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FOR  COMPLEX DISTRIBUTED systems that include 
services that constantly evolve in functionality and 
data, keeping overall latency to a minimum is a 
challenging task. Critical path tracing (CPT) is a new 
applied mechanism for gathering critical path latency 
profiles in large-scale distributed applications. It is 
currently enabled in hundreds of different Google 
services, which provides valuable day-to-day data for 
latency analysis.

Fast turnaround time is an essential feature for any 
online service. In determining the root causes of high 
latency in a distributed system, the goal is to answer 
a key optimization question: Given a distributed 
system and workload, which subcomponents can be 
optimized to reduce latency?

Low latency is an important feature for many Google 
applications, such as Search,4 and latency-analysis 

tools play a critical role in sustaining 
low latency at scale. The systems evolve 
constantly because of code and deploy-
ment changes, as well as shifting traffic 
patterns. Parallel execution is essential, 
both across service boundaries and 
within individual services. Different 
slices of traffic have different latency 
characteristics.

CPT provides detailed and action-
able information about which subcom-
ponents of a distributed system are con-
tributing to overall latency. This article 
presents results and experiences as ob-
served in using CPT in a particular ap-
plication: Google Search.

Critical path describes the ordered 
list of steps that directly contribute to 
the slowest path of request process-
ing through a distributed system so 
optimizing these steps reduces overall 
latency. Individual services have many 
subcomponents, and CPT relies on 
software frameworks17 to identify which 
subcomponents are on the critical path. 
When one service calls another, RPC 
(remote procedure call) metadata prop-
agate critical path information from the 
callee back to the caller. The caller then 
merges critical paths from its depen-
dencies into a unified critical path for 
the entire request.

The unified critical path is logged 
with other request metadata. Log analy-
sis is used to select requests of inter-
est, and then critical paths from those 
requests are aggregated to create criti-
cal path profiles. The tracing process 
is efficient, allowing large numbers of 
requests to be sampled. The resulting 
profiles give detailed and precise infor-
mation about the root causes of latency 
in distributed systems.

An example system. Consider the 
distributed system in Figure 1, which 
consists of three services, each with 
two subcomponents. The purpose of 
the system is to receive a request from 
the user, perform some processing, and 
return a response. Arrows show the di-
rection of requests where responses are 
sent back in the opposite direction.

The system divides work across 
many subcomponents. Requests arrive 
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at Service A, which hands request pro-
cessing off to subcomponent A1. A1 in 
turn relies on subcomponents B1, B2, 
and A2, which have their own depen-
dencies. Some subcomponents can be 
invoked multiple times during request 
processing (for example, A2, B2, and C2 
all call into C1).

Even though the system architecture 
is apparent from the figure, the actual 
latency characteristics of the system are 
hard to predict. For example, is A1 able 
to invoke A2 and B1 in parallel, or is 
there a data dependency so the call to B1 
must complete before the call to A2 can 
proceed? How much internal processing 
does A2 perform before calling into B2? 
What about after receiving the response 
from B2? Are any of these requests re-
peated? What is the latency distribution 
of each processing step? And how do the 
answers to all of these questions change 
depending on the incoming request?

Without good answers to these ques-
tions, efforts to improve overall sys-
tem latency will be poorly targeted and 
might go to waste. For example, in Fig-
ure 1, to reduce the overall latency of A1 
and its downstream subcomponents, 

you must know which of these subcom-
ponents actually impact the end-to-end 
system latency. Before deciding to opti-
mize, you need to know whether A1 ® 
A2 actually matters.

Analysis with RPC telemetry. RPC te-
lemetry is commonly used for latency 
analysis. Services export coarse-grain 
information about how many times an 
RPC is made and the latency character-
istics of those RPCs. Monitoring services 
collect this information and create dash-
boards showing system performance. 
Coarse-grain slicing (for example, time 
range, source, and destination informa-
tion) is commonly used to enhance RPC 
telemetry-based analysis.1,11,16 

RPC telemetry works well when a few 
RPC services are always important for 
latency. Monitoring for those services 
can quickly identify which are causing 
problems. Service owners can be identi-
fied, and they can work to improve per-
formance.

RPC telemetry struggles with paral-
lelism, however. Referring to the fig-
ure, assume that A2 does CPU-bound 
work while waiting for responses from 
B2, C1, and C2. Improving latency for 

B2, C1, and C2 will not improve overall 
performance, because A2 is not actu-
ally blocked while waiting for their re-
sponses.

Repeated RPCs can also make moni-
toring confusing. Perhaps A2 is mak-
ing hundreds of requests to C1. RPC 
telemetry can show the average latency 
as very fast—but a single slow RPC out 
of hundreds might be the root cause of 
slowness across the entire system.8 RPC 
telemetry also cannot tell whether those 
hundreds of requests are happening 
in parallel or are serialized. This is im-
portant information for understanding 
how those requests impact latency.

RPC telemetry struggles with identi-
fying important subcomponents within 
services. For example, both A1 and A2 
(subcomponents within Service A) make 
requests into B2. Telemetry for Service A 
and Service B will typically mix these re-
quests together, even though they might 
have different latency characteristics. 
This can make it difficult to tell which 
requests should be optimized.

The last major issue with RPC telem-
etry is the streetlight effect: RPC telem-
etry sheds light in one particular area of 
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Figure 1. A simple distributed system.
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systems are another issue. As tracing be-
comes more detailed, it becomes more 
expensive. Adaptive sampling tech-
niques18,19 are sometimes used to in-
crease the sampling rate for interesting 
requests. If the task is to investigate the 
99th percentile latency for a 1% experi-
ment, finding a single relevant example 
requires 10,000 traced requests; 10,000 
to 100,000 examples might be neces-
sary to gain statistical confidence about 
where a regression occurred. Together, 
this means that it might be necessary to 
gather full traces for 108  to 109 requests, 
with each trace being 100 times larger 
than the default expected by the distrib-
uted tracing system.

Critical path tracing. CPT is designed 
to fill some of the gaps in these systems. 
The term critical path in project manage-
ment14 refers to the many interdepen-
dent steps that must be completed to fin-
ish a project. In this article, critical path 
describes the ordered list of steps that 
directly contribute to the slowest path of 
request processing through a distribut-
ed system. Aggregating these traces into 
critical path profiles can identify latency 
bottlenecks in the overall system.

Software frameworks are used to in-
strument service subcomponents au-
tomatically.17 Support has been added 
to most of the commonly used frame-
works in Google Search, and developers 
using those frameworks get fine-grain 
CPT without additional coding effort.

Framework instrumentation code 
automatically identifies the critical path 
for request execution. Only the critical 
path is retained for analysis; other trace 
information is discarded. This reduces 
tracing cost by orders of magnitude.

Critical path traces are logged 
alongside other request and response 
metadata, such as A/B experiment in-
formation and which features appear 
on the Search results page. This allows 
standard log-analysis techniques to use 
business criteria to find traces from 
requests of interest. Other distributed 
tracing systems log traces separately 
for each machine involved in a request. 
Reconstructing a complete request re-
quires joining traces from hundreds of 
machines. Logging all critical path sub-
components together avoids the over-
head of joining the traces.

Together, these cost reductions al-
low detailed traces with high sampling 
rates. 

the system, so you spend time optimiz-
ing that part of the system, but mean-
while, latency problems not caused by 
RPCs get lost in the dark.

Analysis with CPU profilers. CPU 
profiling complements RPC telemetry 
well. Once RPC telemetry has identified 
a problematic service, CPU profiling can 
help figure out how to make that service 
faster. CPU samples with function call 
stacks are collected and aggregated, 
providing insights into expensive code 
paths. Profiles are typically collected 
for a single service at a time and might 
include the type of request that in-flight 
and hardware profile counters.2,12,15 

CPU profiling excels at identifying 
specific expensive subcomponents 
within services. When CPU time con-
tributes to overall latency, CPU profil-
ing can help identify where to optimize. 
Many of the same issues that impact 
RPC telemetry, however, also cause 
problems for CPU profiles. Lack of in-
formation about parallelism means 
that you can’t tell whether CPU-bound 
work is happening in parallel with 
RPCs, in parallel with other CPU-bound 
work, or actually blocking request prog-
ress. Heterogeneous workloads cause 
problems as well: Small but important 
slices of traffic get lost in the noise. 
Joining CPU profiles with information 
about parallelism and request metada-
ta from distributed tracing can address 
these limitations, but that technology is 
not widely deployed.3

The streetlight effect also impacts 
CPU profiling: It makes it more likely 
you will focus on code that uses a lot of 
CPU, even if that code is not contribut-

ing to overall system latency.
Analysis with distributed tracing. 

The last common tool in the latency 
profiling toolkit is distributed tracing. 
This approach follows individual re-
quests through a system, collecting tim-
ing points and additional data as those 
requests are processed. Traces are ag-
gregated and analyzed to yield applica-
tion insights.5,18,19 

Unlike RPC telemetry and CPU pro-
filing, distributed tracing handles par-
allelism and heterogeneous workloads 
well. Information about all cross-ser-
vice requests is collected, including tim-
ing points. Visualization shows exactly 
when work for each service began and 
ended, and which services were running 
in parallel versus serial.

Most distributed tracing includes 
tracing for RPC boundaries by default 
but leaves out service subcomponent 
information. Developers can add trac-
ing for subcomponents as needed.

Workload slicing to find traces for 
particularly important requests is also 
possible, although again, developers 
have to manually tag traces that are im-
portant. Distributed tracing even allows 
automated analysis to identify which 
services contribute to total latency.5,20 

The major obstacle to using distrib-
uted tracing for detailed latency analy-
sis is cost. In Google Search, a single ser-
vice might have a few or dozens of RPC 
dependencies but can easily have 100 
times that number of important sub-
components. Instrumenting subcom-
ponents by default increases the size of 
traces by orders of magnitude.

Sample rates for distributed tracing 
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systems typically collect data at RPC 
boundaries by default and allow de-
velopers to add trace annotations for 
more-detailed tracing.18,19 With CPT, 
a developer can take advantage of the 
standardization provided by software 
frameworks to collect more-detailed 
information by default.17 

As an example, the Dagger frame-
work encourages authors to write code 
as ProducerModules.7 Each Producer-
Module declares the inputs it requires 
and the outputs it produces. Dagger 
then coordinates the execution of Pro-
ducerModules to process a request. Re-
ferring to Figure 1, the following code 
snippet shows a Dagger implementa-
tion of subcomponent A1:

@ProducerModule

public abstract class A1ProducerModule {

  @Produces

  @A1Output

  static A1Output runA1(@A2Output a2, 

@B1Output b1, @B2Output b2) {

  ... Code reads information from a2, b1, 

and b2, and calculates A1Output...

  }

}

The collection of ProducerModules 
creates a graph of subcomponents that 
are executed by the framework to pro-
cess the request. For this example, the 
framework knows which of A2, B1, and 
B2 was the last to block execution to pro-
duce A1’s output. Since the framework is 
aware of the subcomponent dependen-
cies, it can record the critical path.

For Google Search, subcomponent-
level traces are collected from several 
software frameworks in multiple pro-
gramming languages. Framework-lev-
el implementation is essential for scal-
ability, since it allows relatively small 
teams of developers to provide detailed 
critical path traces for code written by 
thousands of other people. Since each 
framework instruments and reports 
the critical path automatically, most 
developers are not aware that critical 
path tracing is happening. 

A few services that do not use frame-
works have implemented service-specif-
ic CPT as well. Traces from these servic-
es are more closely grained. The system 
degrades gracefully when requests are 
made to services that do not provide any 
traces. The size of the blind spot in the 
critical path is reported correctly and in-

Tracing a Request
This section describes the work need-
ed to gather a fine-grain critical path 
trace for a single request.

Critical path definition. For latency 
profiling, the key input used is the criti-
cal path—the set of steps that blocked 
progress on producing the response. 
When multiple steps proceed in paral-
lel, the slowest step is the only one on 
the critical path.

The execution of the request can be 
modeled as a directed graph of named 
nodes (for example, subcomponent 
names). Each node in the graph does 
some of its own computation. Each 
edge in the graph is a dependency 
where a node must wait for completion 
of one of its dependencies before com-
putation can proceed. The critical path 
is the longest-duration path through 
the nodes, starting at the request en-
try point and finishing at the node that 
computes the response. The length of 
the critical path is the total latency for 
processing the request.

Consider a distributed system such 
as that in Figure 1 and suppose the 
subcomponents execute in parallel ac-
cording to scenarios as summarized in 
Figure 2. Figure 2a shows an example 
of a critical path calculation where the 
requests to B1 and A2 happen sequen-
tially: A1 does some computation, then 
blocks, waiting for B1 to complete. A1 
proceeds with additional computation 
before waiting for A2 to complete. This 
example has a critical path of {A1=5ms, 
B1=20ms, A1=8ms, A2=2ms}, with a to-
tal critical path of 35ms.

Figure 2b shows how this changes 
when B1 and A2 execute in parallel. The 
new critical path becomes {A1=5ms, 
B1=20ms, A1=8ms}, for a total critical 
path of 33ms. A2 has been eliminated 
from the critical path. In this scenario, 
optimization efforts should be focused 
on A1 and B1.

Parallel execution also applies when 
the parent node overlaps with child 
nodes, as in Figure 2c. In this example, 
A1 sends an RPC to B1 but does not im-
mediately block to wait for a response. 
Instead, A1 continues with other com-
putations in parallel. For this case, 
whichever node finishes last to the 
critical path is assigned: {A1=3ms, 
B1=14ms, A1=10ms}.

Identifying service subcomponents. 
Infrastructure-first distributed tracing 

The major obstacle 
to using distributed 
tracing for detailed 
latency analysis  
is cost.
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dom samples, they are excluded from 
the aggregated analysis by default.

Limitations of CPT. The critical path 
as defined here is useful for addressing 
culprit-finding problems but has some 
limitations.

In general, any latency optimization 
efforts should focus on the subcompo-
nents that are on the critical path. Re-
source contention with off-critical path 
subcomponents, however, can also slow 
down critical path execution.

Considering Figure 2b again, imag-
ine that A2 is holding a mutex or is run-
ning intensive computation and caus-
ing CPU starvation in critical path code. 
The critical path will show part of the re-
source-starvation issue: Nodes waiting 
on the blocked resource will appear on 
the critical path. The culprit node (A2), 
however, will not appear on the critical 
path. Profilers focused on CPU and lock 
contention are well suited for identify-
ing these bottlenecks.

The critical path also lacks visibility 
into the drag and slack14 of the overall 
execution. Drag and slack are measures 
of the potential change in the critical 
path based on optimizing a single step. 
A single subcomponent that blocks all 
others has large drag: Improving that 
one subcomponent is likely to improve 
the overall execution time. 

When multiple subcomponents run 
in parallel, they have large slack: Even 
if one slows down, it probably won’t im-
pact the overall time. Causal profiling6 
uses an experiment-driven approach to 
identify headroom by automatically in-
jecting latency into different subcompo-
nents to determine their drag and slack. 
Quartz3 aims to identify subcomponents 
with high drag via CPU profiling. The 
Mystery Machine5 identifies subcompo-
nent slack by reconstructing system-de-
pendency graphs via log analysis.

Streaming is an important technique 
for improving latency, but unfortunate-
ly, CPT for streaming APIs is not well 
defined. Services can return a stream 
of results, allowing work to begin on 
the early results before later results are 
ready. Bidirectional streaming, where 
client and server send multiple mes-
sages back and forth, is a more complex 
programming model but is also useful 
for latency in some situations. The criti-
cal path must be carefully defined for 
these operations: Should segments end 
when the first message is returned, or 

cludes which service is responsible for 
that part of the critical path.

Propagation and merging. Propagat-
ing child-node paths to parent nodes al-
lows more-detailed views of the request 
critical path.

In Figure 2b, the initial critical path 
is {A1=5ms, B1=20ms, A1=8ms}. The B1 
child node takes up the majority of ex-
ecution time; however, B1’s internal ex-
ecution details are lacking. To add this 
detail, B1 first computes its own critical 
path (for example, {B1=4ms, B2=12ms}) 
and returns that path to A1.

A1 then merges the critical path from 
B1 into the overall critical path, and so 
on, recursively through the system. This 
presents potential challenges at each 
service boundary for undercounting, or 
A1 seeing a higher latency than that 
spent on B1 (for example, network rout-
ing or request/response serialization 
is nontrivial), as well as overcounting, 
where B1 reports a higher latency than 
that observed by A1 (typically, an instru-
mentation bug in B1). Since each service 
reports its own critical path, blind spots 
(for example, cases where B1 does not re-
port any critical path) are also common 
instrumentation challenges in Search.

Triggering. Depending on the frame-
work implementation, CPT can incur 
significant overhead. In practice, not ev-
ery request has to be traced, so sampling 
is used to amortize the cost. Sampling 
requires cross-service coordination to 
avoid creating unnecessary blind spots 
in the traces.

Each service can make an indepen-
dent sampling decision, and then it con-
veys that decision on outbound RPCs in 
request metadata. As with Facebook’s 
Mystery Machine,5 when downstream 
services see that the caller has opted in 
to CPT, the downstream services enable 
tracing as well. Even if the caller has not 
opted in to sampling, downstream ser-
vices are free to track and log their own 
critical paths. Callers that have not re-
quested sampling will ignore the result-
ing traces.

System operators can opt in to trac-
ing for specific requests, instead of rely-
ing on random sampling. This is useful 
for cases where a human operator needs 
to collect traces for debugging purposes. 
When identifying a particularly slow type 
of request, the operator collects many 
samples for that request to get data for a 
profile. Since these requests are not ran-

For latency 
profiling, the key 
input used is  
the critical path—
the set of steps  
that blocked 
progress on 
producing  
the response.
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niques Google Search uses for aggre-
gating critical path information are 
similar to the mechanisms generally 
used in CPU profiling. The process 
creates a profile for visualization and 
analysis by merging critical paths 
from sampled requests into a single 
“average critical path,” similar to the 
Mystery Machine.5 Google Search uses 
pprof10 for visualization, but CPT is 
flexible and can be used in conjunction 
with other visualization tools. 

Consider Figure 1 as an example sys-
tem where two requests are received. 
Table 1 shows how these two requests 
merge to create an average critical path. 

the last? What if the caller of the API is 
also streaming? Google Search’s current 
implementation of CPT deals with this 
challenge by defining the critical path 
segment as ending when the last mes-
sage of the stream is received, but this 
definition is misleading in situations 
where earlier messages are more impor-
tant for latency.

Even with these caveats, though, CPT 
helps focus effort on areas where it is 
most likely to make a difference.

Operational costs. Operational over-
head of CPT is low enough to enable pro-
file data collection by default in many 
applications, including Google Search. 
Search collects traces continuously on 
0.1% of requests. Traced requests see a 
1.7% increase in mean latency, adding 
.002% to overall mean request latency. 
Overhead remains low at the tail, with 
99th percentile latency overhead for 
traced requests being 2.0%.

CPU overhead is more difficult to cal-
culate. Frameworks were rewritten to in-
corporate CPT at runtime. Those chang-
es typically incurred less than 0.1% of 
the overall CPU cost, but framework 
overhead depends on the workload. The 
CPU overhead was deemed acceptable 
when compared with the value of the la-
tency profiles.

Network overhead is significant, 
largely because of an overly verbose wire 
format. For a critical path with N ele-
ments and an average of M subcompo-
nents per element, the wire format uses 
O(N * M) memory. A graph representa-
tion would encode the same information 
at lower cost. In practice, the network 
overhead is mitigated by both sampling 
only 0.1% of requests and compression.

Aggregation and Visualization
A single critical path trace is interesting 
but might not present a realistic view of 
overall system performance. Single re-
quests can be outliers. Merging multiple 
profiles creates a statistically significant 
view of system performance.

Individual critical paths are logged 
along with other metadata about the re-
quest. Standard log-analysis techniques 
are used to select a random sample of 
requests, meeting whatever criteria are 
of interest. For example, critical path 
analysis for Google Search routinely in-
cludes slicing by A/B experiment arms, 
filtering to select requests where certain 
UI elements appear on the Search re-

sults page, and from certain time ranges 
and geographic regions. One productive 
technique is simply to select only re-
quests that were extremely slow. Analyz-
ing these requests frequently reveals sys-
temic issues that amount to significant 
optimization opportunities.

Note that unlike distributed tracing 
systems,19 a single log entry contains 
a critical path that spans multiple ser-
vices. This is important for correctness: 
Back-end services can record their own 
critical path, but they cannot have a pri-
ori knowledge of whether their work will 
be on the critical path of their callers.

Aggregation algorithm. The tech-

Figure 2. Different parallelized execution scenarios.
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pprof’s difference-base view. The differ-
ence-base view highlights large differ-
ences between profiles. When you know 
in advance that the profiles should be 
the same, any differences larger than a 
given threshold are false positives.

To quantify the latency-profiling 
false-positive rate for Google Search, we 
repeated the pairwise comparison ex-
periment 100 times at various sample 
sizes and with various thresholds for 
considering a profile difference im-
portant enough to investigate. Table 3 
shows the 95th percentile confidence in-
tervals for the expected number of false 
positives. As an example, if the profile 
comparison is based on 1,000 requests 
per profile, you can be 95% confident 
that the average number of components 
with false positives larger than 5ms is 
between 0.2 and 0.4. 

In Google Search, it’s extremely rare 
for profiles to show large differences in 
a single subcomponent because of ran-
dom variation. An additional finding 
from the analysis is that not all subcom-
ponents are equally likely to show ran-
dom differences. Components that have 
larger mean times and standard devia-
tions also have larger false-positive rates. 
(The central limit theorem predicts this 
outcome. Even though subcomponents 
have non-normal latency distributions, 
estimates of mean latency become more 
precise as standard deviation shrinks 
and sample sizes grow.)

This finding has important impli-
cations for latency investigations in 
Search. Identifying the root causes of 
latency differences in A/B experiments 
is straightforward, because two profiles 
with identical sampling criteria can be 
compared. Any subcomponent-level dif-
ferences above 1ms are probably caused 
by the experiment, not by random varia-
tion. Root-cause analysis is much more 
difficult when comparing profiles of 
different workloads. Under those cir-
cumstances, larger sample sizes do not 
make the profile differences clearer—
any large differences between the pro-

Table 2. Precision of critical path time.

Sample Size 95th Percentile CI Width

1,000 ±19.9ms

10,000 ±6.3ms

100,000 ±2.0ms

1,000,000 ±0.7ms

Table 3. Components with false positives.

Sample Size False Positives > 5ms False Positives > 1ms False Positives > 0.1ms

1,000 [0.2 – 0.4] [3.5 – 4.2] [56.8 – 61.2]

10,000 n/a [0.7 – 1.1] [15.6 – 18.0]

100,000 n/a n/a [3.0 – 3.6]

In Request 1, A1 calls A2 and B1 in paral-
lel, and only A2 is on the critical path. In 
Request 2, A2 and B1 are called again in 
parallel, but B1 is slower and on the criti-
cal path. These are aggregated into a sin-
gle profile by merging subcomponents 
with identical paths and then dividing 
by the number of samples to keep met-
rics relative to average request latency.

This aggregation can be thought of 
as the average critical path of the over-
all system. Interpretation of the average 
critical path has to bear in mind that 
subcomponents are not sequential, and 
the average might not reflect any real 
critical path that the system could have 
taken. If two subcomponents are called 
in parallel, it is not possible for both to 
be on the critical path for a single re-
quest. Both are still likely to appear on 
the average critical path.

Subcomponent time on the average 
critical path reflects both how often 
the subcomponent is on the critical 
path and how long it takes when pres-
ent. The difference becomes important 
when considering system subcompo-
nents that are usually fast but occasion-
ally slow. A system subcomponent that 
always takes 5ms on the critical path 
will show up in an aggregate profile as 
taking 5ms. A system subcomponent 
that is on the critical path only 1% of the 
time but takes 500ms when it does ap-
pear will also show up in an aggregate 
profile as taking 5ms.

As with other statistical analysis, 
looking at the distribution of the data 
in the sample pool can be helpful. In 
addition to pprof format profiles, aggre-
gation tools collect latency histographs 
for critical path segments, and this 
data is consulted early on when latency 

problems are investigated. Optimiz-
ing something that occurs rarely but is 
very slow is a different problem from 
optimizing something that occurs fre-
quently. When the latency distribution 
for a particular subcomponent is highly 
skewed, it is helpful to have additional 
sampling to focus on cases where the 
subcomponent is slow.

Precision of total critical path. How 
many samples are needed to be con-
fident that a critical path change of a 
certain size is not a result of random 
variation in request latency? The central 
limit theorem can calculate confidence 
intervals for various sample sizes. Table 
2 shows estimates of the width of the 
95th percentile confidence intervals for 
Google Search profiles.

In practice, profile visualization 
becomes quite slow, with millions of 
requests in a sample. The default is to 
look at samples of 100,000 requests as a 
compromise between precision and us-
ability of profiling tools, and to increase 
sampling beyond 100,000 requests as 
needed.

Individual subcomponent precision. 
Aggregated profiles contain thousands 
of subcomponents. This creates a situ-
ation where even 95th percentile confi-
dence intervals can yield a large number 
of false positives—cases where a sub-
component appears to have had a sta-
tistically significant change in latency, 
but the difference is actually caused by 
random variation. False positives waste 
engineering time since investigating the 
latency change will not find a root cause.

One way of measuring the false posi-
tive rate is to create two profiles using 
identical sampling criteria and then 
compare the resulting profiles using 

Table 1. Critcal path aggregation.

Subcomponent Request 1 Request 2 Aggregated

A1/self 6ms 4ms 5ms

A1/A2 10ms — 5ms

A1/B1 — 4ms 2ms

Total 16ms 8ms 12ms
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files are probably a result of the different 
sampling criteria, not random variation.

Visualization. Once profiles have 
been aggregated, a variety of visualiza-
tions can be used to help engineers 
understand system latency. Top-down, 
bottom-up, call graphs, and flame 
graphs13 are all helpful. Figure 3 shows 
an example CPT visualization as a 
flame graph, with a latency- critical 
path represented as columns of boxes, 
and each box representing a subcom-
ponent. (The color of each box is insig-
nificant and optimized for easy view-
ing.) Profile comparison is essential for 
diagnosing regressions, since they show 
only subcomponents with large changes. 
This is particularly helpful for analyzing 
regressions in A/B experiments.

Future Work
The approach outlined here is practi-
cal and scales well, but has limitations. 
One area for future work is increasing 
adoption of fine-grain tracing and re-
ducing the size of blind spots in pro-
files. This is likely to require increasing 
adoption of frameworks-based pro-
gramming models.

CPT is currently defined only where 
RPCs create a directed graph of calling 
nodes with a clear hierarchical struc-
ture of RPCs. Streaming protocols that 
make incremental progress or contain 
multiple requests and responses in one 
session are difficult to analyze with CPT, 
and can be handled in future work.

CPT focuses on server-side latency 
analysis. Adding support for client-side 
components of latency (as was done 
with Facebook’s Mystery Machine5) 
would improve the ability to under-
stand which contributors to end-to-end 
latency have the most impact on the 
end-user experience.

The frameworks integration that 
CPT uses to identify service subcom-
ponents has profiling applications 
outside of latency: We have built proof-
of-concept distributed cost profilers 
within Google Search that allow down-
stream systems to trace expensive traf-
fic to specific subcomponents in call-
ers. These cost profiles are detailed and 
useful, but have not been generalized 
for use outside of Search.

Finally, adding metadata to trace col-
lection seems both possible and helpful. 
For example, frameworks could collect 
slack information for each critical path 

node. Where a node is blocked, frame-
works could collect information about 
the contended resource that is causing 
the delay. Continued research in this 
area should yield additional techniques 
to help profile for latency.

Conclusion
In large, real-world distributed sys-
tems, existing tools such as RPC te-
lemetry, CPU profiling, and distributed 
tracing are valuable for understanding 
the subcomponents of the overall sys-
tem but insufficient to perform end-to-
end latency analyses in practice. Issues 
such as highly parallel execution flows, 
heterogeneous workloads, and com-
plex execution paths within subsys-
tems make latency analysis difficult. In 
addition, these systems and workloads 
change frequently.

No one team or person has a detailed 
understanding of the system as a whole.

CPT in such systems addresses 
these challenges to provide actionable, 
precise latency analysis. Integration 
at the frameworks level17 provides de-
tailed views of application code with-
out requiring each developer to imple-
ment their own tracing. Common wire 
protocols allow consistent mecha-
nisms for triggering, aggregation, and 
visualization. Efficient implementa-
tion allows a high sampling rate, giv-
ing precise profiles even for relatively 
rare events. Scalable and accurate fine-
grain tracing has made CPT the stan-
dard approach for distributed latency 
analysis for many Google applications, 
including Google Search.
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See the original article at acmqueue9 (https://queue.
acm.org/detail.cfm?id=3526967), which features case 
studies, including an example illustrating the challenges 
with streaming RPC APIs and another illustrating 
the value of focusing on the most affected subset of 
requests using a real example from a Search home page 
latency regression.
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