of coordinates (𝑥,𝑦) in the frequency domain.

Based on the blur-kernelmodel, obtaining the under-screen
aperture function of active and passive perturbations for TSR
is necessary to generate the corresponding blur kernels. The
under-screen aperture functions for both types of perturba-
tions will be presented below, as illustrated in Figure 4.

4.2 Modeling Screen’s Active Perturbation

USCs in mobile devices like smartphones are placed near
the screen for a slim profile, leading to the TSR co-locating
with the thin lens aperture. This proximity allows the R/G/B
subpixel sets on the TSR to be approximated as point light
sources per the Huygens-Fresnel principle [21]. The TSR’s
screen-pixel area is periodic, with identical screen-pixel units,
enabling modulation of the entire area via a single unit. Let
𝐷 𝜇m be the inter-pixel distance of the pixels in the TSR.
𝐷 actually determines the screen resolution as 25, 400/𝐷
pixels per inch (= 25, 400 𝜇m). The light intensity of screen-
pixel area within a screen-pixel unit is denoted as𝑚𝑎 (𝑥,𝑦, 𝑐),
where 𝑐 ∈ {𝑅,𝐺, 𝐵} represents the R/G/B subpixel sets. This
𝑚𝑎 (𝑥,𝑦, 𝑐) repeats at a periodicity of 𝐷 along both axes to
form all screen-pixel areas on the TSR. Here, we can set
R/G/B subpixel sets shape, size and brightness in the screen-
pixel unit to impact the active screen-pixel perturbation.
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However, the shape and size of each R/G/B subpixel set are
typically predetermined during manufacturing. The active
perturbation can still be manipulated by selectively lighting
up different R/G/B subpixel sets on the TSR to form different
patterns. Using 𝑛1 and 𝑛2 to represent the horizontal and
vertical indices in the spatial domain and 𝑁1 and 𝑁2 for the
frequency domain, we can express the light intensity of (𝑥,𝑦)
of different R/G/B subpixel sets on the TSR 𝑜𝑎 (𝑥,𝑦, 𝑐) as:

𝑜𝑎 (𝑥,𝑦, 𝑐) =𝑚𝑎 (𝑥,𝑦, 𝑐) ∗
∑

𝑛1

∑
𝑛2

𝛿 (𝑥 − 𝑛1𝐷)𝛿 (𝑦 − 𝑛2𝐷), (3)

where 𝛿 (·) is the Dirac delta function, also known as the unit
impulse [21]. Multiplication in the space domain leads to con-
volution in the frequency domain, which allows us to obtain
𝐹𝑎 (𝑢, 𝑣, 𝑐), the Fourier transform of the effective aperture at
different wavelengths (R/G/B) for active perturbation:

𝐹𝑎 (𝑢, 𝑣, 𝑐 ) =
∑

𝑁1

∑
𝑁2

𝑀𝑎

(
𝑁1

𝐷
,
𝑁2

𝐷
,𝑐

)
𝐺

(
𝑢 −

𝑁1

𝐷
, 𝑣 −

𝑁2

𝐷

)
, (4)

where 𝑀𝑎 (𝑢, 𝑣, 𝑐) represents the Fourier transform of R/G/B
subpixel set in the screen-pixel area𝑚𝑎 (𝑥,𝑦, 𝑐), and𝐺 (𝑢, 𝑣)
is the Fourier transform of the camera lens aperture 𝑔(𝑥,𝑦).

4.3 Modeling Screen’s Passive Perturbation

We present a specialized under-screen aperture function ex-
pression, focusing on passive perturbation from the screen-
non-pixel area. Given its higher light transmittance com-
pared to the control circuit and screen-pixel areas, we can
neglect the latter [67]. The screen-non-pixel area within a
screen-pixel unit, denoted as 𝑚𝑝 (𝑥,𝑦) (the white area in
Figure 2), also exhibits periodicity. This allows us to mathe-
matically express the light transmission properties of (𝑥,𝑦)
on the TSR’s screen-non-pixel area, 𝑜𝑝 (𝑥,𝑦), and the Fourier
transform of the effective aperture for passive perturbation:

𝑜𝑝 (𝑥,𝑦) =𝑚𝑝 (𝑥,𝑦) ∗
∑

𝑛1

∑
𝑛2

𝛿 (𝑥 − 𝑛1𝐷)𝛿 (𝑦 − 𝑛2𝐷), (5)

𝐹𝑝 (𝑢, 𝑣) =
∑

𝑁1

∑
𝑁2

𝑀𝑝

(
𝑁1

𝐷
,
𝑁2

𝐷

)
𝐺

(
𝑢 −

𝑁1

𝐷
, 𝑣 −

𝑁2

𝐷

)
. (6)

4.4 Under-Screen Image Formation Pipeline

Based on the analysis in the previous sections, and given
a calibrated screen-pixel unit as shown in Figure 4, we can
model the degraded images from a scene with both passive
and active perturbation of the TSR. For the object-of-interest
in the scene 𝐼𝐼𝐼 , the degraded observation 𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧 formed on the
sensor can be modeled as a convolution process, given by:

𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧 = (𝛾𝑧𝑧𝑧) ⊗
∑

𝑐
𝑘 (𝜆, 𝐹𝑎 (𝑐))︸������������������������︷︷������������������������︸

Active Perturbation

+ (𝛾𝐼𝐼𝐼 ) ⊗ 𝑘 (𝜆, 𝐹𝑝 )︸�������������︷︷�������������︸
Passive Perturbation

+ 𝑛︸︷︷︸
Noise

, (7)

where 𝛾 is the intensity scaling factor considering camera
gain and screen attenuation. The blur kernels for active and
passive TSR perturbations are

∑
𝑐 𝑘 (𝜆, 𝐹𝑎 (𝑐)) and 𝑘 (𝜆, 𝐹𝑝 ),

respectively. The noise is represented by 𝑛, which includes
both shot noise and read-out noise.𝑧𝑧𝑧 (in pixels) represents an
active perturbation image on USC projected from the R/G/B

(c)(b)(a)
Figure 5: Example of using the Grad-CAM for attacking region es-

timation: (a) taking an image captured by the USC as input, (b) we

leverage the Grad-CAM to generate the heatmap of the most signifi-

cant region in the image, and then (c) obtain the attacking region.

subpixel sets on the TSR (in mm). As shown in Figure 3, the
camera’s imaging process projects three-dimensional objects
onto a two-dimensional plane. Given the screen’s proximity
to the USC, the projection process can be approximated as a
conversion from the camera to the pixel coordinate system.
Following the perspective camera model [59], we denote this
projection as 𝑧𝑧𝑧 = Resize(𝑧𝑧𝑧, 𝑟0), where 𝑧𝑧𝑧 represents R/G/B
subpixel sets on the TSR, and 𝑟0 is the USC’s focal length.

5 SCREEN-PIXEL PERTURBATION

In this section, we first introduce how to identify the poten-
tial attacking region in images captured by USC (Section 5.1).
We then present the chromaticity destruction module that
selects the optimal color for the screen-pixel perturbation
(Section 5.2), followed by the morphology destruction mod-
ule that determines the optimal position and brightness of
the screen-pixel perturbation (Section 5.3). Combining the
above two modules, we can activate a single screen-pixel
unit on TSR and add corresponding perturbation in images
captured by USC, and we call it one-pixel perturbation.
Lastly, we introduce themultiple-pixel perturbation to
improve the attacking efficiency by illuminating multiple
screen-pixel units simultaneously on TSR (Section 5.4).
Design space. Different from the theoretical model, the

design space when generating screen-pixel perturbation on
practical under-screen camera smartphone is smaller. Specif-
ically, hardware-related parameters, such as shape, size, and
the number of the pixels on the screen are fixed by the man-
ufacturer. Instead, we have the access to each screen-pixel
unit in the TSR, and can program the color and brightness
of the R/G/B subpixel set in the screen-pixel unit.

5.1 Calculating the Attacking Region

Our goal is to generate adversarial perturbations by modify-
ing as few screen-pixel units as possible (to be less percepti-
ble), while greatly degrading the classification accuracy of
the victim deep learning model. To achieve this, we first need
to localize the region in the targeted image that has the high-
est influence on the decision making of the deep learning
model. We leverage the Gradient-weighted Class Activation
Mapping (Grad-CAM) [50] to estimate the attacking region
where the screen perturbation will be added to.

Figure 5 shows the pipeline in calculating the attacking
region. Taking an image captured by the USC as input, we
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(a) (b) (c) (d)

Finch (88.4%) Finch (93.6%) Finch (67.1%) Finch (62.1%)

Figure 6: The adversarial strength of the screen-pixel perturbation

with different colors: (a) image without active perturbation; by con-

trast, in (b), (c), and (d), the red, blue, and green subpixel set is used

to create the screen-pixel perturbation, respectively.

first leverage the Grad-CAM to calculate a heatmap of the im-
age based on the surrogate model of the attacker. As shown
in Figure 5(b), the heatmap highlights the most significant
region in the image that drives the surrogate model to its
final prediction. Then, by calculating the average value of
the heatmap and thresholding it, we can calculate the at-
tacking region that indicates the potential image area where
adversarial perturbations should be added to. Note that for
a given image, the heatmap generated by the Grad-CAM
varies when different architectures and training datasets are
used by the surrogate model. However, because of the trans-
ferability effect, different models trained for similar tasks
will share highly similar properties and vulnerabilities, even
when they have different architectures and are trained on
different datasets [11, 40, 41, 55, 71]. Thus, as demonstrated
later in Section 6, we can leverage one representative model
as the surrogate model for attacking region estimation, but
still be able to apply and transfer the resulting adversarial
perturbations to different models in the attacking stage.

5.2 Chromaticity Destruction

The ability of an adversarial perturbation to fool the clas-
sifier is known as the adversarial strength. In general, for
colorization-based perturbation [52], its adversarial strength
is proportional to the number of perturbed pixels [36, 42]
and the energy change in the pixels [37]. Based on these
facts, we introduce the chromaticity destruction to generate
the screen-pixel perturbation in three steps.

Step 1: Identifying the dominant color channel. First,
we identify the dominant channel of the attacking region.
The dominant channel is one of the R/G/B channels with the
highest color intensity. Next, for a given screen-pixel unit,
we light up one or two of its R/G/B subpixel sets that are
distinct from the dominant channel to generate correspond-
ing screen-pixel perturbations. By doing so, the color of the
resulting screen-pixel perturbation will be distinct from the
dominant channel of the attacking region, which causes the
‘color shift’ effect on the targeted image with maximized
energy change in the perturbed pixels.

As an example, Figure 6 shows the adversarial strength of
the screen-pixel perturbations generated by lighting up dif-
ferent subpixel sets. Figure 6(a) exhibits the baseline scenario

(a)

Finch (56.7%) Ant (21.4%) Ant (27.8%)

(b) (c)

Figure 7: Attacking with different brightness levels and number of

subpixel sets used: (a) lighting up the green subpixel set; (c) lighting

up the green subpixel set with a high brightness; (d) lighting up both

green and blue subpixel sets but with a lower brightness.

where no active perturbation has been added. The surrogate
classifier utilizes ResNet-50 and is trained on miniImageNet
dataset. As shown, the surrogate classifier can correctly rec-
ognize the object as ‘finch’ with a probability score of 88.4%.
In Figure 6(b), because R channel is the dominant channel
of the attacking region, lighting up the red subpixel set to
generate the screen-pixel perturbation does not lead to the
expected mis-classification. Instead, the ‘finch’ can still be
correctly recognized with a high probability score of 93.6%.
By contrast, as shown in Figures 6(c) and (d), a screen-pixel
perturbation generated by lighting up the blue or the green
subpixel set can dramatically degrade the probability score
of the surrogate model to 67.1% and 62.1%, respectively.
Step 2: Prioritizing R/G/B subpixel sets. As a larger

image perturbation has a higher adversarial strength [36, 42,
73], we prioritize the three color subpixel sets in the order
of green, blue, and red, according to their actual sizes in the
screen-pixel unit. Specifically, the green subpixel set has the
highest preference, as the screen-pixel unit in most OLED
screens utilizes an RGBG structure, resulting in twice as
many green subpixel sets as red and blue subpixel sets (as
shown in Figure 2). Thus, green subpixel set can perturbmore
image pixels and has the largest perturbation size. The blue
subpixel set is the second preference, as it has the second-
large area. This is because the blue subpixel material has
the shortest lifespan, and the area of the blue subpixel set is
always maximized to extend the lifespan of the screen [60].
Step 3: Lighting up two subpixel sets. Figure 6 shows

that lighting a single subpixel set cannot ensure the pertur-
bation is strong enough to fool the classifier. To improve the
adversarial strength, we can either increase the number of
perturbed subpixels (by lighting up two subpixel sets simul-
taneously) or enhance the energy change in the subpixels
(by increasing the brightness of the subpixel set). However,
as the human visual system is more sensitive to luminance
than chrominance, we opt to light up two subpixel sets simul-
taneously while minimizing their brightness. As an example,
Figures 7(a) and (b) show that by increasing the brightness of
the green subpixel set, the ‘Finch’ is misclassified as ‘Ant’, but
the perturbation becomes more perceptible. By contrast, Fig-
ure 7(c) shows that lighting up both green and blue subpixels
at a lower brightness can still fool the classifier.
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5.3 Morphology Destruction

Below, we introduce the morphology destruction, which
optimizes the location and brightness of the screen-pixel
perturbation. We use the following notations in our design.

• 𝐼𝐼𝐼 : is the targeted pristine image with true label 𝑙 .
• 𝑧𝑧𝑧: is the original configuration of the unperturbed screen-
pixel units in the translucent screen region.
• 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 : the configuration of the screen-pixel units when gen-
erating the adversarial perturbation, which is configured by
screen-pixel index 𝑗 , color vector 𝑐𝑐𝑐 , and subpixel brightness
vector 𝑏𝑏𝑏. Specifically, 𝑗 indicates that the 𝑗th screen-pixel
unit in the TSR will be manipulated; 𝑐𝑐𝑐 is a three-dimensional
vector that indicates which of the three R/G/B subpixel sets
will be light up; similarly, 𝑏𝑏𝑏 is a three-dimensional vector
that indicates the brightness of the three subpixel sets.
• ⊕: denotes the image formation process of the under-
screen camera, which is defined in Equation (7).
• Φ: denotes the surrogate classifier.
• Φ(𝐼𝐼𝐼 , 𝑙): denotes the probability of surrogate classifier Φ in
classifying the image 𝐼𝐼𝐼 with label 𝑙 .

The goal of the morphology destruction is to search for
a configuration 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 that can fool the surrogate classifier
Φ. As we only change a single screen-pixel, we aim to find
the screen-pixel index 𝑗 such that the surrogate classifier is
most likely to misclassify the object of interest. Assuming a
perturbation at the 𝑗 th screen-pixel, we need the probability
of an incorrect label surpassing the true label 𝑙 to trick Φ. To
reach the goal, we aim to find themost susceptible label when
the perturbation is added at 𝑗 th screen-pixel. In particular, we
use the growth rate of the output probability of the surrogate
classifier Φ to measure the susceptibility for each incorrect

label 𝑙 (𝑙 ≠ 𝑙). Our intuition is that the output probability of
the surrogate classifier Φ for an incorrect label is more likely
to increase more when it has a larger growth rate. Formally,

the growth rate for 𝑙 can be computed as follows:

𝑠 (𝑙, 𝑗) =
Φ(𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 , 𝑙) − Φ(𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧, 𝑙)

Φ(𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧, 𝑙)
, (8)

where 𝑠 (𝑙, 𝑗) is the growth rate; term 𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧 is the image cap-
tured by the under-screen camera with unperturbed screen
configuration 𝑧𝑧𝑧; term 𝐼𝐼𝐼 ⊕𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 is the image captured with the
perturbed configuration 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 ; 𝑐𝑐𝑐 is calculated by the chro-
maticity destruction, which indicates the lighting of the
R/G/B subpixel sets given input 𝐼𝐼𝐼 ⊕𝑧𝑧𝑧;𝑏𝑏𝑏 is set to a low bright-
ness level of 𝑏𝑏𝑏0 = 0.01. Given the growth rate for each incor-
rect label, we view the label whose growth rate is the largest

as the most susceptible label, i.e., 𝑙 𝑗 = argmax𝑙≠𝑙 𝑠 (𝑙, 𝑗).
Recall that our goal is to find the screen-pixel index 𝑗 that

is most likely to cause the misclassification of the surrogate
classifier. We reach the goal by finding the 𝑗 whose most
susceptible label has the largest growth rate. Formally, we

Red statusbar: 
no pixels changed

1 Red statusbar: 
one pixel changed

2 Red statusbar: 
two pixels changed
3 Red statusbar: 

three pixels changed
4

Figure 8: Example of pixel spread process: transitioning from no

manipulated screen-pixel units to activate three screen-pixel units.

can find 𝑗 by solving the following optimization problem:

𝑗 = argmax𝑗 𝑠 (𝑙 𝑗 , 𝑗), (9)

where 𝑠 (𝑙 𝑗 , 𝑗) is the growth rate of the most susceptible label

𝑙 𝑗 when the perturbation is added at 𝑗th screen-pixel.
After finding the optimal index 𝑗 , we calculate the mini-

mum required brightness 𝑏𝑏𝑏 by a one-directional search pro-
cess. Initially, we set the brightness of the screen-pixel unit
to a small value 𝑏𝑏𝑏 = 𝑏𝑏𝑏0. We then gradually increase 𝑏𝑏𝑏 with a
small step size Δ𝜏 . The search is terminated when:

Φ(𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 , 𝑙) < Φ(𝐼𝐼𝐼 ⊕ 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 , 𝑙), ∃𝑙 ≠ 𝑙, or 𝑏𝑏𝑏 > 𝜀, (10)

which means either the perturbation generated by 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 is
able to fool the surrogate classifier with brightness 𝑏𝑏𝑏 or the
maximum screen-pixel intensity budget 𝜀 is reached. This
process repeats for each subpixel set of the chosen colors
until the optimal set requiring the least brightness is found.

5.4 Multiple-Pixel Perturbation

We are motivated by the fact that when using the smart-
phone and looking at the screen at a certain distance, the
human visual system has a high tolerance in screen pixel
changes. Current research has shown that a change of 120
pixels is indistinguishable [27] per degree of viewing angle
when viewing at a normal distance. Thus, instead of lighting
up single screen-pixel unit, we can potentially manipulate
multiple screen-pixel units to enable a larger perturbation
area. This can greatly improve the adversarial strength of
the generated screen-pixel perturbation while ensuring the
changes on the translucent screen area are unnoticeable.

First, we introduce the process of selectingmultiple screen-
pixel units to generate the perturbation. As shown in Figure 8,
we apply the morphology destruction method (in Section 5.3)
to determine the position and brightness of multiple screen-
pixel units for perturbation generation when the one-pixel
perturbation fails. The added screen-pixel units are adjacent
to the screen-pixel unit selected for the one-pixel perturba-
tion due to the regional aggregation effect [64].
In one-pixel perturbation, the color of subpixel sets is se-

lected based on the dominant color channel of the captured
image. However, this strategy may not always be applica-
ble, as the object of interest can be obscured by the color
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of the screen. For instance, when the screen displays a red
status bar, the object of interest will be concealed by red
screen-pixel, and makes it difficult to discern the original
dominant color channel of the object. To solve this problem,
we propose the differential incremental module, which esti-
mates the impact of each individual R/G/B subpixel set on
the adversarial strength of the generated perturbation.
Specifically, we add a small increment to the brightness

vector by 𝑏𝑏𝑏
′
= 𝑏𝑏𝑏 + Δ𝜏 for each R/G/B subpixel set. Then, we

select the colors of subpixel sets perturbation (𝑐1/𝑐2) by:

𝑐1/𝑐2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

𝐺/𝐵, 𝑅 = argmin𝑐∈{𝑅,𝐺,𝐵} (
Φ(𝐼𝐼𝐼⊕𝑧𝑧𝑧

𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏
′ ,𝑙 )

Φ(𝐼𝐼𝐼⊕𝑧𝑧𝑧,𝑡 )
),

𝐺/𝑅, 𝐵 = argmin𝑐∈{𝑅,𝐺,𝐵} (
Φ(𝐼𝐼𝐼⊕𝑧𝑧𝑧

𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏
′ ,𝑙 )

Φ(𝐼𝐼𝐼⊕𝑧𝑧𝑧,𝑡 )
),

𝐵/𝑅, 𝐺 = argmin𝑐∈{𝑅,𝐺,𝐵} (
Φ(𝐼𝐼𝐼⊕𝑧𝑧𝑧

𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏
′ ,𝑙 )

Φ(𝐼𝐼𝐼⊕𝑧𝑧𝑧,𝑡 )
) .

(11)

By adding the increment Δ𝜏 to the corresponding screen
pixel color 𝑐𝑐𝑐 , we can identify the two subpixel sets that have
the highest impact on the adversarial strength. Additionally,
we use a second-order difference for brightness calculation,
instead of the linear search used for the one-pixel perturba-
tion. Specifically, we use the second-order difference of the
probability score as the searching condition:

Φ(𝐼𝐼𝐼 ⊕𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏′′ , 𝑙 ) −Φ(𝐼𝐼𝐼 ⊕𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏′ , 𝑙 ) < Φ(𝐼𝐼𝐼 ⊕𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏′ , 𝑙 ) −Φ(𝐼𝐼𝐼 ⊕𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 , 𝑙 ), (12)

where 𝑏𝑏𝑏
′
= 𝑏𝑏𝑏 + Δ𝜏 and 𝑏𝑏𝑏

′′
= 𝑏𝑏𝑏 + 2Δ𝜏 . If the second-order dif-

ference satisfies the above condition, we stop increasing the
current screen-pixel unit’s brightness and start calculating
the next selected screen-pixel unit’s position and brightness.

Finally, to ensure the changes in the multiple screen-pixel
units are less perceptible by human visual system, we add a
constraint on Equation (12) when searching 𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 :

DSSIM(Resize(𝐿(𝑧𝑧𝑧), 𝛼), Resize(𝐿(𝑧𝑧𝑧 𝑗,𝑐𝑐𝑐,𝑏𝑏𝑏 ), 𝛼)) < 𝜌, (13)

where DSSIM(·) calculates the structural dis-similarity in-
dex, a common measure of user-perceived image distor-
tion [53, 62]. Resize(·) and 𝐿(·) represent image resizing and
low-pass filtering functions, used to simulate the pixel den-
sity and viewing distance changes during smartphone use,
and to determine the visual impact of screen pixel changes
on human perception. Lastly, 𝜌 denotes the perceptual per-
turbation budget. We leverage the downsampling scale 𝛼 to
simulate human visual perception, influenced by the viewing
angle, screen resolution, and viewing distance [8, 22].

6 EVALUATION

6.1 Methodology

Goal and metrics. For simplicity, we evaluate our method
from the attacker’s perspective: the aim is to manipulate
TSR’s screen-pixel units, generating perturbed images to
fool different machine learning models, i.e., target models.
The screen-pixel perturbation’s performance is measured by
the target model’s accuracy in classifying perturbed images.

Applications and target Models. We consider two widely
used daily image-based applications.

• Image classification. We consider three DNN architec-
tureswith sixmodels: (1)ResNet [24], which includes ResNet-
18 and ResNet-50; (2)MobileNet [25], which includes Mo-
bileNet V3 Large (MobileNetL) and Small (MobileNetS); and
(3) ShuffleNet V2 [34], which has two variants ShuffleNet
V2 with half of the network parameters (ShuffleNetS) and
with all network parameters (ShuffleNetL). All models are
pre-trained on the ImageNet dataset [46].
• Face recognition. We consider two representative back-
bone models IncepResNet V1 [57] (IncepResNet) and Mo-
bileNet V2 [48] (MobileNet) that are pre-trained on the VG-
GFace2 dataset [6] and WebFace dataset [70], respectively.

Synthesized Datasets.We leverage the theoretical model
to embed screen perturbations to images from two datasets.
Specifically, we use the miniImageNet dataset [61], with
60,000 images across 100 classes, to evaluate the image classi-
fication task. We use the FaceScrub dataset [38], with 38,202
images from 530 people, to evaluate the face recognition task.
We randomly select 500 and 530 images from miniImageNet
and FaceScrub, respectively, to add screen perturbations. In
simulation, our model employs a TSR on OLED screens with
a pixel density of 400 Pixels Per Inch (PPI), utilizing a circular
R/G/B subpixel shape that completely fills the screen-pixel
area. To ensure consistency with the USC in Commercial
Off-The-Shelf (COTS) smartphones, we utilize camera pa-
rameters that are identical to those employed in commercial
devices. We also incorporate peak wavelength values for the
R, G, and B channels based on prior research [67, 75] with
values of 0.61 𝜇m, 0.53 𝜇m, and 0.47 𝜇m, respectively.

Dataset collected by testbed.We setup a testbed to acquire
practical USC images. The setup is shown in Figure 9, which
consists of a 4K LCD monitor displaying pristine images,
and three COTS USC smartphones, i.e., Samsung Fold4, ZTE
AXON30, and Xiaomi MIX4. The pixel density of the TSR in
these devices is 400 PPI. The size of the TSR is 58∗58 pixels,
108∗60 pixels, and 108∗60 pixels for the Fold4, AXON30,
and MIX4, respectively. A custom Android application is
developed to control the screen-pixel units for perturbation
generation. The smartphone is positioned at the center of
the monitor and is adjusted to cover the monitor’s full range.
We then leverage high-resolution full-face images from

the XGaze dataset [72] to generate perturbed images. Specif-
ically, we select a subset of 12,720 images from 110 subjects,
and randomly sample a total 549 images to add screen pertur-
bations. The selected images are displayed on the 4K monitor
in full-screen mode and adjusted to maintain the aspect ratio
through rotation or resizing. As an example, Figures 9(b-d)
shows the perturbed images captured by the three smart-
phones with one-pixel perturbation added. The resulting
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4K Monitor

Full-Screen 
Smartphone

(a)

(b) (c)

(d)

Figure 9: The testbed setup: we use COTS smartphones to generate

images containing screen perturbations, and images captured by (b)

ZTX AXON30, (c) Xiaomi MIX4, and (d) Samsung Fold4, respectively.

(b)

(c)

(a)

(d)

Figure 10: Screenshots of the smartphone status bar when running

the one-pixel perturbation on (a) ZTE AXON30, (b) Xiaomi MIX4,

and (c) Samsung Fold4. The TSR is highlighted by the red dotted

rectangle, and magnified in (d). These changes are imperceptible.

screen-pixel perturbations differ as different screen layouts.
Moreover, Figure 10 shows the screenshots of the status bar
when the three smartphones are generating one-pixel per-
turbation. As highlighted in the red dotted rectangle, the
changes of screen-pixel units in the TSR are imperceptible.

6.2 Performance on Synthesized Datasets

Performance on image classification. We first investi-
gate the effectiveness of screen perturbation in disrupting
image classification on the miniImageNet dataset. We con-
sider five different scenarios, including (1) clean image with
no screen perturbation, (2) passive perturbation when the
status bar is black, (3) passive perturbation when the status
bar is white, (4) passive perturbation with the additional
active perturbation generated by one-pixel perturbation, or
by (5) multiple-pixel perturbation. The results are shown in
Table 1. Even with a black status bar, the accuracies of all
models are decreased by 20% due to the passive perturba-
tion. Furthermore, with a white status bar, the accuracy of
all models decreased by 30%, due to the uncontrolled active
perturbation. In comparison, when applying the one-pixel
and multiple-pixel perturbation, the accuracies of all exam-
ined models are degraded below 20% and 10%, respectively.
The results demonstrate the effectiveness of the proposed
screen-pixel perturbation in disrupting image classification.
Performance against deblurring algorithms. We also
evaluate the performance when state-of-the-art deblurring
method is applied. Specifically, we use the unsupervised
Wiener filter to alleviate the blurring effect caused by screen
passive perturbation [67, 75]. The results are shown in Table
1. The deblurringmethod can effectively eliminate the impact

from the passive perturbations, i.e., the accuracy of all exam-
ined models is increased after deblurring when there is only
passive perturbation on the image. However, the deblurring
method does not help when one-pixel or multiple-pixel per-
turbations have been applied, i.e., only a modest 5% accuracy
improvement after applying the deblurring method.
Transferability. The perturbation should be effective even
when the target model is different from the surrogate model.
Current work [11] suggests that transferability of pertur-
bation between models depends on the robustness of the
surrogate model used to create it, and more robust surro-
gate models are less reactive to small perturbations. Thus,
to ensure the transferability of the screen perturbations, we
first retrain the surrogate model using perturbed images
generated from a white status bar. This provides the surro-
gate model with exposure to fixed screen perturbation. We
then use the updated surrogate models to generate multiple-
pixel perturbations on the miniImageNet dataset. The results
shown in Table 2 demonstrate that the multiple-pixel pertur-
bations transfer almost perfectly across different models.
Ablation Study. First, we investigate the impact of the max-
imum screen-pixel intensity budget (𝜀) on the performance
of the one-pixel perturbation attack (in Equation (10)). The
initial intensity of the screen-pixel is 0.01 and the step size
of each iteration is 0.01. Then, we vary the maximum screen-
pixel intensity constraint from 0 to 1. The results are shown
in Figure 11(a). the accuracy gradually decreases with the
increase of the maximum screen-pixel intensity constraint.
Even when the maximum screen-pixel intensity is limited to
0.2, the accuracy still drops by more than 30%.
Next, we examine the step size (Δ𝜏) effect on the screen-

pixel intensity search (in Equation (10)), determining the
optimal intensity for one-pixel perturbation. We fix the max-
imum screen-pixel intensity to 1 and the initial screen-pixel
intensity to 0.01, and then vary the step size. Results in Figure
11(b) show image classification accuracy gradually increases
with the step size, as a larger step size complicates finding
the optimal intensity. To reduce the computational overhead,
we employ a step size of 0.01 in following experiments.

We also investigate the impact of initial screen-pixel inten-
sity (𝑏0) (in Equation (8)) on the results of one-pixel perturba-
tion, by fixing the maximum pixel intensity and step size to 1
and 0.01, respectively, and varying the initial intensity of the
screen-pixel. As shown in Figure 11(c), the variation in initial
intensity has a negligible impact on the final performance.
We chose to use a smaller initial intensity of 0.01.

Finally, we evaluate the impact of the DSSIM in multiple-
pixel perturbation (in Equation (13)). The results are shown
in Figure 11(d). As the DSSIM perturbation budget (𝜌) in-
creases, the accuracy decreases. Specifically, when 𝜌 is set to
0.05, the accuracy drops to the same level as that of one-pixel
perturbation, at around 20%. Furthermore, when 𝜌 exceeds
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Table 1: Performance of both one-pixel andmultiple-pixel perturbations onminiImageNet.

Target Clean Black screen White screen One-pixel Multiple-pixel
model image Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred

ResNet-18 87.4% 62.4% / 86.8% 56.8% / 75.2% 16.6% / 20.6% 5.0% / 7.6%
ResNet-50 94.2% 74.4% / 94.6% 66.8% / 86.2% 20.8% / 26.8% 5.8% / 9.2%
MobileNetS 82.4% 58.8% / 81.6% 50.6% / 70.2% 10.2% / 14.8% 5.4% / 10.0%
MobileNetL 91.6% 69.8% / 90.8% 66.2% / 79.2% 13.4% / 17.4% 6.4% / 11.4%
ShuffleNetS 71.0% 49.8% / 70.2% 29.6% / 46.0% 7.2% / 9.0% 4.6% / 5.4%
ShuffleNetL 85.4% 64.4% / 85.2% 47.8% / 62.2% 16.0% / 21.0% 5.8% / 6.2%
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Figure 11: Accuracy vs. (a) maximum intensity, (b)

step sizes, (c) initial intensity, and (d) DSSIM budget.

Table 2: Performance (attack transferability) of multiple-pixel perturbations on miniImageNet.

Robust Target Model

Surrogate ResNet-18 ResNet-50 MobileNetS MobileNetL ShuffleNetS ShuffleNetL
Model Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred

ResNet-18 4.8% / 7.4% 6.8% / 12.2% 5.6% / 7.8% 7.8% / 12.2% 4.2% / 4.2% 7.4% / 8.8%

ResNet-50 5.0% / 7.6% 5.8% / 9.2% 5.4% / 10.0% 6.4% / 11.4% 4.6% / 5.4% 5.8% / 6.2%

MobileNetS 6.4% / 11.6% 7.8% / 16.4% 4.0% / 9.2% 8.4% / 16.2% 4.6% / 7.4% 6.8% / 11.0%

MobileNetL 6.4% / 7.6% 5.0% / 10.6% 3.4% / 6.8% 6.8% / 10.2% 4.4% / 5.0% 6.4% / 7.8%

ShuffleNetS 8.2% / 12.8% 11.2% / 23.2% 7.4% / 14.6% 11.6% / 22.6% 7.4% / 8.8% 9.0% / 15.6%

ShuffleNetL 7.4% / 9.8% 9.4% / 16.0% 6.4% / 11.2% 8.2% / 14.4% 6.2% / 7.4% 6.8% / 9.8%

0.03, the accuracy of multiple-pixel perturbation falls below
10%. Existing work [30] suggests that higher DSSIM values
(up to 0.2) are imperceptible to human eyes.

Performance on face recognition using FaceScrub.We
also evaluate our method in face classification task using
the FaceScrub dataset. The results are shown in Table 3.
The passive screen perturbation leads to a substantial accu-
racy degradation of up to 40% and 60% for IncepResNet and
MobileNet, respectively. Both one-pixel and multiple-pixel
perturbation can decrease the accuracy of all models to less
than 1%. Moreover, we also apply the deblurring method to
mitigate the adverse impact of the screen perturbations. The
deblurring method can mitigate the impact of passive screen
perturbations, but fails to remove the impact of the proposed
one-pixel and multiple-pixel perturbations.

6.3 Performance on Testbed Dataset

Overall performance. Table 4 shows that proposed one-
pixel perturbation can reduce the accuracy of both IncepRes-
Net and MobileNet to less than 5%. The multiple-pixel per-
turbation further reduces the accuracy of both IncepResNet
and MobileNet to under 1%, demonstrating the effectiveness
of our proposed screen perturbation methods in real-world
scenarios. The results in Section 6.2 and Section 6.3 align
with each other, as shown in Table 3 and Table 4.

Different color in status bar.We also evaluate the multiple-
pixel perturbation with four different status bar colors: red,
blue, green, white. Note that when the status bar is displayed
in red, green, or blue, only the corresponding primary color
subpixel sets are illuminated. When the status bar is white,
all three primary color subpixel sets are illuminated. The
results are presented in Figure 12(a). Without active pertur-
bation, we can achieve 40% to 50% of accuracy in all four

background colors. With the multiple-pixel perturbation, the
face recognition accuracy drops to 1% for all four colors.

Screen Diversity. We evaluate one-pixel perturbation with
different smartphones. The results are shown in Figure 12(b).
In the absence of screen-pixel perturbation and relying solely
on the passive perturbation, the performance of images cap-
tured by under-screen cameras from different smartphone
manufacturers is relatively similar, hovering around 80%.
However, after adding one-pixel perturbation, the classifica-
tion performance of under-screen camera captured images
dropped below 20%. Specifically, the classification accuracy
of ZTE AXON30 declined the most, falling below 5%, while
that of Samsung Fold4 decreased the least. This is because
the pixel size of the Samsung translucent screen region is too
large, causing the screen-pixel perturbation on the under-
screen camera captured image to be too diffuse, thereby
reducing the perturbation intensity of the attacking region.

Image Quality.We further evaluate the impact of screen-
pixel perturbation on image quality by comparing a set of
unperturbed images with the corresponding perturbed im-
ages, all captured using the ZTE AXON30.We use twowidely
adopted metrics: Peak Signal-to-Noise Ratio (PSNR) [59] and
Structural Similarity Index Measure (SSIM) [63]. Specifically,
PSNR quantifies the variations in individual pixel intensity
levels, while SSIM assesses the structural distortions within
an image, e.g., stretching, banding, and twisting. The results
are shown in Table 5. For images containing one-pixel per-
turbations, the PSNR and SSIM are 23.72 dB and 0.84, respec-
tively. For images added with multiple-pixel perturbations,
the PSNR and SSIM are 21.5 dB and 0.8, respectively, as more
screen-pixel perturbations have been added to the captured
images. Note that for images with acceptable viewing quality,
the minimum PSNR and SSIM are in the range of 20∼40 and
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Table 3: Performance of both one-pixel and multiple-pixel perturbations on Facescrub dataset.

Model Clean image
One-pixel Multiple-pixel

Black screen IncepResNet MobileNet White screen IncepResNet MobileNet
Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred

IncepResNet 90.57% 50.75% / 85.09% 0.00% / 0.76% 0.38% / 0.38% 38.30% / 72.64% 0.00% / 0.00% 0.00% / 0.00%
MobileNet 84.53% 26.04% / 81.89% 0.19% / 0.76% 0.57% / 0.76% 19.25% / 58.11% 0.00% / 0.00% 0.00% / 0.00%

Table 4: Performance of both one-pixel and multiple-pixel perturbations on xGaze dataset.

Model Clean image Black screen
One-pixel

White screen
Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 94.72% 81.06% 4.01% 2.37% 41.53% 0.36% 0.91%
MobileNet 94.54% 70.13% 2.37% 1.28% 34.43% 0.18% 0.55%

Table 5: The PSNR and SSIM when

one-pixel andmultiple-pixel pertur-

bations are embedded in the image.

Metrics One-pixel Multiple-pixel

PSNR 23.72 dB 21.50 dB
SSIM 0.84 0.80
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Figure 12: Accuracy under different hardware setups.

0.8∼0.9, respectively [33, 44]. Thus, the perturbed images
have acceptable image quality.

6.4 User Study

Below, we conduct a user study to investigate if the added per-
turbation is visible in images captured by the under-screen
cameras. We also examine if and how changes in the smart-
phone TSR affect the user’s experience with the smartphone
use. We recruit 30 participants from our university (13 fe-
male and 17 male, aged between 20 and 45) to conduct a user
study. We advertised our study through university mailing
lists, social networks, and advertising boards in our depart-
ment building. All participants had little or no experience
with USC smartphones. Ethical approval for carrying out the
user study has been granted by our organization.

Study design.We design two tasks in the study.

• Perturbed images task. We investigate if users perceive
the screen perturbation added to images. Using the three
USC smartphones from Section 6.3, Samsung Fold4, ZTE
AXON30, and Xiaomi MIX4, we prepare two image sets: one-
pixel and multiple-pixel paired sets. We randomly select ten
different subjects from the XGaze [72] dataset each time.
In the one-pixel paired set, each smartphone captures ten
unperturbed images without adding any screen perturbation
and ten perturbed images with one-pixel perturbation from
these subjects. The multiple-pixel paired set consists of ten
unperturbed images captured byAXON30when the status bar
is in red/green/blue/white, and ten perturbed images captured
by AXON30 with added multiple-pixel perturbation. Images
in two image sets are displayed on a 27-inch monitor in a
random order, and each image is played for 10 seconds.

Results. Participants answer two 5-point Likert scale ques-
tions (1: strongly disagree; 5: strongly agree) after viewing
each displayed image:

- Q1: Can you see a person in this image?

- Q2: Do you think there is a perturbation in this image?

A standard two-sample t-test [47] is conducted to compare
user visual perception for unperturbed and perturbed image
sets. The null hypothesis (𝐻0) posits no true difference be-
tween the means of the two sets, while the alternate hypothe-
sis (𝐻𝑎) suggests a non-zero difference. Setting a significance
level 𝛼 = 0.05, we calculate 𝑝 to get the t-test result, where 𝑝
is the likelihood that the observed difference is occurred by
chance. If 𝑝 > 𝛼 , we accept𝐻0 and conclude that participants
have similar responses on both sets. Otherwise, we reject
𝐻0 at the significance level of 0.05, and conclude that partic-
ipants have different responses on the two sets. The t-test
results are shown in Tables 6 and 7. 𝐻0 is all accepted in Q1,
showing similar user perception for seeing a person in all
unperturbed and perturbed images. In Q2, images captured
by Fold 4 accept 𝐻0, suggesting less perceptible one-pixel
perturbation, while images from AXON30 and MIX4 reject it,
indicating more visible perturbations due to their different
TSR designs. As shown in Figure 9, different TSR designs
of smartphones result in diverse one-pixel perturbation pat-
terns. However, images captured with different status-bar
colors accept 𝐻0, suggesting participants cannot perceive
the added multiple-pixel perturbation since the color of the
status bar has added a fixed perturbation to captured images.
• Smartphone usage task. Next, we investigate the percep-
tibility of screen-pixel changes in the TSR and their impact
on user experience during typical smartphone usage. We
adopt the three USC smartphones used in Section 6.3, and
randomly assign ten participants to use each of the smart-
phones. We developed two smartphone apps, i.e., image app

and text app, for image and text viewing. To reduce individual
differences in visual perception of screen perturbations, we
conduct a within-subject study [9] and consider two screen
settings: (1) with screen perturbation, and (2) without screen
perturbation. We ask the participant to use the two developed
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Table 6: T-test results of the one-pixel paired set.

Device AXON30 MIX4 Fold4
Question Q1 Q2 Q1 Q2 Q1 Q2

𝑝 0.8822 2.83 × 10−7 0.3416 2.67 × 10−5 0.3367 0.0545
Results 𝐻0 𝐻𝑎 𝐻0 𝐻𝑎 𝐻0 𝐻0

Table 7: T-test results of the multiple-pixel paired set.

Color Red Green Blue White
Question Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

𝑝 0.1326 0.4063 0.7063 0.8051 0.6367 0.9484 0.3007 0.2298
Results 𝐻0 𝐻0 𝐻0 𝐻0 𝐻0 𝐻0 𝐻0 𝐻0

apps on the assigned smartphone, and each app is used for
two minutes. We configure the app with both screen settings
and load them in random order, thus ensuring one-minute us-
age for each screen setting. We consider both one-pixel and
multiple-pixel perturbations in the experiment and modify
the screen pixel in the TSR accordingly.
Results. We provide a short questionnaire to the partici-

pants, and ask them if they have noticed any screen pertur-
bation during the use of the apps. The results show that none
of the 30 participants notice the added one-pixel or multiple-
pixel screen perturbation. We also conduct a standard two-
sample t-test [47] to investigate the visual perception of the
user in the two screen settings, i.e., with and without screen
perturbation added. The result shows that 𝐻0 is accepted
with 𝑝 > 0.99, which indicates that two screen settings on
image app and text app have the same visual perception.

6.5 Countermeasures

Below, we investigate possible countermeasures against the
proposed method. Many defenses [10, 20, 23, 29, 35, 43]
have been proposed to defend against adversarial pertur-
bations. Depending on whether those defenses have formal
robustness guarantees, we can categorize them into empiri-

cal defenses [20, 23, 35] and certified defenses [10, 29, 45]. We
consider state-of-the-art defenses from both categories. For
empirical defenses, we consider adversarial training [35] as it
is viewed as one of the most effective empirical defenses. For
certified defenses, we consider randomized smoothing [10]
as it is applicable to any classifier and scalable to large DNN.
Adversarial training. Adversarial training [20, 35] lever-
ages adversarially perturbed training examples to train a
model to enhance its robustness. First, we generate adversar-
ial examples using the Project Gradient Descent (PGD) at-
tack [35]. We employ an 𝐿∞-based PGD attack on the XGaze
dataset, with a maximum distortion of 0.1 and an untargeted
attack mode. We run the PGD attack for 50 steps with a step
size of 0.01. We train IncepResNet-V1 and MobileNet-V2 for
200 epochs with a learning rate of 0.1, decayed by 0.1 after
100 and 150 epochs, respectively [35, 39]. Subsequently, we
evaluate the performance of the resulting models against
one-pixel and multiple-pixel perturbations using the XGaze
dataset [72]. The results are shown in Table 8, with adver-
sarial training, the classification accuracy of the two DNN

Table 8: Accuracy of one-pixel andmultiple-pixel perturbations with

adversarial training on XGaze dataset.

Model Clean image
One-pixel Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 85.79% 7.29% 4.19% 3.83% 1.82%
MobileNet 81.42% 8.20% 4.92% 4.00% 1.64%

Table 9: Accuracy of one-pixel and multiple-pixel perturbations

when adversarial training is enhanced with perturbed images.

Model Clean image
One-pixel Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 87.07% 10.56% 5.83% 4.37% 2.00%
MobileNet 86.52% 10.20% 5.28% 1.82% 2.37%

models has still degraded below 8% and 4% when one-pixel
and multiple-pixel perturbations have been added.
Moreover, we also perform adversarial training with a

dataset that comprises clean images paired with correspond-
ing perturbed images containing one-pixel perturbation. The
results are presented in Table 9. When comparing with the
results reported in Table 4, we can observe a decline in clas-
sification accuracy when perturbed images are utilized for
training. However, the accuracy is below 10% and 5%, re-
spectively, when the captured images contain one-pixel or
multiple-pixel perturbations. Overall, the results indicate
that adversarial training is not sufficient to mitigate the per-
turbations added by the proposed method. While this doesn’t
conclusively negate the possibility of developing robust mod-
els, it indicates the inherent challenges in such pursuits.
Randomized smoothing. Given an arbitrary classifier 𝐻
(called base classifier) and a testing input x, randomized
smoothing builds a certifiably robust smoothed classifier
𝐺 by adding zero-mean isotropic Gaussian noise N(0, 𝜎2

I)

to the testing input x, where 𝜎 is the standard deviation
and I is the identity matrix. Formally, the predicted label of
the smoothed classifier 𝐺 for the testing input x is 𝐺 (x) =
argmax𝑐=1,2,· · · ,𝐶 Pr(𝐻 (x + N(0, 𝜎2𝐼 )) = 𝑐), where 𝐶 is the
total number of classes. Existing work [10] shows that the
predicted label of the smoothed classifier 𝐺 for the testing
input x does not change when the adversarial perturbation
added to x is bounded. To compute 𝐺 (x) in practice, ran-
domized smoothing first adds random Gaussian noise to the
testing input x to create 𝑀 noisy versions of the testing in-
put, then use the base classifier 𝐻 to predict labels for those
𝑀 noisy inputs, and finally take a majority vote over the 𝑀
predicted labels as the final prediction for the testing input.
Following previous work [10], we set 𝜎 = 0.5 and 𝑀 = 105.
Moreover, we train the base classifier on training inputs aug-
mented with Gaussian noise to improve the robustness of
the smoothed classifier. Table 10 shows our experimental
results, which show that the classification accuracy of the
smoothed classifier built by randomized smoothing is still
very low. The reason is that randomized smoothing can only
certify a very small perturbation. Our results demonstrate
that randomized smoothing is insufficient to mitigate our
proposed one-pixel and multiple-pixel perturbations.
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Table 10: Accuracy of one-pixel and multiple-pixel perturbations

under randomized smoothing.

Model Clean image
One-pixel Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 93.99% 6.01% 3.46% 0.73% 0.36%
MobileNet 94.90% 6.19% 3.64% 1.09% 0.91%

7 LIMITATIONS AND DISCUSSIONS
Difference between attacking camera input & output.
Directly modifying captured images is challenging for attack-
ers, as it requires write access from smartphone OS to a set of
media files [15]. However, attacking the optical path (camera
input) is relatively easier, as Android does not have permis-
sion restrictions on UI settings, allowing any app to set the
screen content and potentially perturb camera’s input.
Practical deployment. In typical smartphone usage sce-
narios, successive frames captured by the camera are similar.
Thus, we only need to compute the proposed screen-pixel
perturbation once, rather than for each image separately,
making the attack more feasible.
Requirement of uncorrupted images. The current design
of our system requires an uncorrupted image to compute the
attacking region for the screen perturbation. This image can
be obtained from many sources, e.g., selfies of the subject
published on social media, and does not need to be taken in
run-time. For instance, with the aim to defend against unau-
thorized face recognition systems, users can take a selfie
in run-time or upload a previously taken selfie to compute
the attacking region. Since the face of the subject is always
located in the center of the selfie, it leads to similar attacking
regions as long as the image contains the same subject. Simi-
larly, in the attacking scenario, malicious parties can find and
leverage the selfie of the victim published on social media
to achieve the same purpose. For future research direction,
we can release the requirement of an uncorrupted image by
designing a universal and scene-independent perturbation.
Potential operating system-level defense. A potential
defensive strategy is to prohibit a single application from
rendering content on the screen and accessing the camera
simultaneously. However, it is inconvenient for users, espe-
cially when they need to use video communication appli-
cations that usually require camera access, together with
other applications. In fact, many modern smartphones, e.g.,
Samsung Fold3/4, ZTE AXON 20/30/40, Xiaomi MIX4, and
K50S, are designed to support simultaneous operation of one
app’s camera usage while another app utilizes the screen.

8 RELATED WORK
Image processing for the under-screen camera. There
are efforts in modeling and restoring images that are affected
by passive perturbations caused by the translucent screen
[17, 51, 56, 67, 75]. Specifically, Zhou et al. [75] and Yang et
al. [67] modeled the passive perturbation of the screen and
proposed an unsupervised Wiener deconvolution method.
Moreover, they employed deep neural networks to address

the issues of large blur and low signal-to-noise ratio in under-
screen images [51, 56, 75]. Feng et al. [18] and Gao et al. [19]
explored simulation pipelines to generate synthetic datasets
with real-captured passive perturbation. While existing stud-
ies focused solely on passive perturbations, we are the first
to consider the active perturbations caused by the screen
displays. We apply the Huygens-Fresnel principle to model
the impact of different color pixels and screen parameters
on image formation. This allows us to analyze the impact of
active screen perturbations on deep neural networks.
Programmable aperture. Our work is related to the con-
cept of programmable aperture that has been implemented in
some new types of cameras such as DiffuserCam [4] and Flat-
Cam [5]. Existing works of programmable aperture leverage
amplitude or phase masks to code the aperture of a camera
lens, and operate at scales that are larger than screen pixels.
This is different from the under-screen camera apertures
we consider, which coexist with R/G/B OLED arrays and
can be dynamically manipulated to generate screen-pixel
perturbation on the TSR when the screen is illuminated.
Adversarial attacks can be categorized into digital space
attacks [7, 35, 58] or physical space attacks [16, 26, 32, 54].
Digital space attacks directly change pixel values in the digi-
tal pixel domain, typically using methods such as PGD [35]
and C&W [7]. However, they may not generalize to real-
world scenarios due to the constraints present in the physical
environment. Physical attacks, such as those utilizing graffiti
[16], rectangular stickers [26], eyeglasses [54], or LED lamps
[49, 76], have been explored for privacy protection but are
often limited by artificial settings or hardware modifications.
By contrast, ours is the first to generate adversarial pertur-
bation on USC-captured images utilizing both passive and
active screen perturbation of full-screen devices. Our threat
model is unique in that we inject a perturbation into the
optical path between the camera and the object, disrupting
any object without tampering with the object itself.

9 CONCLUSION
We show for the first time the screen can be used for adversar-
ial attack and defense on under-screen camera. We identify
the activated screen-pixel that can be exploited for applying
perturbation on images captured by under-screen camera.
We derive an imaging formation model for the under-screen
camera, which facilitates the generation of screen-pixel per-
turbations on synthesized datasets.We design and implement
a method to successfully fool different deep learning mod-
els. We believe this is a pioneer work which can stimulate a
lot of follow-up works either to attack or safeguard current
under-screen cameras on mobile devices.
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