
44 COMMUNICATIONS OF THE ACM | JANUARY 2023 | VOL. 66 | NO. 1

practice

FOR COMPLEX DISTRIBUTED systems that include
services that constantly evolve in functionality and
data, keeping overall latency to a minimum is a
challenging task. Critical path tracing (CPT) is a new
applied mechanism for gathering critical path latency
profiles in large-scale distributed applications. It is
currently enabled in hundreds of different Google
services, which provides valuable day-to-day data for
latency analysis.

Fast turnaround time is an essential feature for any
online service. In determining the root causes of high
latency in a distributed system, the goal is to answer
a key optimization question: Given a distributed
system and workload, which subcomponents can be
optimized to reduce latency?

Low latency is an important feature for many Google
applications, such as Search,4 and latency-analysis

tools play a critical role in sustaining
low latency at scale. The systems evolve
constantly because of code and deploy-
ment changes, as well as shifting traffic
patterns. Parallel execution is essential,
both across service boundaries and
within individual services. Different
slices of traffic have different latency
characteristics.

CPT provides detailed and action-
able information about which subcom-
ponents of a distributed system are con-
tributing to overall latency. This article
presents results and experiences as ob-
served in using CPT in a particular ap-
plication: Google Search.

Critical path describes the ordered
list of steps that directly contribute to
the slowest path of request process-
ing through a distributed system so
optimizing these steps reduces overall
latency. Individual services have many
subcomponents, and CPT relies on
software frameworks17 to identify which
subcomponents are on the critical path.
When one service calls another, RPC
(remote procedure call) metadata prop-
agate critical path information from the
callee back to the caller. The caller then
merges critical paths from its depen-
dencies into a unified critical path for
the entire request.

The unified critical path is logged
with other request metadata. Log analy-
sis is used to select requests of inter-
est, and then critical paths from those
requests are aggregated to create criti-
cal path profiles. The tracing process
is efficient, allowing large numbers of
requests to be sampled. The resulting
profiles give detailed and precise infor-
mation about the root causes of latency
in distributed systems.

An example system. Consider the
distributed system in Figure 1, which
consists of three services, each with
two subcomponents. The purpose of
the system is to receive a request from
the user, perform some processing, and
return a response. Arrows show the di-
rection of requests where responses are
sent back in the opposite direction.

The system divides work across
many subcomponents. Requests arrive

Distributed
Latency Profiling
through Critical
Path Tracing

DOI:10.1145/3570522

	� Article development led by
queue.acm.org

CPT can provide actionable
and precise latency analysis.

BY BRIAN EATON, JEFF STEWART,
JON TEDESCO, AND N. CIHAN TAS

https://dx.doi.org/10.1145/3570522
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570522&domain=pdf&date_stamp=2022-12-20

JANUARY 2023 | VOL. 66 | NO. 1 | COMMUNICATIONS OF THE ACM 45

I
M

A
G

E
 B

Y
 O

S
E

L
O

T
E

at Service A, which hands request pro-
cessing off to subcomponent A1. A1 in
turn relies on subcomponents B1, B2,
and A2, which have their own depen-
dencies. Some subcomponents can be
invoked multiple times during request
processing (for example, A2, B2, and C2
all call into C1).

Even though the system architecture
is apparent from the figure, the actual
latency characteristics of the system are
hard to predict. For example, is A1 able
to invoke A2 and B1 in parallel, or is
there a data dependency so the call to B1
must complete before the call to A2 can
proceed? How much internal processing
does A2 perform before calling into B2?
What about after receiving the response
from B2? Are any of these requests re-
peated? What is the latency distribution
of each processing step? And how do the
answers to all of these questions change
depending on the incoming request?

Without good answers to these ques-
tions, efforts to improve overall sys-
tem latency will be poorly targeted and
might go to waste. For example, in Fig-
ure 1, to reduce the overall latency of A1
and its downstream subcomponents,

you must know which of these subcom-
ponents actually impact the end-to-end
system latency. Before deciding to opti-
mize, you need to know whether A1 ®
A2 actually matters.

Analysis with RPC telemetry. RPC te-
lemetry is commonly used for latency
analysis. Services export coarse-grain
information about how many times an
RPC is made and the latency character-
istics of those RPCs. Monitoring services
collect this information and create dash-
boards showing system performance.
Coarse-grain slicing (for example, time
range, source, and destination informa-
tion) is commonly used to enhance RPC
telemetry-based analysis.1,11,16

RPC telemetry works well when a few
RPC services are always important for
latency. Monitoring for those services
can quickly identify which are causing
problems. Service owners can be identi-
fied, and they can work to improve per-
formance.

RPC telemetry struggles with paral-
lelism, however. Referring to the fig-
ure, assume that A2 does CPU-bound
work while waiting for responses from
B2, C1, and C2. Improving latency for

B2, C1, and C2 will not improve overall
performance, because A2 is not actu-
ally blocked while waiting for their re-
sponses.

Repeated RPCs can also make moni-
toring confusing. Perhaps A2 is mak-
ing hundreds of requests to C1. RPC
telemetry can show the average latency
as very fast—but a single slow RPC out
of hundreds might be the root cause of
slowness across the entire system.8 RPC
telemetry also cannot tell whether those
hundreds of requests are happening
in parallel or are serialized. This is im-
portant information for understanding
how those requests impact latency.

RPC telemetry struggles with identi-
fying important subcomponents within
services. For example, both A1 and A2
(subcomponents within Service A) make
requests into B2. Telemetry for Service A
and Service B will typically mix these re-
quests together, even though they might
have different latency characteristics.
This can make it difficult to tell which
requests should be optimized.

The last major issue with RPC telem-
etry is the streetlight effect: RPC telem-
etry sheds light in one particular area of

46 COMMUNICATIONS OF THE ACM | JANUARY 2023 | VOL. 66 | NO. 1

practice

Figure 1. A simple distributed system.

Service A

A1 A2

Service B

B1 B2

Service C

C1 C2

User

systems are another issue. As tracing be-
comes more detailed, it becomes more
expensive. Adaptive sampling tech-
niques18,19 are sometimes used to in-
crease the sampling rate for interesting
requests. If the task is to investigate the
99th percentile latency for a 1% experi-
ment, finding a single relevant example
requires 10,000 traced requests; 10,000
to 100,000 examples might be neces-
sary to gain statistical confidence about
where a regression occurred. Together,
this means that it might be necessary to
gather full traces for 108 to 109 requests,
with each trace being 100 times larger
than the default expected by the distrib-
uted tracing system.

Critical path tracing. CPT is designed
to fill some of the gaps in these systems.
The term critical path in project manage-
ment14 refers to the many interdepen-
dent steps that must be completed to fin-
ish a project. In this article, critical path
describes the ordered list of steps that
directly contribute to the slowest path of
request processing through a distribut-
ed system. Aggregating these traces into
critical path profiles can identify latency
bottlenecks in the overall system.

Software frameworks are used to in-
strument service subcomponents au-
tomatically.17 Support has been added
to most of the commonly used frame-
works in Google Search, and developers
using those frameworks get fine-grain
CPT without additional coding effort.

Framework instrumentation code
automatically identifies the critical path
for request execution. Only the critical
path is retained for analysis; other trace
information is discarded. This reduces
tracing cost by orders of magnitude.

Critical path traces are logged
alongside other request and response
metadata, such as A/B experiment in-
formation and which features appear
on the Search results page. This allows
standard log-analysis techniques to use
business criteria to find traces from
requests of interest. Other distributed
tracing systems log traces separately
for each machine involved in a request.
Reconstructing a complete request re-
quires joining traces from hundreds of
machines. Logging all critical path sub-
components together avoids the over-
head of joining the traces.

Together, these cost reductions al-
low detailed traces with high sampling
rates.

the system, so you spend time optimiz-
ing that part of the system, but mean-
while, latency problems not caused by
RPCs get lost in the dark.

Analysis with CPU profilers. CPU
profiling complements RPC telemetry
well. Once RPC telemetry has identified
a problematic service, CPU profiling can
help figure out how to make that service
faster. CPU samples with function call
stacks are collected and aggregated,
providing insights into expensive code
paths. Profiles are typically collected
for a single service at a time and might
include the type of request that in-flight
and hardware profile counters.2,12,15

CPU profiling excels at identifying
specific expensive subcomponents
within services. When CPU time con-
tributes to overall latency, CPU profil-
ing can help identify where to optimize.
Many of the same issues that impact
RPC telemetry, however, also cause
problems for CPU profiles. Lack of in-
formation about parallelism means
that you can’t tell whether CPU-bound
work is happening in parallel with
RPCs, in parallel with other CPU-bound
work, or actually blocking request prog-
ress. Heterogeneous workloads cause
problems as well: Small but important
slices of traffic get lost in the noise.
Joining CPU profiles with information
about parallelism and request metada-
ta from distributed tracing can address
these limitations, but that technology is
not widely deployed.3

The streetlight effect also impacts
CPU profiling: It makes it more likely
you will focus on code that uses a lot of
CPU, even if that code is not contribut-

ing to overall system latency.
Analysis with distributed tracing.

The last common tool in the latency
profiling toolkit is distributed tracing.
This approach follows individual re-
quests through a system, collecting tim-
ing points and additional data as those
requests are processed. Traces are ag-
gregated and analyzed to yield applica-
tion insights.5,18,19

Unlike RPC telemetry and CPU pro-
filing, distributed tracing handles par-
allelism and heterogeneous workloads
well. Information about all cross-ser-
vice requests is collected, including tim-
ing points. Visualization shows exactly
when work for each service began and
ended, and which services were running
in parallel versus serial.

Most distributed tracing includes
tracing for RPC boundaries by default
but leaves out service subcomponent
information. Developers can add trac-
ing for subcomponents as needed.

Workload slicing to find traces for
particularly important requests is also
possible, although again, developers
have to manually tag traces that are im-
portant. Distributed tracing even allows
automated analysis to identify which
services contribute to total latency.5,20

The major obstacle to using distrib-
uted tracing for detailed latency analy-
sis is cost. In Google Search, a single ser-
vice might have a few or dozens of RPC
dependencies but can easily have 100
times that number of important sub-
components. Instrumenting subcom-
ponents by default increases the size of
traces by orders of magnitude.

Sample rates for distributed tracing

JANUARY 2023 | VOL. 66 | NO. 1 | COMMUNICATIONS OF THE ACM 47

practice

systems typically collect data at RPC
boundaries by default and allow de-
velopers to add trace annotations for
more-detailed tracing.18,19 With CPT,
a developer can take advantage of the
standardization provided by software
frameworks to collect more-detailed
information by default.17

As an example, the Dagger frame-
work encourages authors to write code
as ProducerModules.7 Each Producer-
Module declares the inputs it requires
and the outputs it produces. Dagger
then coordinates the execution of Pro-
ducerModules to process a request. Re-
ferring to Figure 1, the following code
snippet shows a Dagger implementa-
tion of subcomponent A1:

@ProducerModule

public abstract class A1ProducerModule {

 @Produces

 @A1Output

 static A1Output runA1(@A2Output a2,

@B1Output b1, @B2Output b2) {

 ... Code reads information from a2, b1,

and b2, and calculates A1Output...

 }

}

The collection of ProducerModules
creates a graph of subcomponents that
are executed by the framework to pro-
cess the request. For this example, the
framework knows which of A2, B1, and
B2 was the last to block execution to pro-
duce A1’s output. Since the framework is
aware of the subcomponent dependen-
cies, it can record the critical path.

For Google Search, subcomponent-
level traces are collected from several
software frameworks in multiple pro-
gramming languages. Framework-lev-
el implementation is essential for scal-
ability, since it allows relatively small
teams of developers to provide detailed
critical path traces for code written by
thousands of other people. Since each
framework instruments and reports
the critical path automatically, most
developers are not aware that critical
path tracing is happening.

A few services that do not use frame-
works have implemented service-specif-
ic CPT as well. Traces from these servic-
es are more closely grained. The system
degrades gracefully when requests are
made to services that do not provide any
traces. The size of the blind spot in the
critical path is reported correctly and in-

Tracing a Request
This section describes the work need-
ed to gather a fine-grain critical path
trace for a single request.

Critical path definition. For latency
profiling, the key input used is the criti-
cal path—the set of steps that blocked
progress on producing the response.
When multiple steps proceed in paral-
lel, the slowest step is the only one on
the critical path.

The execution of the request can be
modeled as a directed graph of named
nodes (for example, subcomponent
names). Each node in the graph does
some of its own computation. Each
edge in the graph is a dependency
where a node must wait for completion
of one of its dependencies before com-
putation can proceed. The critical path
is the longest-duration path through
the nodes, starting at the request en-
try point and finishing at the node that
computes the response. The length of
the critical path is the total latency for
processing the request.

Consider a distributed system such
as that in Figure 1 and suppose the
subcomponents execute in parallel ac-
cording to scenarios as summarized in
Figure 2. Figure 2a shows an example
of a critical path calculation where the
requests to B1 and A2 happen sequen-
tially: A1 does some computation, then
blocks, waiting for B1 to complete. A1
proceeds with additional computation
before waiting for A2 to complete. This
example has a critical path of {A1=5ms,
B1=20ms, A1=8ms, A2=2ms}, with a to-
tal critical path of 35ms.

Figure 2b shows how this changes
when B1 and A2 execute in parallel. The
new critical path becomes {A1=5ms,
B1=20ms, A1=8ms}, for a total critical
path of 33ms. A2 has been eliminated
from the critical path. In this scenario,
optimization efforts should be focused
on A1 and B1.

Parallel execution also applies when
the parent node overlaps with child
nodes, as in Figure 2c. In this example,
A1 sends an RPC to B1 but does not im-
mediately block to wait for a response.
Instead, A1 continues with other com-
putations in parallel. For this case,
whichever node finishes last to the
critical path is assigned: {A1=3ms,
B1=14ms, A1=10ms}.

Identifying service subcomponents.
Infrastructure-first distributed tracing

The major obstacle
to using distributed
tracing for detailed
latency analysis
is cost.

48 COMMUNICATIONS OF THE ACM | JANUARY 2023 | VOL. 66 | NO. 1

practice

dom samples, they are excluded from
the aggregated analysis by default.

Limitations of CPT. The critical path
as defined here is useful for addressing
culprit-finding problems but has some
limitations.

In general, any latency optimization
efforts should focus on the subcompo-
nents that are on the critical path. Re-
source contention with off-critical path
subcomponents, however, can also slow
down critical path execution.

Considering Figure 2b again, imag-
ine that A2 is holding a mutex or is run-
ning intensive computation and caus-
ing CPU starvation in critical path code.
The critical path will show part of the re-
source-starvation issue: Nodes waiting
on the blocked resource will appear on
the critical path. The culprit node (A2),
however, will not appear on the critical
path. Profilers focused on CPU and lock
contention are well suited for identify-
ing these bottlenecks.

The critical path also lacks visibility
into the drag and slack14 of the overall
execution. Drag and slack are measures
of the potential change in the critical
path based on optimizing a single step.
A single subcomponent that blocks all
others has large drag: Improving that
one subcomponent is likely to improve
the overall execution time.

When multiple subcomponents run
in parallel, they have large slack: Even
if one slows down, it probably won’t im-
pact the overall time. Causal profiling6
uses an experiment-driven approach to
identify headroom by automatically in-
jecting latency into different subcompo-
nents to determine their drag and slack.
Quartz3 aims to identify subcomponents
with high drag via CPU profiling. The
Mystery Machine5 identifies subcompo-
nent slack by reconstructing system-de-
pendency graphs via log analysis.

Streaming is an important technique
for improving latency, but unfortunate-
ly, CPT for streaming APIs is not well
defined. Services can return a stream
of results, allowing work to begin on
the early results before later results are
ready. Bidirectional streaming, where
client and server send multiple mes-
sages back and forth, is a more complex
programming model but is also useful
for latency in some situations. The criti-
cal path must be carefully defined for
these operations: Should segments end
when the first message is returned, or

cludes which service is responsible for
that part of the critical path.

Propagation and merging. Propagat-
ing child-node paths to parent nodes al-
lows more-detailed views of the request
critical path.

In Figure 2b, the initial critical path
is {A1=5ms, B1=20ms, A1=8ms}. The B1
child node takes up the majority of ex-
ecution time; however, B1’s internal ex-
ecution details are lacking. To add this
detail, B1 first computes its own critical
path (for example, {B1=4ms, B2=12ms})
and returns that path to A1.

A1 then merges the critical path from
B1 into the overall critical path, and so
on, recursively through the system. This
presents potential challenges at each
service boundary for undercounting, or
A1 seeing a higher latency than that
spent on B1 (for example, network rout-
ing or request/response serialization
is nontrivial), as well as overcounting,
where B1 reports a higher latency than
that observed by A1 (typically, an instru-
mentation bug in B1). Since each service
reports its own critical path, blind spots
(for example, cases where B1 does not re-
port any critical path) are also common
instrumentation challenges in Search.

Triggering. Depending on the frame-
work implementation, CPT can incur
significant overhead. In practice, not ev-
ery request has to be traced, so sampling
is used to amortize the cost. Sampling
requires cross-service coordination to
avoid creating unnecessary blind spots
in the traces.

Each service can make an indepen-
dent sampling decision, and then it con-
veys that decision on outbound RPCs in
request metadata. As with Facebook’s
Mystery Machine,5 when downstream
services see that the caller has opted in
to CPT, the downstream services enable
tracing as well. Even if the caller has not
opted in to sampling, downstream ser-
vices are free to track and log their own
critical paths. Callers that have not re-
quested sampling will ignore the result-
ing traces.

System operators can opt in to trac-
ing for specific requests, instead of rely-
ing on random sampling. This is useful
for cases where a human operator needs
to collect traces for debugging purposes.
When identifying a particularly slow type
of request, the operator collects many
samples for that request to get data for a
profile. Since these requests are not ran-

For latency
profiling, the key
input used is
the critical path—
the set of steps
that blocked
progress on
producing
the response.

JANUARY 2023 | VOL. 66 | NO. 1 | COMMUNICATIONS OF THE ACM 49

practice

niques Google Search uses for aggre-
gating critical path information are
similar to the mechanisms generally
used in CPU profiling. The process
creates a profile for visualization and
analysis by merging critical paths
from sampled requests into a single
“average critical path,” similar to the
Mystery Machine.5 Google Search uses
pprof10 for visualization, but CPT is
flexible and can be used in conjunction
with other visualization tools.

Consider Figure 1 as an example sys-
tem where two requests are received.
Table 1 shows how these two requests
merge to create an average critical path.

the last? What if the caller of the API is
also streaming? Google Search’s current
implementation of CPT deals with this
challenge by defining the critical path
segment as ending when the last mes-
sage of the stream is received, but this
definition is misleading in situations
where earlier messages are more impor-
tant for latency.

Even with these caveats, though, CPT
helps focus effort on areas where it is
most likely to make a difference.

Operational costs. Operational over-
head of CPT is low enough to enable pro-
file data collection by default in many
applications, including Google Search.
Search collects traces continuously on
0.1% of requests. Traced requests see a
1.7% increase in mean latency, adding
.002% to overall mean request latency.
Overhead remains low at the tail, with
99th percentile latency overhead for
traced requests being 2.0%.

CPU overhead is more difficult to cal-
culate. Frameworks were rewritten to in-
corporate CPT at runtime. Those chang-
es typically incurred less than 0.1% of
the overall CPU cost, but framework
overhead depends on the workload. The
CPU overhead was deemed acceptable
when compared with the value of the la-
tency profiles.

Network overhead is significant,
largely because of an overly verbose wire
format. For a critical path with N ele-
ments and an average of M subcompo-
nents per element, the wire format uses
O(N * M) memory. A graph representa-
tion would encode the same information
at lower cost. In practice, the network
overhead is mitigated by both sampling
only 0.1% of requests and compression.

Aggregation and Visualization
A single critical path trace is interesting
but might not present a realistic view of
overall system performance. Single re-
quests can be outliers. Merging multiple
profiles creates a statistically significant
view of system performance.

Individual critical paths are logged
along with other metadata about the re-
quest. Standard log-analysis techniques
are used to select a random sample of
requests, meeting whatever criteria are
of interest. For example, critical path
analysis for Google Search routinely in-
cludes slicing by A/B experiment arms,
filtering to select requests where certain
UI elements appear on the Search re-

sults page, and from certain time ranges
and geographic regions. One productive
technique is simply to select only re-
quests that were extremely slow. Analyz-
ing these requests frequently reveals sys-
temic issues that amount to significant
optimization opportunities.

Note that unlike distributed tracing
systems,19 a single log entry contains
a critical path that spans multiple ser-
vices. This is important for correctness:
Back-end services can record their own
critical path, but they cannot have a pri-
ori knowledge of whether their work will
be on the critical path of their callers.

Aggregation algorithm. The tech-

Figure 2. Different parallelized execution scenarios.

A1

A2B1

5ms

A1

8ms

20ms 2ms

(a) Serial Execution

(b)Parallel Execution

(c) Overlapping Execution

Time

A1

A2

5ms

A1

8ms

2ms

B1

20ms

Time

A1

B1

3ms 6ms

A1

10ms

6ms 8ms

Time

Figure 3. An example CPT visualization as a flame graph.

root

<unknown>

A1

A2

B2

C1

SG1

SG2

50 COMMUNICATIONS OF THE ACM | JANUARY 2023 | VOL. 66 | NO. 1

practice

pprof’s difference-base view. The differ-
ence-base view highlights large differ-
ences between profiles. When you know
in advance that the profiles should be
the same, any differences larger than a
given threshold are false positives.

To quantify the latency-profiling
false-positive rate for Google Search, we
repeated the pairwise comparison ex-
periment 100 times at various sample
sizes and with various thresholds for
considering a profile difference im-
portant enough to investigate. Table 3
shows the 95th percentile confidence in-
tervals for the expected number of false
positives. As an example, if the profile
comparison is based on 1,000 requests
per profile, you can be 95% confident
that the average number of components
with false positives larger than 5ms is
between 0.2 and 0.4.

In Google Search, it’s extremely rare
for profiles to show large differences in
a single subcomponent because of ran-
dom variation. An additional finding
from the analysis is that not all subcom-
ponents are equally likely to show ran-
dom differences. Components that have
larger mean times and standard devia-
tions also have larger false-positive rates.
(The central limit theorem predicts this
outcome. Even though subcomponents
have non-normal latency distributions,
estimates of mean latency become more
precise as standard deviation shrinks
and sample sizes grow.)

This finding has important impli-
cations for latency investigations in
Search. Identifying the root causes of
latency differences in A/B experiments
is straightforward, because two profiles
with identical sampling criteria can be
compared. Any subcomponent-level dif-
ferences above 1ms are probably caused
by the experiment, not by random varia-
tion. Root-cause analysis is much more
difficult when comparing profiles of
different workloads. Under those cir-
cumstances, larger sample sizes do not
make the profile differences clearer—
any large differences between the pro-

Table 2. Precision of critical path time.

Sample Size 95th Percentile CI Width

1,000 ±19.9ms

10,000 ±6.3ms

100,000 ±2.0ms

1,000,000 ±0.7ms

Table 3. Components with false positives.

Sample Size False Positives > 5ms False Positives > 1ms False Positives > 0.1ms

1,000 [0.2 – 0.4] [3.5 – 4.2] [56.8 – 61.2]

10,000 n/a [0.7 – 1.1] [15.6 – 18.0]

100,000 n/a n/a [3.0 – 3.6]

In Request 1, A1 calls A2 and B1 in paral-
lel, and only A2 is on the critical path. In
Request 2, A2 and B1 are called again in
parallel, but B1 is slower and on the criti-
cal path. These are aggregated into a sin-
gle profile by merging subcomponents
with identical paths and then dividing
by the number of samples to keep met-
rics relative to average request latency.

This aggregation can be thought of
as the average critical path of the over-
all system. Interpretation of the average
critical path has to bear in mind that
subcomponents are not sequential, and
the average might not reflect any real
critical path that the system could have
taken. If two subcomponents are called
in parallel, it is not possible for both to
be on the critical path for a single re-
quest. Both are still likely to appear on
the average critical path.

Subcomponent time on the average
critical path reflects both how often
the subcomponent is on the critical
path and how long it takes when pres-
ent. The difference becomes important
when considering system subcompo-
nents that are usually fast but occasion-
ally slow. A system subcomponent that
always takes 5ms on the critical path
will show up in an aggregate profile as
taking 5ms. A system subcomponent
that is on the critical path only 1% of the
time but takes 500ms when it does ap-
pear will also show up in an aggregate
profile as taking 5ms.

As with other statistical analysis,
looking at the distribution of the data
in the sample pool can be helpful. In
addition to pprof format profiles, aggre-
gation tools collect latency histographs
for critical path segments, and this
data is consulted early on when latency

problems are investigated. Optimiz-
ing something that occurs rarely but is
very slow is a different problem from
optimizing something that occurs fre-
quently. When the latency distribution
for a particular subcomponent is highly
skewed, it is helpful to have additional
sampling to focus on cases where the
subcomponent is slow.

Precision of total critical path. How
many samples are needed to be con-
fident that a critical path change of a
certain size is not a result of random
variation in request latency? The central
limit theorem can calculate confidence
intervals for various sample sizes. Table
2 shows estimates of the width of the
95th percentile confidence intervals for
Google Search profiles.

In practice, profile visualization
becomes quite slow, with millions of
requests in a sample. The default is to
look at samples of 100,000 requests as a
compromise between precision and us-
ability of profiling tools, and to increase
sampling beyond 100,000 requests as
needed.

Individual subcomponent precision.
Aggregated profiles contain thousands
of subcomponents. This creates a situ-
ation where even 95th percentile confi-
dence intervals can yield a large number
of false positives—cases where a sub-
component appears to have had a sta-
tistically significant change in latency,
but the difference is actually caused by
random variation. False positives waste
engineering time since investigating the
latency change will not find a root cause.

One way of measuring the false posi-
tive rate is to create two profiles using
identical sampling criteria and then
compare the resulting profiles using

Table 1. Critcal path aggregation.

Subcomponent Request 1 Request 2 Aggregated

A1/self 6ms 4ms 5ms

A1/A2 10ms — 5ms

A1/B1 — 4ms 2ms

Total 16ms 8ms 12ms

JANUARY 2023 | VOL. 66 | NO. 1 | COMMUNICATIONS OF THE ACM 51

practice

1990 ACM SIGMETRICS Conf. Measurement and
Modeling of Computer Systems, 115–125; https://
dl.acm.org/doi/10.1145/98457.98518.

4.	 Arapakis, I., Bai, X., Cambazoglu, B.B. Impact of
response latency on user behavior in web search.
In Proceedings of the 37th Intern. ACM SIGIR
Conf. Research and Development in Information
Retrieval, 2014, 103–112; https://dl.acm.org/
doi/10.1145/2600428.2609627.

5.	 Chow, M., Meisner, D., Flinn, J., Peek, D., Wenisch,
T.F. The Mystery Machine: end-to-end performance
analysis of large-scale internet services. In
Proceedings of the 11th Usenix Symp. Operating
Systems Design and Implementation, 2014, 217–231;
https://dl.acm.org/doi/10.5555/2685048.2685066.

6.	 Curtsinger, C., Berger, E.D. Coz: Finding code that
counts with causal profiling. In Proceedings of the 25th
Symposium on Operating Systems Principles, 2015, 184–
197; https://dl.acm.org/doi/10.1145/2815400.2815409.

7.	 Dagger. Dagger Producers; https://dagger.dev/dev-
guide/producers.

8.	 Dean, J., Barroso, L.A. The tail at scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80; https://dl.acm.org/
doi/10.1145/2408776.2408794.

9.	 Eaton, B., Stewart, J., Tedesco, J., Tas, N.C.
Distributed latency profiling through critical path
tracing. acmqueue 20, 1 (2022); https://queue.acm.
org/detail.cfm?id=3526967.

10.	 GitHub. pprof; https://github.com/google/pprof.
11.	 Google. Cloud monitoring; https://cloud.google.com/

monitoring.
12.	 Google. Google Cloud’s operations suite (formerly

Stackdriver); https://cloud.google.com/profiler.
13.	 Gregg, B. The flame graph. Commun. ACM 59, 6 (Jun.

2016), 48–57; https://dl.acm.org/doi/10.1145/2909476.
14.	 Kelley Jr., J.E. Critical path planning and scheduling:

mathematical basis. Operations Research 9, 3 (1961),
296–435; https://www.jstor.org/stable/167563.

15.	 Microsoft. Profile production applications in Azure
with Application Insights Profiler; https://docs.
microsoft.com/en-us/azure/azure-monitor/app/
profiler-overview.

16.	 Microsoft. Azure Monitor; https://azure.microsoft.com/
en-au/services/monitor/.

17.	 Nokleberg, C., Hawkes, B. Best Practice: Application
Frameworks. acmqueue 18, 6 (2021), 52–77; https://
queue.acm.org/detail.cfm?id=3447806.

18.	 Pandey, M et al. Building Netflix’s Distributed Tracing
Infrastructure. Netflix Tech Blog; 2020; https://bit.
ly/3e1C92Z.

19.	 Sigelman, B.H. et al. Dapper, a Large-scale Distributed
Aystems Tracing Infrastructure. Google Technical
Report, 2010; https://static.googleusercontent.com/
media/research.google.com/en//archive/papers/
dapper-2010-1.pdf.

20.	 Yang, C.-Q., Miller, B. Critical path analysis for the
execution of parallel and distributed programs. In
Proceedings of the 8th Intern. Conf. Distributed
Computing Systems. IEEE Computer Society Press,
1988, 366–375.

Brian Eaton joined Google’s Information Security team
as a software engineer in 2007 and joined Web Search in
2014 to lead engineering productivity and performance
teams, developing latency profiling and the first
microservices deployments in Web Search. He now works
on Search Quality and user trust.

Jeff Stewart worked at Google for more than 17 years,
focusing on Web Search, leading teams to improve
compute efficiency and end user latency. He led the
initiative to enable https on search traffic by default and
helped launch Gmail. He moved to a new employer in 2021.

Jon Tedesco has worked at Google in Web Search
infrastructure for nine years. During that time, he has led
several teams to build latency and compute analysis tools
for the Search stack, and to develop new components of
Search infrastructure focusing on performance analysis
and optimization.

N. Cihan Tas is a site reliability software engineer on
the Stadia team at Google, currently focusing on the
optimization of datacenter networks. Before Google,
he worked at Siemens Corporate Research in wireless
networks, broadly ranging from vehicle-to-vehicle
networks to smart-grid communication networks.

files are probably a result of the different
sampling criteria, not random variation.

Visualization. Once profiles have
been aggregated, a variety of visualiza-
tions can be used to help engineers
understand system latency. Top-down,
bottom-up, call graphs, and flame
graphs13 are all helpful. Figure 3 shows
an example CPT visualization as a
flame graph, with a latency- critical
path represented as columns of boxes,
and each box representing a subcom-
ponent. (The color of each box is insig-
nificant and optimized for easy view-
ing.) Profile comparison is essential for
diagnosing regressions, since they show
only subcomponents with large changes.
This is particularly helpful for analyzing
regressions in A/B experiments.

Future Work
The approach outlined here is practi-
cal and scales well, but has limitations.
One area for future work is increasing
adoption of fine-grain tracing and re-
ducing the size of blind spots in pro-
files. This is likely to require increasing
adoption of frameworks-based pro-
gramming models.

CPT is currently defined only where
RPCs create a directed graph of calling
nodes with a clear hierarchical struc-
ture of RPCs. Streaming protocols that
make incremental progress or contain
multiple requests and responses in one
session are difficult to analyze with CPT,
and can be handled in future work.

CPT focuses on server-side latency
analysis. Adding support for client-side
components of latency (as was done
with Facebook’s Mystery Machine5)
would improve the ability to under-
stand which contributors to end-to-end
latency have the most impact on the
end-user experience.

The frameworks integration that
CPT uses to identify service subcom-
ponents has profiling applications
outside of latency: We have built proof-
of-concept distributed cost profilers
within Google Search that allow down-
stream systems to trace expensive traf-
fic to specific subcomponents in call-
ers. These cost profiles are detailed and
useful, but have not been generalized
for use outside of Search.

Finally, adding metadata to trace col-
lection seems both possible and helpful.
For example, frameworks could collect
slack information for each critical path

node. Where a node is blocked, frame-
works could collect information about
the contended resource that is causing
the delay. Continued research in this
area should yield additional techniques
to help profile for latency.

Conclusion
In large, real-world distributed sys-
tems, existing tools such as RPC te-
lemetry, CPU profiling, and distributed
tracing are valuable for understanding
the subcomponents of the overall sys-
tem but insufficient to perform end-to-
end latency analyses in practice. Issues
such as highly parallel execution flows,
heterogeneous workloads, and com-
plex execution paths within subsys-
tems make latency analysis difficult. In
addition, these systems and workloads
change frequently.

No one team or person has a detailed
understanding of the system as a whole.

CPT in such systems addresses
these challenges to provide actionable,
precise latency analysis. Integration
at the frameworks level17 provides de-
tailed views of application code with-
out requiring each developer to imple-
ment their own tracing. Common wire
protocols allow consistent mecha-
nisms for triggering, aggregation, and
visualization. Efficient implementa-
tion allows a high sampling rate, giv-
ing precise profiles even for relatively
rare events. Scalable and accurate fine-
grain tracing has made CPT the stan-
dard approach for distributed latency
analysis for many Google applications,
including Google Search.

Acknowledgments. This article
would not be possible without a num-
ber of contributors from throughout
Google: particularly F. Gura, D. German,
S. Procter and M. Levin. We also thank J.
Klein, Ł. Milewski, A. Sheikh, P. Haahr,
B. Stoler and S. Virji.	

See the original article at acmqueue9 (https://queue.
acm.org/detail.cfm?id=3526967), which features case
studies, including an example illustrating the challenges
with streaming RPC APIs and another illustrating
the value of focusing on the most affected subset of
requests using a real example from a Search home page
latency regression.

References
1.	 Amazon Web Services. Amazon CloudWatch:

Observability of your AWS resources and applications
on AWS and on-premises; https://aws.amazon.com/
cloudwatch/.

2.	 Amazon Web Services. What is Amazon CodeGuru
profiler?; https://go.aws/3C6P8s8.

3.	 Anderson, T.E., Lazowska, E.D. Quartz: a tool for tuning
parallel program performance. In Proceedings of the

This work is licensed under a
http://creativecommons.org/licenses/by/4.0/

