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On the Stochastic and Asymptotic Improvement of

First-Come First-Served and Nudge Scheduling

BENNY VAN HOUDT, University of Antwerp, Belgium

Recently it was shown that, contrary to expectations, the First-Come-First-Served (FCFS) scheduling algo-

rithm can be stochastically improved upon by a scheduling algorithm called Nudge for light-tailed job size

distributions. Nudge partitions jobs into 4 types based on their size, say small, medium, large and huge jobs.

Nudge operates identical to FCFS, except that whenever a small job arrives that finds a large job waiting at the

back of the queue, Nudge swaps the small job with the large one unless the large job was already involved in

an earlier swap.

In this paper, we show that FCFS can be stochastically improved upon under far weaker conditions. We

consider a system with 2 job types and limited swapping between type-1 and type-2 jobs, but where a type-1

job is not necessarily smaller than a type-2 job. More specifically, we introduce and study the Nudge-𝐾

scheduling algorithm which allows type-1 jobs to be swapped with up to 𝐾 type-2 jobs waiting at the back of

the queue, while type-2 jobs can be involved in at most one swap. We present an explicit expression for the

response time distribution under Nudge-𝐾 when both job types follow a phase-type distribution. Regarding

the asymptotic tail improvement ratio (ATIR) , we derive a simple expression for the ATIR, as well as for the

𝐾 that maximizes the ATIR. We show that the ATIR is positive and the optimal 𝐾 tends to infinity in heavy

traffic as long as the type-2 jobs are on average longer than the type-1 jobs.

CCS Concepts: · Mathematics of computing → Probability and statistics; · Networks → Network

performance modeling.

Additional Key Words and Phrases: scheduling; First-Come First-Served; Nudge; asymptotic improvement;

stochastic improvement; response time distribution
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1 INTRODUCTION

Although there exists an abundance of scheduling algorithms, many systems still rely on the

First-Come-First-Served (FCFS) scheduling algorithm as FCFS is considered to be a fair scheduling

algorithm that is easy to implement and does not require any job size information. There is

also theoretical support for selecting FCFS apart from the well-known fact that it minimizes the

maximum response time of any finite sequence of jobs. If we denote 𝑅 as the response time of an

arbitrary job under FCFS and make the following technical assumptions:

• Jobs arrive according to a Poisson process.

• The job size distribution 𝑋 is light-tailed (which means there exists an 𝜖 > 0 such that

𝐸 [𝑒−𝜖𝑋 ] is finite).

• If 𝑆 (𝑠) denotes the Laplace transform of the job size distribution, then 𝑆 (𝑠) has either no

singularities or if 𝑠∗ < 0 is its right-most singularity, then 𝑆 (𝑠∗) = ∞.

Then there exist constants 𝜃𝑍 > 0 and 𝑐𝐹𝐶𝐹𝑆 > 0 such that

𝑃 [𝑅 > 𝑡] ∼ 𝑐𝐹𝐶𝐹𝑆𝑒
−𝜃𝑍 𝑡 ,
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2 Benny Van Houdt

where ∼ indicates that the ratio of the two quantities converges to 1 as 𝑡 tends to infinity. Note

that the latter two assumptions correspond to a class-I distribution in [1, Section 5] and these

distributions include all well-behaved light-tailed distributions such as any phase-type distribution

or distribution with finite support (such as truncated heavy-tailed distributions). The constant 𝜃𝑍
is called the decay rate. Let 𝜋 be any scheduling algorithm and 𝑅𝜋 be its associated response time

distribution (in an M/G/1 queue with a class-I job size distribution), then (see [3, Section 3.1]) there

exists a constant𝑀 (𝜋) ≥ 0 such that

lim sup
𝑡→∞

𝑃 [𝑅 > 𝑡]

𝑃 [𝑅𝜋 > 𝑡]
≤ 𝑀 (𝜋).

This is equivalent to stating that FCFS has the largest possible decay rate in systems subject

to Poisson arrivals and class-I job sizes (in fact, 𝜃𝑍 is equal to the decay rate of the workload

distribution 𝑍 in the system). Any scheduling algorithm with the largest possible decay rate is

called weakly tail optimal. In [16] FCFS was conjectured to be strongly tail optimal for class-I

job sizes, which would imply that 𝑀 (𝜋) ≤ 1 for any 𝜋 and FCFS results in the best possible tail

behavior for class-I job sizes.

In a recent paper [5] FCFS was shown not to be strongly tail optimal by introducing a scheduling

algorithm called Nudge such that𝑀 (𝑁𝑢𝑑𝑔𝑒) > 1. Further, contrary to expectations, it was shown

that the Nudge scheduling algorithm can stochastically improve upon FCFS. A scheduling algorithm

𝜋1 is said to stochastically improve upon an algorithm 𝜋2 if and only if 𝑃 [𝑅𝜋1 > 𝑡] < 𝑃 [𝑅𝜋2 > 𝑡],

for any 𝑡 > 𝑥𝑚𝑖𝑛 , where 𝑥𝑚𝑖𝑛 is the infimum of the support of the job size distribution𝑋 (for 𝑡 ≤ 𝑥𝑚𝑖𝑛 ,

we have 𝑃 [𝑅𝜋1 > 𝑡] = 𝑃 [𝑅𝜋2 > 𝑡]). This can be restated by saying that the tail improvement ratio

(TIR) in 𝑡 defined as

TIR(𝑡) = 1 −
𝑃 [𝑅𝜋1 > 𝑡]

𝑃 [𝑅𝜋2 > 𝑡]
,

is positive for all 𝑡 > 𝑥𝑚𝑖𝑛 . This means that Nudge improves every moment and percentile of the

response time of FCFS! Note that it is easy to devise scheduling algorithms that reduce the mean

response time of FCFS, but this typically comes at the expense of a worse decay rate [11].

To achieve this stochastic improvement Nudge partitions the jobs into 4 types, say small, medium,

large and huge jobs, based on their size using three thresholds 𝑥1, 𝑥2 and 𝑥3. Nudge then operates

in the same manner as FCFS, except that whenever a small job arrives that finds a large job waiting

at the back of the queue, Nudge swaps the small job with the large one unless the large job was

already involved in an earlier swap. The authors of [5] then showed that it is possible for any

continuous class-I job size distribution 𝑋 , to find appropriate thresholds 𝑥1, 𝑥2 and 𝑥3 (that depend

on 𝑋 ) such that Nudge stochastically improves upon FCFS. Simulation experiments further showed

that this is often still the case if 𝑥1 = 𝑥2 and 𝑥3 = ∞, which means in the absence of medium and

huge jobs (which were needed for the proofs).

In this paper we consider a system with two types of jobs (see Section 2 for details), where a

random type-1 job is not necessarily smaller than a random type-2 job, and a set of scheduling

algorithms called Nudge-𝐾 , where 𝐾 ≥ 0 is an input parameter (that can be set equal to ∞). Under

Nudge-𝐾 any arriving type-1 job can be swapped with at most 𝐾 type-2 jobs waiting at the back

of the queue, but type-2 jobs can be involved in at most one swap. This means that a type-1 job

passes up to 𝐾 jobs waiting at the back of the queue until it either encounters another type-1 job, a

type-2 job that was already swapped or becomes the job waiting at the head of the queue. Note

that Nudge-1 coincides with Nudge if we set 𝑥1 = 𝑥2, 𝑥3 = ∞ and call the small jobs type-1 and the

large jobs type-2.

The main contributions of the paper can be summarized as follows:
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On the Stochastic and Asymptotic Improvement of First-Come First-Served and Nudge Scheduling 3

(1) For the system described in Section 2 we derive an explicit expression for the complementary

cumulative distribution function (ccdf) of the waiting time (see Theorems 4 and 6) and

response time distribution (see Theorems 5 and 7) of type-1 and type-2 jobs. To derive these

results we first obtain an explicit expression for the workload in the system (see Theorem 1).

(2) We derive a simple expression for the asymptotic tail improvement ratio of Nudge-𝐾 over

FCFS defined as

ATIR(𝐾) = 1 − lim
𝑡→∞

𝑃 [𝑅𝑁𝑢𝑑𝑔𝑒−𝐾 > 𝑡]

𝑃 [𝑅 > 𝑡]
,

as well as for the value of 𝐾 that maximizes the ATIR(𝐾), denoted as 𝐾𝑜𝑝𝑡 (see Theorem 8).

We identify simple conditions on when the ATIR(𝐾 ) > 0, for a given 𝐾 , for all 𝐾 and for 𝐾 = 1

(see Theorem 9). We further prove that under heavy traffic, the ATIR(𝐾) > 0 provided that

the mean type-2 job size exceeds the mean type-1 job size and that 𝐾𝑜𝑝𝑡 tends to infinity (see

Theorems 10 and 11).

(3) We present various novel insights on the stochastic and asymptotic improvement upon

FCFS and Nudge in Section 8 using numerical experiments. These show that stochastic

improvements of FCFS exist under far weaker conditions that the one considered in [5], that

Nudge can be stochastically improved upon, that setting 𝐾 too large may imply that Nudge-𝐾

no longer stochastically improves upon FCFS, that an asymptotic improvement does not

necessarily imply a stochastic improvement even if type-2 jobs stochastically dominate type-1

jobs, etc.

The fact that FCFS can be stochastically improved upon under far weaker conditions is important

as it is much easier in a real system to identify different types of jobs such that one job type is

typically larger and/or has a heavier tail than another type. In such case implementing an algorithm

like Nudge-𝐾 using these types may improve all percentiles of the response time, without the need

of having any indication on the size of individual jobs (being larger or smaller than some threshold)

as in [5].

The paper is structured as follows. The exact model considered in the paper is presented in

Section 2. A matrix exponential expression for the workload distribution is derived in Section 3,

while the mean response time of Nudge-𝐾 is analyzed in Section 4. Explicit expressions for the

type-2 and type-1 waiting and response time distributions are part of Sections 5 and 6, respectively.

Section 7 contains the results for the ATIR, these results are the most elegant results in the paper.

Numerical examples and insights are discussed in Section 8. Conclusions are drawn and possible

future work is listed in Section 9.

2 THE SYSTEM

We consider a queueing system with Poisson arrivals with rate 𝜆. Arriving jobs are type-1 jobs with

probability 𝑝 , or type-2 jobs with probability 1 − 𝑝 . Job types of consecutive jobs are independent.

The processing time 𝑋𝑖 of a type-𝑖 job follows an order 𝑛𝑖 phase-type distribution characterized

by (𝛼𝑖 , 𝑆𝑖 ), that is, 𝑃 [𝑋𝑖 > 𝑡] = 𝛼𝑖𝑒
𝑆𝑖𝑡1, where 1 is a column vector of ones of the appropriate

dimension. Let 𝐸 [𝑋𝑖 ] = 𝛼𝑖 (−𝑆𝑖 )
−1
1 be the mean service time of a type-𝑖 job. We assume without loss

of generality that 𝐸 [𝑋 ] = 𝑝𝐸 [𝑋1]+(1−𝑝)𝐸 [𝑋2] = 1, with𝑋 = 𝑝𝑋1+(1−𝑝)𝑋2 the job size distribution,

such that the load of the system is 𝜆. For further use, define 𝑠∗𝑖 = (−𝑆𝑖 )1, 𝛼 = (𝑝𝛼1, (1 − 𝑝)𝛼2) and

𝑆 =

[
𝑆1 0

0 𝑆2

]
,

such that 𝑋 has a phase-type distribution characterized by (𝛼, 𝑆). Note that 𝛼 (−𝑆)−11 = 1 as

𝐸 [𝑋 ] = 1. Denote 𝑆𝑖 (𝑠) = 𝛼𝑖 (𝑠𝐼 − 𝑆𝑖 )
−1 (−𝑆𝑖 )1, for 𝑖 = 1, 2, as the Laplace transform of the size of

a type-𝑖 job. Let 𝑆 (𝑠) = 𝑝𝑆1 (𝑠) + (1 − 𝑝)𝑆2 (𝑠) be the Laplace transform of a random job. As 𝑋 is a
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4 Benny Van Houdt

phase-type distribution, it is a class-I distribution. It is well known that any general positive-valued

distribution can be approximated arbitrary close with a PH distribution [9]. Further, various fitting

algorithms and tools are available online for phase-type distributions (e.g., [4, 8, 13]).

The scheduling algorithm studied in this paper is called the Nudge-𝐾 algorithm. Under this

algorithm a type-1 job can be swapped with at most 𝐾 type-2 jobs waiting at the back of the queue

and any type-2 job can be swapped at most once. In other words, when a type-1 job arrives it can

pass up to 𝐾 waiting type-2 jobs at the back of the queue until it either encounters a type-1 job, a

type-2 job that was already passed by another type-1 job or becomes the job waiting at the head of

the queue. The job that is being served is never swapped.

3 WORKLOAD AND FCFS RESPONSE TIME DISTRIBUTION

We first provide an explicit matrix exponential expression for the workload distribution, which

corresponds to the waiting time distribution in case of FCFS. The workload distribution does not

depend on the scheduling algorithm, as long as it is work-conserving. Note that if 𝑌 is a class-I

distribution, the probability 𝑃 [𝑌 > 𝑡] decays exponentially fast and the decay rate 𝜃𝑌 can be

expressed as 𝜃𝑌 = − lim𝑡→∞
1
𝑡
log 𝑃 [𝑌 > 𝑡].

Theorem 1. Let 𝑍 be the workload in the system, then

𝑃 [𝑍 > 𝑡] = 𝜆𝛼𝑒𝑇𝑡 (−𝑆)−11 = 𝜆𝛽𝑒𝑇𝑡 (−𝑇 )−11, (1)

with 𝛽 = (1 − 𝜆)𝛼 and

𝑇 = 𝑆 + 𝜆1𝛼. (2)

Let 𝜃𝑖 = − lim𝑡→∞
1
𝑡
log 𝑃 [𝑋𝑖 > 𝑡] and 𝜃𝑍 = − lim𝑡→∞

1
𝑡
log 𝑃 [𝑍 > 𝑡], then 0 < 𝜃𝑍 < min(𝜃1, 𝜃2).

Proof. It is well known (see (5.41) on p247 in [6]) that the Pollaczek-Khinchin formula for the

Laplace transform of the workload 𝑍 (𝑠) in an M/G/1 queue can be rewritten as

𝑍 (𝑠) = (1 − 𝜆)

∞∑︁

𝑛=0

𝜆𝑛 [𝑆𝑅𝑒𝑠 (𝑠)]
𝑛,

where 𝑆𝑅𝑒𝑠 (𝑠) is the Laplace transform of the residual service time. This implies that

𝑃 [𝑍 > 𝑡] = 𝜆

∞∑︁

𝑛=1

𝜆𝑛−1 (1 − 𝜆)𝑃 [𝑆
(𝑛∗)
𝑅𝑒𝑠

> 𝑡],

where 𝑆
(𝑛∗)
𝑅𝑒𝑠

is the𝑛-fold convolution of the residual service time. The residual service time of a phase-

type distribution with representation (𝛼, 𝑆) and mean 1, is also phase-type with representation

(𝛼 (−𝑆)−1, 𝑆). The probability 𝑃 [𝑍 > 𝑡] can therefore be expressed as 𝜆 times a geometric sum of the

phase-type distribution (𝛼 (−𝑆)−1, 𝑆), which is again phase-type with representation (𝛼 (−𝑆)−1, 𝑆 +

𝜆𝑠∗𝛼 (−𝑆)−1). Hence,

𝑃 [𝑍 > 𝑡] = 𝜆𝛼 (−𝑆)−1𝑒 (𝑆+𝜆𝑠
∗𝛼 (−𝑆 )−1 )𝑡

1.
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We now note that

(−𝑆)−1𝑒 (𝑆+𝜆𝑠
∗𝛼 (−𝑆 )−1 )𝑡

= (−𝑆)−1
∞∑︁

𝑘=0

(𝑆 + 𝜆𝑠∗𝛼 (−𝑆)−1)𝑘
𝑡𝑘

𝑘!

=

∞∑︁

𝑘=0

[
(−𝑆)−1 (𝑆 + 𝜆𝑠∗𝛼 (−𝑆)−1) (−𝑆)

]𝑘 𝑡𝑘

𝑘!
(−𝑆)−1

=

∞∑︁

𝑘=0

(𝑆 + 𝜆1𝛼)𝑘
𝑡𝑘

𝑘!
(−𝑆)−1 = 𝑒 (𝑆+𝜆1𝛼 )𝑡 (−𝑆)−1,

as 𝑠∗ = −𝑆1. This shows that

𝑃 [𝑍 > 𝑡] = 𝜆𝛼𝑒 (𝑆+𝜆1𝛼 )𝑡 (−𝑆)−11.

The second equality in (1) now follows by noting that we can use the Sherman-Morrison formula

to find that

(−𝑇 )−11 = (−𝑆)−11 +
𝜆(−𝑆)−11𝛼 (−𝑆)−11

1 − 𝜆𝛼 (−𝑆)−11
=

(−𝑆)−11

1 − 𝜆
, (3)

as 𝛼 (−𝑆)−11 = 𝐸 [𝑋 ] = 1. The fact that 𝜃𝑍 < min(𝜃1, 𝜃2) follows by noting that for 𝜁 > max𝑖 |𝑆𝑖𝑖 |

the matrix 𝑇 + 𝜁 𝐼 is a primitive non-negative matrix with Perron-Frobenius eigenvalue 𝜁 − 𝜃𝑍 [14].

Therefore for any eigenvalue 𝛽 of a matrix 0 ≤ 𝐵 ≤ 𝑇 + 𝜁 𝐼 with inequality in at least one entry,

we have |𝛽 | < 𝜁 − 𝜃𝑍 by [14, Theorem 1.1(e)]. Setting 𝐵 = 𝑆 + 𝜁 𝐼 therefore implies that the real

eigenvalue 𝜁 −min(𝜃1, 𝜃2) of 𝐵 is strictly smaller than 𝜁 − 𝜃𝑍 . □

Remark: −𝜃𝑍 < 0 is a real eigenvalue of 𝑇 and for any other eigenvalue 𝜉 of 𝑇 we have 𝑅𝑒 (𝜉) <

−𝜃𝑍 . −𝜃𝑍 may not be equal to the spectral radius of 𝑇 (that is, |𝜉 | ≤ −𝜃𝑍 may not hold), but −𝜃𝑍 𝑡

is the spectral radius of 𝑒𝑇𝑡 . Further, as 𝑇 is irreducible, it has a unique right and left eigenvector

(up to multiplication by a constant) associated with −𝜃𝑍 and these eigenvectors can be chosen

strictly positive [14]. If we denote these unique eigenvectors as 𝑢𝑇 and 𝑣∗𝑇 and normalize such that

𝑣∗𝑇𝑢𝑇 = 1, then

lim
𝑡→∞

𝑒𝜃𝑍 𝑡𝑒𝑇𝑡 = 𝑢𝑇 𝑣
∗
𝑇 ,

when 𝑇 is irreducible, meaning

𝑐𝑍 = lim
𝑡→∞

𝑒𝜃𝑍 𝑡𝑃 [𝑍 > 𝑡] = 𝜆(𝛽𝑢𝑇 ) (𝑣
∗
𝑇 (−𝑇 )

−1
1),

To prove the next theorem we rely on the following Lemma:

Lemma 1 (Theorem 1 in [15]). Let

𝐴 =

[
𝐴11 𝐴12

0 𝐴22

]
,

then

𝑒𝐴𝑡 =

[
𝑒𝐴11𝑡

∫ 𝑡
0
𝑒𝐴11𝑠𝐴12𝑒

𝐴22 (𝑡−𝑠 )𝑑𝑠

0 𝑒𝐴22𝑡

]
.

Theorem 2. Let 𝑅 be the response time distribution of a job in case of FCFS, then

𝑃 [𝑅 > 𝑡] = (1 − 𝜆)𝛼𝑒𝑆𝑡1 + 𝜆(𝛽, 0)𝑒𝑈𝑡
(
(−𝑇 )−11

1

)
, (4)

with

𝑈 =

[
𝑇 1𝛼

0 𝑆

]
.
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6 Benny Van Houdt

Further, 𝜃𝑍 = − lim𝑡→∞
1
𝑡
log 𝑃 [𝑅 > 𝑡] and 𝑐𝐹𝐶𝐹𝑆 = lim𝑡→∞ 𝑒

𝜃𝑍 𝑡𝑃 [𝑅 > 𝑡] can be expressed as

𝑐𝐹𝐶𝐹𝑆 = 𝑐𝑍𝑆 (−𝜃𝑍 ).

Proof. The response time 𝑅 in case of FCFS is given by the workload 𝑍 plus the job size 𝑋 . The

density of the workload 𝑍 is given by 𝜆𝛽𝑒𝑇𝑠1 due to (1), hence

𝑃 [𝑅 > 𝑡] = 𝑃 [𝑍 > 𝑡] + 𝜆

∫ 𝑡

0

𝛽𝑒𝑇𝑠1𝛼𝑒𝑆 (𝑡−𝑠 )1𝑑𝑠 + (1 − 𝜆)𝛼𝑒𝑆𝑡1,

as a job finds a workload equal to zero with probability 1 − 𝜆. The result for 𝑃 [𝑅 > 𝑡] now follows

using Lemma 1, (1) and by combining both matrix exponentials.

As the response time 𝑅 equals the workload 𝑍 plus the service time 𝑋 which is independent of

the workload, the Laplace transform of the response time �̃�(𝑠) = 𝑍 (𝑠)𝑆 (𝑠). Applying the final value

theorem to 𝑒𝜃𝑍 𝑡𝑃 [𝑅 > 𝑡] we therefore have

𝑐𝐹𝐶𝐹𝑆 = lim
𝑡→∞

𝑒𝜃𝑍 𝑡𝑃 [𝑅 > 𝑡] =
1

𝜃𝑍
lim
𝑠→0

𝑠�̃�(𝑠 − 𝜃𝑍 ) =
1

𝜃𝑍
lim
𝑠→0

𝑠𝑍 (𝑠 − 𝜃𝑍 )𝑆 (𝑠 − 𝜃𝑍 )

= lim
𝑡→∞

𝑒𝜃𝑍 𝑡𝑃 [𝑍 > 𝑡]𝑆 (−𝜃𝑍 ) = 𝑐𝑍𝑆 (−𝜃𝑍 ),

where we used the time-domain integration and frequency shifting properties of the Laplace

transform (in the 2nd and 4th equality). □

We can also argue that

𝑐𝐹𝐶𝐹𝑆 = lim
𝑡→∞

𝑒𝜃𝑍 𝑡𝑃 [𝑅 > 𝑡] = 𝜆(𝛽, 0)𝑢𝑈 𝑣
∗
𝑈

(
(−𝑇 )−11

1

)
,

where 𝑢𝑈 and 𝑣∗𝑈 are the unique right and left eigenvectors of 𝑈 associated with the eigenvalue

−𝜃𝑍 such that 𝑣∗𝑈𝑢𝑈 = 1.

4 MEAN RESPONSE TIME OF NUDGE-𝐾

Let 𝑒𝑖 and 𝑒
∗
𝑖 represent the 𝑖-th column and 𝑖-th row of the size 𝐾 + 1 identity matrix, respectively.

Lemma 2. Given that a type-2 job sees a workload of 𝑠 > 0 upon arrival, it is swapped with

probability

𝑝𝑠𝑤𝑎𝑝 (𝑠) = 𝑒
∗
1𝑒
𝑀𝑠𝑒𝐾+1, (5)

where𝑀 is a size 𝐾 + 1 matrix with entry𝑚𝑖 𝑗 given by

𝑚𝑖 𝑗 =




−𝜆 1 ≤ 𝑖 = 𝑗 ≤ 𝐾,

𝜆(1 − 𝑝) 1 ≤ 𝑖 < 𝐾, 𝑗 = 𝑖 + 1,

𝜆𝑝 1 ≤ 𝑖 ≤ 𝐾, 𝑗 = 𝐾 + 1,

0 otherwise

.

For 𝐾 = ∞, we have 𝑝𝑠𝑤𝑎𝑝 (𝑠) = 1 − 𝑒−𝜆𝑝𝑠 .

Proof. Consider the continuous time Markov chain with upper-triangular rate matrix

𝑄 =

[
𝑀 𝜆(1 − 𝑝)𝑒𝐾+1
0 0

]
=



−𝜆 𝜆(1 − 𝑝) 𝜆𝑝
. . .

. . .
...

−𝜆 𝜆(1 − 𝑝) 𝜆𝑝

−𝜆 𝜆𝑝 𝜆(1 − 𝑝)

0

0



. (6)
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This 𝐾 + 2-state Markov chain has two absorbing states: state 𝐾 + 1 and 𝐾 + 2. Entry (𝑖, 𝑗) of 𝑒𝑄𝑠 ,

with 𝑖 ≤ 𝑗 ≤ 𝐾 , represents the probability there are exactly 𝑗 − 𝑖 type-2 arrivals and zero type-1

arrivals in an interval of length 𝑠 . Entry (𝑖, 𝐾 + 2) holds the probability that more than 𝐾 − 𝑖 arrivals

occur in an interval of length 𝑠 and the first 𝐾 − 𝑖 + 1 arrivals are type-2, while entry (𝑖, 𝐾 + 1)

contains the remaining probability mass and corresponds to the probability that there is a type-1

arrival in an interval of length 𝑠 that is preceded by at most 𝐾 − 𝑖 type-2 arrivals.

A type-2 job is swapped if there is a type-1 arrival that is preceded by at most 𝐾 − 1 type-2

arrivals while it is waiting. Hence, 𝑝𝑠𝑤𝑎𝑝 (𝑠) can be expressed as entry (1, 𝐾 + 1) of 𝑒𝑄𝑠 , which is

identical to entry (1, 𝐾 + 1) of 𝑒𝑀𝑠 and can be written in matrix form as 𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1.

The expression for 𝐾 = ∞ is immediate by noting that a type-2 job is swapped as soon as a single

type-1 arrival occurs during its waiting time, irrespective of whether and where type-2 arrivals

occur. □

Theorem 3. The mean response time 𝐸 [𝑅Nudge-𝐾 ] of the Nudge-𝐾 algorithm can be expressed as

𝐸 [𝑅Nudge-𝐾 ] = 𝐸 [𝑅] + (1 − 𝑝)𝑝𝑠𝑤𝑎𝑝 (𝐸 [𝑋1] − 𝐸 [𝑋2]),

with

𝑝𝑠𝑤𝑎𝑝 = −𝜆(𝛽 ⊗ 𝑒∗1) (𝑇 ⊕ 𝑀)−1 (1 ⊗ 𝑒𝐾+1),

and 𝐸 [𝑅] = 1 + 𝜆𝛽𝑇 −2
1 = 1 +

𝜆𝐸 [𝑆2 ]
2(1−𝜆)

. When 𝐾 = ∞ we have 𝑝𝑠𝑤𝑎𝑝 = 𝜆(1 − 𝛽 (𝜆𝑝𝐼 −𝑇 )−11).

Proof. A swap between a type-1 and a type-2 job changes the mean response time by 𝐸 [𝑋1] −

𝐸 [𝑋2] on average as the response time of the type-2 job increases by 𝐸 [𝑋1] on average and that of

the type-1 job decreases by 𝐸 [𝑋2] on average. The rate at which swaps occur equals 𝜆 times (1− 𝑝)

times the probability 𝑝𝑠𝑤𝑎𝑝 that a random type-2 job is swapped. Making use of Theorem 1 and

Lemma 2, we have

𝑝𝑠𝑤𝑎𝑝 = 𝜆

∫ ∞

0

𝛽𝑒𝑇𝑠1𝑝𝑠𝑤𝑎𝑝 (𝑠)𝑑𝑠 = 𝜆

∫ ∞

0

(𝛽 ⊗ 𝑒∗1) (𝑒
𝑇𝑠 ⊗ 𝑒𝑀𝑠 ) (1 ⊗ 𝑒𝐾+1)𝑑𝑠

= 𝜆

∫ ∞

0

(𝛽 ⊗ 𝑒∗1)𝑒
(𝑇⊕𝑀 )𝑠 (1 ⊗ 𝑒𝐾+1)𝑑𝑠 = −𝜆(𝛽 ⊗ 𝑒∗1) (𝑇 ⊕ 𝑀)−1 (1 ⊗ 𝑒𝐾+1).

Finally, the mean response time is found as the mean response time 𝐸 [𝑅] in case of FCFS plus the

mean number of swaps that occur per arrival times the average change (𝐸 [𝑋1] − 𝐸 [𝑋2]) caused by

a swap. The mean number of swaps that occur per arrival is clearly given by the ratio between the

swap rate 𝜆(1 − 𝑝)𝑝𝑠𝑤𝑎𝑝 and the arrival rate 𝜆.

The expression for 𝐸 [𝑅] in terms of 𝐸 [𝑆2] is well known. The other expression follows from

Theorem 1 and can also be obtained directly using (3) and the fact that 𝐸 [𝑆2] = 2𝛼 (−𝑆)−21. □

Remark: The mean response time of Nudge-𝐾 is smaller than the mean response time 𝐸 [𝑅] under

FCFS if and only if 𝐸 [𝑋2] > 𝐸 [𝑋1]. This implies that a stochastic improvement is only possible if

type-2 jobs are on average larger than type-1 jobs.

The probability 𝑝𝑠𝑤𝑎𝑝 (𝑠) is clearly increasing in 𝐾 and therefore so is 𝑝𝑠𝑤𝑎𝑝 . This implies that

setting𝐾 = ∞minimizes the mean response time of Nudge-𝐾 provided that 𝐸 [𝑋2] > 𝐸 [𝑋1]. We will

see however that this choice for 𝐾 is never optimal if we focus on the asymptotic tail improvement

ratio.

5 RESPONSE TIME DISTRIBUTION OF TYPE-2 JOBS

We now proceed with the waiting time distribution of type-2 jobs.
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Theorem 4. Let𝑊 (2) be the waiting time distribution of a type-2 job, then

𝑃 [𝑊 (2)
> 𝑡] = 𝑃 [𝑍 > 𝑡] + 𝜆(𝛽 ⊗ 𝑒∗1, 0)𝑒

𝑇 (2) 𝑡

(
0𝑚
1

)
, (7)

with 0𝑚 a column vector of zeros with the same size as (𝑇 ⊕ 𝑀)1,

𝑇 (2)
=

[
𝑇 ⊕ 𝑀 1 ⊗ 𝑒𝐾+1𝛼1

0 𝑆1

]
,

where𝑀 is defined in Lemma 2.

Further, − lim𝑡→∞
1
𝑡
log 𝑃 [𝑊 (2)

> 𝑡] = 𝜃𝑍 and 𝑐𝑊 (2) = lim𝑡→∞ 𝑒
𝜃𝑍 𝑡𝑃 [𝑊 (2) )

> 𝑡] is given by

𝑐𝑊 (2) = (1 − 𝑝)𝐾𝑐𝑍 + (1 − (1 − 𝑝)𝐾 )𝑐𝑍𝑆1 (−𝜃𝑍 ). (8)

Proof. The waiting time of a type-2 job equals the workload 𝑍 in the queue when it arrives plus

the workload of a type-1 job if the type-2 job is swapped. As 𝜆𝛽𝑒𝑇𝑠1 is the density of the workload

and a type-2 job that sees a workload of 𝑠 is swapped with probability 𝑝𝑠𝑤𝑎𝑝 (𝑠) = 𝑒
∗
1𝑒
𝑀𝑠𝑒𝐾+1 due to

Lemma 2, we get

𝑃 [𝑊 (2)
> 𝑡] = 𝑃 [𝑍 > 𝑡] + 𝜆

∫ 𝑡

0

𝛽𝑒𝑇𝑠1(𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1)𝛼1𝑒

𝑆1 (𝑡−𝑠 )1𝑑𝑠,

= 𝑃 [𝑍 > 𝑡] + 𝜆

∫ 𝑡

0

(𝛽 ⊗ 𝑒∗1) (𝑒
𝑇𝑠 ⊗ 𝑒𝑀𝑠 ) (1 ⊗ 𝑒𝐾+1)𝛼1𝑒

𝑆1 (𝑡−𝑠 )1𝑑𝑠

= 𝑃 [𝑍 > 𝑡] + 𝜆

∫ 𝑡

0

(𝛽 ⊗ 𝑒∗1)𝑒
(𝑇⊕𝑀 )𝑠 (1 ⊗ 𝑒𝐾+1)𝛼1𝑒

𝑆1 (𝑡−𝑠 )1𝑑𝑠.

Applying Lemma 1 then yields (7). The first limit for 𝑡 tending to infinity follows from noting that

the eigenvalue of 𝑒𝑇
(2) 𝑡 with the largest real part is given by the eigenvalue with the largest real

part of the matrices 𝑒 (𝑇⊕𝑀 )𝑡 and 𝑒𝑆1𝑡 . As 𝑒 (𝑇⊕𝑀 )𝑡
= 𝑒𝑇𝑡 ⊗ 𝑒𝑀𝑡 , the eigenvalues of 𝑒 (𝑇⊕𝑀 )𝑡 are the

products of the eigenvalues of 𝑒𝑇𝑡 and 𝑒𝑀𝑡 . The eigenvalues of 𝑒𝑀𝑡 are 1 and 𝑒−𝜆𝑡 (with multiplicity

𝐾 ), while the eigenvalue with the largest real part of 𝑒𝑇𝑡 equals −𝜃𝑍 𝑡 by definition. Hence, −𝜃𝑍 𝑡 is

the eigenvalue with the largest real part of 𝑒 (𝑇⊕𝑀 )𝑡 and therefore also of 𝑒𝑇
(2) 𝑡 as 𝜃𝑍 < 𝜃1.

The expression for 𝑐𝑊 (2) follows from first noting that 𝑝𝑠𝑤𝑎𝑝 (𝑠) is increasing in 𝑠 and therefore

𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1 ≤ lim

𝑠→∞
𝑒∗1𝑒

𝑀𝑠𝑒𝐾+1 = 1 − (1 − 𝑝)𝐾 .

Thus for any 𝜖 > 0 there exist a 𝑡𝜖 such that

1 − (1 − 𝑝)𝐾 − 𝜖 < 𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1 < 1 − (1 − 𝑝)𝐾 ,

for 𝑠 > 𝑡𝜖 . Further,

lim
𝑡→∞

𝑒𝜃𝑍 𝑡
∫ 𝑡𝜖

0

𝛽𝑒𝑇𝑠1(𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1)𝛼1𝑒

𝑆1 (𝑡−𝑠 )1𝑑𝑠 = 0,

as 𝛼𝑒𝑆1𝑡1 decays faster than 𝑒−𝜃𝑍 𝑡 . This implies that

lim
𝑡→∞

𝑒𝜃𝑍 𝑡𝑃 [𝑊 (2)
> 𝑡] =

lim
𝑡→∞

𝑒𝜃𝑍 𝑡
(
𝑃 [𝑍 > 𝑡] + (1 − (1 − 𝑝)𝐾 )

∫ 𝑡

0

(𝜆𝛽𝑒𝑇𝑠1)𝛼1𝑒
𝑆1 (𝑡−𝑠 )1𝑑𝑠

)
=

lim
𝑡→∞

𝑒𝜃𝑍 𝑡
(
(1 − 𝑝)𝐾𝑃 [𝑍 > 𝑡] + (1 − (1 − 𝑝)𝐾 )𝑃 [𝑍 + 𝑋1 > 𝑡]

)
,

from which the expression for 𝑐𝑊 (2) follows by using the final value theorem in the same manner

as in the proof of Theorem 2. □
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Remark that when 𝐾 = ∞ we can still use the above approach by simply replacing the matrix𝑀

by the 2 × 2 matrix

𝑀 =

[
−𝜆𝑝 𝜆𝑝

0 0.

]
,

and 𝑒𝐾+1 by 𝑒2. The same remark applies to Theorem 5.

Theorem 5. Let 𝑅 (2) be the response time distribution of a type-2 job, then

𝑃 [𝑅 (2)
> 𝑡] = (1 − 𝜆)𝛼2𝑒

𝑆2𝑡1 + 𝜆(𝛽, 0)𝑒𝑈
(2)
2 𝑡

(
(−𝑇 )−11

1

)
+ 𝜆(𝛽 ⊗ 𝑒∗1, 0)𝑒

𝑈
(2)
1 𝑡

(
0𝑚
1

)
, (9)

with

𝑈
(2)
1 =



𝑇 ⊕ 𝑀 1 ⊗ 𝑒𝐾+1𝛼1 −1 ⊗ 𝑒𝐾+1𝛼2
0 𝑆1 𝑠∗1𝛼2
0 0 𝑆2


,

and

𝑈
(2)
2 =

[
𝑇 1𝛼2
0 𝑆2

]
.

Further, − lim𝑡→∞
1
𝑡
log 𝑃 [𝑅 (2)

> 𝑡] = 𝜃𝑍 and 𝑐𝑅 (2) = lim𝑡→∞ 𝑒
𝜃𝑍 𝑡𝑃 [𝑅 (2)

> 𝑡] = 𝑐𝑊 (2)𝑆2 (−𝜃𝑍 ).

Proof. The result follows from noting that

𝑃 [𝑅 (2)
> 𝑡] = 𝑃 [𝑍 > 𝑡] + 𝜆

∫ 𝑡

0

𝛽𝑒𝑇𝑠1(𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1)𝑃 [𝑋1 + 𝑋2 > 𝑡 − 𝑠]𝑑𝑠,

+ (1 − 𝜆)𝛼2𝑒
𝑆2𝑡1 + 𝜆

∫ 𝑡

0

𝛽𝑒𝑇𝑠1(1 − 𝑒∗1𝑒
𝑀𝑠𝑒𝐾+1)𝛼2𝑒

𝑆2 (𝑡−𝑠 )1𝑑𝑠, (10)

with

𝑃 [𝑋1 + 𝑋2 > 𝑡 − 𝑠] = (𝛼1, 0)𝑒

[
𝑆1 𝑠∗1𝛼2
0 𝑆2

]

(𝑡−𝑠 )

1.

The result now follows using Lemma 1 and combining some of the matrix exponentials. An alternate

proof exists in making use of the fact that

𝑃 [𝑅 (2)
> 𝑡] = (1 − 𝜆)𝛼2𝑒

𝑆2𝑡1 + 𝑃 [𝑊 (2)
> 𝑡] +

∫ 𝑡

0

(
−
𝜕

𝜕𝑠
𝑃 [𝑊 (2)

> 𝑠]

)
𝛼2𝑒

𝑆2 (𝑡−𝑠 )1𝑑𝑠.

The equality 𝑐𝑅 (2) = 𝑐𝑊 (2)𝑆2 (−𝜃𝑍 ) follows from the final value theorem. □

Apart from (8) we can also express 𝑐𝑊 (2) as

𝑐𝑊 (2) = 𝑐𝑍 + 𝜆(𝛽 ⊗ 𝑒∗1, 0)𝑢𝑇 (2) 𝑣∗
𝑇 (2)

(
0𝑚
1

)
,

where𝑢𝑇 (2) and 𝑣∗
𝑇 (2) are the unique right and left eigenvectors of𝑇

(2) associated with the eigenvalue

−𝜃𝑍 such that 𝑣∗
𝑇 (2)𝑢𝑇 (2) = 1.
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6 RESPONSE TIME DISTRIBUTION OF TYPE-1 JOBS

In this section we present an approach for the waiting time and response time distribution of a

type-1 job. The approach exists in computing the workload distribution seen by a type-1 job from

the queue length distribution of the FCFS queue. The following observation make this possible.

(1) Whenever a type-2 job is waiting in the FCFS queue, it is also waiting in the Nudge-𝐾 queue.

(2) If the FCFS queue contains 𝑖 type-2 jobs waiting at the back of the queue, these 𝑖 jobs are

also waiting at the back of the Nudge-𝐾 queue (as there have been no type-1 arrivals after

these type-2 arrivals).

(3) If the 𝑖 + 1 jobs waiting at the back of the FCFS queue are a type-1 job, say job 𝑗 , followed by 𝑖

type-2 jobs, then any new type-1 arrival passes exactly min(𝑖, 𝐾) type-2 jobs in the Nudge-𝐾

queue. Note that job 𝑗 may have passed one or multiple type-2 jobs in the Nudge-𝐾 queue,

but in such case the (𝑖 + 1)-th last job in the Nudge-𝐾 queue is a type-2 job that was already

swapped.

Hence, we conclude that the number of type-2 jobs that a tagged type-1 job passes under Nudge-𝐾

is equal to the minimum of 𝐾 and the number of type-2 jobs that are waiting at the back of the

FCFS queue when the tagged type-1 job arrives. Note that this argument fails if a type-2 job can

be passed by more than one type-1 job, which is not the case under Nudge-𝐾 .

Theorem 6. Let𝑊 (1) be the waiting time distribution of a type-1 job. Let 𝑅 = −𝜆(𝑆 − 𝜆𝐼 + 𝜆1𝛼)−1

and 𝜋1 = (1 − 𝜆)𝛼𝑅. Further define

𝜋
(1)
0 = 𝜋1 (𝐼 − (1 − 𝑝)𝐾+1𝑅𝐾+1) (𝐼 − (1 − 𝑝)𝑅)−1, (11)

𝜋
(1)
1 = 𝜋1 (1 − 𝑝)

𝐾𝑅𝐾+1, (12)

𝜋
(2)
0 = 𝜋1𝑅(𝐼 − (1 − 𝑝)𝐾𝑅𝐾 ) (𝐼 − (1 − 𝑝)𝑅)−1𝑝, (13)

then

𝑃 [𝑊 (1)
> 𝑡] = 𝜈1𝑒

(𝑆⊤ ⊗ 𝐼 + (𝑠∗𝛼)⊤ ⊗ 𝑅)𝑡
𝜉 + (𝜋

(1)
0 − 𝜋

(1)
1 𝑅−1)𝑒𝑆𝑡1 − 𝜋

(2)
0 𝑅−1𝑒𝑆𝑡

(
1/𝑝

0

)
, (14)

where 𝑋⊤ denotes the transposed of 𝑋 ,

𝜈1 = 1
⊤ ⊗ [(𝜋

(1)
1 + 𝜋

(2)
0 ) (𝐼 − 𝑅)−1 + 𝜋

(1)
1 𝑅−1] + (1⊤, 0)/𝑝 ⊗ 𝜋

(2)
0 𝑅−1,

and 𝜉 is a size (𝑛1 + 𝑛2)
2 vector obtained from stacking the columns of the size 𝑛1 + 𝑛2 unity matrix.

Further, − lim𝑡→∞
1
𝑡
log 𝑃 [𝑊 (1)

> 𝑡] = 𝜃𝑍 and 𝑐𝑊 (1) = lim𝑡→∞ 𝑒
𝜃𝑍 𝑡𝑃 [𝑊 (1) )

> 𝑡] is given by

𝑐𝑊 (1) = 𝑐𝑍 (1 − 𝑝)
𝐾𝑆 (−𝜃𝑍 )

−𝐾 + 𝑐𝑍𝑝
𝑆1 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )

1 − (1 − 𝑝)𝐾𝑆 (−𝜃𝑍 )
−𝐾

1 − (1 − 𝑝)𝑆 (−𝜃𝑍 )−1
. (15)

Proof. Let 𝑃 [𝑄 (𝐹𝐶𝐹𝑆 )
= (𝑞, 𝑖)] be the steady state probability that the FCFS queue contains 𝑞

jobs and the server is in service phase 𝑖 ∈ {1, 2, . . . , 𝑛1 + 𝑛2}, for 𝑞 > 0. The probability that the

queue is empty is clearly 1 − 𝜆. It is well known [10] that

𝑃 [𝑄 (𝐹𝐶𝐹𝑆 )
= (𝑞, 𝑖)] = (𝜋1𝑅

𝑞−1)𝑖 ,

with 𝑅 = −𝜆(𝑆 − 𝜆𝐼 + 𝜆1𝛼)−1 and 𝜋1 = (1 − 𝜆)𝛼𝑅.

As noted earlier, the workload seen by a tagged type-1 job corresponds to the work present at

a random point in time in the FCFS queue if we remove up to 𝐾 type-2 jobs that are waiting at

the back of the FCFS queue. Note that if fewer than 𝐾 jobs are removed because of the presence of

another type-1 job, then this should be taken into account when computing the workload.
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We now define two reduced queue length distributions. The first 𝑄1 corresponds to the case

where either

(1) The FCFS queue contains 1 ≤ 𝑘 ≤ 𝐾 +1 jobs upon arrival of the tagged type-1 job and the 𝑘−1

waiting jobs are type-2 jobs (that are swapped with the tagged type-1 job by the Nudge-𝐾

algorithm). This occurs when the FCFS server is in phase 𝑖 with probability (𝜋𝑘 )𝑖 (1 − 𝑝)
𝑘−1.

(2) The FCFS queue contains exactly 𝑞 + 1 +𝐾 jobs, with 𝑞 > 0, upon arrival of the tagged type-1

job and the last 𝐾 waiting jobs are type-2 jobs (that are swapped with the tagged type-1 job).

This happens when the FCFS server is in phase 𝑖 with probability (𝜋𝐾+1+𝑞)𝑖 (1 − 𝑝)
𝐾 .

In both cases the workload seen by the tagged type-1 job is nonzero and corresponds to the sum

of 𝑞 ≥ 0 jobs plus a remaining service time which if the current phase equals 𝑖 , has a phase-type

distribution given by (𝑒𝑖 , 𝑆). Hence,

𝑃 [𝑄1 = (𝑞, 𝑖)] = 1[𝑞 = 0]

𝐾+1∑︁

𝑘=1

(𝜋𝑘 )𝑖 (1 − 𝑝)
𝑘−1 + 1[𝑞 > 0] (𝜋𝐾+1+𝑞)𝑖 (1 − 𝑝)

𝐾 . (16)

The second 𝑄2 corresponds to the case where the tagged job is swapped with 0 ≤ 𝑘 < 𝐾 jobs and

there is at least one type-1 job waiting in the FCFS queue. In this case the workload consists of the

sum of 𝑞 ≥ 0 jobs, one type-1 job and a remaining service time with phase-type distribution (𝑒𝑖 , 𝑆),

if the server is in phase 𝑖:

𝑃 [𝑄2 = (𝑞, 𝑖)] =

𝐾−1∑︁

𝑘=0

(𝜋𝑞+𝑘+2)𝑖 (1 − 𝑝)
𝑘𝑝. (17)

Note that 𝑄1 and 𝑄2 have a matrix geometric form with the same rate matrix 𝑅 as the FCFS queue.

More specifically, let the vectors 𝜋
( 𝑗 )
𝑞 contain the probabilities 𝑃 [𝑄 𝑗 = (𝑞, 𝑖)], for 𝑗 = 1, 2, then

𝜋
(1)
𝑞 = 𝜋

(1)
1 𝑅𝑞−1 for 𝑞 > 0 and 𝜋

(2)
𝑞 = 𝜋

(2)
0 𝑅𝑞 for 𝑞 ≥ 0. The expressions in (11), (12) and (13) follow

from (16) and (17).

The probability 𝑃 [𝑊 (1)
> 𝑡] that the workload seen by a tagged type-1 job exceeds 𝑡 can now

be computed as

𝑃 [𝑊 (1)
> 𝑡] =

∞∑︁

𝑞=0

𝑃 [𝑄 (1)
= (𝑞, 𝑖)]𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 > 𝑡]

+

∞∑︁

𝑞=0

𝑃 [𝑄 (2)
= (𝑞, 𝑖)]𝑃 [𝑋 (𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡], (18)

where 𝑅𝑖 is a random variable with phase-type distribution (𝑒𝑖 , 𝑆),𝑋
(𝑞∗) is the sum of 𝑞 independent

copies of the job size with phase-type representation (𝛼, 𝑆) and 𝑋1 is the type-1 job size with phase-

type representation (𝛼1, 𝑆1).

The probabilities 𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 > 𝑡] and 𝑃 [𝑋 (𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡] can be expressed using the

following two observations. 𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 > 𝑡] is the probability that there are less than 𝑞 + 1

renewals in [0, 𝑡] for the phase-type renewal process with inter-renewal time (𝛼, 𝑆) that starts in

phase 𝑖 at time zero. The probability 𝑃 [𝑋 (𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡] can be expressed as 𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 >

𝑡] + 𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 < 𝑡, 𝑋
(𝑞∗) + 𝑅𝑖 + 𝑋1 > 𝑡]. Let 𝑃 (𝑘, 𝑡) be the matrix such that entry (𝑖, 𝑗) contains

the probability that 𝑘 renewals occur in [0, 𝑡] given that the initial phase equals 𝑖 and the phase at
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time 𝑡 is 𝑗 of the phase-type renewal process with inter-renewal time (𝛼, 𝑆). Then,

∞∑︁

𝑞=1

𝑃 [𝑄 (1)
= (𝑞, 𝑖)]𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 > 𝑡] =

∞∑︁

𝑞=1

𝜋
(1)
1 𝑅𝑞−1

𝑞∑︁

𝑘=0

𝑃 (𝑘, 𝑡)1

= 𝜋
(1)
1

∞∑︁

𝑞=1

𝑅𝑞−1
𝑞−1∑︁

𝑘=0

𝑃 (𝑘, 𝑡)1 + 𝜋
(1)
1 𝑅−1

∞∑︁

𝑞=1

𝑅𝑞𝑃 (𝑞, 𝑡)1

= 𝜋
(1)
1 (𝐼 − 𝑅)−1

𝑞−1∑︁

𝑘=0

𝑅𝑘𝑃 (𝑘, 𝑡)1 + 𝜋
(1)
1 𝑅−1

(
∞∑︁

𝑘=0

𝑅𝑘𝑃 (𝑘, 𝑡)1 − 𝑃 (0, 𝑡)1

)

= 𝜋
(1)
1 ((𝐼 − 𝑅)−1 + 𝑅−1)

∞∑︁

𝑘=0

𝑅𝑘𝑃 (𝑘, 𝑡)1 − 𝜋
(1)
1 𝑅−1𝑒𝑆𝑡1.

Using the same reasoning as in the proof of [12, Theorem 2], we can show that

𝑎

∞∑︁

𝑘=0

𝑅𝑘𝑃 (𝑘, 𝑡)𝑏 = (𝑏⊤ ⊗ 𝑎)𝑒 (𝑆
⊤⊗𝐼+(𝑠∗𝛼 )⊤⊗𝑅)𝑡𝜉, (19)

for any row vector 𝑎 and column vector 𝑏 as

𝜕

𝜕𝑡
𝑃 (0, 𝑡) = 𝑆𝑃 (0, 𝑡),

𝜕

𝜕𝑡
𝑃 (𝑘, 𝑡) = 𝑆𝑃 (𝑘, 𝑡) + 𝑠∗𝛼𝑃 (𝑘 − 1, 𝑡),

with 𝑃 (0, 0) = 𝐼 and 𝑃 (𝑘, 0) = 0 for 𝑘 > 0. Setting 𝑏 = 1 and 𝑎 = 𝜋
(1)
1 ((𝐼 − 𝑅)−1 + 𝑅−1) implies that

∞∑︁

𝑞=0

𝑃 [𝑄 (1)
= (𝑞, 𝑖)]𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 > 𝑡] = (𝜋

(1)
0 − 𝜋

(1)
1 𝑅−1)𝑒𝑆𝑡1

+ (1⊤ ⊗ 𝜋
(1)
1 ((𝐼 − 𝑅)−1 + 𝑅−1))𝑒 (𝑆

⊤⊗𝐼+(𝑠∗𝛼 )⊤⊗𝑅)𝑡𝜉 . (20)

For the second sum in (18) it is worth noting that the events 𝑋 (𝑞∗) + 𝑅𝑖 ≤ 𝑡 and 𝑋
(𝑞∗) +𝑋1 + 𝑅𝑖 > 𝑡

occur simultaneously if there are exactly 𝑞 + 1 renewals for the phase-type renewal process in

[0, 𝑡] starting from phase 𝑖 given that the (𝑞 + 2)-th inter-renewal time corresponds to a type-1 job.

In other words 𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 ≤ 𝑡, 𝑋 (𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡] =
∑𝑛1
𝑗=1 𝑃 (𝑞 + 1, 𝑡)𝑖 𝑗/𝑝 as the first 𝑛1 phases

correspond to a type-1 job and the fraction of type-1 jobs equals 𝑝 . With this observation we can

express the second sum in (18) as

∞∑︁

𝑞=0

𝑃 [𝑄 (2)
= (𝑞, 𝑖)]𝑃 [𝑋 (𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡]

=

∞∑︁

𝑞=0

∑︁

𝑖

(𝜋
(2)
0 𝑅𝑞)𝑖

(
𝑃 [𝑋 (𝑞∗) + 𝑅𝑖 > 𝑡] + 𝑃 [𝑋

(𝑞∗) + 𝑅𝑖 ≤ 𝑡, 𝑋
(𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡]

)

=

∞∑︁

𝑞=0

𝜋
(2)
0 𝑅𝑞

(
𝑞∑︁

𝑘=0

𝑃 (𝑘, 𝑡)1 + 𝑃 (𝑞 + 1, 𝑡)

(
1/𝑝

0

))

= 𝜋
(2)
0 (𝐼 − 𝑅)−1

∞∑︁

𝑘=0

𝑅𝑘𝑃 (𝑘, 𝑡)1 + 𝜋
(2)
0 𝑅−1

(
∞∑︁

𝑘=0

𝑅𝑘𝑃 (𝑘, 𝑡) − 𝑃 (0, 𝑡)

) (
1/𝑝

0

)
.
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Due to (19) we have

∞∑︁

𝑞=0

𝑃 [𝑄 (2)
= (𝑞, 𝑖)]𝑃 [𝑋 (𝑞∗) + 𝑋1 + 𝑅𝑖 > 𝑡]

= [(1⊤ ⊗ 𝜋
(2)
0 (𝐼 − 𝑅)−1) + ((1⊤/𝑝, 0) ⊗ 𝜋

(2)
0 𝑅−1)]𝑒 (𝑆

⊤⊗𝐼+(𝑠∗𝛼 )⊤⊗𝑅)𝑡𝜉 − 𝜋
(2)
0 𝑅−1𝑒𝑆𝑡

(
1/𝑝

0

)
.

(21)

Combining (18), (20) and (21) yields (14).

As the workload decays at rate 𝜃𝑍 and 𝜋1
∑∞
𝑘=0 𝑅

𝑘𝑃 (𝑘, 𝑡)1 is the probability that the workload

exceeds 𝑡 , (19) implies that 𝑒 (𝑆
⊤⊗𝐼+(𝑠∗𝛼 )⊤⊗𝑅)𝑡 decays at rate 𝜃𝑍 , while the other terms decay faster.

The expression for 𝑐𝑊 (1) can be derived by noting that for any vector 𝑎 we have

𝑎

𝑞∑︁

𝑘=0

𝑃 (𝑘, 𝑡)1 = (𝑎, 0)𝑒Ω𝑡1,

where the block matrix

Ω =



𝑆 𝑠∗𝛼

𝑆
. . .

. . . 𝑠∗𝛼

𝑆



,

has 𝑞 + 1 diagonal blocks. We therefore have that 𝑎
∑𝑞

𝑘=0
𝑃 (𝑘, 𝑡)1 for any fixed 𝑞 has a decay rate

equal to min(𝜃1, 𝜃2). The probability 𝑃 [𝑅𝑖 > 𝑡] also decays at this rate. We may therefore when

computing lim𝑡→∞ 𝑒
𝜃𝑍 𝑡𝑃 [𝑊 (1)

> 𝑡] start the summations in (18) at 𝐾 . This means that as far as

this limit is concerned, a tagged type-1 job passes 𝑁 type-2 jobs, where 𝑁 is a truncated geometric

distribution, that is, 𝑃 [𝑁 = 𝑘] = 𝑝 (1 − 𝑝)𝑘 for 𝑘 < 𝐾 and 𝑃 [𝑁 = 𝐾] = (1 − 𝑝)𝐾 . Applying the final

value theorem in the same manner as before therefore yields

𝑐𝑊 (1) = 𝑐𝑍 (1 − 𝑝)
𝐾𝑆2 (−𝜃𝑍 )

−𝐾 𝑆2 (−𝜃𝑍 )
𝐾

𝑆 (−𝜃𝑍 )𝐾
+ 𝑐𝑍

𝐾−1∑︁

𝑘=0

𝑝 (1 − 𝑝)𝑘𝑆2 (−𝜃𝑍 )
−𝑘 𝑆2 (−𝜃𝑍 )

𝑘𝑆1 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )𝑘+1

= 𝑐𝑍

(
(1 − 𝑝)𝐾𝑆 (−𝜃𝑍 )

−𝐾 + 𝑝
𝑆1 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )

1 − (1 − 𝑝)𝐾𝑆 (−𝜃𝑍 )
−𝐾

1 − (1 − 𝑝)𝑆 (−𝜃𝑍 )−1
,

)
,

where the fraction 𝑐𝑍𝑆2 (−𝜃𝑍 )
𝐾/𝑆 (−𝜃𝑍 )

𝐾 is used to get the workload conditioned on having 𝐾

type-2 jobs in the back, while the fractions 𝑐𝑍𝑆2 (−𝜃𝑍 )
𝑘𝑆1 (−𝜃𝑍 )/𝑆 (−𝜃𝑍 )

𝑘+1 are needed to get the

workload conditioned on the fact that the last 𝑘 + 1 jobs are a type-1 job followed by 𝑘 type-2 jobs.

□

Theorem 7. Let 𝑅 (1) be the response time distribution of a type-1 job, then

𝑃 [𝑅 (1)
> 𝑡] = 𝑃 [𝑊 (1)

> 𝑡] + (1 − 𝜆)𝛼1𝑒
𝑆1𝑡1 − (𝜈1, 0)𝑒

𝐴 (1) 𝑡

(
0

1

)

− (𝜋
(1)
0 − 𝜋

(1)
1 𝑅−1, 0)𝑒𝐴

(3) 𝑡

(
0

1

)
+ (𝜋

(2)
0 𝑅−1, 0)𝑒𝐴

(2) 𝑡

(
0

1

)
, (22)
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where

𝐴 (1)
=

[
𝑆⊤ ⊗ 𝐼 + (𝑠∗𝛼)⊤ ⊗ 𝑅 (𝑆⊤ ⊗ 𝐼 + (𝑠∗𝛼)⊤ ⊗ 𝑅)𝜉𝛼1

0 𝑆1

]
,

𝐴 (2)
=

[
𝑆 (𝑆𝑒)𝛼1
0 𝑆1

]
,

𝐴 (3)
=



𝑆 𝑆

(
𝑒/𝑝

0

)
𝛼1

0 𝑆1


.

Further, − lim𝑡→∞
1
𝑡
log 𝑃 [𝑅 (1)

> 𝑡] = 𝜃𝑍 and 𝑐𝑅 (1) = lim𝑡→∞ 𝑒
𝜃𝑍 𝑡𝑃 [𝑅 (1)

> 𝑡] = 𝑐𝑊 (1)𝑆1 (−𝜃𝑍 ).

Proof. The result follows from Theorem 6 and the fact that 𝑃 [𝑅 (1)
> 𝑡] can be expressed as

𝑃 [𝑅 (1)
> 𝑡] = (1 − 𝜆)𝛼1𝑒

𝑆1𝑡1 + 𝑃 [𝑊 (1)
> 𝑡] +

∫ 𝑡

0

(
−
𝜕

𝜕𝑡
𝑃 [𝑊 (1)

> 𝑠]

)
𝛼1𝑒

𝑆1 (𝑡−𝑠 )1𝑑𝑠,

combined with Lemma 1. □

7 ASYMPTOTIC TAIL IMPROVEMENT RATIO

In this section we present results for the asymptotic tail improvement ratio. Most of the results are

expressed in terms of 𝑆 (−𝜃𝑍 ), 𝑆1 (−𝜃𝑍 ), and 𝑆2 (−𝜃𝑍 ), where 𝜃𝑍 is the decay rate of the workload 𝑍 .

It is worth noting at this stage that

𝑆 (−𝜃𝑍 ) =
𝜆 + 𝜃𝑍

𝜆
, (23)

which follows from [2, Equation (4)] by noting that 𝜆/(𝜆 + 𝜃𝑍 ) is the Laplace transform of the

inter-arrival time evaluated in 𝑠 = 𝜃𝑍 .

The previous theorems yield the following result for the asymptotic tail improvement ratio:

Theorem 8. The asymptotic tail improvement ratio (ATIR) is equal to

ATIR(𝐾) = 1 − lim
𝑡→∞

𝑃 [𝑅Nudge-K > 𝑡]

𝑃 [𝑅 > 𝑡]

= 𝑤1 (𝑆2 (−𝜃𝑍 ) − 1)𝑤
1 −𝑤𝐾

1 −𝑤
− (1 −𝑤1) (𝑆1 (−𝜃𝑍 ) − 1) (1 − (1 − 𝑝)𝐾 ) (24)

with𝑤1 = 𝑝𝑆1 (−𝜃𝑍 )/𝑆 (−𝜃𝑍 ) ∈ (0, 1),𝑤 = (1 − 𝑝)/𝑆 (−𝜃𝑍 ) ∈ (0, 1) and𝑤1 +𝑤 ∈ (0, 1).

Further, the integer 𝐾 that maximizes ATIR(𝐾) is given by

𝐾𝑜𝑝𝑡 =

⌊
log

(
𝑆1 (−𝜃𝑍 ) (𝑆2 (−𝜃𝑍 ) − 1)

𝑆2 (−𝜃𝑍 ) (𝑆1 (−𝜃𝑍 ) − 1)

)/
log 𝑆 (−𝜃𝑍 )

⌋
, (25)

if 𝐾𝑜𝑝𝑡 ≥ 0, otherwise setting 𝐾 = 0 is optimal.

Proof. By definition

ATIR(𝐾) = 1 −
𝑝𝑐𝑅 (1) + (1 − 𝑝)𝑐𝑅 (2)

𝑐𝐹𝐶𝐹𝑆
= 1 −

𝑝𝑐𝑊 (1)𝑆1 (−𝜃𝑍 ) + (1 − 𝑝)𝑐𝑊 (2)𝑆2 (−𝜃𝑍 )

𝑐𝑍𝑆 (−𝜃𝑍 )
.
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Combined with (8) and (15), this yields

ATIR(𝐾) = 1 − 𝑝

(
𝑤𝐾 +𝑤1

1 −𝑤𝐾

1 −𝑤

)
𝑆1 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )

− (1 − 𝑝)
(
(1 − 𝑝)𝐾 + (1 − (1 − 𝑝)𝐾 )𝑆1 (−𝜃𝑍 )

) 𝑆2 (−𝜃𝑍 )
𝑆 (−𝜃𝑍 )

,

= (1 −𝑤1) +𝑤1 (1 −𝑤
𝐾 ) −𝑤2

1

1 −𝑤𝐾

1 −𝑤

− (1 −𝑤1)
(
(1 − 𝑝)𝐾 + (1 − (1 − 𝑝)𝐾 )𝑆1 (−𝜃𝑍 )

)
,

as 1−𝑤1 = (1−𝑝)𝑆2 (−𝜃𝑍 )/𝑆 (−𝜃𝑍 ). (24) now follows by verifying that 1−𝑤 −𝑤1 = 𝑤 (𝑆2 (−𝜃𝑍 ) −1).

To see that𝑤 ∈ (0, 1), it suffices to note that 𝑆 (−𝜃𝑍 ) > 1 as 𝜃𝑍 > 0. Similarly 𝑆𝑖 (−𝜃𝑍 ) > 1, which

implies that 𝑤1 ∈ (0, 1) as 𝑆 (−𝜃𝑍 ) = 𝑝𝑆1 (−𝜃𝑍 ) + (1 − 𝑝)𝑆2 (−𝜃𝑍 ). Further, 𝑤 + 𝑤1 = ((1 − 𝑝) +

𝑝𝑆1 (−𝜃𝑍 ))/𝑆 (−𝜃𝑍 )) < 1.

Setting the derivative of the ATIR(𝐾 ) equal to zero implies

(1 − 𝑝)𝐾

𝑤𝐾
=

𝑤1

1 −𝑤1

𝑤

1 −𝑤

log𝑤

log(1 − 𝑝)

𝑆2 (−𝜃𝑍 ) − 1

𝑆1 (−𝜃𝑍 ) − 1
,

which shows that the ATIR(𝐾 ) has a unique stationary point.

Define ΔATIR (𝐾) = ATIR(𝐾 + 1) − ATIR(𝐾). Recalling that 1 −𝑤1 = (1 − 𝑝)𝑆2 (−𝜃𝑍 )/𝑆 (−𝜃𝑍 ),

we have

ΔATIR (𝐾) = 𝑤1 (𝑆2 (−𝜃𝑍 ) − 1)𝑤𝐾+1 − 𝑝 (1 −𝑤1) (𝑆1 (−𝜃𝑍 ) − 1) (1 − 𝑝)𝐾 ,

=

(
𝑆1 (−𝜃𝑍 ) (𝑆2 (−𝜃𝑍 ) − 1)

𝑆 (−𝜃𝑍 )𝐾+2
−
𝑆2 (−𝜃𝑍 ) (𝑆1 (−𝜃𝑍 ) − 1)

𝑆 (−𝜃𝑍 )

)
𝑝 (1 − 𝑝)𝐾+1 . (26)

As lim𝐾→−∞ ΔATIR (𝐾) = +∞ and ΔATIR (𝐾) < 0 for 𝐾 sufficiently large, the unique stationary

point of ATIR(𝐾) is a maximum and the optimal integer 𝐾 is located in the ceil of the unique root

of ΔATIR (𝐾), which yields (25). □

Remarks: The expression in (26) shows that the increase in the ATIR(𝐾 ) decreases with 𝐾 as long

as it remains positive. Thus the gain obtained by increasing 𝐾 by one decreases with 𝐾 until the

optimal 𝐾 is reached.

It is worth noting that if the type-𝑖 jobs have an exponential job size distribution with parameter

𝜇𝑖 , then (25) simplifies to

𝐾𝑜𝑝𝑡 = ⌊log(𝜇1/𝜇2)/log(𝑆 (−𝜃𝑍 ))⌋, (27)

which implies that 𝐾𝑜𝑝𝑡 is non-decreasing in 𝜆 when the job sizes are exponential and 𝜇1/𝜇2 =

𝐸 [𝑋2]/𝐸 [𝑋1] > 1 (as 𝑆 (−𝜃𝑍 ) decreases in 𝜆). As we will demonstrate in Section 8, this property

does not necessarily hold when the type-2 jobs are no longer exponential even if 𝑋2 stochastically

dominates 𝑋1.

Theorem 9. The ATIR(𝐾) > 0 if and only if
(
1 −

1

𝑆2 (−𝜃𝑍 )

)/ (
1 −

1

𝑆1 (−𝜃𝑍 )

)
>

(
1 +

𝜃𝑍

𝜆𝑝

)
1 − (1 − 𝑝)𝐾

1 −
(
𝜆 (1−𝑝 )
𝜆+𝜃𝑍

)𝐾 , (28)
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meaning the ATIR(1) > 0 if and only if
(
1 −

1

𝑆2 (−𝜃𝑍 )

)/ (
1 −

1

𝑆1 (−𝜃𝑍 )

)
> 1 +

𝜃𝑍

𝜆
, (29)

and the ATIR(𝐾) > 0 for any 𝐾 if and only if
(
1 −

1

𝑆2 (−𝜃𝑍 )

)/ (
1 −

1

𝑆1 (−𝜃𝑍 )

)
> 1 +

𝜃𝑍

𝜆𝑝
. (30)

Proof. From (24) and the definition of𝑤1, we have ATIR(𝐾) > 0 if and only if

𝑝𝑆1 (−𝜃𝑍 ) (𝑆2 (−𝜃𝑍 ) − 1)𝑤
1 −𝑤𝐾

1 −𝑤
> (1 − 𝑝)𝑆2 (−𝜃𝑍 ) (𝑆1 (−𝜃𝑍 ) − 1) (1 − (1 − 𝑝)𝐾 ) .

This condition can be restated as
(
1 −

1

𝑆2 (−𝜃𝑍 )

)/ (
1 −

1

𝑆1 (−𝜃𝑍 )

)
>

(1 −𝑤)𝑆 (−𝜃𝑍 )

𝑝

1 − (1 − 𝑝)𝐾

1 −𝑤𝐾
.

Using 𝑤 = (1 − 𝑝)/𝑆 (−𝜃𝑍 ) and (23) we obtain (28). Setting 𝐾 = 1 and taking the limit for 𝐾 to

infinity yield (29) and (30). The result for 𝐾 = 1 is also immediate from (26) as ATIR(1) = ΔATIR (0).

□

Remarks: The condition in (29) is very similar to Theorem 4.3 in [5]. Moreover when 𝐾 = 1, we

have

ATIR(1) = 𝑝 (1 − 𝑝)

(
𝑆1 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )

𝑆2 (−𝜃𝑍 ) − 1

𝑆 (−𝜃𝑍 )
−
𝑆2 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )
(𝑆1 (−𝜃𝑍 ) − 1)

)

=

𝑝 (1 − 𝑝)

𝑆 (−𝜃𝑍 )

(
𝑆2 (−𝜃𝑍 ) −

𝑆1 (−𝜃𝑍 )

𝑆 (−𝜃𝑍 )
− 𝑆1 (−𝜃𝑍 )𝑆2 (−𝜃𝑍 ) (1 − 𝑆 (−𝜃𝑍 )

−1)

)

=

𝜆𝑝 (1 − 𝑝)

𝜆 + 𝜃𝑍

(
𝑆2 (−𝜃𝑍 ) −

𝜆

𝜆 + 𝜃𝑍
𝑆1 (−𝜃𝑍 ) −

𝜃𝑍

𝜆 + 𝜃𝑍
𝑆1 (−𝜃𝑍 )𝑆2 (−𝜃𝑍 )

)
,

which is again similar in form to Theorem 4.3 in [5].

When type-𝑖 jobs have an exponential distribution with mean 1/𝜇𝑖 , for 𝑖 = 1, 2, we have 𝑆𝑖 (𝑠) =

𝜇𝑖/(𝜇𝑖 + 𝑠) and (29) simplifies to

𝜇1

𝜇2
> 𝑆 (−𝜃𝑍 ) = 1 + 𝜃𝑍 /𝜆.

As lim𝜆→1− 𝑆 (−𝜃𝑍 ) = 1, this means that for 𝜇1/𝜇2 = 𝐸 [𝑋2]/𝐸 [𝑋1] > 1, there exists a 𝜆 ∈ (0, 1) such

that ATIR(1) > 0 for 𝜆 > 𝜆. The next theorem shows that this result holds in general for phase-type

distributions:

Theorem 10. When 𝐸 [𝑋2] > 𝐸 [𝑋1], then ATIR(𝐾) > 0 for 𝜆 sufficiently close to one for any 𝐾 .

Further, if 𝐸 [𝑋2] > 𝐸 [𝑋1], then lim𝜆→1− 𝐾𝑜𝑝𝑡 = ∞.

Proof. Using the Taylor series expansion of the exponential function, we readily see that

𝑆𝑖 (−𝜃𝑍 ) =

∞∑︁

𝑘=0

𝜃𝑘
𝑍
𝐸 [𝑋𝑘𝑖 ]

𝑘!
= 1 + 𝜃𝑍𝐸 [𝑋𝑖 ] + 𝑜 (𝜃

2
𝑍 ), (31)

for 𝑖 = 1, 2 and similarly 𝑆 (−𝜃𝑍 ) = 1 + 𝜃𝑍𝐸 [𝑋 ] + 𝑜 (𝜃
2
𝑍
). This implies that

lim
𝜆→1−

(
1 −

1

𝑆2 (−𝜃𝑍 )

)/ (
1 −

1

𝑆1 (−𝜃𝑍 )

)
=

𝐸 [𝑋2]

𝐸 [𝑋1]
. (32)
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Fig. 1. The tail improvement ratio of Nudge-K over FCFS for expo jobs with 𝐸 [𝑋2]/𝐸 [𝑋1] = 2, 𝜆 = 3/4 and

𝑝 = 1/2.

as 𝜃𝑍 tends to zero when 𝜆 tends to one. Hence, if 𝐸 [𝑋2]/𝐸 [𝑋 ] > 1, then ATIR(𝐾) > 0 for any 𝐾

for 𝜆 close enough to 1 due to (30) as 1 + 𝜃𝑍 /𝜆 tends to one.

To determine lim𝜆→1− 𝐾𝑜𝑝𝑡 we note that (32) implies that

lim
𝜆→1−

𝐾𝑜𝑝𝑡 = lim
𝜆→1−

⌊
log(𝐸 [𝑋2]/𝐸 [𝑋1])

log(𝑆 (−𝜃𝑍 ))

⌋
. (33)

This proves that 𝐾𝑜𝑝𝑡 tends to∞ when 𝐸 [𝑋2]/𝐸 [𝑋1] > 1, while 𝐾𝑜𝑝𝑡 tends to −∞ if 𝐸 [𝑋2]/𝐸 [𝑋1] <

1. □

Theorem 11. For 𝜆 close to one and 𝐸 [𝑋2] > 𝐸 [𝑋1], we have

𝐾𝑜𝑝𝑡 ≈

⌊
log(𝐸 [𝑋2]/𝐸 [𝑋1])𝐸 [𝑋

2]

2(1 − 𝜆)

⌋
≈

⌊
log

(
𝐸 [𝑋2]

𝐸 [𝑋1]

)
𝐸 [𝑍 ]

⌋
, (34)

where log() is the natural logarithm.

Proof. Using (33) and the fact that 𝑆 (−𝜃𝑍 ) = 1 + 𝜃𝑍 + 𝑜 (𝜃 2
𝑍
) (as 𝐸 [𝑋 ] = 1), we have for 𝜆 close

to one

𝐾𝑜𝑝𝑡 ≈

⌊
log(𝐸 [𝑋2]/𝐸 [𝑋1])

log(1 + 𝜃𝑍 )

⌋
.

The result therefore follows from the classic heavy-traffic limit of Kingman [7] for the GI/G/1 queue

(when both the inter-arrival time 𝐼 and service time distribution 𝑋 has finite variance), which states

that the decay rate 𝜃𝑍 of the waiting time in the heavy traffic limit equals

2 (𝐸 [𝐼 ] − 𝐸 [𝑋 ])

𝑉𝑎𝑟 [𝐼 ] +𝑉𝑎𝑟 [𝑋 ]
=

2( 1
𝜆
− 1)

1
𝜆2

+ 𝑝𝐸 [𝑋 2
1 ] + (1 − 𝑝)𝐸 [𝑋 2

2 ] − 1
, (35)

and the Taylor series expansion of log(1 + 𝑥) =
∑∞
𝑛=1 (−1)

𝑛+1𝑥𝑛/𝑛. The expression using 𝐸 [𝑍 ] is

due to the fact that 𝐸 [𝑍 ] = 𝜆𝐸 [𝑋 2]/(2(1 − 𝜆)). □
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Fig. 2. The tail improvement ratio of Nudge-K over FCFS for expo jobs with 𝐸 [𝑋2]/𝐸 [𝑋1] = 3/2, 𝜆 = 3/4 and

𝑝 = 1/2.

8 NUMERICAL RESULTS AND INSIGHTS

In this section we present various new insights on stochastic and asymptotic improvements of

FCFS. We start with the stochastic improvements.

8.1 On stochastic improvements

Figure 1 plots the tail improvement ratio of Nudge-K over FCFS for 𝜆 = 3/4 when both type-1

and type-2 jobs have an exponential distribution with 𝐸 [𝑋2]/𝐸 [𝑋1] = 2 and 𝑝 = 1/2. A number of

observations can be made:

(1) Nudge-𝐾 stochastically improves FCFS for 𝐾 = 1, 2, 3 and∞, even though type-1 jobs are not

necessarily smaller than type-2 jobs. This illustrates that FCFS can be stochastically improved

upon under far weaker conditions than in [5].

(2) Nudge-2 and Nudge-3 both stochastically improve Nudge-1, but neither stochastically im-

proves the other. From (25) we also know that setting 𝐾 = 2 optimizes the ATIR(𝐾). This

implies that there does not exist a 𝐾 that minimizes 𝑃 [𝑅Nudge−𝐾 > 𝑡] for all 𝑡 .

(3) Setting 𝐾 = ∞ is best for reducing 𝑃 [𝑅Nudge-𝐾 > 𝑡] for small 𝑡 , but does not stochastically

improve Nudge-𝐾 for 𝐾 ∈ {1, 2, 3}.

Figure 2 plots the tail improvement ratio of Nudge-K over FCFS for the same setting as Figure 1,

except that 𝐸 [𝑋2]/𝐸 [𝑋1] = 3/2. The main observation in this plot is that while 𝐾 = 1 and 2 results

in a stochastic improvement over FCFS, setting 𝐾 ≥ 3 does not (as the ATIR(𝐾) decreases in 𝐾

beyond 𝐾𝑜𝑝𝑡 ). In other words, in some cases the stochastic improvement over FCFS can be lost if we

allow that type-1 jobs can pass too many type-2 jobs.

Figure 3 considers the scenario with 𝑝 = 0.7, 𝜆 = 0.7, 𝐸 [𝑋2]/𝐸 [𝑋1] = 1.2. Type-1 jobs are

exponential, while the type-2 jobs follow an order-2 hyper-exponential distribution with 𝑆𝐶𝑉 = 2

and shape parameter 𝑓 = 9/10. This means that type-2 jobs are a mixture of two classes of

exponential jobs: one with mean 1/𝜇21 ≈ 1.034 and one with mean 1/𝜇22 ≈ 7.674, where 10%

of the workload is offered by the jobs belonging to the class with the larger mean (that is, 𝛼2 ≈

(0.985, 0.015)). It is important to note that both 1/𝜇21 and 1/𝜇22 are larger than 1, while the mean of
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Fig. 3. The tail improvement ratio of Nudge-K over FCFS for expo type-1 and H2 (𝑆𝐶𝑉 = 2, 𝑓 = 9/10) type-2

jobs with 𝐸 [𝑋2]/𝐸 [𝑋1] = 1.2, 𝜆 = 0.7 and 𝑝 = 0.7.

the type-1 jobs is 100/106 < 1. As a result 𝑋2 stochastically dominates 𝑋1 (in the first order), that is

𝑃 [𝑋2 > 𝑡] > 𝑃 [𝑋1 > 𝑡],

for any 𝑡 > 0. The plot shows that while all the considered 𝐾 values result in an asymptotic tail

improvement ratio, none of them stochastically improves FCFS. This example shows that having an

asymptotic improvement does not imply a stochastic improvement in general even if 𝑋2 stochastically

dominates 𝑋1. The intuition is that while it is good to swap type-1 jobs with the type-2 jobs with

mean 1/𝜇22, the swaps with the jobs with mean 1/𝜇21 are not beneficial as their mean is fairly close

to the mean of the type-1 jobs.

In Figure 4 we consider the same scenario as in Figure 3 with 𝐾 = 1, but we vary the SCV of

the H2 type-2 traffic from 1 to 100. For all of these settings, 𝑋2 stochastically dominates 𝑋1. The

experiment shows that while there is no stochastic or asymptotic improvement for low SCV (that

is, when the SCV equals 1 or 1.2). Larger SCV values do result in an asymptotic improvement, but

not in a stochastic improvement. We further see that the asymptotic improvement tends to zero as

the SCV tends to infinity. This can be understood by noting that when the SCV tends to infinity,

there are very few swaps as the type-2 jobs that have an exponential distribution with mean 1/𝜇22
are rare (as 1/𝜇22 is large).

8.2 On asymptotic tail improvements

In this subsection we address two issues. First, we noted that if both the type-1 and type-2 jobs

are exponential, then 𝐾𝑜𝑝𝑡 is non-decreasing in 𝜆 if 𝐸 [𝑋2] > 𝐸 [𝑋1] (see (27)). We now demonstrate

that if we make the type-2 jobs hyper-exponential, this is not necessarily the case even if 𝑋2

stochastically dominates 𝑋1. Second, for exponential job sizes having 𝐸 [𝑋1] > 𝐸 [𝑋2] implies

that 𝐾𝑜𝑝𝑡 = 0, meaning we cannot asymptotically improve upon FCFS. We illustrate that when

type-2 jobs are no longer exponential and 𝐸 [𝑋1] > 𝐸 [𝑋2], we can still achieve an asymptotic tail

improvement in some cases.

The scenario considered is similar to Figure 3, that is, 𝑝 = 0.7, type-1 jobs are exponential and

type-2 jobs are hyper-exponential with 𝑆𝐶𝑉 = 2 and shape parameter 𝑓 = 0.9. We vary 𝜆 from

0.01 to 0.99 and 𝐸 [𝑋2]/𝐸 [𝑋1] from 0.4 to 2 (in Figure 3 these were set at 0.7 and 1.2, respectively).
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Fig. 4. The tail improvement ratio of Nudge-K with 𝐾 = 1 over FCFS for expo type-1 and H2 (𝑓 = 9/10) type-2

jobs with 𝐸 [𝑋2]/𝐸 [𝑋1] = 1.2, 𝜆 = 0.7 and 𝑝 = 0.7.
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Fig. 5. The asymptotic tail improvement ratio of Nudge-K over FCFS (a) and optimal 𝐾 (b) for 𝑝 = 0.7 with

exponential type-1 and hyper-exponential type-2 jobs (𝑆𝐶𝑉 = 2 and 𝑓 = 9/10).

Figure 5 presents two contour plots: one for the ATIR(𝐾𝑜𝑝𝑡 ) with contour lines from 0.03 to 0.15 in

steps of 0.03 and one for 𝐾𝑜𝑝𝑡 with contour lines in 1, 2, . . . , 20.

Looking at the region where 𝐸 [𝑋2]/𝐸 [𝑋1] < 1 clearly shows that we can have an asymptotic

tail improvement even when 𝐸 [𝑋1] > 𝐸 [𝑋2]. If we focus on the line with 𝐸 [𝑋2]/𝐸 [𝑋1] = 1.2 in

the contour plot of 𝐾𝑜𝑝𝑡 , we note that 𝐾𝑜𝑝𝑡 first increases to 4, then drops to 3 and finally starts to

increase (without bound due to Theorem 10) as 𝜆 tends to one. This shows that 𝐾𝑜𝑝𝑡 can decrease

as a function of 𝜆. Further note that when 𝐸 [𝑋1]/𝐸 [𝑋2] = 1.2, then 𝑋2 stochastically dominates 𝑋1

(as explained when discussing Figure 3).

9 CONCLUSIONS

In this paper we demonstrated that the First-Come-First-Served scheduling algorithm can be

stochastically improved upon by the Nudge-𝐾 algorithm under far weaker conditions that the ones
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considered in [5]. This is practically relevant as it indicates that it may suffice to identify certain job

types, where jobs belonging to one type are typically larger than jobs belonging to another, in order

to improve all of the response time percentiles of First-Come-First-Served scheduling. We did this

by deriving explicit expressions for the response time of Nudge-𝐾 for the system defined in Section

2. In addition we presented a number of elegant results on the asymptotic tail improvement ratio,

such as the expression for the optimal 𝐾 . We also presented various new insights on stochastic and

asymptotic improvements upon First-Come-First-Served scheduling.

The current results can be extended in a number of ways. It is not too difficult to include a

third job type that cannot be swapped with either type-1 or type-2 jobs, though we expect smaller

gains in such a scenario and the notations become somewhat heavier. The results on the ATIR(𝐾 )

presented in Section 7 and their proofs remain mostly valid if we relax the assumptions that type-1

and type-2 job sizes are phase-type and simply demand that 𝑋 = 𝑝𝑋1 + (1 − 𝑝)𝑋2 is phase-type. In

such case we could also define the type-1 and type-2 jobs using the job size (as in [5]).

It is also worthwhile seeing what happens if we consider a larger class of Nudge-like policies, for

instance, suppose that we allow that type-2 jobs can be involved in at most 𝐿 swaps instead of just

one. When 𝐿 > 1, the analysis performed for the type-1 jobs in Section 6 fails as we can no longer

make a similar connection with the FCFS queue. We believe that in such case it is possible to rely

on the framework of Markov modulated fluid queues to study the response time of a type-1 job. In

fact initially we used this approach for the analysis of the response time of a type-1 job of Nudge-𝐾

before coming up with the more elegant approach presented in Section 6. We note that both the

Markov modulated fluid queue approach and the more elegant approach in Section 6 yielded the

same numerical results.
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