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We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to

minimize regret butm malicious agents can disrupt learning arbitrarily. Assuming the network is the complete

graph, existing algorithms incur O((m + K/n) log(T )/∆) regret in this setting, where K is the number of arms

and ∆ is the arm gap. Form ≪ K , this improves over the single-agent baseline regret of O(K log(T )/∆).
In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove

that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly)

linear regret until time is doubly exponential in K and n. In light of this negative result, we propose a new

algorithm for which the i-th agent has regret O((d
mal
(i) + K/n) log(T )/∆) on any connected and undirected

graph, where d
mal
(i) is the number of i’s neighbors who are malicious. Thus, we generalize existing regret

bounds beyond the complete graph (where d
mal
(i) =m), and show the effect of malicious agents is entirely

local (in the sense that only the d
mal
(i) malicious agents directly connected to i affect its long-term regret).
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1 INTRODUCTION
Motivated by applications including distributed computing, social recommendation systems, and

federated learning, a number of recent papers have studied multi-agent variants of the classical

multi-armed bandit problem. Typically, these variants involve a large number of agents playing a

bandit while communicating over a network. The goal is to devise communication protocols that

allow the agents to efficiently amalgamate information, thereby learning the bandit’s parameters

more quickly than they could by running single-agent algorithms in isolation.

Among the many multi-agent variants considered in the literature (see Section 1.5), we focus on

a particular setting studied in the recent line of work [18, 49, 52, 56]. In these papers, n agents play

separate instances of the same K-armed bandit and are restricted to o(T ) pairwise and bit-limited

communications per T arm pulls. We recount two motivating applications from this prior work.

Example 1. For an e-commerce site (e.g., Amazon), the agents model n servers choosing one of K
products to show visitors to the site. The product selection problem can be viewed as a bandit – products
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are arms, while purchases yield rewards – and communication among the agents/servers is restricted
by bandwidth.

Example 2. For a social recommendation site (e.g., Yelp), the agents represent n users choosing
among K items, such as restaurants. This is analogously modeled as a bandit, and communication is
limited because agents/users are exposed to a small portion of all reviews.

To contextualize our contributions, we next discuss this line of work in more detail.

1.1 Fully cooperative multi-agent bandits
The goal of [18, 49, 52] is to devise fully cooperative algorithms for which the cumulative regret

R(i)T of each agent i is small (see (5) for the formal definition of regret). All of these papers follow a

similar approach, which roughly proceeds as follows (see Section 3 for details):

• The arms are partitioned into n subsets of size O(K/n), and each agent is assigned a distinct

subset called a sticky set, which they are responsible for exploring.

• Occasionally (o(T ) times per T arm pulls), each agent i asks a random neighbor i ′ for an arm

recommendation; i ′ responds with the arm they believe is best, which i begins playing.

For these algorithms, the regret analysis essentially contains two steps:

• First, the authors show that the agent (say, i⋆) with the true best arm in its sticky set eventually

identifies it as such. Thereafter, a gossip process unfolds. Namely, i⋆ recommends the best

arm to its neighbors, who recommend it to their neighbors, etc., spreading the best arm to all

agents. The spreading time (and thus the regret before this time) is shown to be polynomial

in K , n, and 1/∆, where ∆ is the gap in mean reward between the two best arms.

• Once the best arm spreads, agents play only it and their sticky sets, so long-term, they

effectively face O(K/n)-armed bandits instead of the full K-armed bandit. By classical bandit

results (see, e.g., [3]), this implies O((K/n) log(T )/∆) regret over horizon T .

Hence, summing up the two terms, [18, 49, 52] provide regret bounds of the form
1

R(i)T = O

(
K

n

logT

∆
+ poly

(
K,n,

1

∆

))
, (1)

as compared to O(K log(T )/∆) regret for running a single-agent algorithm in isolation.

1.2 Robust multi-agent bandits on the complete graph
Despite these improved bounds, [18, 49, 52] require all agents to execute the prescribed algorithm,

and in particular, to recommend best arm estimates to their neighbors. As pointed out in [56],

this may be unrealistic: in Example 2, review spam can be modeled as bad arm recommendations,

while in Example 1, servers may fail entirely. Hence, [56] considers a more realistic setting where n
honest agents recommend best arm estimates butm malicious agents recommend arbitrarily. For

this setting, the authors propose a robust version of the algorithm from [18] where honest agents

block suspected malicious agents. More specifically, [56] considers the following blocking rule:

• If agent i ′ recommends arm k to honest agent i , but arm k subsequently performs poorly for i
– in the sense that the upper confidence bound (UCB) algorithm does not select it sufficiently

often – then i temporarily suspends communication with i ′.

As shown in [56], this blocking scheme prevents each malicious agent from recommending more

than O(1) bad arms long-term, which (effectively) results in an O(m + K/n)-armed bandit (O(m)
malicious recommendations, plus the O(K/n)-sized sticky set). Under the assumption that honest

1
More precisely, [18, 49] prove (1), while the K/n term balloons to (K/n) + logn in [52].
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and malicious agents are connected by the complete graph, this allows [56] to prove

R(i)T = O

((
K

n
+m

)
logT

∆
+ poly

(
K,n,m,

1

∆

))
. (2)

In [56], it is also shown that blocking is necessary: for any n ∈ N, if evenm = 1 malicious agent is

present, the algorithm from [18] (which does not use blocking) incurs Ω(K log(T )/∆) regret. Thus,
one malicious agent negates the improvement over the single-agent baseline.

1.3 Objective and challenges
Our main goal is to generalize the results of [56] from the complete graph to the case where the

honest agent subgraph is only connected and undirected. This is nontrivial because [56] relies

heavily on the complete graph assumption. In particular, the analysis in [56] requires that i⋆ (the

agent with the best arm in its sticky set) itself recommends the best arm to each of the other honest

agents. In other words, each honest agent i , i⋆ relies on i⋆ to inform them of the best arm, which

means i⋆ must be a neighbor of i . Thus, to extend (2) beyond complete graphs, we need to show

a gossip process unfolds (like in the fully cooperative case): i⋆ recommends the best arm to its

neighbors, who recommend it to their neighbors, etc., spreading it through the network.

The challenge is that, while blocking is necessary to prevent Ω(K log(T )/∆) regret, it also causes
honest agents to accidentally block each other. Indeed, due to the aforementioned blocking rule and

the noisy rewards, they will block each other until they collect enough samples to reliably identify

good arms. From a network perspective, accidental blocking means that edges in the subgraph of

honest agents temporarily fail. Consequently, it is not clear if the best arm spreads to all honest

agents, or if (for example) this subgraph eventually becomes disconnected, preventing the spread

and causing the agents who do not receive the best arm to suffer Θ(T ) regret.
Analytically, accidental blocking means we must deal with a gossip process over a dynamic

graph. This process is extremely complicated, because the graph dynamics are driven by the bandit

algorithms, which in turn affect the future evolution of the graph. Put differently, blocking causes

the randomness of the communication protocol and that of the bandit algorithms to become

interdependent. We note this does not occur for the original non-blocking algorithm, where the two

sources of randomness can be cleverly decoupled and separately analyzed – see [18, Proposition 4].

Thus, in contrast to existing work, we need to analyze the interdependent processes directly.

1.4 Our contributions
Failure of the existing blocking rule: In Section 4, we show that the algorithm from [56] fails

to achieve a regret bound of the form (2) for connected and undirected graphs in general. Toward

this end, we define a natural “bad instance” in which n = K , the honest agent subgraph is an

undirected line (thus connected), and all honest agents share a malicious neighbor. For this instance,

we propose a malicious strategy that causes honest agents to repeatedly block one another, which

results in the best arm spreading extremely slowly. More specifically, we show that if honest agents

run the algorithm from [56], then the best arm does not reach honest agent n (the one at the

end of the line) until time is doubly exponential in n = K . Note [56] shows the best arm spreads

polynomially fast for the complete graph, so we demonstrate a doubly exponential slowdown for

complete versus line graphs. This is rather surprising, because for classical rumor processes that

do not involve bandits or blocking (see, e.g., [50]), the slowdown is only exponential (i.e., Θ(logn)
rumor spreading time on the complete graph versus Θ(n) on the line graph). As a consequence of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 53. Publication date: December 2022.



53:4 Daniel Vial, Sanjay Shakkottai, and R. Srikant

the slow spread, we show the algorithm from [56] suffers regret

R(n)T = Ω

(
min

{
log(T ) + exp

(
exp

(n
3

))
,

T

log
7T

})
, (3)

i.e., it incurs (nearly) linear regret until time Ω(exp(exp(n/3))) and thereafter incurs logarithmic

regret but with a huge additive term (see Theorem 1).

Refined blocking rule: In light of this negative result, we propose a refined blocking rule in

Section 5. Roughly, our rule is as follows: agent i blocks i ′ for recommending arm k if

• arm k performs poorly, i.e., it is not chosen sufficiently often by UCB,

• and agent i has not changed its own best arm estimate recently.

The second criterion is the key distinction from [56]. Intuitively, it says that agents should not
block for seemingly-poor recommendations until they become confident that their own best arm

estimates have settled on truly good arms. This idea is the main new algorithmic insight of the

paper. It is directly motivated by the negative result of Section 4; see Remark 5.

Gossip despite blocking: Analytically, our main contribution is to show that, with our refined

blocking rule, the best arm quickly spreads to all honest agents. The proof is quite involved; we

provide an outline in Section 7. At a very high level, the idea is to show that honest agents using

our blocking rule eventually stop blocking each other. Thereafter, we can couple the arm spreading

process with a much more tractable noisy rumor process that involves neither bandits nor blocking

(see Definition 1), and that is guaranteed to spread the best arm in polynomial time.

Regret upper bound:Combining our novel gossip analysis with some existing regret minimization

techniques, we show in Section 5 that our refined algorithm enjoys the regret bound

R(i)T = O

((
K

n
+ dmal(i)

)
logT

∆
+ poly

(
K,n,m,

1

∆

))
, (4)

where dmal(i) is the number of malicious neighbors of i (see Theorem 2). Thus, our result generalizes

(2) from the complete graph (where dmal(i) =m) to connected and undirected graphs. Moreover,

note the leading logT term in (4) is entirely local – only the dmal(i) malicious agents directly

connected to i affect its long-term regret. For example, in the sparse regime dmal(i) = O(1), our
logT term matches the one in (1) up to constants, which (we recall) [18, 49] proved in the case

where there are no malicious agents anywhere in the network. In fact, for honest agents i with
dmal(i) = 0, we can prove that the logT term in our regret bound matches the corresponding term

from [18], including constants (see Corollary 2). In other words, we show that for large horizons T ,
the effects of malicious agents do not propagate beyond one-step neighbors. Furthermore, we note

that the additive term in (4) is polynomial in all parameters, whereas for the existing algorithm it

can be doubly exponential in K and n, as shown in (3) and discussed above.

Numerical results: In Section 6, we replicate the experiments from [56] and extend them from the

complete graph toG(n+m,p) random graphs. Among other findings, we show that for p = 1/2 and

p = 1/4, respectively, the algorithm from [56] can perform worse than the non-blocking algorithm

from [18] and the single-agent baseline, respectively. In other words, the existing blocking rule

becomes a liability as p decreases from the extreme case p = 1 considered in [56]. In contrast, we

show that our refined rule has lower regret than [18] across the range of p tested. Additionally, it

outperforms [56] on average for all but the largest p and has much lower variance for smaller p.

Summary: Ultimately, the high-level messages of this paper are twofold:

• In multi-agent bandits with malicious agents, we can devise algorithms that simultaneously

(1) learn useful information and spread it through the network via gossip, and (2) learn who
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is malicious and block them to mitigate the harm they cause. Moreover, this harm is local in

the sense that it only affects one-hop neighbors.

• However, blocking must be done carefully; algorithms designed for the complete graph may

spread information extremely slowly on general graphs. In particular, the slowdown can be

doubly exponential, much worse than the exponential slowdown of simple rumor processes.

1.5 Other related work
In addition to the paper [56] discussed above, several others have considered multi-agent bandits

where some of the agents are uncooperative. In [6], the honest agents face a non-stochastic

(i.e., adversarial) bandit [4] and communicate at every time step, in contrast to the stochastic

bandit and limited communication of our work. The authors of [48] consider the objective of

best arm identification [2] instead of cumulative regret. Most of their paper involves a different

communication model where the agents/clients collaborate via a central server; Section 6 studies a

“peer-to-peer” model which is closer to ours but requires additional assumptions on the number of

malicious neighbors. A different line of work considers the case where an adversary can corrupt

the observed rewards (see, e.g., [11, 12, 25, 26, 29, 33, 40, 41, 44], and the references therein), which

is distinct from the role that malicious agents play in our setting.

For the fully cooperative case, there are several papers with communication models that differ

from the aforementioned [18, 49, 52]. For example, agents in [15, 17] broadcast information instead

of exchanging pairwise arm recommendations, communication in [34, 36, 47] is more frequent, the

number of transmissions in [45] depends on ∆−1
so could be large, and agents in [37] exchange

arm mean estimates instead of (bit-limited) arm indices.

More broadly, other papers have studied fully cooperative variants of different bandit problems.

These include minimizing simple instead of cumulative regret (e.g., [28, 54]), minimizing the total

regret across agents rather than ensuring all have low regret (e.g., [22, 57]), contextual instead

of multi-armed bandits (e.g., [19, 23, 24, 35, 55]), adversarial rather than stochastic bandits (e.g.,

[7, 16, 31]), and bandits that vary across agents (e.g., [10, 53, 58]). Another long line of work features

collision models where rewards are lower if multiple agents simultaneously pull the same arm (e.g.,

[1, 5, 13, 21, 30, 42, 43, 46, 51]), unlike our model. Along these lines, other reward structures have

been studied, such as reward being a function of the agents’ joint action (e.g., [8, 9, 32]).

1.6 Organization
The rest of the paper is structured as follows. We begin in Section 2 with definitions. In Section 3,

we introduce the algorithm from [56]. Sections 4 and 5 discuss the existing and proposed blocking

rules. Section 6 contains experiments. We discuss our analysis in Section 7 and close in Section 8.

2 PRELIMINARIES
Communication network: Let G = ([n +m], E) be an undirected graph with vertices [n +m] =
{1, . . . ,n +m}. We call [n] the honest agents and assume they execute the forthcoming algorithm.

The remaining agents are termed malicious; their behavior will be specified shortly. For instance,

honest and malicious agents represent functioning and failed servers in Example 1. The edge set E
encodes which agents are allowed to communicate, e.g., if (i, i ′) ∈ E, the i-th and i ′-th servers can

communicate in the forthcoming algorithm.

Denote by Ehon = {(i, i
′) ∈ E : i, i ′ ∈ [n]} the edges between honest agents andGhon = ([n], Ehon)

the honest agent subgraph. For each i ∈ [n], we let N (i) = {i ′ ∈ [n +m] : (i, i ′) ∈ E} denote
its neighbors, Nhon(i) = N (i) ∩ [n] its honest neighbors, and Nmal(i) = N (i) \ [n] its malicious

neighbors. We write d(i) = |N (i)|, dhon(i) = |Nhon(i)|, and dmal(i) = |Nmal(i)| for the associated
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Fig. 1. Illustration of the phases in Algorithm 1; see beginning of Section 3.1 for details.

degrees, and
¯d = maxi ∈[n] d(i), ¯dhon = maxi ∈[n] dhon(i), and ¯dmal = maxi ∈[n] dmal(i) for the maximal

degrees. We make the following assumption, which generalizes the complete graph case of [56].

Assumption 1. The honest agent subgraph Ghon is connected, i.e., for any i, i ′ ∈ [n], there exists
l ∈ N and i0, i1, . . . , il ∈ [n] such that i0 = i , (i j−1, i j ) ∈ Ehon ∀ j ∈ [l], and il = i ′.

Multi-armed bandit: We consider the standard stochastic multi-armed bandit [38, Chapter 4].

Denote by K ∈ N the number of arms and [K] the set of arms. For each k ∈ [K], we let νk be a

probability distribution over R and {Xi ,t (k)}i ∈[n],t ∈N an i.i.d. sequence of rewards sampled from νk .
The interpretation is that, if the i-th honest agent chooses the k-th arm at time t , it earns reward
Xi ,t (k). The objective (to be formalized shortly) is reward maximization. In Example 2, for instance,

[K] represents the set of restaurants in a city, and the reward Xi ,t (k) quantifies how much person i
enjoys restaurant k if they dine there on day t .

For each arm k ∈ [K], we let µk = E[Xi ,t (k)] denote the corresponding expected reward. Without

loss of generality, we assume the arms are labeled such that µ1 ≥ · · · ≥ µK . We additionally assume

the following, which generalizes the νk = Bernoulli(µk ) and µ1 > µ2 setting of [56]. Notice that

under this assumption, the arm gap ∆k ≜ µ1 − µk is strictly positive.

Assumption 2. Rewards are [0, 1]-valued, i.e., for each k ∈ [K], νk is a distribution over [0, 1].
Furthermore, the best arm is unique, i.e., µ1 > µ2.

Objective: For each i ∈ [n] and t ∈ N, let I (i)t ∈ [K] denote the arm chosen by honest agent i at

time t . Our goal is to minimize the regret R(i)T , which is the expected additive loss in cumulative

reward for agent i’s sequence of arm pulls {I (i)t }
T
t=1

compared to the optimal policy that always

chooses the best arm 1. More precisely, we define regret as follows:

R(i)T ≜
T∑
t=1

E
[
Xi ,t (1) − Xi ,t (I

(i)
t )

]
=

T∑
t=1

E
[
µ1 − µI (i )t

]
=

T∑
t=1

E
[
∆I (i )t

]
. (5)

3 ALGORITHM
We next discuss the algorithm from [56] (Algorithm 1 below), which modifies the one from [18]

to include blocking. For ease of exposition, we begin by discussing the key algorithmic design

principles from [18] in Section 3.1. We then define Algorithm 1 formally in Section 3.2. Finally, we

introduce and discuss one additional assumption in Section 3.3.

3.1 Key ideas of the non-blocking algorithm
We assumem = 0 this subsection and describe the non-blocking algorithm from [18].

• Phases: In [18], the time steps 1, . . . ,T are grouped into phases, whose role is twofold. First,
within the j-th phase, the i-th honest agent only pulls arms belonging to a particular subset

S (i)j ⊂ [K]. We call these active sets and detail their construction next. Second, at the end of

the j-th phase, the agents construct new active sets by exchanging arm recommendations
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(a) Initial active sets (b) Recommendations (c) Updated active sets

(d) Later active sets (e) Recommendations (f) Updated active sets

Fig. 2. Illustration of the active sets in Algorithm 1; see Example 3 for details.

with neighbors, in a manner to be described shortly. See Figure 1 for a pictorial description.

Notice that the phase durations are increasing, which will be discussed in Section 3.2.

• Active sets: The active set S (i)j will always contain a subset of arms Ŝ (i) ⊂ [K] that does not

vary with the phase j. Following [18, 56], we call Ŝ (i) the sticky set and its elements sticky
arms. The sticky sets ensure that each arm is explored by some agent, as will be seen in the

forthcoming example. In addition, S (i)j will contain two non-sticky arms that are dynamically

updated across phases j based on arm recommendations from neighbors.

• Arm recommendations:After the j-th phase, each agent i contacts a random neighbor, who

responds with whichever of their active arms performed “best” in the current phase. Upon

receiving this recommendation, i adds it to its active set and discards whichever currently-

active non-sticky arm (i.e., whichever element of S (i)j \ Ŝ
(i)
) performed “worse”. (We quantify

“best” and “worse” in the formal discussion of Section 3.2.)

Example 3. Each subfigure of Figure 2 depicts n = 3 honest agents as circles and their active sets as
rectangles. The blue rectangles are sticky sets, the orange rectangles are non-sticky arms, and the arms
are sorted by performance. For example, the left agent in Figure 2a has sticky set {1, 2} and active
set {1, 2, 3, 6} and believes arm 3 to be the best of these. Note the blue sticky sets partition [K] = [6],
so at each phase, each arm is active for some agent. This ensures the best arm is never permanently
discarded during the arm recommendations discussed above. Figure 2b shows agents recommending
the active arms they believe are best, and Figure 2c depicts the updated active sets. For instance, the left
agent replaces its worse non-sticky arm 6 with the recommendation 5. Figure 2d shows a later phase
where the best arm 1 has spread to all agents, who have all identified it as such. Thereafter, all agents
recommend 1, so the active set remains fixed (Figures 2e and 2f). Hence, all agents eventually exploit
the best arm while only exploring a subset of the suboptimal arms (three instead of five here).

3.2 Formal definition of the blocking algorithm
The algorithm in [56] supplements the one from Section 3.1 with a blocking procedure. Specifically,

honest agents run the algorithm from [18] while maintaining blocklists of neighbors they are

unwilling to communicate with. This approach is defined in Algorithm 1 and detailed next.

Inputs (Line 1): The first input is a standard UCB exploration parameter α > 0, which will be

discussed shortly. The input β > 1 controls the lengths of the phases; namely, the j-th phase

encompasses times 1+Aj−1, . . . ,Aj , whereAj ≜ ⌈j
β ⌉. Note the phase durationAj −Aj−1 = O(j

β−1)
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Algorithm 1:Multi-agent bandits with blocking (executed by i ∈ [n])

1 Input: UCB parameter α > 0, phase parameter β > 1, sticky arms Ŝ (i) with |Ŝ (i) | = S ≤ K − 2

2 Initialize Aj = ⌈j
β ⌉, P (i)j = ∅ ∀ j ∈ N (communication times and blocklists)

3 Set j = 1 (current phase), let {U (i)j , L
(i)
j } ⊂ [K] \ Ŝ

(i)
be two distinct non-sticky arms and

S (i)j = Ŝ (i) ∪ {U (i)j , L
(i)
j } the initial active set

4 for t ∈ N do

5 Pull I (i)t = arg maxk ∈S (i )j

(
µ̂(i)k (t − 1) +

√
α log(t)/T (i)k (t − 1)

)
(UCB over active set)

6 if t = Aj (if communication occurs at this time) then
7 B(i)j = arg maxk ∈S (i )j

(
T (i)k (Aj ) −T

(i)
k (Aj−1)

)
(most played active arm in this phase)

8 {P (i)j′ }
∞
j′=j ← Update-Blocklist({P (i)j′ }

∞
j′=j ) ([56] uses Alg. 3; we propose Alg. 4)

9 (H (i)j ,R
(i)
j ) = Get-Recommendation(i, j, P (i)j ) (see Alg. 2)

10 if R(i)j < S
(i)
j (if recommendation not already active) then

11 U (i)j+1
= arg maxk ∈{U (i )j ,L(i )j }

(
T (i)k (Aj ) −T

(i)
k (Aj−1)

)
(best non-sticky active arm)

12 L(i)j+1
= R(i)j (replace worst non-sticky active arm with recommendation)

13 S (i)j+1
= Ŝ (i) ∪ {U (i)j+1

, L(i)j+1
} (new active set is sticky set and two non-sticky arms)

14 else
15 S (i)j+1

= S (i)j (keep the same active set, since recommendation is already active)

16 j ← j + 1 (increment phase)

Algorithm 2: (H (i)j ,R
(i)
j ) = Get-Recommendation(i, j, P (i)j ) (black box to i ∈ [n])

1 Input: Agent i ∈ {1, . . . ,n}, phase j ∈ N, blocklist P (i)j
2 Sample H (i)j from N (i) \ P (i)j (non-blocked neighbors) uniformly at random

3 if H (i)j ≤ n (if the sampled agent is honest) then

4 Set R(i)j = B
(H (i )j )
j (honest agents recommend most played arm from this phase)

5 else
6 Choose R(i)j ∈ [K] arbitrarily (malicious agents recommend arbitrary arms)

7 Output: (H (i)j ,R
(i)
j )

grows with j , as shown in Figure 1. The final input is an S-sized sticky set Ŝ (i) (S = 2 in Example 3),

which, as in [56], we assume are provided to the agents (see Section 3.3 for more details).

Initialization (Lines 2-3): To start, i initializes the times Aj at which the j-th phase ends, along

with the blocklist P (i)j . Additionally, i chooses two distinct (but otherwise arbitrary) non-sticky

arms U (i)
1

and L(i)
1

and constructs the active set S (i)
1
= Ŝ (i) ∪ {U (i)

1
, L(i)

1
}. Notice that the active set

contains the sticky set and two arms that depend on the phase, as described in Section 3.1.

UCB over the active set (Line 5): As was also mentioned in Section 3.1, i only pulls arms from

its current active set S (i)j . More specifically, at each time t during phase j, i chooses the active arm
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I (i)t ∈ S
(i)
j that maximizes the UCB in Line 5 (see [38, Chapters 7-10] for background). HereT (i)k (t −1)

and µ̂(i)k (t − 1) are the number of pulls of k and the empirical mean of those pulls, i.e.,

T (i)k (t − 1) =
∑

s ∈[t−1]

1(I (i)s = k), µ̂(i)k (t − 1) =
1

T (i)k (t − 1)

∑
s ∈[t−1]:I (i )s =k

Xi ,s (k),

where Xi ,s (k) ∼ νk as in Section 2 and 1 is the indicator function.

Best arm estimate (Line 7):At the end of phase j (i.e., when t = Aj ), i defines its best arm estimate

B(i)j as the active arm it played the most in phase j . The intuition is that, for large horizons, the arm

chosen most by UCB is a good estimate of the true best arm [14]. Thus, because phase lengths are

increasing (see Figure 1), B(i)j will be a good estimate of the best active arm for large j.

Blocklist update (Line 8): Next, i calls the Update-Blocklist subroutine to update its blocklist

P (i)j . The implementation of this subroutine is the key distinction between [56] and our work. We

discuss the respective implementations in Sections 4 and 5, respectively.

Arm recommendations (Line 9): Having updated P (i)j , i requests an arm recommendation R(i)j
via Algorithm 2. Algorithm 2 is a black box (i.e., i provides the input and observes the output),

which samples a random non-blocked neighbor H (i)j ∈ N (i) \ P
(i)
j . If H (i)j is honest, it recommends

its best arm estimate, while if malicious, it recommends an arbitrary arm.
2

Updating the active set (Lines 10-15): Finally, i updates its active set as in Section 3.1. In partic-

ular, if the recommendation R(i)j is not currently active
3
, i defines U (i)j+1

to be the non-sticky arm

that performed better in phase j, in the sense that UCB chose it more often (following the above

intuition from [14]). The other non-sticky arm L(i)j+1
becomes the recommendation R(i)j , and the new

active set becomes S (i)j+1
= Ŝ (i) ∪ {U (i)j+1

, L(i)j+1
} (the sticky set and two other arms, as above).

3.3 Additional assumption
Observe that Algorithm 1 does not preclude the case where the best arm is not in any honest

agent’s sticky set, i.e., 1 < ∪ni=1
Ŝ (i). In this case, the best arm may be permanently discarded, which

causes linear regret even in the absence of malicious agents. For example, this would occur if 1

was not a sticky arm for the left agent in Figure 2 (since the right agent discards 1 in Figure 2c). To

prevent this situation, we will follow [18, 49, 52, 56] in assuming the following.

Assumption 3. There exists i⋆ ∈ [n] with the best arm in its sticky set, i.e., 1 ∈ Ŝ (i
⋆).

Remark 1. As discussed in [18, Appendix N], Assumption 3 holds with high probability if S (the size
of the sticky set input to Algorithm 1) is set to Θ̃(K/n) and each sticky set Ŝ (i) is sampled uniformly at
random from the S-sized subsets of [K].

Remark 2. The choice S = Θ̃(K/n) from Remark 1 requires the honest agents to know an order-
accurate estimate of n, i.e., they need to know some n′ = Θ̃(n) in order to set S = Θ̃(K/n′) and ensure
that S = Θ̃(K/n). As discussed in [56, Remark 7], this amounts to knowing order-accurate estimates of
n +m and n/(n +m). The former quantity is the total number of agents, knowledge of which is rather
benign and is also assumed in the fully-cooperative setting [18, 49, 52]. The latter requires the agents
to know that, e.g., half of the others are honest, which is similar in spirit to the assumptions in related
problems regarding social learning in the presence of adversarial agents (e.g., [39]).

2
Technically, malicious recommendations need to be measurable; see [56, Section 3] for details.

3
If the recommendation is currently active, the active set remains unchanged (see Line 15 of Algorithm 1).
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Remark 3. Alternatively, we can avoid Assumption 3 entirely by defining the set of the arms to be
those initially known by the honest agents (i.e., their sticky sets), rather than sampling the sticky sets
from a larger “base set" as in Remark 1. In this alternative model, the honest agents aim to identify and
spread through the network whichever of the initially-known arms is best, similar to what happens on
platforms like Yelp (see Example 2). In contrast, the Section 2 model allows for the pathological case
where the base set contains a better arm than any initially known to honest agents (e.g., where no
honest Yelp user has ever dined at the best restaurant). Coping with these pathological cases either
requires Assumption 3, or another mode of exploration (i.e., exploration of base arms) that obfuscates
the key point of our work (collaborative bandit exploration amidst adversaries). For these reasons,
we prefer the alternative model, but to enable a cleaner comparison with prior work [56], we restrict
attention to the Section 2 model (which generalizes that of [56]).

4 EXISTING BLOCKING RULE
We can now define the blocking approach from [56], which is provided in Algorithm 3. In words,

the rule is as follows: if the recommendation R(i)j−1
from phase j − 1 is not i’s most played arm in the

subsequent phase j , then the agentH (i)j−1
who recommended it is added to the blocklists P (i)j , . . . , P

(i)
jη ,

where η > 1 is a tuning parameter. By Algorithm 2, this means i blocks (i.e., does not communicate

with) H (i)j−1
until phase jη + 1 (at the earliest). Thus, agents block others whose recommendations

perform poorly – in the sense that UCB does not play them often – and the blocking becomes more

severe as the phase counter j grows. See [56, Remark 4] for further intuition.

Algorithm 3: {P (i)j′ }
∞
j′=j = Update-Blocklist (executed by i ∈ [n], existing rule from [56])

1 if j > 1 and B(i)j , R(i)j−1
(if previous recommendation not most played) then

2 P (i)j′ ← P (i)j′ ∪ {H
(i)
j−1
} ∀ j ′ ∈ {j, . . . , ⌈jη⌉} (block the recommender until phase jη )

In the remainder of this section, we define a bad instance (Section 4.1) on which this blocking

rule provably fails (Section 4.2). Our goal here is to demonstrate a single such instance in order to

show this blocking rule must be refined. Therefore, we have opted for a concrete example, which

includes some numerical constants (e.g., 13/15 in (6), the 7 in the log
7T term in Theorem 1, etc.)

that have no particular meaning. Nevertheless, the instance can be generalized; see Remark 4.

4.1 Bad instance
The network and bandit for the bad instance are as follows:

• There are an even number of honest agents (at least four) arranged in a line, increasing in

index from left to right, and there is a malicious agent connected to each of the honest ones.

Mathematically, we have n ∈ {4, 6, 8, . . .},m = 1, and E = {(i, i + 1)}n−1

i=1
∪ {(i,n + 1)}ni=1

.

• There are K = n arms that generate deterministic rewards (i.e., νk = δµk ) with

µ1 = 1, µk =
13

15

+

(n/2)−k∑
h=1

2
−2

h+1

∀ k ∈ {2, . . . ,n/2}, µk = 0 ∀ k > n/2. (6)

Intuitively, there are three sets of arms: the best arm, (n/2) − 1 mediocre arms, and n/2 bad

arms. We provide further intuition in the forthcoming proof sketch. For now, we highlight

three key properties. First, the gap frommediocre to bad arms is constant, i.e., µk1
−µk2

≥ 13/15

when k1 ≤ n/2 < k2. Second, the gaps between mediocre arms are doubly exponentially
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small, i.e., µk − µk+1 = 2
−2
(n/2)−k+1

for k ∈ {2, . . . , (n/2) − 1}. Third, the gap ∆2 from the best

to the mediocre arms is at least 1/15, as shown in Appendix C.

Observation 1. Since rewards are deterministic, the most played arm B(i)j+1
in phase j + 1 is a

deterministic function of the number of plays of the active arms at the beginning of the phase, i.e., of
the set {T (i)k (Aj )}k ∈S (i )j+1

. Hence, when the j-th recommendation is already active (i.e., when R(i)j ∈ S
(i)
j ,

which implies S (i)j+1
= S (i)j in Algorithm 1), B(i)j+1

is a function of {T (i)k (Aj )}k ∈S (i )j
, which is information

available to the malicious agent at the j-th communication time Aj . Consequently, the malicious agent
can always recommend some R(i)j ∈ S

(i)
j such that B(i)j+1

= R(i)j to avoid being blocked by i .

We make the following assumptions on Algorithms 1 and 2:

• The parameters in Algorithm 1 are α = 4 and β = 2, while η = 2 in Algorithm 3.

• Sticky sets have size S = 1 and for any i ∈ {1 + n/2, . . . ,n}, i’s initial active set satisfies

min S (i)
1
> n/2. Thus, active sets contain three arms, and the right half of the honest agents

are initially only aware of the bad arms, i.e., of those that provide no reward.

Remark 4. Note that Assumptions 1-3 all hold for this instance, and the choices α = 4 and β = η = 2

are used for the complete graph experiments in [56]. Additionally, the instance can be significantly
generalized – the key properties are that K and n have the same scaling, the gaps from mediocre arms
to others are constant, the gaps among mediocre arms are doubly exponentially small, and a constant
fraction of agents on the right initially only have bad arms active.

Finally, we define a particular malicious agent strategy. Let J1 = 2
8
and inductively define

Jl+1 = (Jl + 2)2 for each l ∈ N. Then the malicious recommendations are as follows:

• If j = Jl and i ∈ {l + 1 + n/2, l + 2 + n/2} for some l ∈ [(n/2) − 1], set R(i)j = 1 − l + n/2.

• Otherwise, let R(i)j ∈ S
(i)
j be such that B(i)j+1

= R(i)j (see Observation 1).

Similar to the arm means, we will wait for the proof sketch to explain this strategy in more detail.

For now, we only mention that the phases Jl grow doubly exponentially, i.e.,

Jl+1 = (Jl + 2)2 > J 2

l > · · · > J 2
l

1
∀ l ∈ N. (7)

4.2 Negative result
We can now state the main result of this section. It shows that if the existing blocking rule from

[56] is used on the above instance, then the honest agent n at the end of the line suffers nearly

linear regret Ω̃(T ) until time T exceeds a doubly exponential function of n = K .

Theorem 1. If we run Algorithm 1 and use Algorithm 3 as the Update-Blocklist subroutine
with the parameters and problem instance described in Section 4, then

R(n)T = Ω
(
min

{
log(T ) + exp (exp (n/3)) ,T /log

7T
})
.

Proof sketch. We provide a complete proof in Appendix C but discuss the intuition here.

• First, suppose honest agent 1+n/2 contacts the malicious agent n+ 1 at all phases j ∈ [J1 − 1]

(this occurs with constant probability since J1 is constant). Then the right half of honest agents
(i.e., agents 1 + n/2, . . . ,n) only have bad arms (i.e., arms 1 + n/2, . . . ,n) in their active sets

at phase J1. This is because their initial active sets only contain such arms (by assumption),

n + 1 only recommends currently-active arms before J1, and no arm recommendations flow

from the left half of the graph to the right half (they need to first be sent from n/2 to 1 + n/2,
but we are assuming the latter only contacts n + 1 before J1).
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• Now consider phase J1. With constant probability, 1+n/2 and 2+n/2 both contact n+ 1, who

recommends a currently active (thus bad) arm and the mediocre arm n/2, respectively. Then,
again with constant probability, 2 + n/2 contacts 1 + n/2 at the next phase J1 + 1; 1 + n/2
only has bad arms active and thus recommends a bad arm. Therefore, during phase J1 + 2,

agent 2 + n/2 has the mediocre arm n/2 and some bad recommendation from 1 + n/2 in its

active set. The inverse gap squared between these arms is constant, thus less than the length

of phase J1 + 2 (for appropriate J1), so by standard bandit arguments (basically, noiseless

versions of best arm identification results from [14]), n/2 will be most played. Consequently,

by the blocking rule in Algorithm 3, 2 + n/2 blocks 1 + n/2 until phase (J1 + 2)2 = J2.

• We then use induction. For each l ∈ [(n/2) − 1] (l = 1 in the previous bullet), suppose

l + 1 + n/2 blocks l + n/2 between phases Jl + 2 and Jl+1. Then during these phases, no arm

recommendations flow past l + n/2, so agents ≥ l + 1 + n/2 only play arms ≥ 1 − l + n/2. At
phase Jl+1, the malicious agent recommends k ≥ 1− l +n/2 and −l +n/2 to agents l + 1+n/2
and l + 2 + n/2, respectively, and at the subsequent phase Jl+1 + 1, l + 1 + n/2 recommends

k ′ ≥ l + 1 + n/2 to l + 2 + n/2. Similar to the previous bullet, we then show l + 2 + n/2
plays arm −l + n/2 more than k ′ during phase Jl+1 + 2 and thus blocks l + 1 + n/2 until

(Jl+1 + 2)2 = Jl+2, completing the inductive step. The proof that −l + n/2 is played more than

k ′ during phase Jl+1 + 2 again follows from noiseless best arm identification, although unlike

the previous bullet, the relevant arm gap is no longer constant (both could be mediocre arms).

However, we chose the mediocre arm means such that their inverse gap squared is at most

doubly exponential in l , so by (7), the length of phase Jl+1 dominates it.

In summary, we show that due to blocking amongst honest agents, l + 1 + n/2 does not receive

arm 1 − l + n/2 until phase Jl , given that some constant probability events occur at each of the

times J1, . . . , Jl . This allows us to show that, with probability at least exp(−Ω(n)), agent n does not

receive the best arm until phase Jn/2 = exp(exp(Ω(n))), and thus does not play the best arm until

time exp(exp(Ω(n))) in expectation. Since ∆2 is constant, we can lower bound regret similarly. □

5 PROPOSED BLOCKING RULE
To summarize the previous section, we showed that the existing blocking rule (Algorithm 3) may

result in honest agents blocking too aggressively, which causes the best arm to spread very slowly.

In light of this, we propose a relaxed blocking criteria (see Algorithm 4): at phase j, agent i will

block the agent H (i)j−1
who recommended arm R(i)j−1

at the previous phase j − 1 if

T (i)
R(i )j−1

(Aj ) ≤ κj and B(i)j = B(i)j−1
= · · · = B(i)

⌊θ j ⌋
, (8)

where κj ≤ Aj and θ j ≤ j are tuning parameters. Thus, i blocks if both of the following occur:

• The recommended arm R(i)j−1
performs poorly, in the sense that UCB has not chosen it

sufficiently often (i.e., at least κj times) by the end of phase j.

• Agent i has not changed its own best arm estimate since phase θ j . Intuitively, this can be

viewed as a confidence criterion: if instead i has recently changed its estimate, then i is
currently unsure which arm is best, so should not block for recommendations that appear

suboptimal at first glance (i.e., those for which the first criterion in (8) may hold).

Algorithm 4: {P (i)j′ }
∞
j′=j = Update-Blocklist (executed by i ∈ [n], proposed rule)

1 if j > 1 and (8) holds then P (i)j′ ← P (i)j′ ∪ {H
(i)
j−1
} ∀ j ∈ {j, . . . , ⌈jη⌉} (block recommender);
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Remark 5. The first criterion in (8) is a natural relaxation of demanding the recommended arm be
most played. The second is directly motivated by the negative result from Section 4. In particular, recall
from the Theorem 1 proof sketch that l + 1+n/2 blocked l +n/2 shortly after receiving a new mediocre
arm from the malicious agent. Thus, blocking amongst honest agents was always precipitated by the
blocking agent changing its best arm estimate. The second criterion in (8) aims to avoid this.

Remark 6. Our proposed rule has two additional parameters compared to the existing one: κj and
θ j . For our theoretical results, these will be specified in Theorem 2; for experiments, they are discussed
in Section 6. For now, we only mention that they should satisfy two properties. First, κj should be o(Aj ),
so that the first criterion in (8) dictates a sublinear number of plays. Second, j − θ j should grow with
j, since (as discussed above) the second criterion represents the confidence in the best arm estimate,
which grows as the number of reward observations increases.

In the remainder of this section, we introduce a further definition (Section 5.1), provide a general

regret bound under our blocking rule (Section 5.2), and discuss some special cases (Section 5.3).

5.1 Noisy rumor process
As discussed in Section 1.4, we will show that under our proposed rule (1) honest agents eventually

stop blocking each other, and (2) honest agents with the best arm active will eventually recommend

it to others. Thereafter, we essentially reduce the arm spreading process to a much simpler rumor

process in which each honest agent i contacts a uniformly random neighbor i ′ and, if i ′ is an
honest agent who knows the rumor (i.e., if the best arm is active for i ′), then i ′ informs i of the
rumor (i.e., i ′ recommends the best arm to i). The only caveat is that we make no assumption on the

malicious agent arm recommendations, so we have no control over whether or not they are blocked.

In other words, the rumor process unfolds over a dynamic graph, where edges between honest and

malicious agents may or may not be present, and we have no control over these dynamics.

In light of this, we take a worst-case view and lower bound the arm spreading process with

a noisy rumor process that unfolds on the (static) honest agent subgraph. More specifically, we

consider the process { ¯Ij }
∞
j=0

that tracks the honest agents informed of the rumor. Initially, only i⋆

(the agent from Assumption 3) is informed (i.e.,
¯I0 = {i

⋆}). Then at each phase j ∈ N, each honest

agent i contacts a random honest neighbor i ′. If i ′ is informed (i.e., if i ′ ∈ ¯Ij−1), then i becomes

informed as well (i.e., i ∈ ¯Ij ), subject to some Bernoulli(ϒ) noise, where ϒ ≤ dhon(i)/d(i). Hence, i
becomes informed with probability | ¯Ij−1 ∩ Nhon(i)|ϒ/dhon(i) ≤ | ¯Ij−1 ∩ Nhon(i)|/d(i). Note the right
side of this inequality is in turn upper bounded by the probability with which they receive the best

arm in the process of the previous paragraph.

More formally, we define the noisy rumor process as follows. The key quantity in Definition 1 is

τ̄spr, the first phase all are informed. Analogous to [18], our most general result will be in terms

of the expected time that this phase occurs, i.e., E[Aτ̄spr ]. Under Assumption 1, the latter quantity

is Õ((n ¯dhon/ϒ)
β ), which cannot be improved in general (see Appendix D.4). However, Section 5.3

provides sharper bounds for E[Aτ̄spr ] in some special cases.

Definition 1. Let ϒ = mini ∈[n] dhon(i)/d(i). For each honest agent i ∈ [n], let {Ȳ (i)j }
∞
j=1

be i.i.d.

Bernoulli(ϒ) random variables and {H̄ (i)j }
∞
j=1

i.i.d. random variables chosen uniformly at random from
Nhon(i). Inductively define { ¯Ij }

∞
j=0

as follows: ¯I0 = {i
⋆} (the agent from Assumption 3) and

¯Ij = ¯Ij−1 ∪ {i ∈ [n] \ ¯Ij−1 : Ȳ (i)j = 1, H̄ (i)j ∈
¯Ij−1} ∀ j ∈ N.

Finally, let τ̄spr = inf{j ∈ N :
¯Ij = [n]}.
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5.2 Positive result
We can now present the main result of this section: a regret upper bound for the proposed blocking

rule. We state it first and then unpack the statement in some ensuing remarks. The proof of this

result (and all others in this section) is deferred to Appendix D.

Theorem 2. Let Assumptions 1-3 hold. Suppose we run Algorithm 1 and use Algorithm 4 as the
Update-Blocklist subroutine with θ j = (j/3)ρ1 and κj = jρ2/(K2S) in (8). Also assume

β > 1, η > 1, 0 < ρ1 ≤
1

η
, α >

3

2

+
1

2β
+

1

2ρ2

1

,
1

2α − 3

< ρ2 < ρ1(β − 1). (9)

Then for any honest agent i ∈ [n] and horizon T ∈ N, we have

R(i)T ≤ 4α log(T )min


2η − 1

η − 1

dmal(i)+3∑
k=2

1

∆k
+

S+dmal(i)+4∑
k=dmal(i)+4

1

∆k
,

K∑
k=2

1

∆k

 + 2E[A2τ̄spr ] +C⋆, (10)

where ∆k = 1 by convention if k > K . Here C⋆ is a term independent of T satisfying

C⋆ = Õ
(
max

{
dmal(i)/∆2, (K/∆2)

2, Sβ/(ρ
2

1
(β−1)), (S/∆2

2
)β/(β−1), ¯dβ/ρ1,nK2S

})
,

where Õ(·) hides dependencies on α , β , η, ρ1, and ρ2 and log dependencies on K , n,m, and ∆−1

2
.

Remark 7. The theorem shows that our algorithm’s regret scales as (dmal(i) + S) log(T )/∆, plus an
additive term 2E[A2τ̄spr ] +C⋆ that is independent of T and polynomial in all other parameters. When
S = O(K/n) (see Remark 1), the first term isO((dmal(i)+K/n) log(T )/∆), as stated in Section 1.4. Also,
when dmal(i) is large, we recover the O(K log(T )/∆) single-agent bound (including the constant 4α ),
i.e., if there are many malicious agents, honest ones fare no worse than the single-agent case.

Remark 8. In addition to Assumptions 1-3, the theorem requires the algorithmic parameters to
satisfy (9). For example, we can choose β = η = 2, ρ1 = 1/2, α = 4, and ρ2 = 1/3. More generally, we
view these five parameters as small numerical constants and hide them in the Õ(·) notation.

Remark 9. The bound in Theorem 2 can be simplified under additional assumptions. For instance,
in Example 2, it is reasonable to assume K = Θ(n) (i.e., the number of restaurants is proportional to
the population) and ¯d = O(1) (i.e., the degrees are constant, as in sparse social networks). Under these
assumptions, the choice S = O(K/n) = O(1) from Remark 1, and the parameters from Remark 6, the
theorem’s regret bound can be further upper bounded by

R(i)T ≤

O (1)∑
k=2

48 logT

∆k
+ 2E[A2τ̄spr ] + Õ(max{(K/∆2)

2,∆−4

2
,nK2}).

Remark 10. Note the parameters from Remark 8 were also used for the bad instance of Section
4. There, we had ∆k > 1/15, S = dmal(i) = 1, and E[A2τ̄spr ] = Õ(nβ ), so our regret is O(logT ) plus a
polynomial additive term that is much smaller than the doubly exponential term in Section 4.

Proof sketch. Let τspr = inf{j ∈ N : B(i
′)

j′ = 1 ∀ i ′ ∈ [n], j ′ ≥ j} denote the first phase where the

best arm is most played for all honest agents at all phases thereafter. Before this phase (i.e., before

time Aτspr ) we simply upper bound regret by E[Aτspr ]. The main novelty of our analysis is bounding

E[Aτspr ] in terms of C⋆ and E[Aτ̄spr ]. We devote Section 7 to discussing this proof.

After phase τspr, the best arm is active by definition, so i incurs logarithmic in T regret. We let

τ (i)
blk
= inf{j ∈ N : H (i)j′−1

∈ P (i)j′ \ P
(i)
j′−1
∀ j ′ ≥ j s .t . R(i)j′−1

, 1}
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be the earliest phase such that i blocks for all suboptimal recommendations thereafter. We then

split the phases after τspr into two groups: those before τ̃ (i) ≜ τspr ∨ τ
(i)
blk
∨T 1/(βK )

and those after.

For the phases after τspr but before τ̃
(i)
, we consider three cases:

• τ̃ (i) = τspr: In this case, there are no such phases, so there is nothing to prove.

• τ̃ (i) = T 1/(βK )
: Here we have an effective horizon Aτ̃ (i ) = (τ̃

(i))β = T 1/K
, so similar to [56], we

exploit the fact that the best arm is active and modify existing UCB analysis to bound regret

by O(K log(T 1/K )/∆) = O(log(T )/∆), which is dominated by (10) (in an order sense).

• τ̃ (i) = τ (i)
blk
: Here we are considering phases j where the best arm is most played by i (since

j ≥ τspr) but i does not block suboptimal recommendations (since j ≤ τ (i)
blk
). Note that no

such phases arise for the existing blocking rule, so here the proof diverges from [56], and

most of Appendix D.1 is dedicated to this case. Roughly speaking, the analogous argument

of the previous case yields the regret bound O((K/∆)E[log τ̃ (i)], and we prove this term is

also O(log(T )/∆) by deriving a tail bound for τ̃ (i). The tail amounts to showing that, once

the best arm is active, i can identify suboptimal arms as such, within the phase. This in turn

follows from best arm identification results and the growing phase lengths.

After phase τ̃ (i), the best arm is most played for all honest agents (since τ̃ (i) ≥ τspr), so they

only recommend this arm. Thus, i only plays the best arm, its S sticky arms, and any malicious

recommendations. Consequently, to bound regret by O((S + dmal(i)) log(T )/∆) as in (10), we need

to show each malicious neighbor i ′ only recommendsO(1) suboptimal arms. It is easy to see that i ′

can only recommend O(logK) such arms: if i ′ recommends a bad arm at phase τ̃ (i), they will be

blocked until phase T η/(βK ) (since τ̃ (i) ≥ τ (i)
blk
∨T 1/(βK )

), then until phase (T η/(βK ))η = T η
2/(βK )

, etc.

Thus, the (logη K)-th bad recommendation occurs at phase T η
logη K

/(βK ) = T 1/β
, which is time T by

definition Aj = jβ . Finally, an argument from [56] sharpens this O(logK) term to O(1). □

5.3 Special cases
We next discuss some special cases of our regret bound. First, as in [18], we can prove an explicit

bound assuming the honest agent subgraph Ghon is d-regular, i.e., dhon(i) = d ∀ i ∈ [n].

Corollary 1. Let the assumptions of Theorem 2 hold and further assume Ghon is d-regular with
d ≥ 2. Let ϕ denote the conductance of Ghon. Then for any honest agent i ∈ [n] and horizon T ∈ N,

R(i)T ≤ 4α log(T )min


2η − 1

η − 1

dmal(i)+3∑
k=2

1

∆k
+

S+dmal(i)+4∑
k=dmal(i)+4

1

∆k
,

K∑
k=2

1

∆k

 (11)

+ Õ
(
max

{
dmal(i)/∆2, (K/∆2)

2, Sβ/(ρ
2

1
(β−1)), (S/∆2

2
)β/(β−1), ¯dβ/ρ1,nK2S, (ϕϒ)−β

})
.

Remark 11. This corollary includes the complete graph case studied in [56], where dmal(i) = m,
ϕ = Θ(1), and ϒ = Θ(n/(n +m)). In this case, the term (11) matches the corresponding term from [56]
exactly, i.e., for large T , Corollary 1 is a strict generalization. Our additive term scales as

max

{
(m/∆2), (K/∆2)

2, Sβ/(ρ
2

1
(β−1)), (S/∆2

2
)β/(β−1), (n +m)β/ρ1,nK2S, ((n +m)/n)β

}
whereas the additive term from [56] scales as max{(m/∆2), (K/∆2), (S/∆

2

2
)2βη/(β−1), (n +m)β ,nK2S}.

Notice our dependence on the arm gap is ∆−2β/(β−1)

2
, which matches the fully cooperative case [18],

whereas the dependence is ∆−2βη/(β−1)

2
in [56], which is potentially much larger.
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Remark 12. In the setting of Remark 9, the corollary’s regret bound becomes

R(i)T ≤

O (1)∑
k=2

48 logT

∆k
+ Õ(max{(K/∆2)

2,∆−4

2
,nK2, (ϕϒ)−β }).

The key difference is the dependence on conductance Õ(ϕ−β ), which matches the result from [19].

Proof sketch. In light of Theorem 2, we only need to show E[Aτ̄spr ] = Õ((ϕϒ)−β ). To do so,

we let I j denote the noiseless version of
¯Ij (defined in the same way but with ϒ = 1) and τ

spr
=

inf{j : I j = [n]}. We then construct a coupling between
¯Ij and I j , which ensures that with high

probability, τ̄spr ≤ j log(j)/ϒ whenever τ
spr
≤ j. Finally, using this coupling and a tail bound for

τ
spr

from [18] (which draws upon the analysis of [20]), we derive a tail bound for τ̄spr. This allows

us to show E[Aτ̄spr ] = O(((logn)2 log(log(n)/ϕ)/(ϕϒ))β ) = Õ((ϕϒ)−β ), as desired.4 □

Finally, we can sharpen the above results for honest agents without malicious neighbors.

Corollary 2. For i ∈ [n] with dmal(i) = 0, the terms (10) and (11) from Theorem 2 and Corollary
1, respectively, can (under their respective assumptions) be improved to 4α log(T )

∑S+2

k=2
∆−1

k .

Remark 13. The improved term in Corollary 2 matches the logT term from [18], including constants.
Thus, the corollary shows that for large T , agents who are not directly connected to malicious agents
are unaffected by their presence elsewhere in the graph.

Proof sketch. Recall from the Theorem 2 proof sketch that the logT term arises from regret

after phase τspr. At any such phase, the best arm is most played for all honest agents (by definition),

so when dmal(i) = 0, i’s neighbors only recommend this arm. Therefore, i’s active sets after τspr are
fixed; they contain the best arm and S + 1 suboptimal ones. Thus, i only plays S + 1 suboptimal

arms long-term, so in the worst case incurs the standard UCB regret 4α log(T )
∑S+2

k=2
∆−1

k . □

6 NUMERICAL RESULTS
Thus far, we have shown the proposed blocking rule adapts to general graphs more gracefully than

the existing one, at least in theory. We now illustrate this finding empirically.

Experimental setup:We follow [56, Section 6] except we extend those experiments toG(n+m,p)
graphs, i.e., each edge is present with probability p. For each p ∈ {1, 1/2, 1/4} and each of two

malicious strategies (to be defined shortly), we conduct 100 trials of the following:

• Set n = 25 andm = 10 and generateG as aG(n+m,p) random graph, resampling if necessary

until the honest agent subgraph Ghon is connected (see Assumption 1).

• Set K = 100, µ1 = 0.95, and µ2 = 0.85, then sample the remaining arm means {µk }
K
k=3

uniformly from [0, 0.85] (so ∆2 = 0.1). For each k ∈ [K], set νk = Bernoulli(µk ).

• Set S = K/n and sample the sticky sets {Ŝ (i)}ni=1
uniformly from the S-sized subsets of [K],

resampling if necessary until 1 ∈ ∪ni=1
Ŝ (i) (see Assumption 3).

• Run Algorithm 1 with the existing (Algorithm 3) and proposed (Algorithm 4) blocking rules,

along with two baselines: a no communication scheme, where agents ignore the network

and run UCB in isolation, and the algorithm from [18], where they do not block.

Algorithmic parameters: We set α = 4 and β = η = 2 as in Remarks 4 and 8. For the parameters

in the proposed blocking rule, we choose κj = j1.5, and θ j = j − log j. While these are different

4
When ϒ = 1, [18] shows E[Aτ

spr

] = E[Aτ̄spr ] = O ((log(n)/ϕ)β ), so our bound generalizes theirs up to log terms.
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Fig. 3. Empirical results for synthetic data. Rows of subfigures correspond to the malicious strategy, while
columns correspond to the edge probability p for the G(n +m,p) random graph.

from the parameters specified in our theoretical results (which we found are too conservative in

practice), they do satisfy the key properties discussed in Remark 6.

Malicious strategies: Like [56], we use strategies we call the naive and smart strategies (they are

called uniform and omniscient in [56]). The naive strategy simply recommends a uniformly random

suboptimal arm. The smart strategy recommends R(i)j = arg mink ∈{2, ...,K }\S (i )j
T (i)k (Aj ), i.e., the least

played, inactive, suboptimal arm. Intuitively, this is a more devious strategy which forces i to play

R(i)j often in the next phase (to drive down its upper confidence bound). Consequently, i may play

it most and discard a better arm in favor of it (see Lines 11-13 of Algorithm 1).

Results: In Figure 3, we plot the average and standard deviation (across trials) of the per-agent

regret

∑n
i=1

R(i)T /n. For the naive strategy, the existing blocking rule eventually becomes worse

than the no blocking baseline as p decreases. More strikingly, it even becomes worse than the no

communication baseline for the smart strategy. In other words, honest agents would have been

better off ignoring the network and simply running UCB on their own. As in Section 4, this is

because accidental blocking causes the best arm to spread very slowly. Additionally, the standard

deviation becomes much higher than all other algorithms, suggesting that regret is significantly

worse in some trials. In contrast, the proposed blocking rule improves as p decreases, because it

is mild enough to spread the best arm at all values of p, and for smaller p, honest agents have
fewer malicious neighbors (on average). We also observe that the proposed rule outperforms both

baselines uniformly across p. Additionally, it improves over the existing rule more dramatically

for the smart strategy, i.e., when the honest agents face a more sophisticated adversary. Finally,

it is worth acknowledging the existing rule is better when p = 1 – although not in a statistically

significant sense for the smart strategy – because it does spread the best arm quickly on the

complete graph (as shown in [56]), and thereafter more aggressively blocks malicious agents.

Other results: As in [56], we reran the simulations using arm means derived from the MovieLens

dataset [27]. We also experimented with new variants of the smart and naive strategies, where the

malicious agents follow these strategies if the best arm is active (in hopes of forcing honest agents

to discard it) and recommend the second best arm otherwise. Intuitively, these variants differ in that

malicious agents recommend good arms (i.e., the second best) more frequently, while still never
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revealing the best arm (the only one that leads to logarithmic regret). For all experiments, the key

message – that the proposed blocking rule adapts to varying graph structures more gracefully than

the existing one – is consistent. See Appendix B for details.

7 GOSSIP DESPITE BLOCKING
As discussed above, the main analytical contribution of this work is proving that the best arm

spreads in a gossip fashion, despite accidental blocking. In this (technical) section, we provide a

detailed sketch of this proof. We begin with a high-level outline. The key is to show that honest

agents eventually stop blocking each other. This argument (roughly) proceeds as follows:

• Step 1: First, we show that honest agents learn the arm statistics in a certain sense. More

specifically, we provide a tail bound for a random phase τarm such that for all phases j ≥ τarm
(1) each honest agent’s most played arm in phase j is close to its true best active arm and (2)

any active arm close to the true best one is played at least κj times by the end of phase j.

• Step 2: Next, we show that honest agents communicate with their neighbors frequently. In

particular, we establish a tail bound for another random phase τcom such that for any j ≥ τcom,
each honest agent contacts all of its honest neighbors at least once between θ j and j.

• Step 3: Finally, we use the above to show that eventually, no blocking occurs amongst honest

agents. The basic idea is as follows. Consider a phase j, an honest agent i , and a neighbor

i ′ of i . Then if i has had the same best arm estimate k since phase θ j – i.e., if the second

blocking criterion in (8) holds – i ′ would have contacted i at some phase j ′ ∈ {θ j , . . . , j} (by
step 2) and received arm k . Between phases j ′ and j, the most played arm for i ′ cannot get
significantly worse (by step 1). Thus, if i asks i ′ for a recommendation at j, i ′ will respond
with an arm whose mean is close to µk , which i will play at least κj times (by step 1). Hence,

the first criterion in (8) fails, i.e., the two cannot simultaneously hold.

In the next three sub-sections, we discuss these three steps. Then in Section 7.4, we describe how,

once accidental blocking stops, the arm spreading process can be coupled to the noisy rumor

process from Definition 1. Finally, in Section 7.5, we discuss how to combine all of these steps to

bound the term E[Aτspr ] from the Theorem 2 proof sketch.

7.1 Learning the arm statistics
Recall we assume µ1 ≥ · · · ≥ µK , so for anyW ⊂ [K], minW is the best arm inW , i.e., µminW =

maxw ∈W µw . Therefore, for any δ ∈ (0, 1), Gδ (W ) ≜ {w ∈W : µw ≥ µminW − δ } is the subset of
arms at least δ -close to the best one. For each honest agent i ∈ [n] and phase j ∈ N, define

Ξ(i)j ,1 =
{
B(i)j < Gδj ,1 (S

(i)
j )

}
, Ξ(i)j ,2 =

{
min

w ∈Gδj ,2 (S
(i )
j )

T (i)w (Aj ) ≤ κj

}
, Ξ(i)j = Ξ(i)j ,1 ∪ Ξ

(i)
j ,2.

where δ j ,1, δ j ,2 ∈ (0, 1) will be chosen shortly. Finally, define the random phase

τarm = inf{j ∈ N : 1(Ξ(i)j′ ) = 0 ∀ i ∈ [n], j ′ ∈ {j, j + 1, . . .}}.

In words, τarm is the earliest phase such that, at all phases j thereafter, (1) the most played arms are

δ j ,1-close to best active arms and (2) all arms δ j ,2-close to the best are played at least κj times.

As discussed above, Step 1 involves a tail bound for τarm. The analysis is based on [14, Theorem

2], which includes a tail bound showing that the most played arm is δ -close to the best, provided

that 1/δ 2
samples have been collected from each of the δ -far arms. In our case, phase j lasts

Aj −Aj−1 = Θ(jβ−1) time steps, so each of S + 2 active arms is played Θ(jβ−1/S) times on average.

Hence, we can show the most played arm within the phase is δ j ,1-close to the best if we choose
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δ j ,1 = Θ(
√
S/jβ−1), which allows us to bound P(Ξ(i)j ,1). Analogously, we choose δ j ,2 = Θ(1/

√
κj ) and

show that δ j ,2-close arms must be played 1/δ 2

j ,2 = Θ̃(κj ) times before they are distinguished as

such, which allows us to bound P(Ξ(i)j ,2). Taken together, we can prove a tail bound for τarm (Lemma

9 in Appendix E.1) with these choices δ j ,1 = Θ(
√
S/jβ−1) and δ j ,2 = Θ̃(1/

√
κj ).

7.2 Communicating frequently

Next, for any i, i ′ ∈ [n] such that (i, i ′) ∈ Ehon, let Ξ
(i→i′)
j = ∩

j−2

j′= ⌊θ j ⌋
{H (i

′)

j′ , i} denote the event

that i did not send a recommendation to i ′ between phases ⌊θ j ⌋ and j − 2. Also define

τcom = inf{j ∈ N : 1(∪i→i′∈EhonΞ
(i→i′)
j′ ) = 0 ∀ j ′ ∈ {j, j + 1, . . .}}.

Here we abuse notation slightly; the union is over all (undirected) edges in Ehon but viewed as pairs
of directed edges. Hence, at all phases j ≥ τcom, each honest agent i ′ receives a recommendation

from each of its honest neighbors i at some phase j ′ between θ j and j − 2.

Step 2 involves the tail bound for τcom that was mentioned above (see Lemma 10 in Appendix

E.2). The proof amounts to bounding the probability of Ξ(i→i′)
j . Recall this event says i ′ did not

contact i for a recommendation at any phase j ′ ∈ {θ j , . . . , j − 2}. Clearly, this means i ′ did not

block i at any such phase. Hence, in the worst case, i ′ blocked i just before θ j , in which case i was
un-blocked at θ

η
j = (j/3)

ρ1η ≤ j/3, where the inequality holds by assumption in Theorem 2. Hence,

Ξ(i→i′)
j implies i ′ was not blocking i between phases j/3 and j − 2, so each of the Θ(j) neighbors

that i ′ contacted in these phases was sampled uniformly from a set containing i , yet i was never
sampled. The probability of this decays exponentially in j , which yields an exponential tail for τcom.

7.3 Avoiding accidental blocking
Next, we show honest agents eventually stop blocking each other. Toward this end, we first note

∀ i ∈ [n], ∀ j ≥ τarm, µ
min S (i )j

≤ µB(i )j
+ δ j ,1 ≤ µ

min S (i )j+1

+ δ j ,1 (12)

where the first inequality uses the definition of τarm, and the second holds because min S (i)j+1
∈

arg maxk ∈S (i )j+1

µk and B(i)j ∈ S
(i)
j+1

in Algorithm 1 (see Claim 13 in Appendix E.3 for details). In words,

(12) says the best active arm can decay by at most δ j ,1 at phase j. Applying iteratively and since

there are K arms total, we then show (see Claim 14 in Appendix E.3)

∀ i ∈ [n], ∀ j ′ ≥ j ≥ τarm, µ
min S (i )j′

≥ µ
min S (i )j

− (K − 1) sup

j′′∈{j , ..., j′ }
δ j′′,1.

Combining the previous two inequalities, we conclude (see Corollary 3 in Appendix E.3)

∀ i ∈ [n], ∀ j ′ ≥ j ≥ τarm, µB(i )j′
≥ µ

min S (i )j
− K sup

j′′∈{j , ..., j′ }
δ j′′,1. (13)

Now the key part of Step 3 is to use (13) to show (see Claim 15 in Appendix E.3)

∀ j ∈ N s .t . θ j ≥ τarm, ∀ i, i
′ ∈ [n] s .t . i ∈ {H (i

′)

j′ }
j−2

j′=θ j
, i ′ < P (i)j \ P

(i)
j−1
. (14)

In words, this result says that if j is sufficiently large, and if i has sent a recommendation to i ′

since phase θ j , then i will not block i ′ at phase j. The proof is by contraction: if instead i blocks
i ′ at j, then by Algorithm 4, i has not changed its best arm estimate k since phase θ j , so it would

have recommended k to i ′ at some phase j ′ ≥ θ j . Therefore, µ
min S (i

′)

j′
≥ µk . Additionally, since
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j ′ ≥ θ j = Ω(jρ1 ), we know that for any j ′′ ≥ j ′, the choice of δ j′′,1 in Section 7.1 guarantees that

Kδ j′′,1 ≤ O(Kδ j′,1) = Õ
(√

K2S/(j ′)β−1

)
≤ Õ

(√
K2S/jρ1(β−1)

)
.

Combining these observations and using (13) (with j ′ and j replaced by j − 1 and j ′), we then show

µB(i
′)

j−1

≥ µ
min S (i

′)

j′
− K sup

j′′≥j′
δ j′′,1 ≥ µk − Õ

(√
K2S/jρ1(β−1)

)
. (15)

On the other hand, i blocking i ′ at phase j means i plays the recommended arm B(i
′)

j−1
fewer than

κj times by the end of phase j. Since j ≥ θ j ≥ τarm, this implies (by definition of τarm) that

µk > µB(i
′)

j−1

+ δ j ,2, where δ j ,2 = Θ̃(1/
√
κj ) as in Section 7.1. Combined with (15) and the choice

κj = jρ2/(K2S) from Theorem 2, we conclude jρ1(β−1) ≤ Õ(jρ2 ). This contradicts the assumption

ρ2 < ρ1(β − 1) in Theorem 2, which completes the proof of (14).

Finally, we use (14) to show honest agents eventually stop blocking each other entirely, i.e.,

∀ j ∈ N s .t . θ j ≥ τcom, θθ j ≥ τarm, P (i)j ∩ [n] = ∅ ∀ i ∈ [n] (16)

(see Lemma 11 in Appendix E.3). Intuitively, (16) holds because after new blocking stops (14), old

blocking will eventually “wear off”. The proof is again by contradiction: if i is blocking some honest

i ′ at phase j, the blocking must have started at some j ′ ≥ j1/η (else, it ends by (j ′)η < j). Thus,
by assumption j1/η ≥ jρ1 ≥ θ j ≥ τcom, i blocked i

′
at phase j ′ ≥ τcom. But by definition of τcom, i

′

would have contacted i at some phase j ′′ ∈ {θ j′, . . . , j
′}. Applying (14) (at phase j ′; note that by the

above inequalities, θ j′ ≥ θ j1/η ≥ θθ j ≥ τarm, as required by (14)), we obtain a contradiction.

7.4 Coupling with noisy rumor process

To begin, we define an equivalent way to sample H (i)j in Algorithm 2.
5
This equivalent method will

allow us to couple the arm spreading and noisy rumor processes through a set of primitive random

variables. In particular, for each honest agent i ∈ [n], let {υ(i)j }
∞
j=1

and {H̄ (i)j }
∞
j=1

be i.i.d. sequences

drawn uniformly from [0, 1] and Nhon(i). Then choose H (i)j according to two cases:

• If P (i)j ∩ [n] = ∅, let Y
(i)
j = 1(υ

(i)
j ≤ dhon(i)/|N (i) \ P

(i)
j |) and consider two sub-cases. First, if

Y (i)j = 1, set H (i)j = H̄ (i)j . Second, if Y (i)j = 0, sample H (i)j from Nmal(i) \ P
(i)
j uniformly.

• If P (i)j ∩ [n] , ∅, sample H (i)j from N (i) \ P (i)j uniformly.

Next, we observe that since δ j ,1 → 0 as j →∞ by the choice of δ j ,1 in Section 7.1 and ∆2 > 0 by

Assumption 2, we have δ j ,1 < ∆2 for large enough j. Paired with the definition of τarm, this allows

us to show that for all large j and i ∈ [n] with 1 ∈ S (i)j (i.e., with the best arm active), B(i)j = 1 (i.e.,

the best arm is played most). See Claim 17 in Appendix E.4 for the formal statement.

Finally, we observe that by (16), only the first case of the above sampling strategy occurs for

large j. Moreover, in this case, Y (i)j is Bernoulli with parameter

dhon(i)/|N (i) \ P
(i)
j | ≥ dhon(i)/|N (i)| ≜ dhon(i)/d(i) ≥ ϒ,

where the second inequality holds by Definition 1. Hence, the probability that Y (i)j = 1, and thus

the probability that i contacts the random honest neighbor H̄ (i)j in the above sampling strategy,

dominates the probability that i contacts H̄ (i)j in the noisy rumor process of Definition 1. Additionally,

by the previous paragraph, agents with the best arm active will recommend it (for large enough j).

5
Claim 16 in Appendix E.4 verifies this equivalency (the proof is a straightforward application of the law of total probability).
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Taken together, we can show that the probability of receiving the best arm in the arm spreading

process dominates the probability of being informed of the rumor in the noisy rumor process. This

allows us to prove a tail bound for τspr in terms of a tail bound for the random phase τ̄spr from
Definition 1, on the event that the tails of τarm and τcom are sufficiently small (in the sense of (16);

see Lemma 12 in Appendix E.4 for details).

7.5 Spreading the best arm
In summary, we prove tail bounds for τarm and τcom (Sections 7.1 and 7.2) and show the tails of τspr
are controlled by those of τ̄spr, provided the tails of τarm and τcom are not too heavy (Sections 7.3

and 7.4). Combining and summing tails allows us to bound E[Aτspr ] in terms of C⋆ (which accounts

for the tails of τarm and τcom) and E[Aτ̄spr ] (which accounts for the tail of τ̄spr), as mentioned in the

Theorem 2 proof sketch. See Theorem 3 and Corollary 4 in Appendix E.5 for details.

8 CONCLUSION
In this work, we showed that existing algorithms for multi-agent bandits with malicious agents fail

to generalize beyond the complete graph. In light of this, we proposed a new blocking algorithm

and showed it has low regret on any connected and undirected graph. This regret bound relied

on the analysis of a novel process involving gossip and blocking. Our work leaves open several

questions, such as whether our insights can be applied to multi-agent reinforcement learning.
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A NOTES ON APPENDICES
The appendices are organized as follows. First, Appendix B contains the additional numerical results

that were mentioned in Section 6. Next, we prove Theorem 1 in Appendix C and all results from

Section 5 in Appendix D. We then provide a rigorous version of the proof sketch from Section 7 in

Appendix E. Finally, Appendix F contains some auxiliary results – namely, Appendix F.1 records

some simple inequalities, Appendix F.2 provides some bandit results that are essentially known but

stated in forms convenient to us, and Appendices F.3-F.4 contain some tedious calculations.

For the analysis, we useCi ,C
′
i , etc. to denote positive constants depending only on the algorithmic

parameters α , β , η, ρ1, and ρ2. Each is associated with a corresponding claim, e.g., C1 with Claim 1.

Within the proofs, we use C , C ′, etc. to denote constants whose values may change across proofs.

Finally, 1 denotes the indicator function, Ej and Pj are expectation and probability conditioned on

all randomness before the j-th communication period, and A−1(t) = min{j ∈ N : t ≤ Aj } denotes

the current phase at time t ∈ N.
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Fig. 4. Empirical results for real data. Rows of subfigures correspond to the malicious strategy, while columns
correspond to the edge probability p for the G(n +m,p) random graph.

Fig. 5. Empirical results for synthetic data with p = 1/2 and mixed malicious strategies.

B ADDITIONAL EXPERIMENTS
As mentioned in Section 6, we also considered arm means derived from real data. The setup was

the same as for the synthetic means, except for two changes (as in [56]): we choosem = 15 instead

ofm = 10, and we sample {µk }
K
k=1

uniformly from a set of arm means derived from MovieLens

[27] user film ratings via matrix completion; see [56, Section 6.2] for details. The results (Figure 4)

are qualitatively similar to the synthetic case.

Finally, we repeated the synthetic data experiments from Section 6 with the intermediate G(n +
m,p) graph parameter p = 1/2 and two new malicious strategies called mixed naive and mixed
smart. As discussed in Section 6, these approaches use a “mixed report” where the malicious agents

more frequently recommend good arms – namely, the second best when the best is inactive and the

naive or smart recommendation otherwise. Results are shown in Figure 5. They again reinforce the

key message that the proposed rule adapts more gracefully to networks beyond the complete graph

– in this case, our blocking rule has less than half of the regret of the existing one at the horizon

T . Additionally, we observe that the no blocking algorithm from [18] has much lower regret in

Figure 5 than Figure 3, though still higher than our proposed blocking algorithm. This suggests
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that our algorithm remains superior even for “nicer” malicious strategies under which blocking is

less necessary (in the sense that [18] has lower regret in Figure 5 than Figure 3).

C PROOF OF THEOREM 1
We first observe that since h ≤ 2

h−1 ∀ h ∈ N, we can lower bound the arm gap as follows:

∆2 = µ1 − µ2 = 1 −
13

15

−

(n/2)−2∑
h=1

(
1

16

)
2
h−1

> 1 −
13

15

−

∞∑
h=1

(
1

16

)h
=

1

15

.

Next, we show that for phases j ≥ Jl , agents aware of arms at least as good as 1 − l + n/2 will (1)

play such arms most often in phase j and (2) have such arms active thereafter. The proof is basically

a noiseless version of a known bandit argument, specialized to the setting of Section 4.

Lemma 1. Under the assumptions of Theorem 1, for any l ∈ [n/2], j ≥ Jl , and i ∈ [n] such that
min S (i)j ≤ 1 − l + n/2, we have B(i)j ≤ 1 − l + n/2 and min S (i)j′ ≤ 1 − l + n/2 ∀ j ′ ≥ j.

Proof. First, we prove by contradiction thatB(i)j ≤ 1−l+n/2: suppose instead thatB(i)j ≥ 2−l+n/2.

Let k1 = min S (i)j and k2 = B(i)j . Then T (i)k2

(Aj ) − T
(i)
k2

(Aj−1) ≥ (Aj − Aj−1)/3; otherwise, since

|S (i)j | = S + 2 = 3 by assumption and k2 is the most played arm in phase j, we obtain∑
k ∈S (i )j

(T (i)k (Aj ) −T
(i)
k (Aj−1)) ≤ 3(T (i)k2

(Aj ) −T
(i)
k2

(Aj−1)) < Aj −Aj−1,

which is a contradiction. Furthermore, there clearly exists t ∈ {1 +Aj−1, . . . ,Aj } such that

T (i)k2

(t − 1) −T (i)k2

(Aj−1) = T
(i)
k2

(Aj ) −T
(i)
k2

(Aj−1) − 1, I (i)t = k2.

Combining these observations, and since T (i)k2

(Aj−1) ≥ 0, we obtain that

T (i)k2

(t − 1) ≥ T (i)k2

(Aj ) −T
(i)
k2

(Aj−1) − 1 ≥
Aj −Aj−1

3

− 1, I (i)t = k2.

By the UCB policy and since α = 4 by assumption, the previous expression implies

µk1
< µk1

+

√√
4 log t

T (i)k1

(t − 1)
≤ µk2

+

√√
4 log t

T (i)k2

(t − 1)
≤ µk2

+

√
4 log t

Aj−Aj−1

3
− 1

. (17)

Since Aj = j2 by the assumption β = 2 and t ≤ Aj , we also know

4 log t
Aj−Aj−1

3
− 1

≤
8 log j

2j−1

3
− 1

=
12 log j

j − 2

= h(j), (18)

where we define h(j ′) = 12 log(j ′)/(j ′ − 2) ∀ j ′ > 2. Note this function decreases on [3,∞), since

h′(j ′) =
12(j ′ − 2 − j ′ log j ′)

j ′(j ′ − 2)2
≤

12(j ′ − 2 − j ′ log 3)

j ′(j ′ − 2)2
<

−24

j ′(j ′ − 2)2
< 0 ∀ j ′ ≥ 3,

where the second inequality is e < 3. Thus, since j ≥ Jl ≥ J1 ≥ 3, we know h(j) ≤ h(Jl ). Combined

with (17) and (18), we obtain µk1
< µk2

+
√
h(Jl ). Finally, recall k2 ≥ 2− l +n/2 and k1 ≤ 1− l +n/2,

so µk1
− µk2

≥ µ1−l+n/2 − µ2−l+n/2 > 0. Combined with µk1
< µk2

+
√
h(Jl ), we conclude

(µ1−l+n/2 − µ2−l+n/2)
2 < h(Jl ) = 12 log(Jl )/(Jl − 2). (19)

We now show that in each of three cases, (19) yields a contradiction.
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• l = 1: By definition, the left side of (19) is (µn/2 − µ1+n/2)
2 = (13/15)2 and the right side is

12 log(28)/(28 − 2), and one can verify that 12 log(28)/(28 − 2) ≤ (13/15)2.

• 1 < l < n/2: Here 1 − l + n/2 > 1 and 2 − l + n/2 < 1 + n/2, i.e., both arms are mediocre. By

definition, we thus have (µ1−l+n/2 − µ2−l+n/2)
2 = 2

−2
l+1

, so to obtain a contradiction to (19), it

suffices to show h(Jl ) ≤ 2
−2

l+1

. We show by induction that this holds for all l ∈ {2, 3, . . .}.
For l = 2, note J2 = (J1 + 2)2 > J 2

1
+ 2 = 2

16 + 2 (so J2 − 2 > 2
16
) and J2 = J 2

1
+ 4J1 + 4 =

2
16 + 2

10 + 2
2 < 2

17
(so log J2 < 17 log 2 < 17). Thus, h(J2) < 12 · 17/216 = 204/216 < 2

−8
.

Now assume h(Jl ) < 2
−2

l+1

for some l ≥ 2; we aim to show h(Jl+1) < 2
−2

l+2

. Since Jl ≥ 2, we

have Jl+1 ≤ (2Jl )
2 ≤ J 4

l ; we also know Jl+1 − 2 = J 2

l + 4Jl + 2 > Jl (Jl − 2). Thus, we obtain

h(Jl+1) <
12 log J 4

l

Jl (Jl − 2)
=

4

Jl
· h(Jl ) <

4

Jl
· 2−2

l+1

<
4

J 2
l−1

1

· 2−2
l+1

= 2
2−2

l+2−2
l+1

,

where the inequalities follow from the previous paragraph, the inductive hypothesis, and (7)

from Section 4.1, respectively. Since 2 < 2
l+1

, this completes the proof.

• l = n/2: Recall that in the previous case, we showedh(Jl ) < 2
−2

l+1

for any l ∈ {2, 3, . . .}. There-

fore, h(Jn/2) ≤ 2
−2
(n/2)+1

≤ 2
−8

by assumption n ∈ {4, 6, . . .}. Since (µ1−l+n/2 − µ2−l+n/2)
2 =

∆2

2
= (1/15)2 > (1/16)2 = 2

−8
in this case, we obtain a contradiction to (19).

Thus, we have established the first part of the lemma (B(i)j ≤ 1−l+n/2). To show min S (i)j′ ≤ 1−l+

n/2, we suppose instead that min S (i)j′ > 1−l+n/2 for some j ′ ≥ j . Then j† = min{j ′ ≥ j : min S (i)j′ >

1 − l + n/2} is well-defined. If j† = j, then min S (i)j > 1 − l + n/2, which violates the assumption of

the lemma, so we assume j† > j . In this case, we know min S (i)
j†−1

≤ 1 − l + n/2 (since j† is minimal)

and B(i)
j†−1

> 1−l +n/2 (else, because B(i)
j†−1

∈ S (i)
j†
, we would have min S (i)

j†
≤ B(i)

j†−1

≤ 1−l +n/2). But

since j† − 1 ≥ Jl (by assumption j† > j and j ≥ Jl ), this contradicts the first part of the lemma. □

Next, for each l ∈ [n/2], we define the event

El = {l + n/2 < P
(l+1+n/2)
Jl

} ∩ ∩
Jl
j=1
∩ni=l+n/2 {min S (i)j > 1 − l + n/2,n + 1 < P (i)j },

where {n < P (n+1)

Jn/2
} = Ω by convention (so En/2 is well-defined). Thus, in words El says (1) l+1+n/2

is not blocking l + n/2 at phase Jl , (2) no honest agent i ≥ l + n/2 has ever been aware of arms as

good as 1 − l + n/2 up to phase Jl , and (3) no such i has ever blocked the malicious agent n + 1.

Point (2) will allow us to show that agent n does not become aware of the best arm until phase Jn/2
(when En/2 holds). The other events in the definition of {El }

n/2
l=1

will allow us to inductively lower

bound their probabilities. The next lemma establishes the base of this inductive argument.

Lemma 2. Under the assumptions of Theorem 1, P(E1) ≥ 3
−2(J1−1).

Proof. We first observe that at all phases j ∈ [J1 − 1], only the second case of the malicious

strategy – where the malicious agent recommends to avoid blocking – arises, which implies

n + 1 < P (i)j ∀ j ∈ [J1], i ∈ [n]. Therefore, it suffices to show P(E ′
1
) ≥ 3

−2(J1−1)
, where we define

E ′
1
= {1 + n/2 < P (2+n/2)J1

} ∩ ∩
J1
j=1
∩ni=1+n/2 {min S (i)j > n/2}.

To do so, we will show E ′
1
⊃ F ≜ ∩J1−1

j=1
∩

2+n/2
i=1+n/2 {H

(i)
j = n + 1} and P(F ) ≥ 3

−2(J1−1)
.

To show P(F ) ≥ 3
−2(J1−1)

, first note that by the law of total expectation, we have

P(F ) = E[1(∩J1−2

j=1
∩

2+n/2
i=1+n/2 {H

(i)
j = n + 1})PJ1−1(∩

2+n/2
i=1+n/2{H

(i)
J1−1
= n + 1})].
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Now when ∩
J1−2

j=1
∩

2+n/2
i=1+n/2 {H

(i)
j = n + 1} occurs, the malicious strategy implies P (i)J1−1

= ∅, so H (i)J1−1

is sampled from a set of three agents which includes n + 1, for each i ∈ {1 + n/2, 2 + n/2}. Since

this sampling is independent, we conclude that when ∩
J1−2

j=1
∩

2+n/2
i=1+n/2 {H

(i)
j = n + 1} occurs,

PJ1−1(∩
2+n/2
i=1+n/2{H

(i)
J1−1
= n + 1}) = 3

−2.

Thus, combining the previous two expressions with the definition of F and iterating, we obtain

P(∩J1−1

j=1
∩

2+n/2
i=1+n/2 {H

(i)
j = n + 1}) = P(F ) = P(∩J1−2

j=1
∩

2+n/2
i=1+n/2 {H

(i)
j = n + 1})/32 = 3

−2(J1−1).

To show E ′
1
⊃ F , first observe that when F occurs, 2+n/2 does not contact 1+n/2 at any phase

j ∈ [J1 − 1], so 1 + n/2 < P (2+n/2)J1
. Thus, it only remains to show that F implies min S (i)j > n/2

for all j ≤ J1 and i > n/2. Suppose instead that F holds and min S (i)j ≤ n/2 for some such j and

i . Let j† = min{j ≤ J1 : min S (i)j ≤ n/2 for some i > n/2} be the earliest j it occurs; note j† > 1 by

assumption that min S (i)
1
> n/2 for i > n/2. Let i† be some agent it occurs for, i.e., i† > n/2 is such

that k† ∈ S (i
†)

j†
for some k† ≤ n/2. Since j† is the earliest such phase and j† > 1, we know k† was

not active for i† at the previous phase j† − 1, so it was recommended to i† at this phase. By the

malicious strategy and j† − 1 ≤ J1 − 1, this implies that the agent i‡ who recommended k† to i† is
honest, so k† was active for i‡ at the previous phase, which implies i‡ ≤ n/2 (else, we contradict the

minimality of j†). From the assumed line graph structure, we must have i† = 1 + n/2 and i‡ = n/2,
i.e., 1 + n/2 contacted n/2 at phase j† − 1 ≤ J1 − 1. But this contradicts the definition of F , which

stipulates that 1 + n/2 only contacts n + 1 before J1. □

To continue the inductive argument, we lower bound P(El+1) in terms of P(El ).

Lemma 3. Under the assumptions of Theorem 1, for any l ∈ [(n/2− 1], we have P(El+1) ≥ 3
−4P(El ).

Proof. The proof is somewhat lengthy and proceeds in four steps.

Step 1: Probabilistic arguments. First, we define the events

G1 = ∩
l+2+n/2
i=l+n/2 {H

(i)
Jl
= n + 1}, G2 = {H

(l+1+n/2)
Jl+1

= l + n/2}, G = G1 ∩ G2.

Then by the law of total expectation, we know that

P(El ∩ G) = E[EJl+1[1(El ∩ G1)1(G2)]] = E[1(El ∩ G1)PJl+1(G2)]. (20)

Now if El ∩ G1 occurs, then l + n/2 < P (l+1+n/2)
Jl

(by El ) and H
(l+1+n/2)
Jl

= n + 1 (by G1); the latter

implies l + n/2 < P (l+1+n/2)
Jl+1

\ P (l+1+n/2)
Jl

, so combined with the former, l + n/2 < P (l+1+n/2)
Jl+1

. Thus,

El ∩ G1 implies that H (l+1+n/2)
Jl+1

is sampled from a set of most three agents containing l + n/2, so

PJl+1(G2) ≥ 1/3. Substituting into (20), and again using total expectation, we thus obtain

P(El ∩ G) ≥ P(El ∩ G1)/3 = E[EJl [1(El )1(G1)]]/3 = E[1(El )PJl (G1)]/3.

Analogously, when El holds, n + 1 < P (i)Jl ∀ i ∈ {l + n/2, . . . , l + 2 + n/2}, which by similar

logic gives PJl (G1) ≥ 3
−3
. Therefore, combining the previous two inequalities, we have shown

P(El ∩ G) ≥ 3
−4P(El ). Consequently, it suffices to show that El ∩ G ⊂ El+1.

Step 2: Event decomposition. For l ′ ∈ {l, l + 1}, we decompose El ′ = ∩
4

h=1
Hl ′,h , where

Hl ′,1 = {l
′ + n/2 < P (l

′+1+n/2)
Jl ′

}, Hl ′,2 = ∩
Jl ′−1

j=1
∩ni=l ′+n/2 {min S (i)j > 1 − l ′ + n/2,n + 1 < P (i)j },

Hl ′,3 = ∩
Jl ′
j=Jl ′−1

+1
∩ni=l ′+n/2 {min S (i)j > 1 − l ′ + n/2}, Hl ′,4 = ∩

Jl ′
j=Jl ′−1

+1
∩ni=l ′+n/2 {n + 1 < P (i)j }.
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As a simple consequence of these definitions, we note that

Hl ,2 ∩Hl ,3 ∩Hl ,4 = ∩
Jl
j=1
∩ni=l+n/2 {min S (i)j > 1 − l + n/2,n + 1 < P (i)j }

⊂ ∩
Jl
j=1
∩ni=l+1+n/2 {min S (i)j > 1 − (l + 1) + n/2,n + 1 < P (i)j } = Hl+1,2.

Hence, to prove El ∩ G ⊂ El+1, it suffices to show El ∩ G ⊂ Hl+1,1 ∩ Hl+1,3 ∩ Hl+1,4. For the

remainder of the proof, we thus assume El ∩ G holds and argueHl+1,1 ∩Hl+1,3 ∩Hl+1,4 holds.

Step 3: Some consequences. We begin by deriving several consequences of El ∩ G. First, note

each i ∈ {l + 1+n/2, l + 2+n/2} contacts n+ 1 at phase Jl (by G1), who recommends 1− l +n/2 (by

the malicious strategy). Since min S (i)Jl > 1 − l + n/2 (byHl ,3), this implies 1 − l + n/2 = min S (i)Jl+1
,

so 1 − l + n/2 is most played in phase Jl + 1 (by Lemma 1). In summary, we have shown

H (i)Jl = n + 1,R(i)Jl = B(i)Jl+1
= 1 − l + n/2 ∀ i ∈ {l + 1 + n/2, l + 2 + n/2}. (21)

Second, as a consequence of the above and Lemma 1, we can also write

1 − l + n/2 = min S (i)Jl+1
≥ min S (i)Jl+2

≥ · · · ∀ i ∈ {l + 1 + n/2, l + 2 + n/2}. (22)

Third, we know l + n/2 contacts n + 1 at phase Jl (by G1), who responds with a currently active

arm (by the malicious strategy), so since min S (l+n/2)Jl
> 1 − l + n/2 (byHl ,3), we have

min S (l+n/2)Jl+1
> 1 − l + n/2. (23)

As a consequence of (23), we see that when l + 1 + n/2 contacts l + n/2 at phase Jl + 1 (which

occurs by G2), l +n/2 recommends some arm strictly worse than 1 − l +n/2. On the other hand, by

(22) and Lemma 1, we know the most played arm for l + 1 + n/2 in phase Jl + 2 has index at most

1 − l + n/2. Taken together, the recommendation is not most played, so

l + n/2 ∈ P (l+1+n/2)
j ∀ j ∈ {Jl + 2, . . . , (Jl + 2)2 = Jl+1}. (24)

Step 4: Completing the proof. Using the above, we prove in turn that Hl+1,4, Hl+1,3, and

Hl+1,1 hold. ForHl+1,4, we use proof by contradiction: ifHl+1,4 fails, we can find i ≥ l + 1 + n/2

and j ∈ {Jl + 1, . . . , Jl+1} such that n + 1 ∈ P (i)j . Let j† = min{j ∈ {Jl + 1, . . . , Jl+1} : n + 1 ∈ P (i)j }

be the minimal such j (for this i). Since n + 1 < P (i)Jl (by Hl ,4) and j† is minimal, we must have

n+1 ∈ P (i)
j†
\P (i)

j†−1

, i.e.,n+1 was blocked for the recommendation it provided at j†−1. If i ≥ l+3+n/2,

this contradicts the malicious strategy, since j† − 1 ∈ {Jl , . . . , Jl+1 − 1} and the strategy avoids

blocking for such i and j†. A similar contradiction arises if i ∈ {l +1+n/2, l +2+n/2} and j† ≥ Jl +2

(since j† − 1 ∈ {Jl + 1, . . . , Jl+1 − 1} in this case), so we must have i ∈ {l + 1 + n/2, l + 2 + n/2} and

j† = Jl + 1. But in this case, n + 1 ∈ P (i)
j†
\ P (i)

j†−1

= P (i)Jl+1
\ P (i)Jl contradicts (21).

Next, we showHl+1,3 holds. The logic is similar to the end of the Lemma 2 proof. If insteadHl+1,3

fails, we can find j ∈ {Jl +1, . . . , Jl+1} and i ∈ {l+1+n/2, . . . ,n} such that min S (i)j ≤ (n/2)−l . Let j
†

be the minimal such j and i† ≥ l +1+n/2 an agent with min S (i
†)

j†
= k† for some k† ≤ (n/2)−l . Since

min S (i
†)

Jl
> 1−l +n/2 (byHl ,3), j

† ≥ Jl +1, and j† is minimal, we know that k† was recommended to

i† at phase j† − 1 ∈ {Jl , . . . , Jl+1 − 1}. By the malicious strategy, this implies that the recommending

agent (say, i‡) was honest. Therefore, k† was active for i‡ at phase j† − 1, so since j† is minimal,

i‡ ≤ l +n/2. Hence, by the assumed graph structure, i† = l + 1+n/2 contacted i‡ = l +n/2 at phase

j† − 1, who recommended k†. If j† − 1 ∈ {Jl , Jl + 2, . . . , Jl+1 − 1}, this contact cannot occur, since

l + 1 + n/2 instead contacts n + 1 at Jl (by G1) and does not contact l + n/2 at Jl + 2, . . . , Jl+1 (by

(24)). Hence, we must have j† − 1 = Jl + 1, so min S (l+n/2)Jl+1
≤ k† ≤ (n/2) − l , contradicting (23).
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Finally, we proveHl+1,1. Suppose instead that l + 1+n/2 ∈ P (l+2+n/2)
Jl+1

, i.e., l + 1+n/2 is blocked at

Jl+1. Then since P (l+2+n/2)
0

= ∅, we must have l + 1+n/2 ∈ P (l+2+n/2)
j \ P (l+2+n/2)

j−1
for some j ∈ [Jl+1].

Let j† be the maximal such j. Then j† ≥
√
Jl+1 = Jl + 2; otherwise, if j† <

√
Jl+1, l + 1 + n/2 would

have been un-blocked by phase Jl+1. Therefore, the blocking rule implies

B(l+2+n/2)
j†

, R(l+2+n/2)
j†−1

= B(l+1+n/2)
j†−1

. (25)

By j† ∈ {Jl + 2, . . . , Jl+1},Hl+1,3, and (22), we also know

−l + n/2 < min S (l+2+n/2)
j†

,min S (l+1+n/2)
j†−1

≤ 1 − l + n/2,

so min S (l+2+n/2)
j†

= min S (l+1+n/2)
j†−1

= 1 − l + n/2. Combined with (25), we must have B(l+h+n/2)
j†+h−2

>

min S (l+h+n/2)
j†+h−2

= 1 − l + n/2 for some h ∈ {1, 2}, which contradicts Lemma 1 (since j† ≥ Jl + 2). □

Finally, we can prove the theorem. Define σ = min{j ∈ N : 1 ∈ S (n)j }. Then by definition, I (n)t , 1

for any t ≤ Aσ−1. Hence, because ∆2 = 1/15 in the problem instance of the theorem, we obtain

Aσ−1 ∧T

15

=

Aσ−1∧T∑
t=1

1(I (n)t , 1)

15

=

Aσ ∧T∑
t=1

K∑
k=2

1(I (n)t = k)

15

≤

T∑
t=1

K∑
k=2

∆k1(I
(n)
t = k).

Thus, by Claim 23 from Appendix F.1 and since Aσ−1 = (σ − 1)2 by the choice β = 2, we can write

R(n)T = E

[
T∑
t=1

K∑
k=2

∆k1(I
(i)
t = k)

]
≥
E[Aσ−1 ∧T ]

15

=
E[(σ − 1)2 ∧T ]

15

.

Let l ∈ [n/2] be chosen later. Then σ > Jl implies σ − 1 ≥ Jl (since σ , Jl ∈ N). Thus, we can write

E[(σ − 1)2 ∧T ] ≥ E[((σ − 1)2 ∧T )1(σ > Jl )] ≥ (J
2

l ∧T )P(σ > Jl ).

By definition of σ and El , along with Lemmas 2 and 3, we also know

P(σ > Jl ) ≥ P(El ) ≥ 3
−4(l−1)P(E1) ≥ 3

−4(l−1) · 3−2(J1−1) = 9
3−2l−J1 .

By (7) from Section 4.1, we know J 2

l ≥ J 2
l

1
= (28)2

l
= 2

2
l+3

. Combined with the previous three

bounds, and letting C denote the constant C = 9
3−J1/15, we thus obtain

R(n)T ≥ (2
2
l+3

∧T ) · 93−2l−J1/15 = C · 81
−l · (22

l+3

∧T ) ∀ l ∈ [n/2]. (26)

We now consider three different cases, each with a different choice of l .

• If T > 2
2
(n/2)+3

, choose l = n/2. Then (26) becomes R(n)T ≥ C · 81
−n/2 · 22

(n/2)+3

. Observe that

81
−n/2 · 22

(n/2)+3

≥ 16
−n · 22

(n/2)+3

= (24)2·2
n/2−n ≥ (24)2

n/2
> exp(2n/2)

= exp(exp(n log(2)/2)) > exp(exp(n/3)),

where the second inequality is n ≤ 2
n/2

for n ∈ {2, 4, 8, . . .}. On the other hand, Claim 1

below shows R(n)T ≥ log(T )/C1 for some absolute constant C1 > 0. Thus, we have shown

R(n)T = (R
(n)
T /2) + (R

(n)
T /2) ≥ (C/2) exp(exp(n/3)) + log(T )/(2C1).

• If T ∈ (28, 22
(n/2)+3

], let l = ⌈log
2
(log

2
(T )) − 3⌉. Then 2

2
l+3

≥ T , so 2
2
l+3

∧T = T . Furthermore,

we know l ≤ log
2
(log

2
(T )) − 2, which implies

81
−l ≥ 81

2 · 81
− log

2
(log

2
(T )) ≥ 81

2 · 2−7 log
2
(log

2
(T )) = 81

2/log
7

2
(T ) = 81

2
log

7(2)/log
7(T ).
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Next, observe that 0 = log
2
(log

2
(28)) − 3 < log

2
(log

2
(T )) − 3 ≤ n/2 for this case of T , so

l ∈ [n/2]. Thus, we can choose this l in (26) and combine with the above bounds to lower

bound regret as R(n)T ≥ 81
2

log
7(2)CT /log

7(T ).

• If T ≤ 2
8
, choose l = 1. Then 2

2
l+3

= 2
16 ≥ T , so (26) implies R(n)T ≥ CT /81.

Hence, in all three cases, we have shown R(n)T ≥ C ′min{log(T ) + exp(exp(n/3)),T /log
7(T )} for

some absolute constant C ′ > 0. This establishes the theorem.

We return to state and prove the aforementioned Claim 1. We note the analysis is rather coarse;

our only goal here is to establish a logT scaling (not optimize constants).

Claim 1. Under the assumptions of Theorem 1, we have R(n)T ≥ log(T )/C1, where C1 = 15 log 99.

Proof. If T = 1, the bound holds by nonnegativity. If T ∈ {2, . . . , 99}, then since min S (n)
1
> n/2

and ∆2 ≥ 1/15 by assumption in Theorem 1, we know ∆I (n)
1

≥ 1/15, which implies R(n)T ≥ 1/15 ≥

log(T )/C1. Thus, only the case T ≥ 100 remains. By Claim 23 from Appendix F.1 and ∆2 ≥ 1/15,

R(n)T ≥
E[

∑T
t=1

1(I (n)t , 1)]

15

=
log(99)E[

∑T
t=1

1(I (n)t , 1)]

C1

>
2E[

∑T
t=1

1(I (n)t , 1)]

C1

.

Thus, it suffices to show that

∑T
t=1

1(I (n)t , 1) ≥ log(T )/2. Suppose instead that this inequality

fails. Then since the left side is an integer, we have

∑T
t=1

1(I (n)t , 1) ≤ ⌊log(T )/2⌋ by assumption.

Therefore, we can find t ∈ {T − ⌊log(T )/2⌋ + 1, . . . ,T } such that I (n)t = 1 (else, we violate the

assumed inequality). By this choice of t and the assumed inequality, we can then write

T (n)
1
(t − 1) = t − 1 −

t−1∑
s=1

1(I (n)t , 1) ≥ (T − ⌊log(T )/2⌋) − (⌊log(T )/2⌋) ≥ T − logT .

We can lower bound the right side by 4 logT (else, applying Claim 20 from Appendix F.1 with x = T ,
y = 1, and z = 5 yields T < 100, a contradiction), which is further bounded by 4 log t . Combined

with the fact that rewards are deterministic, µ1 = 1, and α = 4 in Theorem 1, we obtain

µ̂(n)
1
(t − 1) +

√
α log(t)/T (n)

1
(t − 1) = 1 +

√
4 log(t)/T (n)

1
(t − 1) ≤ 2. (27)

Next, let k ∈ S (n)A−1(t ) be any other arm which is active for n at time t . Then clearly

T (n)k (t − 1) ≤

T∑
t=1

1(I (n)t = k) ≤
T∑
t=1

1(I (n)t , 1) ≤ ⌊log(T )/2⌋ ≤ log(T )/2

⇒ µ̂(n)k (t − 1) +

√
α log(t)/T (n)k (t − 1) ≥

√
8 log(t)/log(T ) = 2

√
log(t)/log(

√
T ). (28)

By (27), (28), the fact that I (n)t = 1, and the UCB policy, we conclude t ≤
√
T . Since T ≥ 4, this

further implies t ≤ T /2. But we also know that t ≥ T − ⌊log(T )/2⌋ + 1 > T − log(T )/2. Combining

these inequalities gives T < logT , a contradiction. □

D PROOFS FROM SECTION 5
D.1 Proof of Theorem 2
Fix an honest agent i ∈ [n]. Let τ (i) = τspr ∨ τ

(i)
blk
, where we recall from the proof sketch that

τspr = inf{j ∈ N : B(i
′)

j′ = 1 ∀ i ′ ∈ [n], j ′ ≥ j},

τ (i)
blk
= inf{j ∈ N : H (i)j′−1

∈ P (i)j′ \ P
(i)
j′−1
∀ j ′ ≥ j s .t . R(i)j′−1

, 1}.
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Let γi ∈ (0, 1) be chosen later. Denote by S
(i)
= {2, . . . ,K} ∩ Ŝ (i) and S (i) = {2, . . . ,K} \ Ŝ (i) the

suboptimal sticky and non-sticky arms, respectively, for agent i . Then by Claim 23 from Appendix

F.1, we can decompose regret as R(i)T =
∑

4

h=1
R(i)T ,h , where

R(i)T ,1 = E


Aτspr∧T∑
t=1

∆I (i )t

 , R(i)T ,2 =
∑
k ∈S

(i )

∆kE


T∑

t=1+Aτspr

1(I (i)t = k)

 ,
R(i)T ,3 =

∑
k ∈S (i )

∆kE


A
τ (i )∨⌈Tγi /β ⌉

∧T∑
t=1+Aτspr

1(I (i)t = k)

 , R(i)T ,4 =
∑
k ∈S (i )

∆kE


T∑

t=1+A
τ (i )∨⌈Tγi /β ⌉

1(I (i)t = k)

 ,
and where

∑s2

t=s1

1(I (i)t = k) = 0 whenever s1 > s2 by convention. Thus, we have rewritten regret as

the sum of four terms: R(i)T ,1, which accounts for regret before the best arm spreads; R(i)T ,2, the regret

due to sticky arms after the best arm spreads; R(i)T ,3, regret from non-sticky arms after the best arm

spreads but before phase τ (i) ∨ ⌈T γi /β ⌉; and R(i)T ,4, regret from non-sticky arms after this phase. The

subsequent lemmas bound these terms in turn.

Lemma 4. Under the assumptions of Theorem 2, for any i ∈ [n] and T ∈ N, we have

R(i)T ,1 ≤ E[Aτspr ] = O(S
β/(ρ2

1
(β−1)) ∨ (S log(S/∆2)/∆

2

2
)β/(β−1) ∨ ( ¯d log(n +m))β/ρ1 ∨ nK2S) + E[A2τ̄spr ].

Proof. Assumption 2 ensures ∆k ≤ 1, so R(i)T ,1 ≤ E[Aτspr ]. The result follows from the bound on

E[Aτspr ] discussed in Section 7.5 and formally stated as Corollary 4 in Appendix E.5. □

Lemma 5. Under the assumptions of Theorem 2, for any i ∈ [n] and T ∈ N, we have

R(i)T ,2 ≤
∑
k ∈S

(i )

4α logT

∆k
+

4(α − 1)|S
(i)
|

2α − 3

.

Proof. For any k ∈ S
(i)
, Claim 22 and Corollary 6 from Appendix F.2 imply

E


T∑

t=1+Aτspr

1

(
I (i)t = k

) = E


T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) <

4α log t

∆2

k

)
+ E


T∑

t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) ≥

4α log t

∆2

k

)
≤

4α logT

∆2

k

+
4(α − 1)

2α − 3

,

so multiplying by ∆k , using ∆k ≤ 1, and summing over k ∈ S
(i)

completes the proof. □

Lemma 6. Under the assumptions of Theorem 2, for any i ∈ [n], γi ∈ (0, 1), and T ∈ N, we have

R(i)T ,3 ≤
∑
k ∈S (i )

4α logA ⌈T γi /β ⌉

∆k
+

4(α − 1)|S (i) |

2α − 3

+
4C4αK

∆2γi
log

(
C4K

∆2γi

)
+ 1 + E[Aτspr ].

Proof. The proof is nontrivial; we defer it to the end of this sub-appendix. □
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Lemma 7. Under the assumptions of Theorem 2, for any i ∈ [n], γi ∈ (0, 1), and T ∈ N, we have

R(i)T ,4 ≤
2η − 1

η − 1

max

S̃ ⊂S (i ): |S̃ | ≤dmal(i)+2

∑
k ∈S̃

4α logT

∆k
+

8αβ logη(1/γi )(dmal(i) + 2)

∆2

+
4(α − 1)|S (i) |

2α − 3

.

Proof sketch. The proof follows the same logic as that of [56, Lemma 4], so we omit it. The only

differences are (1) we replacem (the number of malicious agents connected to i for the complete

graph) with dmal(i), and (2) we use Claim 19 from Appendix F.1 to bound the summation in [56,

Lemma 4]. We refer the reader to the Theorem 2 proof sketch for intuition. □

Additionally, we note the sum R(i)T ,3 + R
(i)
T ,4 can be naively bounded as follows.

Lemma 8. Under the assumptions of Theorem 2, for any i ∈ [n] and T ∈ N, we have

R(i)T ,3 + R
(i)
T ,4 ≤

∑
k ∈S (i )

4α logT

∆k
+

4(α − 1)|S (i) |

2α − 3

.

Proof. The proof follows the exact same logic as that of Lemma 5 so is omitted. □

We can now prove the theorem. First, we use the regret decomposition R(i)T =
∑

4

h=1
R(i)T ,h , Lemmas

4-7, and the fact that |S
(i)
| + |S (i) | ≤ K to write

R(i)T ≤
2η − 1

η − 1

max

S̃ ⊂S (i ): |S̃ | ≤dmal(i)+2

∑
k ∈S̃

4α logT

∆k
+

∑
k ∈S

(i )

4α logT

∆k
+

∑
k ∈S (i )

4α logA ⌈T γi /β ⌉

∆k
(29)

+
8αβ logη(1/γi )(dmal(i) + 2)

∆2

+
8(α − 1)K

2α − 3

+
4C4αK

∆2γi
log

(
C4K

∆2γi

)
+ 1 + 2E[Aτspr ]. (30)

Now choose γi = ∆2/(K∆S+dmal(i)+4) ∈ (0, 1). Then

(30) = Õ
(
(dmal(i)/∆2) ∨ (K/∆2)

2
)
+ 2E[Aτspr ]

= Õ
(
(dmal(i)/∆2) ∨ (K/∆2)

2 ∨ Sβ/(ρ
2

1
(β−1)) ∨ (S/∆2

2
)β/(β−1) ∨ ¯dβ/ρ1 ∨ nK2S

)
+ 4E[A2τ̄spr ],

where the second inequality is due to Lemma 4. Furthermore, by Claim 18 from Appendix F.1,

we know that log(A ⌈T γi /β ⌉) ≤ log(e2β (T γi /β )β ) = 2β + γi logT . Combined with S (i) ≤ K , ∆k ≥

∆2 ∀ k ∈ S
(i)
, and the choice of γi , we can thus write∑

k ∈S (i )

4α logA ⌈T γi /β ⌉

∆k
≤

∑
k ∈S (i )

8αβ + γi logT

∆k
≤

8αβK + γiK logT

∆2

=
8αβK

∆2

+
logT

∆S+dmal(i)+4

.

Therefore, we can bound (29) as follows:

(29) ≤
2η − 1

η − 1

max

S̃ ⊂S (i ): |S̃ | ≤dmal(i)+2

∑
k ∈S̃

4α logT

∆k
+

∑
k ∈S

(i )

4α logT

∆k
+

logT

∆S+dmal(i)+4

+
8αβK

∆2

≤
2η − 1

η − 1

dmal(i)+3∑
k=2

4α logT

∆k
+

S+dmal(i)+4∑
k=dmal(i)+4

4α logT

∆k
+

8αβK

∆2

,
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where the second inequality holds by ∆2 ≤ · · · ≤ ∆K and |S
(i)
| ≤ S . Combining the above yields

R(i)T ≤ 4α log(T )
©­«2η − 1

η − 1

dmal(i)+3∑
k=2

1

∆k
+

S+dmal(i)+4∑
k=dmal(i)+4

1

∆k

ª®¬ + 2E[A2τ̄spr ] (31)

+ Õ
(
(dmal(i)/∆2) ∨ (K/∆2)

2 ∨ Sβ/(ρ
2

1
(β−1)) ∨ (S/∆2

2
)β/(β−1) ∨ ¯dβ/ρ1 ∨ nK2S

)
.

Alternatively, we can simply use Lemmas 4, 5, and 8 to write

R(i)T ≤ 4α log(T )
K∑
k=2

1

∆k
+

4(α − 1)K

2α − 3

+ E[Aτspr ]. (32)

Therefore, combining the previous two expressions and again invoking Lemma 4 to bound the

additive terms in (32) by those in (31), we obtain the desired bound.

Thus, it only remains to prove Lemma 6. We begin by using some standard bandit arguments

recounted in Appendix F.2 to bound R(i)T ,3 in terms of a particular tail of τ (i).

Claim 2. Under the assumptions of Theorem 2, for any i ∈ [n], γi ∈ (0, 1), and T ∈ N, we have

R(i)T ,3 ≤
∑
k ∈S (i )

4α logA ⌈T γi /β ⌉

∆k
+

4(α − 1)|S (i) |

2α − 3

+ E[Aτspr ]

+
4αK logT

∆2

P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
. (33)

Proof. If T = 1, we can naively bound R(i)T ,3 ≤ 1, which completes the proof. Thus, we assume

T > 1 (which will allow us to divide by logT later). For any k ∈ S (i), we first write

E


A
τ (i )∨⌈Tγi /β ⌉

∧T∑
t=1+Aτspr

1

(
I (i)t = k

) ≤ E


T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) ≥

4α log t

∆2

k

) (34)

+ E

1(τ (i) ≤ ⌈T γi /β ⌉)
A
⌈Tγi /β ⌉

∧T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) <

4α log t

∆2

k

) (35)

+ E

1(τ (i) > ⌈T γi /β ⌉)
Aτ (i )∧T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) <

4α log t

∆2

k

) . (36)

By Corollary 6 from Appendix F.2, (34) is bounded by 4(α − 1)/(2α − 3). By Claim 22 from Appendix

F.2 and 1(·) ≤ 1, (35) is bounded by 4α log(A ⌈T γi /β ⌉)/∆
2

k . For (36), Claim 22 similarly gives

Aτ (i )∧T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) <

4α log t

∆2

k

)
≤

4α logT

∆2

k

,

which clearly implies the following bound for (36):

E

1(τ (i) > ⌈T γi /β ⌉)
Aτ (i )∧T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) <

4α log t

∆2

k

) ≤
4α logT

∆2

k

P(τ (i) > ⌈T γi /β ⌉).
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For the remaining probability term, by Markov’s inequality, we have

P(τ (i) > ⌈T γi /β ⌉) ≤ P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
+
∆2E[Aτspr ]

4αK logT
.

Hence, combining the previous two inequalities, and since ∆2 ≤ ∆k , we can bound (36) by

4α logT

∆2∆k
P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
+
E[Aτspr ]

K∆k
.

Finally, combining these bounds, then multiplying by ∆k , summing over k ∈ S (i), and using ∆k ≤ 1

and |S (i) | ≤ K , we obtain the desired result. □

To bound (33), we consider two cases defined in terms of the following inequalities:

4αK log(T )/∆2 < ⌊θ ⌈T γi /β ⌉⌋
β , 4αK log(T )/∆2 < κ ⌈T γi /β ⌉, (37)

4α logAj

∆2

2

< ⌈κj ⌉ − 1 ∀ j ≥ ⌈T γi /β ⌉, log(T )
∞∑

j= ⌈T γi /β ⌉

(⌈κj ⌉ − 1)3−2α <
∆2(2α − 3)

8αK2
. (38)

Roughly speaking, when all of these inequalities hold, then T is large enough to ensure that the

event {τ (i) = Ω(poly(T )),Aτspr = O(logT )} in (33) is unlikely. The next claim makes this precise.

Claim 3. Under the assumptions of Theorem 2, for any i ∈ [n], γi ∈ (0, 1), and T ∈ N such that all
of the inequalities in (37)-(38) hold, we have

4αK logT

∆2

P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
≤ 1.

Proof. If T = 1, the left side is zero and the bound is immediate, so we assume T > 1. First note

that if Aτspr < 4αK log(T )/∆2, then since Aτspr = ⌈τ
β
spr
⌉ ≥ τ

β
spr

by definition and 4αK log(T )/∆2 <

⌊θ ⌈T γi /β ⌉⌋
β ∧κ ⌈T γi /β ⌉ by (37), τspr < ⌊θ ⌈T γi /β ⌉⌋∧κ

1/β
⌈T γi /β ⌉

. By definition θ ⌈T γi /β ⌉ = (⌈T
γi /β ⌉/3)ρ1

with

ρ1 ∈ (0, 1), this further implies τspr < ⌈T
γi /β ⌉. Thus, when τ (i) > ⌈T γi /β ⌉ andAτspr < 4αK log(T )/∆2,

we have τspr < τ
(i)
, which by definition of τ (i) implies τ (i) = τ (i)

blk
. Therefore, we can write

P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
≤ P(τ (i)

blk
> ⌈T γi /β ⌉, τspr < ⌊θ ⌈T γi /β ⌉⌋ ∧ κ

1/β
⌈T γi /β ⌉

).

Now by definition, τspr < ⌊θ ⌈T γi /β ⌉⌋ implies that B(i)j = 1 ∀ j ≥ ⌊θ ⌈T γi /β ⌉⌋. Also by definition,

τ (i)
blk
> ⌈T γi /β ⌉ implies that for some j ≥ ⌈T γi /β ⌉ and k > 1, R(i)j−1

= k but H (i)j−1
< P (i)j \ P

(i)
j−1

. Thus,

P(τ (i)
blk
> ⌈T γi /β ⌉, τspr < ⌊θ ⌈T γi /β ⌉⌋ ∧ κ

1/β
⌈T γi /β ⌉

)

≤

K∑
k=2

∞∑
j= ⌈T γi /β ⌉

P(R(i)j−1
= k,H (i)j−1

< P (i)j \ P
(i)
j−1
, τspr < ⌊θ ⌈T γi /β ⌉⌋ ∧ κ

1/β
⌈T γi /β ⌉

).

Now fix k and j as in the double summation. Again using τspr < ⌊θ ⌈T γi /β ⌉⌋ ⇒ B(i)j = 1 ∀ j ≥

⌊θ ⌈T γi /β ⌉⌋, the blocking rules implies that if τspr < ⌊θ ⌈T γi /β ⌉⌋, R
(i)
j−1
= k , and H (i)j−1

< P (i)j \ P
(i)
j−1

,

then T (i)k (Aj ) > κj . Since T
(i)
k (Aj ) ∈ N, this means T (i)k (Aj ) ≥ ⌈κj ⌉. Hence, there must exist some
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t ∈ {⌈κj ⌉, . . . ,Aj } such that T (i)k (t − 1) ≥ ⌈κj ⌉ − 1 and I (i)t = k . Thus, taking another union bound,

P(R(i)j−1
= k,H (i)j−1

< P (i)j \ P
(i)
j−1
, τspr < ⌊θ ⌈T γi /β ⌉⌋ ∧ κ

1/β
⌈T γi /β ⌉

)

≤

Aj∑
t= ⌈κj ⌉

P(T (i)k (t − 1) ≥ ⌈κj ⌉ − 1, I (i)t = k, τspr < κ
1/β
⌈T γi /β ⌉

).

Next, note τspr < κ
1/β
⌈T γi /β ⌉

implies that for any j ≥ ⌈T γi /β ⌉ and t ≥ ⌈κj ⌉, we have t ≥ ⌈κ ⌈T γi /β ⌉⌉ ≥

⌈τ
β
spr
⌉ = Aτspr , so 1 ∈ S (i)A−1(t ) by definition of τspr. Therefore, for any t ∈ {⌈κj ⌉, . . . ,Aj },

P(T (i)k (t − 1) ≥ ⌈κj ⌉ − 1, I (i)t = k, τspr < κ
1/β
⌈T γi /β ⌉

) ≤ P(T (i)k (t − 1) ≥ ⌈κj ⌉ − 1, 1 ∈ S (i)A−1(t ), I
(i)
t = k).

Now let k1 = k , k2 = 1, and ℓ = ⌈κj ⌉ − 1. Then µk2
− µk1

= ∆k ≥
√

4α log(t)/(⌈κj ⌉ − 1) by definition

and (38), respectively. Therefore, we can use Corollary 5 from Appendix F.2 to obtain

P(T (i)k (t − 1) ≥ ⌈κj ⌉ − 1, 1 ∈ S (i)A−1(t ), I
(i)
t = k) ≤ 2t2(1−α ).

Combining the above five inequalities, then using Claim 19 from Appendix F.1 and (38), we obtain

P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
≤ 2K

∞∑
j= ⌈T γi /β ⌉

∞∑
t= ⌈κj ⌉

t2(1−α )

≤
2K

2α − 3

∞∑
j= ⌈T γi /β ⌉

(⌈κj ⌉ − 1)3−2α ≤
∆2

4αK logT
,

so multiplying both sides by 4αK log(T )/∆ completes the proof. □

On the other hand, when (37)-(38) fails, we can show that T is bounded, and thus we bound the

logT term in (33) by a constant and the probability term by 1, as shown in the following claim.

Claim 4. Under the assumptions of Theorem 2, there exists a constant C4 > 0 such that, for any
i ∈ [n], γi ∈ (0, 1), and T ∈ N for which any of the inequalities in (37)-(38) fails, we have

4αK logT

∆2

P

(
τ (i) > ⌈T γi /β ⌉,Aτspr <

4αK logT

∆2

)
≤

4C4αK

∆2γi
log

C4K

∆2γi
.

Proof. By Claims 33-36 in Appendix F.4, we can set C4 = maxi ∈{33, ...,36}Ci to ensure that, if

any of the inequalities in (37)-(38) fail, then logT ≤ (C4/γi ) log(C4K/(∆2γi )). The claim follows

after upper bounding the probability by 1. □

Finally, Lemma 6 follows by combining the previous three claims.

D.2 Proof of Corollary 1
As discussed in the proof sketch, we will couple with the noiseless process. We define this process

as follows: let {H (i)j }
∞
j=1

be i.i.d. Uniform(Nhon(i)) random variables for each i ∈ N, and

I
0
= {i⋆}, I j = I j−1

∪ {i ∈ [n] \ I j−1
: H (i)j ∈ I j−1

} ∀ j ∈ N.

For the coupling, we first define

σ0 = 0, σl = inf

{
j > σl−1 : min

i ∈[n]

j∑
j′=1+σl−1

Ȳ (i)j′ ≥ 1

}
∀ l ∈ N.
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Next, for each i ∈ [n] and l ∈ N, let Z (i)l = min{j ∈ {1 + σl−1, . . . ,σl } : Ȳ (i)j = 1}. Note this set is

nonempty, and since Z (i)l is a deterministic function of {Ȳj }
∞
j=1

, which is independent of {H̄ (i)j }
∞
j=1

,

H̄ (i)
Z (i )l

is Uniform(Nhon(i)) for each l ∈ N. Hence, we can set

H (i)j =


H̄ (i)
Z (i )l
, if j = Z (i)l for some l ∈ N

Uniform(Nhon(i)), if j < {Z (i)l }
∞
l=1

without changing the distribution of {I j }
∞
j=0

. This results in a coupling where the noiseless process

dominates the noisy one, in the following sense.

Claim 5. For the coupling described above, I j ⊂
¯Iσj for any j ≥ 0.

Proof. We use induction on j. For j = 0, we simply have I j = {i
⋆} = ¯Ij = ¯Iσj . Now assume

I j−1
⊂ ¯Iσj−1

; we aim to show that if i ∈ I j , then i ∈
¯Iσj . We consider two cases, the first of which

is straightforward: if i ∈ I j−1
, then i ∈ ¯Iσj−1

by the inductive hypothesis, so since σj−1 < σj by

definition and { ¯Ij′}
∞
j′=0

increases monotonically, we obtain i ∈ ¯Iσj , as desired.

For the second case, we assume i ∈ [n] \ I j−1
and H (i)j ∈ I j−1

. Set j ′ = Z (i)j and recall j ′ ∈

{1 + σj−1, . . . ,σj } by definition. From the coupling above, we know Ȳ (i)j′ = 1 and H̄ (i)j′ = H (i)j . Since

H (i)j ∈ I j−1
in the present case, we have H̄ (i)j′ ∈ I j−1

as well. Hence, because I j−1
⊂ ¯Iσj−1

by the

inductive hypothesis, j ′ − 1 ≥ σj−1 by definition, and { ¯Ij′′}
∞
j′′=0

is increasing, we obtain H̄ (i)j′ ∈
¯Ij′−1.

We have thus shown Ȳ (i)j′ = 1 and H̄ (i)j′ ∈
¯Ij′−1, so i ∈ ¯Ij′ by Definition 1 Finally, using j ′ ≤ σj and

again appealing to monotonocity, we conclude that i ∈ ¯Iσj . □

We can now relate the rumor spreading times of the two processes. In particular, let τ̄spr = inf{j ∈

N :
¯Ij = [n]} (as in Definition 1) and τ

spr
= inf{j ∈ N : I j = [n]}. We then have the following.

Claim 6. For any j ∈ {3, 4, . . .} and ι > 1, we have P(τ̄spr > ιj log(j)/ϒ) ≤ P(τ spr > j) + 27nj1−ι .

Proof. Let h(0) = 0 and h(j ′) = ιj ′ log(j)/ϒ for each j ′ ∈ N. Then clearly

P(τ̄spr > ιj log(j)/ϒ) = P(τ̄spr > h(j),σj ≤ h(j)) + P(τ̄spr > h(j),σj > h(j)). (39)

For the first term in (39), by definition of τ̄spr and Claim 5, we have

{τ̄spr > h(j),σj ≤ h(j)} ⊂ {τ̄spr > σj } = { ¯Iσj , [n]} ⊂ {I j , [n]} = {τ spr > j}. (40)

For the second term in (39), we first observe that for any j ′ ∈ N,

⌊h(j ′)⌋ − ⌈h(j ′ − 1)⌉ − 1 ≥ h(j ′) − h(j ′ − 1) − 3 = (ι log(j)/ϒ) − 3 > 0,

where the last inequality holds by assumption on j and ι. Thus, by the union bound, we can write

P(σj′ > h(j ′),σj′−1 ≤ h(j ′ − 1)) ≤

n∑
i=1

P(∩
⌊h(j′)⌋
j′′=1+ ⌈h(j′−1)⌉

{Ȳ (i)j′′ = 0}) = n(1 − ϒ) ⌊h(j
′)⌋−⌈h(j′−1)⌉−1

≤ n(1 − ϒ)(ι log(j)/ϒ)−3 ≤ n exp(−ι log(j) + 3ϒ) < 27nj−ι .

Hence, because σ0 = 0 = h(0), we can iterate this argument to obtain that for any j ′ ∈ N,

P(σj′ > h(j ′)) ≤ P(σj′ > h(j ′),σj′−1 ≤ h(j ′ − 1)) + P(σj′−1 > h(j ′ − 1))

≤ 27nj−ι + P(σj′−1 > h(j ′ − 1)) ≤ · · · ≤ 27nj ′j−ι .

In particular, P(σj > h(j)) ≤ 27nj1−ι . Combining with (39) and (40) completes the proof. □
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To bound the tail of τ
spr
, we will use the following result.

Claim 7 (Lemma 19 from [18]). Under the assumptions of Corollary 1, there exists an absolute
constant C7 > 0 such that, for any h ∈ N, we have P(τ spr ≥ C7h log(n)/ϕ) ≤ n−4h .

Using the previous two claims, we can prove a tail bound for τ̄spr.

Claim 8. Under the assumptions of Corollary 1, there exists an absolute constant C8 > 0 such that,
for any h ∈ {3, 4, . . .}, we have P(τ̄spr ≥ ξ (h)) ≤ 56 · 2−h , where we define

ξ (h) = C8(logn)2h3
log(C8 log(n)/ϕ)/(ϕϒ).

Proof. Since Ghon is d-regular with d ≥ 2 by assumption, we have n ≥ 2 as well. Therefore,

setting C8 = (2C7) ∨ ((e + 1)/log(2)), we know log(C8 log(n)/ϕ) ≥ 1, which implies

(h − 1) log(C8 log(n)/ϕ) ≥ h − 1 ≥ logh ⇒ h log(C8 log(n)/ϕ) ≥ log(C8h log(n)/ϕ).

Consequently, if we define ι = h logn and j = ⌊C8h log(n)/ϕ⌋, we can write

ξ (h) = (h logn) (C8h log(n)/ϕ) (h log(C8 log(n)/ϕ)) /ϒ

≥ (h logn) (C8h log(n)/ϕ) log(C8h log(n)/ϕ)/ϒ ≥ ιj log(j)/ϒ.

Because C8 ≥ (e + 1)/log(2), h ≥ 3, and n ≥ 2, we also know

j ≥ C8 · h · log(n) − 1 ≥ ((e + 1)/log(2)) · 3 · log(2) − 1 = 3(e + 1) − 1 > 3e > e2. (41)

Hence, j ∈ {3, 4, . . .}; combined with ι ≥ 3 log 2 > 1, we can apply Claim 6 to obtain

P
(
τ̄spr > ξ (h)

)
≤ P

(
τ̄spr > ιj log(j)/ϒ

)
≤ P

(
τ
spr
> j

)
+ 27nj1−ι . (42)

On the other hand, (41) implies C8h log(n)/ϕ ≥ 2, so by definition of C8,

j ≥ (C8h log(n)/ϕ) − 1 ≥ (C8h log(n)/ϕ)/2 = (C8/2)h log(n)/ϕ ≥ C7h log(n)/ϕ .

Therefore, by Claim 7, we know that

P
(
τ
spr
> j

)
≤ P

(
τ
spr
> C7h log(n)/ϕ

)
≤ n−4h < n1−h .

Finally, notice that ι = h logn ≥ 3 log 2 > 2, so 1 − ι < −ι/2, thus by (41),

27nj1−ι < 27nj−ι/2 = 27n
√
j
−ι
< 27n exp(−ι) = 27n1−h .

Hence, substituting the previous two inequalities into (42) and using n ≥ 2 completes the proof. □

We now bound E[A2τ̄spr ]. First, we define

χ = ⌈C8(logn)2 log(C8 log(n)/ϕ)/(ϕϒ)⌉, C = 8β/log 2, h⋆ = ⌈C logC⌉ ∨ 3.

Notice that for any h ≥ h⋆ ≥ C logC , we have 2
−h ≤ h−4β

(else, we can invoke Claim 20 from

Appendix F.1 with x = h, y = 1, and z = C/2 to obtain h < C logC , a contradiction). We write

∞∑
j=1

(Aj −Aj−1)P(τ̄spr ≥ j/2) ≤ A
2χh3

⋆
+

∞∑
h=h⋆

2χ (h+1)3∑
j=2χh3+1

(Aj −Aj−1)P(τ̄spr ≥ j/2). (43)

Now for any h ≥ h⋆ and j ≥ 2χh3 + 1, we use 2
−h ≤ h−4β

, the definition of χ , and Claim 8 to write

P(τ̄spr ≥ j/2) ≤ P(τ̄spr ≥ χh3) ≤ P(τ̄spr ≥ ξ (h)) ≤ 56 · 2−h ≤ 56h−4β .
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Therefore, for any such h, we obtain

2χ (h+1)3∑
j=2χh3+1

(Aj −Aj−1)P(τ̄spr ≥ j/2) ≤ 56h−4β
2χ (h+1)3∑
j=2χh3+1

(Aj −Aj−1) ≤ 56h−4βA
2χ (h+1)3 .

Furthermore, by Claim 18 in Appendix F.1 and h ≥ 1, we know that

A
2χ (h+1)3 ≤ e2β (2χ (h + 1)3)β ≤ e2β (2χ (2h)3)β = (4e)2β χ βh3β ∀ h ≥ 1.

Therefore, by the previous two inequalities and (43), and since h⋆ ≥ 3, we have shown

∞∑
j=1

(Aj −Aj−1)P(τ̄spr ≥ j/2) ≤ (4e)2β χ β

(
h

3β
⋆ + 56

∞∑
h=h⋆

h−β

)
≤ (4e)2β χ β

(
h

3β
⋆ +

56

β − 1

)
,

where the second inequality follows from Claim 19 from Appendix F.1, h⋆ ≥ 3, and β > 1. Because

h⋆ is a constant, the right side is O(χ β ). Therefore, we have shown

E[2τ̄spr ] = E

[
∞∑
j=1

(Aj −Aj−1)1(2τ̄spr ≥ j)

]
=

∞∑
j=1

(Aj −Aj−1)P(τ̄spr ≥ j/2) = O(χ β ).

Hence, by definition of χ , we obtain E[A2τ̄spr ] = O(((logn)2 log(log(n)/ϕ)/(ϕϒ))β ). Combining this

bound with Theorem 2 completes the proof of Corollary 1.

D.3 Proof of Corollary 2

Similar to the analysis in Appendix D.1, we can use the decomposition R(i)T =
∑

4

h=1
R(i)T ,h , along with

Lemmas 4 and 5, to bound regret as follows:

R(i)T ≤
∑
k ∈S

(i )

4α logT

∆k
+

4(α − 1)|S
(i)
|

2α − 3

+ R(i)T ,3 + R
(i)
T ,4 + E[Aτspr ]. (44)

Next, for each k ∈ S (i), let Yk = 1(∪
∞
j=τspr {k ∈ S

(i)
j }) be the indicator that k was active after Aτspr .

Then as in the proof of Lemma 5, we can use Claim 22 and Corollary 6 from Appendix F.2 to write

E


T∑

t=1+Aτspr

1

(
I (i)t = k

) ≤ E[Yk ]
4α logT

∆2

k

+
4(α − 1)

2α − 3

. (45)

(The only difference from the proof of Lemma 5 is that, when applying Claim 22, we write

T∑
t=1+Aτspr

1

(
I (i)t = k,T

(i)
k (t − 1) <

4α log t

∆2

k

)
≤ Yk

4α logT

∆2

k

,

where we can multiply by Yk because the left side is also zero when Yk = 0.) Combining (45) with

the definitions of R(i)T ,3 and R
(i)
T ,4 and using ∆k ≤ 1, we thus obtain

R(i)T ,3 + R
(i)
T ,4 ≤ E


∑
k ∈S (i )

Yk
4α logT

∆k

 +
4(α − 1)|S (i) |

2α − 3

.

We claim, and will return to prove, that when dmal(i) = 0,∑
k ∈S

(i )

1

∆k
+

∑
k ∈S (i )

Yk
∆k
≤

S+2∑
k=2

1

∆k
. (46)
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Assuming (46) holds, we can combine the previous two inequalities and substitute into (44) to obtain

R(i)T ≤ 4α log(T )
∑S+2

k=2
∆−2

k +O(K) + E[Aτspr ]. Bounding E[Aτspr ] as in Lemma 4 yields the sharper

version of Theorem 2, and further bounding E[A2τ̄spr ] as in Appendix D.2 sharpens Corollary 2.

To prove (46), we first show

∑
k ∈S (i ) Yk ≤ 1 + 1(1 ∈ Ŝ (i)). Suppose instead that

∑
k ∈S (i ) Yk ≥

2 + 1(1 ∈ Ŝ (i)) ≜ H . Then we can find H distinct arms k1, . . . ,kH ∈ S (i), and H corresponding

phases jh ≥ τspr, such that kh was active at phase jh for each h ∈ [H ]. Without loss of generality,

we can assume each jh is minimal, i.e., jh = min{j ≥ τspr : kh ∈ S
(i)
j }. We consider two cases (which

are exhaustive since jh ≥ τspr) and show that both yield contradictions.

• jh = τspr ∀ h ∈ [H ]: We consider two further sub-cases.

– 1 ∈ Ŝ (i), i.e., the best arm is sticky. Then H = 3, so k1, . . . ,k3 are all active at phase τspr. But
all of these arms are non-sticky and only two such arms are active per phase.

– 1 < Ŝ (i). Here k1,k2 are both active at phase τspr, as is 1 (by definition of τspr). But since k1

and k2 are suboptimal, we again have three non-sticky active arms.

• maxh∈[H ] jh > τspr: We can assume (after possibly relabeling) that j1 > τspr. Thus, by mini-

mality of j1, k1 was not active at phase j1 − 1 but became active at j1, so it was recommended

by some neighbor i ′ at j1 − 1. But since dmal(i) = 0, i ′ is honest, and since j1 − 1 ≥ τspr, the
best arm was most played for i ′ in phase j1 − 1, so i ′ would not have recommended k1.

Thus,

∑
k ∈S (i ) Yk ≤ 1 + 1(1 ∈ Ŝ (i)) holds. Combined with the fact that |S

(i)
| = S − 1(1 ∈ Ŝ (i))

by definition, at most S + 1 terms are nonzero in the summations on the left side of (46). Since

∆2 ≤ · · · ≤ ∆K by the assumed ordering of the arm means, this completes the proof.

D.4 Coarse analysis of the noisy rumor process
For completeness, we provide a coarser though more general bound for E[A2τ̄spr ] than the one

derived in Appendix D.2. To begin, let P′j and E
′
j denote probability and expectation conditioned on

{Ȳ (i)j′ , H̄
(i)
j′ }

j−1

j′=1
. For each h ∈ [n], define the random phase τ̄ (h) = inf{j ∈ N : | ¯Ij | = h}. Note that

τ̄ (1) = 1 and τ̄spr = τ̄ (n). We then have the following tail bound.

Claim 9. For any l, j ∈ N, we have P(τ̄ (l) > l j) ≤ l(1 − ϒ/ ¯dhon)
j .

Proof. We use induction on l . For l = 1, τ̄ (1) = 1 ensures P(τ̄ (l) > l j) = 0 for any j ∈ N, so the

bound is immediate. Next, assume the bound holds for l ∈ N. We first write

P(τ̄ (l + 1) > (l + 1)j) ≤ P(τ̄ (l + 1) > (l + 1)j, τ̄ (l) ≤ l j) + P(τ̄ (l) > l j).

Thus, by the inductive hypothesis, it suffices to bound the first term by (1− ϒ/ ¯dhon)
j
. We first write

P(τ̄ (l + 1) > (l + 1)j, τ̄ (l) ≤ l j) = E[1(τ̄ (l) ≤ l j)P′l j+1
(τ̄ (l + 1) > (l + 1)j)].

Now suppose τ̄ (l) ≤ l j. By Assumption 1, we can find i ∈ ¯Il j and i
′ < ¯Il j such that i ∈ Nhon(i

′).

Then for τ̄ (l + 1) > (l + 1)j to occur, it must be the case that, for each j ′ ∈ {l j + 1, . . . , (l + 1)j}, the

event {H̄ (i
′)

j′ = i, Ȳ
(i′)
j′ = 1} did not occur. Therefore, we have

P′l j+1
(τ̄ (l + 1) > (l + 1)j) ≤ P′l j+1

(∩
(l+1)j
j′=l j+1

{H̄ (i
′)

j′ = i, Ȳ
(i′)
j′ = 1}C ).

By the law of total expectation, we can write

P′l j+1
(∩
(l+1)j
j′=l j+1

{H̄ (i
′)

j′ = i, Ȳ
(i′)
j′ = 1}C )

= E′l j+1
[1(∩

(l+1)j−1

j′=l j+1
{H̄ (i

′)

j′ = i, Ȳ
(i′)
j′ = 1}C )(1 − P′

(l+1)j (H̄
(i′)
(l+1)j = i, Ȳ

(i′)
(l+1)j = 1))].
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Since H̄ (i
′)

(l+1)j is Uniform(Nhon(i)) and Ȳ
(i′)
(l+1)j is Bernoulli(ϒ), we have

P′
(l+1)j (H̄

(i′)
(l+1)j = i, Ȳ

(i′)
(l+1)j = 1) = ϒ/dhon(i) ≥ ϒ/ ¯dhon.

Therefore, combining the previous two expressions and iterating, we obtain

P′l j+1
(∩
(l+1)j
j′=l j+1

{H̄ (i
′)

j′ = i, Ȳ
(i′)
j′ = 1}C ) ≤ P′l j+1

(∩
(l+1)j−1

j′=l j+1
{H̄ (i

′)

j′ = i, Ȳ
(i′)
j′ = 1}C )(1 − ϒ/ ¯dhon)

≤ · · · ≤ (1 − ϒ/ ¯dhon)
j . □

Next, we have a simple technical claim.

Claim 10. Let h† = (8β ¯dhon/ϒ) log(8β ¯dhonn/ϒ). Then for any h ≥ h†, exp(−hϒ/ ¯dhon) ≤ h−2β/n.

Proof. If the claimed bound fails, we have h < (2β ¯dhon/ϒ) log(h) + ( ¯dhon/ϒ) log(n). Then since

( ¯dhon/ϒ) log(n) < h†/2 ≤ h/2, we obtain h < (4β ¯dhon/ϒ) logh. Applying Claim 20 from Appendix

F.1 with x = h, y = 1, and z = 4β ¯dhon/ϒ, we obtain h < 2z log(2z) ≤ h†, a contradiction. □

We can now bound E[A2τ̄spr ]. The analysis is similar to Appendix D.2. We first write

E[A2τ̄spr ] ≤ A2n ⌈h† ⌉ +

∞∑
h= ⌈h† ⌉

P(τ̄spr > nh)

2n(h+1)∑
j=2nh+1

(Aj −Aj−1).

By the previous two claims, we know

P(τ̄spr > nh) = P(τ̄ (n) > nh) ≤ n(1 − ϒ/ ¯dhon)
h ≤ n exp(−hϒ/ ¯dhon) ≤ h−2β .

By Claim 18 from Appendix F.1, we also have

A2n ⌈h† ⌉ ≤ (2e)
2β (nh†)

β , A2n(h+1) ≤ e2β (2n(h + 1))β ≤ e2β (2n(2h))β = (2e)2β (nh)β ∀ h ∈ N.

Therefore, combining the previous three expressions, we obtain

EA2τ̄spr ≤ (2e)
2βnβ

©­«hβ† +
∞∑

h= ⌈h† ⌉

h−β
ª®¬ ≤ (2e)2βnβ

(
h
β
†
+

1

β − 1

)
,

where the second inequality uses β > 1, h† ≥ 2, and Claim 19 from Appendix F.1. Hence, we have

shown E[A2τ̄spr ] = O((nh†)
β ) = Õ((n ¯dhon/ϒ)

β ). Note this bound cannot be improved in general –

for example, if Ghon is a line graph, it becomes Õ((n/ϒ)β ), so since E[τ̄spr]
β = O(E[Aτ̄spr ]), we have

E[τ̄spr] = Õ(n/ϒ), which is the correct scaling (up to log terms) in Definition 1.

E DETAILS FROM SECTION 7
In this appendix, we formalize the analysis that was discussed in Section 7. In particular, the

subsequent five sub-appendices provide details on the respective five subsections of Section 7.

E.1 Details from Section 7.1
Letψ ′ = (ρ2 + β(2α − 1))/(2αβ). Note that since α > 2 and ρ2 ∈ (0, β) by assumption,

0 < 1 − 1/(2α) = β(2α − 1)/(2αβ) < ψ ′ < (β + β(2α − 1))/(2αβ) = 1,

soψ =
√
ψ ′ is well-defined andψ ∈ (0, 1). Next, for any j ∈ N, define

δ j ,1 =

√
4α logAj

(
Aj−Aj−1

S+2
− 1) ∨ 1

, δ j ,2 =
√
α log(Aj−1 ∨ 1)

©­­«
1 −ψ
√
κj
−

2√
(
Aj−Aj−1

S+2
− 1) ∨ 1

ª®®¬ ∨ 0.
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Since Aj −Aj−1 = Θ(jβ−1),ψ < 1, and ρ2 < β − 1, we are guaranteed that Aj −Aj−1 ≥ 2(S + 2) and

δ j ,2 > 0 for large j, so the following is well-defined:

J⋆
1
= min

{
j ∈ N : Aj′ −Aj′−1 ≥ 2(S + 2), δ j′,2 > 0 ∀ j ′ ≥ j

}
. (47)

Also note J⋆
1
≥ 2 (since A1 −A0 = 1). Next, recall from Section 7.1 that

Ξ(i)j ,1 =
{
B(i)j < Gδj ,1 (S

(i)
j )

}
, Ξ(i)j ,2 =

{
min

w ∈Gδj ,2 (S
(i )
j )

T (i)w (Aj ) ≤ κj

}
, Ξ(i)j = Ξ(i)j ,1 ∪ Ξ

(i)
j ,2.

Hence, if we let S(i) = {W ⊂ [K] : |W | = S + 2, Ŝ (i) ⊂W } denote the possible active sets for agent

i (i.e., S (i)j ∈ S
(i)

for any phase j), we can write

Ξ(i)j = ∪W ∈S(i ) ((Ξ
(i)
j ,1 ∩ {S

(i)
j =W }) ∪ ((Ξ

(i)
j ,1)

C ∩ Ξ(i)j ,2 ∩ {S
(i)
j =W })).

Consequently, by the union bound, we obtain

P(Ξ(i)j ) ≤
∑

W ∈S(i )

(
P(Ξ(i)j ,1 ∩ {S

(i)
j =W }) + P((Ξ

(i)
j ,1)

C ∩ Ξ(i)j ,2 ∩ {S
(i)
j =W })

)
. (48)

The next two claims bound the two summands on the right side.

Claim 11. Under the assumptions of Theorem 2, for any i ∈ [n], j ≥ J⋆
1
, andW ∈ S(i), we have

P(Ξ(i)j ,1 ∩ {S
(i)
j =W }) ≤ 4S(j − 1)β (3−2α )/(2α − 3).

Proof. IfW \Gδj ,1 (W ) = ∅, the claim is immediate. Otherwise, Ξ(i)j ,1∩{S
(i)
j =W } implies B(i)j = w

for somew ∈W \Gδj ,1 (W ). Thus, by the union bound,

P(Ξ(i)j ,1 ∩ {S
(i)
j =W }) ≤

∑
w ∈W \Gδj ,1 (W )

P(B(i)j = w,minW ∈ S (i)j ). (49)

Fix w ∈W \Gδj ,1 (W ). Then B(i)j = w implies T (i)w (Aj ) −T
(i)
w (Aj−1) ≥ (Aj − Aj−1)/(S + 2) (else, by

definition of B(i)j ,

∑
k ∈S (i )j

(T (i)k (Aj ) −T
(i)
k (Aj−1)) < Aj − Aj−1). Since Aj − Aj−1 ≥ S + 2 (by j ≥ J⋆

1
),

we conclude T (i)w (Aj ) −T
(i)
w (Aj−1) ≥ 1, so there exists t ∈ {1 +Aj−1, . . . ,Aj } such that

T (i)w (t − 1) −T (i)w (Aj−1) = T
(i)
w (Aj ) −T

(i)
w (Aj−1) − 1, I (i)t = w .

Combining and using the union bound and with T (i)w (Aj−1) ≥ 0 by definition, we obtain

P(B(i)j = w,minW ∈ S (i)j ) ≤

Aj∑
t=1+Aj−1

P

(
T (i)w (t − 1) ≥

Aj −Aj−1

S + 2

− 1,minW ∈ S (i)j , I
(i)
t = w

)
.(50)

Now fix t as in the summation. Observe that sincew ∈W \Gδj ,1 (W ) and j ≥ J⋆
1
, we have

µminW − µw > δ j ,1 =

√
4α logAj
Aj−Aj−1

S+2
− 1

≥

√
4α log t

Aj−Aj−1

S+2
− 1

.

Therefore, for any such t , we can apply a basic bandit tail (namely, Corollary 5 from Appendix F.2

with the parameters k1 = w , k2 = minW , and ℓ = (Aj −Aj−1)/(S + 2) − 1) to obtain

P

(
T (i)w (t − 1) ≥

Aj −Aj−1

S + 2

− 1,minW ∈ S (i)j , I
(i)
t = w

)
≤ 2t2(1−α ).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 53. Publication date: December 2022.



53:42 Daniel Vial, Sanjay Shakkottai, and R. Srikant

Substituting into (50) and using Claim 19 from Appendix F.1 (which applies since α > 2), we obtain

P(B(i)j = w,minW ∈ S (i)j ) ≤ 2

∞∑
t=1+Aj−1

t2(1−α ) ≤
2A3−2α

j−1

2α − 3

≤
2(j − 1)β (3−2α )

2α − 3

.

Substituting into (49) and using |W \Gδj ,1 (W )| ≤ |W | − 1 = S + 1 ≤ 2S completes the proof. □

Claim 12. Under the assumption of Theorem 2, for any i ∈ [n], j ≥ J⋆
1
, andW ∈ S(i),

P((Ξ(i)j ,1)
C ∩ Ξ(i)j ,2 ∩ {S

(i)
j =W }) ≤ 6 · 2βS(j − 1)β (3−2α )/(2α − 3).

Proof. By definition, we have

(Ξ(i)j ,1)
C ∩ Ξ(i)j ,2 ∩ {S

(i)
j =W } =

{
B(i)j ∈ Gδj ,1 (W ), min

w ∈Gδj ,2 (W )
T (i)w (Aj ) ≤ κj , S

(i)
j =W

}
.

As in the proof of Claim 11, we know that

T (i)
B(i )j
(Aj ) ≥ T

(i)

B(i )j
(Aj ) −T

(i)

B(i )j
(Aj−1) ≥

Aj −Aj−1

S + 2

>

(
Aj −Aj−1

S + 2

− 1

)
∨ 1 > κj ,

where the final inequality holds since δ j ,2 > 0 by assumption j ≥ J⋆
1
, which implies

(
Aj−Aj−1

S+2
− 1) ∨ 1

κj
>

(
2

1 −ψ

)
2

> 1.

Thus, (Ξ(i)j ,1)
C ∩ Ξ(i)j ,2 ∩ {S

(i)
j =W } implies B(i)j < arg minw ∈Gδj ,2 (W )

T (i)w (Aj ), so by the union bound,

P((Ξ(i)j ,1)
C ∩ Ξ(i)j ,2 ∩ {S

(i)
j =W }) (51)

≤
∑

w1∈Gδj ,1 (W ),w2∈Gδj ,2 (W )\{w1 }

P

(
T (i)w1
(Aj ) −T

(i)
w1
(Aj−1) ≥

Aj −Aj−1

S + 2

,T (i)w2
(Aj ) ≤ κj , S

(i)
j =W

)
.

Now fixw1,w2 as in the double summation. Then similar to the proof of Claim 11,

P

(
T (i)w1
(Aj ) −T

(i)
w1
(Aj−1) ≥

Aj −Aj−1

S + 2

,T (i)w2
(Aj ) ≤ κj , S

(i)
j =W

)
(52)

≤

Aj∑
t=1+Aj−1

P

(
T (i)w1
(t − 1) ≥

Aj −Aj−1

S + 2

− 1,T (i)w2
(Aj ) ≤ κj ,w2 ∈ S

(i)
j , I

(i)
t = w1

)
≤

Aj∑
t=1+Aj−1

2κjt
1−2αψ 2

= 2

Aj∑
t=1+Aj−1

(κjt
−ρ2/β )t2−2α ,

where the second bound follows from applying Claim 21 from Appendix F.2 with k1 = w1, k2 = w2,

ℓ = (Aj −Aj−1)/(S + 2) − 1, u = κj , and ι = ψ ; note this claim applies since by assumption j ≥ J⋆
1
,

µw2
− µw1

≥ µw2
− µminW ≥ −δ j ,2 ≥

√
α log t

©­­«
2√

Aj−Aj−1

S+2
− 1

−
1 −ψ
√
κj

ª®®¬ .
Next, observe that for any t ≥ Aj−1 ≥ (j − 1)β , by definition of κj , j ≥ J⋆

1
≥ 2, and ρ2 < β − 1,

κjt
−ρ2/β ≤ κj (j − 1)−ρ2 = (1 − 1/j)−ρ2/(K2S) ≤ 2

β−1/S .
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Similar to the proof of Claim 11, we can then use Claim 19 to obtain

2

Aj∑
t=1+Aj−1

(κjt
−ρ2/β )t2−2α ≤

2
β

S

Aj∑
t=1+Aj−1

t2−2α ≤
2
β (j − 1)β (3−2α )

S(2α − 3)
.

Combining with (51) and (52) completes the proof, since

|Gδj ,1 (W )| |Gδj ,2 (W ) \ {w1}| < (S + 2)(S + 1) ≤ (3S)(2S) = 6S2. □

Finally, we provide the tail for τarm = inf{j ∈ N : 1(Ξ(i)j′ ) = 0 ∀ i ∈ [n], j ′ ≥ j}.

Lemma 9. Under the assumptions of Theorem 2, for any j ≥ J⋆
1
∨ 3,

P(τarm > j) ≤
(6β + 2)nK2S(j − 2)β (3−2α )+1

(2α − 3)(β(2α − 3) − 1)
.

Proof. By (48), Claims 11 and 12, |S(i) | =
(K

2

)
< K 2

2
, and β ≥ 1, we can write

P(Ξ(i)j′ ) ≤
(6 · 2β + 4)K2S(j ′ − 1)β (3−2α )

2(2α − 3)
≤
(6β + 2)K2S(j ′ − 1)β (3−2α )

2α − 3

.

Thus, because τarm > j implies 1(∪ni=1
Ξ(i)j′ ) = 1 for some i ∈ [n] and j ′ ≥ j, the union bound gives

P(τarm > j) ≤
∞∑
j′=j

n∑
i=1

P(Ξ(i)j′ ) ≤
(6β + 2)nK2S

2α − 3

∞∑
j′=j

(j ′ − 1)β (3−2α ).

Finally, use Claim 19 (which applies since β(2α − 3) > 1) to bound the sum. □

E.2 Details from Section 7.2
Recall θ j = (j/3)

ρ1
, where ρ1 ∈ (0, 1/η] and η > 1. Hence, for all large j, we have

1 ≤ ⌊θ j ⌋ ≤ j − 2, ⌈⌊θ j ⌋
η⌉ ≤ θ

η
j + 1 ≤ (j/3) + 1 ≤ (j − 2) − j/3.

Thus, the following is well-defined:

J⋆
2
= min

{
j ∈ N : 1 ≤ ⌊θ j′⌋ ≤ j ′ − 2, j ′/3 ≤ (j ′ − 2) − ⌈⌊θ j′⌋

η⌉ ∀ j ′ ≥ j
}
. (53)

Now recall from Section 7.2 that Ξ(i→i′)
j = ∩

j−2

j′= ⌊θ j ⌋
{H (i

′)

j′ , i}, and

τcom = inf{j ∈ N : 1(∪(i ,i′)∈EhonΞ
(i→i′)
j′ ) = 0 ∀ j ′ ∈ {j, j + 1, . . .}}.

The next lemma provides a tail bound for this random phase.

Lemma 10. Under the assumptions of Theorem 2, for any j ≥ J⋆
2
,

P(τcom > j) ≤ 3(n +m)3 exp(−j/(3 ¯d)).

Proof. We first use the union bound to write

P(τcom > j) ≤
∞∑
j′=j

∑
i→i′∈Ehon

P(Ξ(i→i′)
j′ ). (54)

Fix i → i ′ ∈ Ehon and j
′ ≥ j . Suppose Ξ(i→i′)

j′ holds. Then i < P (i
′)

j′′ \P
(i′)
j′′−1
∀ j ′′ ∈ {⌊θ j′⌋+1, . . . , j ′−1};

else, we can find j ′′ ∈ {⌊θ j′⌋+1, . . . , j ′−1} such thatH (i
′)

j′′−1
= i (i.e.,H (i

′)

j′′ = i for j
′′ ∈ {⌊θ j′⌋, . . . , j

′−

2}), contradicting Ξ(i→i′)
j′ . Hence, we have two cases: i < P (i

′)

j′′ \P
(i′)
j′′−1
∀ j ′′ ∈ [j ′−1], or i ∈ P (i

′)

j′′ \P
(i′)
j′′−1
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for some j ′′ ∈ [j ′ − 1] and max{j ′′ ∈ [j ′ − 1] : i ∈ P (i
′)

j′′ \ P
(i′)
j′′−1
} ≤ ⌊θ j′⌋. In the former case,

i < P (i
′)

j′′ ∀ j
′′ ∈ [j ′ − 1]; in the latter, i < P (i

′)

j′′ ∀ j
′′ ∈ {⌈⌊θ j′⌋

η⌉ + 1, . . . , j ′ − 1}. Thus,

P(Ξ(i→i′)
j′ ) ≤ P(∩

j′−2

j′′= ⌈ ⌊θ j′ ⌋η ⌉+1
{i < P (i

′)

j′′ ,H
(i′)
j′′ , i})

= E[1(∩
j′−3

j′′= ⌈ ⌊θ j′ ⌋η ⌉+1
{i < P (i

′)

j′′ ,H
(i′)
j′′ , i})1(i < P

(i′)
j′−2
)Pj′−2(H

(i)
j′−2
, i)].

Now given that i < P (i
′)

j′−2
,H (i)j′−2

is sampled uniformly from a set of at most
¯d elements which includes

i , so Pj′−2(H
(i)
j′−2
, i) ≤ (1 − 1/ ¯d). Substituting above and iterating yields

P(Ξ(i→i′)
j′ ) ≤ (1 − 1/ ¯d)j

′−2−⌈⌊θ ′j ⌋
η ⌉
≤ (1 − 1/ ¯d)j

′/3, (55)

where the final inequality uses j ′ ≥ j ≥ J⋆
2
. Combining (54) and (55) and computing a geometric

series, we obtain

P(τcom > j) ≤
|Ehon |(1 − 1/ ¯d)j/3

1 − (1 − 1/ ¯d)j/3
≤
|Ehon |(1 − 1/ ¯d)j/3

1 − (1 − 1/ ¯d)1/3

Finally, using |Ehon | ≤ n2 < (n +m)2, 1 − x ≤ e−x ∀ x ∈ R, (1 + x)r ≤ 1 + rx for any r ∈ (0, 1) and
x ≥ −1, and

¯d ≤ m + n, we obtain the desired bound. □

E.3 Details from Section 7.3
We begin with some intermediate claims.

Claim 13. If the assumptions of Theorem 2 hold, then for any i ∈ [n] and j ≥ τarm, we have

µ
min S (i )j

≤ µB(i )j
+ δ j ,1 ≤ µ

min S (i )j+1

+ δ j ,1.

Proof. The first inequality holds by definition of τarm and assumption j ≥ τarm. The second

holds since min S (i)j+1
is the best arm in S (i)j+1

and B(i)j ∈ S
(i)
j+1

in the algorithm. □

Claim 14. If the assumptions of Theorem 2 hold, then for any i ∈ [n] and j ′ ≥ j ≥ τarm,

µ
min S (i )j′

≥ µ
min S (i )j

− (K − 1) sup

j′′∈{j , ..., j′ }
δ j′′,1.

Proof. If j = j ′ or µ
min S (i )j′

≥ µ
min S (i )j

, the bound is immediate, so we assume j ′ > j and

µ
min S (i )j′

< µ
min S (i )j

for the remainder of the proof. Under this assumption, there must exist a phase

j ′′ ∈ {j + 1, . . . , j ′} at which the mean of the best active arm reaches a new strict minimum since

j, i.e., µ
min S (i )j′′

< µ
min S (i )j

. Letm denote the number of phases this occurs and j(1), . . . , j(m) these

(ordered) phases; formally,

j(0) = j, j(l ) = min

{
j ′′ ∈ {j(l−1) + 1, . . . , j ′} : µ

min S (i )j′′
< µ

min S (i )
j (l−1)

}
∀ l ∈ [m].

The remainder of the proof relies on the following three inequalities:

m ≤ K − 1, µ
min S (i )

j (m)
≤ µ

min S (i )j′
, µ

min S (i )
j (l−1)

≤ µ
min S (i )

j (l )−1

∀ l ∈ [m]. (56)

The first inequality holds since µ
min S (i )

j (0)
> · · · > µ

min S (i )
j (m)

by definition, so min S (i)
j (0)
, . . . ,min S (i)

j (m)

are distinct arms; since there arem + 1 of these arms and K in total,m + 1 ≤ K . For the second,
we have µ

min S (i )
j (m)
= µ

min S (i )j′
when j(m) = j ′ and µ

min S (i )
j (m)
≤ µ

min S (i )j′
when j(m) < j ′ (if the latter
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fails, we contradict the definition ofm). For the third, note j(l ) ≥ j(l−1) + 1 by construction, so if

j(l ) = j(l−1) + 1, the bound holds with equality; else, j(l ) − 1 ≥ j(l−1) + 1, so if the bound fails,

j(l ) − 1 ∈

{
j ′′ ∈ {j(l−1) + 1, . . . , j ′} : µ

min S (i )j′′
< µ

min S (i )
j (l−1)

}
,

which is a contradiction, since j(l ) is the minimal element of the set at right. Hence, (56) holds.

Combined with Claim 13 (note j(l ) − 1 ≥ j(0) = j ≥ τarm ∀ l ∈ [m], as required), we obtain

µ
min S (i )j

− µ
min S (i )j′

=

m∑
l=1

(
µ

min S (i )
j (l−1)

− µ
min S (i )

j (l )

)
+ µ

min S (i )
j (m)
− µ

min S (i )j′

≤

m∑
l=1

(
µ

min S (i )
j (l )−1

− µ
min S (i )

j (l )

)
≤

m∑
l=1

δ j (l )−1,1 ≤ (K − 1) sup

j′′∈{j , ..., j′ }
δ j′′,1,

where the last inequality uses j = j(0) ≤ j(l ) − 1 < j ′ ∀ l ∈ [m]. □

As a simple corollary of the previous two claims, we have the following.

Corollary 3. If the assumptions of Theorem 2 hold, then for any i ∈ [n] and j ′ ≥ j ≥ τarm,

µB(i )j′
≥ µ

min S (i )j
− K sup

j′′∈{j , ..., j′ }
δ j′′,1.

Proof. Since j ′ ≥ j ≥ τarm, we can use Claims 13 and 14, respectively, to obtain

µB(i )j′
≥ µ

min S (i )j′
− δ j′,1 ≥ µ

min S (i )j′
− sup

j′′∈{j , ..., j′ }
δ j′′,1 ≥ µ

min S (i )j
− K sup

j′′∈{j , ..., j′ }
δ j′′,1. □

Next, inspecting the analysis in Section 7.3, we see that δ j ,2 ≥ (K + 1) supj′∈{ ⌊θ j ⌋, ..., j } δ j′,1 for

large j. Thus, the following is well-defined:

J⋆
3
= min

{
j ∈ N : δ j′,2 ≥ (K + 1) sup

j′′∈{ ⌊θ j′ ⌋, ..., j′ }
δ j′′,1 ∀ j

′ ≥ j

}
. (57)

As discussed in Section 7.3, we can now show that no new accidental blocking occurs at late

phases, at least among pairs of honest agents that have recently communicated.

Claim 15. Under the assumptions of Theorem 2, if j ≥ J⋆
3
, ⌊θ j ⌋ ≥ τarm, and H (i

′)

j′ = i for some

i, i ′ ∈ [n] and j ′ ∈ {⌊θ j ⌋, . . . , j − 2}, then i ′ < P (i)j \ P
(i)
j−1

.

Proof. Suppose instead that i ′ ∈ P (i)j \ P
(i)
j−1

. Then by the algorithm,

B(i)j = · · · = B(i)
⌊θ j ⌋
, T (i)

R(i )j−1

(Aj ) ≤ κj , R(i)j−1
= B(i

′)

j−1
∈ S (i)j . (58)

Since j ≥ ⌊θ j ⌋ ≥ τarm, this implies B(i
′)

j−1
< Gδj ,2 (S

(i)
j ). We then observe the following:

• Since B(i
′)

j−1
∈ S (i)j \Gδj ,2 (S

(i)
j ), the definition of Gδj ,2 (S

(i)
j ) implies µB(i

′)

j−1

< µ
min S (i )j

− δ j ,2.

• Again using j ≥ τarm, Claim 13 implies µ
min S (i )j

≤ µB(i )j
+ δ j ,1.

• Since ⌊θ j ⌋ ≤ j ′ ≤ j, (58) implies B(i)j = B(i)j′ , so µB(i )j
= µB(i )j′

.

• Since H (i
′)

j′ = i , the algorithm implies B(i)j′ ∈ S
(i′)
j′+1

, so µB(i )j′
≤ µ

min S (i
′)

j′+1

.

• Since τarm ≤ ⌊θ j ⌋ < j ′ + 1 < j , Corollary 3 implies µ
min S (i

′)

j′+1

≤ µB(i
′)

j−1

+K supj′′∈{ ⌊θ j ⌋, ..., j } δ j′′,1.
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Stringing together these inequalities, we obtain

µB(i
′)

j−1

< µB(i
′)

j−1

+ K sup

j′′∈{ ⌊θ j ⌋, ..., j }
δ j′′,1 − δ j ,2 + δ j ,1 ≤ µB(i

′)

j−1

+ (K + 1) sup

j′′∈{ ⌊θ j ⌋, ..., j }
δ j′′,1 − δ j ,2,

i.e., δ j ,2 < (K + 1) supj′′∈{ ⌊θ j ⌋, ..., j } δ j′′,1, which contradicts j ≥ J⋆
3
. □

Finally, we prove that honest agents eventually stop blocking each other.

Lemma 11. Under the assumptions of Theorem 2, if j ≥ J⋆
2
, ⌊θ j ⌋ ≥ τcom ∨ J⋆3 , and ⌊θ ⌊θ j ⌋⌋ ≥ τarm,

then for any i ∈ [n] and j ′ ≥ j, P (i)j′ ∩ [n] = ∅.

Proof. Fix i → i ′ ∈ Ehon and j ′ ≥ j; we aim to show i ′ < P (i
′)

j′ . This clearly holds if i ′ <

P (i)j′′ \ P
(i)
j′′−1
∀ j ′′ ≤ j ′. Otherwise, jB,1 = max{j ′′ ≤ j ′ : i ′ ∈ P (i)j′′ \ P

(i)
j′′−1
} (the latest phase up to and

including j ′ that i blocked i ′) is well-defined. We consider two cases of jB,1.

The first case is jB,1 ≤ ⌊θ j ⌋. Let jB,2 = min{j ′′ > j ′ : P (i)j′′ \ P
(i)
j′′−1
} denote the first phase after j ′

that i blocked i ′. Combined with the definition of jB,1, the algorithm implies

i ′ < P (i)j′′ ∀ j
′′ ∈ {⌈j

η
B,1⌉ + 1, . . . , jB,2}. (59)

Since j ≥ J⋆
2
, the definition of J⋆

2
implies

⌈⌊θ j ⌋
η⌉ + 1 ≤ (j − 2) − (j/3) + 1 < (j − 2) + 1 = j − 1,

so ⌈j
η
B⌉ + 1 < j − 1 < j ′ as well. Combined with j ′ ≤ jB,2 − 1 by definition, i ′ < P (i

′)

j′ holds by (59).

The second case is jB,1 > ⌊θ j ⌋. By assumption, jB,1 > ⌊θ j ⌋ ≥ τcom. Hence, by definition of τcom,

H (i
′)

jC = i for some jC ∈ {⌊θ jB ,1⌋, . . . , jB,1−2}. Note that jB,1 ≥ ⌊θ j ⌋ ≥ J⋆
3
and ⌊θ jB ,1⌋ ≥ ⌊θ ⌊θ j ⌋⌋ ≥ τarm

by assumption (and by monotonicity of {⌊θ j′′⌋}j′′∈N in the latter case). Hence, we can apply Claim

15 (with j = jB,1 and j ′ = jC in the claim) to obtain i ′ < P (i)jB ,1 \ P
(i)
jB ,1−1

. This is a contradiction. □

E.4 Details from Section 7.4
We first verify that the sampling strategy in Section 7.4 is identical to the one in Algorithm 2.

Claim 16. Suppose we replace the sampling of H (i)j in Algorithm 2 with the sampling of Section 7.4,
and recall Pj denotes probability conditioned on all randomness before this sampling occurs. Then

Pj (H
(i)
j = i

′) = 1(i ′ ∈ N (i) \ P (i)j )/|N (i) \ P
(i)
j | ∀ i ∈ [n], i

′ ∈ [n +m], j ∈ N.

Proof. Since Pj conditions on P
(i)
j , we can prove the identity separately in the cases P (i)j ∩[n] , ∅

and P (i)j ∩ [n] = ∅. The identity is immediate in the former case. For the latter, we have

Pj (H
(i)
j = i

′) = Pj (H
(i)
j = i

′ |Y (i)j = 1)Pj (Y
(i)
j = 1) + Pj (H

(i)
j = i

′ |Y (i)j = 0)Pj (Y
(i)
j = 0)

=
1(i ′ ∈ Nhon(i))

dhon(i)

dhon(i)

|N (i) \ P (i)j |
+
1(i ′ ∈ Nmal(i) \ P

(i)
j )

|Nmal(i) \ P
(i)
j |

©­«1 −
dhon(i)

|N (i) \ P (i)j |

ª®¬
=
1(i ′ ∈ Nhon(i))

|N (i) \ P (i)j |
+
1(i ′ ∈ Nmal(i) \ P

(i)
j )

|Nmal(i) \ P
(i)
j |

|N (i) \ P (i)j | − dhon(i)

|N (i) \ P (i)j |

=
1(i ′ ∈ Nhon(i)) + 1(i

′ ∈ Nmal(i) \ P
(i)
j )

|N (i) \ P (i)j |
=
1(i ′ ∈ N (i) \ P (i)j )

|N (i) \ P (i)j |
. □
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Next, note that since δ j′,1 → 0 as j ′→∞, the following is well-defined:

J⋆
4
= min{j ∈ {2, 3, . . .} : δ j′,1 < ∆2 ∀ j

′ ≥ ⌊j/2⌋}. (60)

As in Section 7.4, we let Ij = {i ∈ [n] : 1 ∈ S (i)j } be the agents with the best arm active at phase j.

Claim 17. Under the assumptions of Theorem 2, if j ≥ J⋆
4
and ⌊j/2⌋ ≥ τarm, then B(i)j′ = 1 ∀ j ′ ≥

⌊j/2⌋, i ∈ Ij′ .

Proof. Suppose instead that B(i)j′ , 1 for some j ′ ≥ ⌊j/2⌋ and i ∈ Ij′ . Since j
′ ≥ ⌊j/2⌋ ≥ ⌊J⋆

4
/2⌋,

we know δ j′,1 < ∆2. Hence, because 1 ∈ S (i)j′ by definition ofIj′ , we haveGδj′,1 (S
(i)
j′ ) = {1}. Combined

with B(i)j′ , 1, we get B(i)j′ ∈ S
(i)
j′ \Gδj′,1 (S

(i)
j′ ), which contradicts j ′ ≥ ⌊j/2⌋ ≥ τarm. □

Finally, recall τspr = inf{j ∈ N : B(i)j′ = 1 ∀ i ∈ [n], j ′ ≥ j} and τ̄spr = inf{j ∈ N :
¯Ij = [n]}, where

{ ¯Ij }
∞
j=1

is the noisy rumor process from Definition 1.

Lemma 12. Under the assumptions of Theorem 2, if j ≥ J⋆
4
, ⌊j/2⌋ ≥ J⋆

2
, and ⌊θ ⌊j/2⌋⌋ ≥ J⋆

3
, then

P(τcom ≤ ⌊θ ⌊j/2⌋⌋, τarm ≤ ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋, τspr > j) ≤ P(τ̄spr > j/2).

Proof. Let Ej = {τcom ≤ ⌊θ ⌊j/2⌋⌋, τarm ≤ ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋} and

˜I⌊j/2⌋ = {i
⋆}, ˜Ij = ¯Ij−1∪{i ∈ [n]\ ˜Ij−1 : Ȳ (i)j = 1, H̄ (i)j ∈

˜Ij−1} ∀ j ∈ {⌊j/2⌋+1, ⌊j/2⌋+2, . . .}. (61)

Then it suffices to prove the following:

P ⌊j/2⌋(Ej ∩ {τspr > j}) ≤ P ⌊j/2⌋(Ej ∩ {Ij , [n]}) ≤ P ⌊j/2⌋( ˜Ij , [n]) = P(τ̄spr > j/2). (62)

For the first inequality in (62), we begin by proving

Ej ∩ {τspr > j} ∩ {Ij = [n]} = ∅. (63)

To do so, we show Ej ,Ij = [n] ⇒ τspr ≤ j. Assume Ej and Ij = [n] hold; by definition of τspr,

we aim to show B(i)j′ = 1 ∀ i ∈ [n], j ′ ≥ j. We use induction. The base of induction (j ′ = j) holds

by Ij = [n], Ej ⊂ {τarm ≤ ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≤ ⌊j/2⌋}, and Claim 17. Given the inductive hypothesis

B(i)j′ = 1 ∀ i ∈ [n], we have 1 ∈ S (i)j′+1
by the algorithm and Ij′+1 = [n] by definition, so we again use

the assumption that Ej holds and Claim 17 to obtain B(i)j′+1
= 1 ∀ i ∈ [n]. Hence, (63) holds, so

P ⌊j/2⌋(Ej ∩ {τspr > j}) = P ⌊j/2⌋(Ej ∩ {τspr > j} ∩ {Ij , [n]}) ≤ P ⌊j/2⌋(Ej ∩ {Ij , [n]}).

For the second inequality in (62), we claim, and will return to prove, the following:

Ej ⊂ ∩
j
j′= ⌊j/2⌋{

˜Ij′ ⊂ Ij′}. (64)

Assuming (64) holds, we obtain

P ⌊j/2⌋(Ej ∩ {Ij , [n]}) ≤ P ⌊j/2⌋( ˜Ij ⊂ Ij ,Ij , [n], ) ≤ P ⌊j/2⌋( ˜Ij , [n]).

Hence, it only remains to prove (64). We show by induction on j ′ when Ej holds, ˜Ij′ ⊂ Ij′ for each

j ′ ∈ {⌊j/2⌋, . . . , j}. For j ′ = ⌊j/2⌋, recall 1 ∈ S (i
⋆)

⌊j/2⌋ by Assumption 3, so I⌊j/2⌋ ⊃ {i
⋆} = ˜I⌊j/2⌋ . Now

assume
˜Ij′−1 ⊂ Ij′−1 for some j ′ ∈ {⌊j/2⌋ + 1, . . . , j}. Let i ∈ ˜Ij′ ; we aim to show that i ∈ Ij′ , i.e.,

that 1 ∈ S (i)j′ . By (61), we have two cases to consider:

• i ∈ ˜Ij′−1: By the inductive hypothesis, i ∈ Ij′−1 as well, so 1 ∈ S (i)j′−1
by definition. Combined

with j ′ − 1 ≥ ⌊j/2⌋ and Claim 17 (recall j ≥ J⋆
4
and ⌊j/2⌋ ≥ ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ τarm when Ej holds,

so the claim applies), this implies B(i)j′−1
= 1, so 1 ∈ S (i)j′ by the algorithm.
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• i ∈ [n] \ ˜Ij′−1, Ȳ
(i)
j′ = 1, H̄ (i)j′ ∈

˜Ij′−1: First observe that since ⌊θ ⌊j/2⌋⌋ ≥ J⋆
3
and j ′ ≥ ⌊j/2⌋ ≥ J⋆

2
,

we can apply Lemma 11 on the event Ej (with j replaced by ⌊j/2⌋ in that lemma) to obtain

P (i)j′ ∩ [n] = ∅. On the other hand, recall that Ȳ (i)j′ is Bernoulli(ϒ) in Definition 1 and υ(i)j′ is

Uniform[0, 1] for the Section 7.4 sampling, so we can realize the former as Ȳ (i)j′ = 1(υ
(i)
j′ ≤ ϒ).

Hence, by assumption Ȳ (i)j′ = 1 and definition ϒ = mini ∈[n] dhon(i)/d(i), we obtain

1 = Ȳ (i)j′ = 1(υ
(i)
j′ ≤ ϒ) ≤ 1

(
υ(i)j′ ≤

dhon(i)

d(i)

)
≤ 1

©­«υ(i)j′ ≤ dhon(i)

|N (i) \ P (i)j |

ª®¬ = Y (i)j .
In summary, we have shown that P (i)j′ ∩ [n] = ∅ and Y (i)j = 1. Hence, by the Section 7.4

sampling, we conclude H (i)j = H̄ (i)j . Let i ′ = H (i)j denote this honest agent. Then by the

inductive hypothesis, we know that i ′ ∈ ˜Ij′−1 ⊂ Ij′−1, i.e., that 1 ∈ S (i
′)

j′−1
. By Claim 17, this

implies B(i
′)

j′−1
= 1, so by the algorithm, 1 = B(i

′)

j′−1
= R(i)j′−1

∈ S (i)j′ .

Finally, for the equality in (62), note that
˜Ij′ is independent of the randomness before ⌊j/2⌋. By

˜I⌊j/2⌋ = ¯I0 = {i
⋆}, the fact that Ȳ (i)j′ and Ȳ (i)j′−⌊j/2⌋ are both Bernoulli(ϒ) random variables and H̄ (i)j′

and H̄ (i)j′−⌊j/2⌋ are both sampled uniformly from Nhon(i), ˜Ij′ has the same distribution as
¯Ij′−⌊j/2⌋ .

Also, note that
˜Ij′ is independent of the randomness before ⌊j/2⌋. Finally, by definition of τ̄spr,

¯Ij−⌊j/2⌋ , [n] implies that τ̄spr > j − ⌊j/2⌋ ≥ j/2. These observations successively imply

P ⌊j/2⌋( ˜Ij , [n]) = P( ˜Ij , [n]) = P( ¯Ij′−⌊j/2⌋ , [n]) ≤ P(τ̄spr > j/2). □

E.5 Details from Section 7.5
Combining the lemmas of the above sub-appendices, we can bound the tail of the spreading time.

Theorem 3. Under the assumptions of Theorem 2, for any j ≥ J⋆, where J⋆ is defined in Claim 32
from Appendix F.3, we have

P(τspr > j) ≤

(
84

ρ2

1
(β (2α−3)−1)(6β + 2)nK2S

(2α − 3)(β(2α − 3) − 1)
+ 3

)
jρ

2

1
(β (3−2α )+1) + P

(
τ̄spr >

j

2

)
.

Proof. For any j ≥ J⋆, we can use Claim 32 to obtain

j ≥ J⋆
4
, ⌊θ ⌊j/2⌋⌋ ≥ J⋆

2
∨ J⋆

3
, ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ J⋆

1
∨ (2 + jρ

2

1/84) ≥ 3 (65)

(n +m)3 exp(−⌊θ ⌊j/2⌋⌋/(3 ¯d)) ≤ jρ
2

1
(β (3−2α )+1). (66)

In particular, ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ J⋆
1
∨ 3 implies that we can use Lemma 9 with j replaced by ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋.

Combined with (65) (namely, ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ − 2 ≥ jρ
2

1/84); this yields

P(τarm > ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋) ≤
84

ρ2

1
(β (2α−3)−1)(6β + 2)nK2S

(2α − 3)(β(2α − 3) − 1)
jρ

2

1
(β (3−2α )+1).

Since ⌊θ ⌊j/2⌋⌋ ≥ J⋆
2
by (65), we can use Lemma 10 (with j replaced by ⌊θ ⌊j/2⌋⌋) and (66) to obtain

P(τcom > ⌊θ ⌊j/2⌋⌋) ≤ 3(n +m)2 exp

(
−
⌊θ ⌊j/2⌋⌋

3
¯d

)
≤ 3jρ

2

1
(β (3−2α )+1).

Furthermore, using the bounds j ≥ J⋆
4
, ⌊θ ⌊j/2⌋⌋ ≥ J⋆

3
, and ⌊θ ⌊j/2⌋⌋ ≥ J⋆

2
from (65) (the last of which

implies ⌊j/2⌋ ≥ J⋆
2
, since θ ⌊j/2⌋ = (⌊j/2⌋/3)

ρ1 ≤ ⌊j/2⌋ by ρ1 ∈ (0, 1)), we can use Lemma 12 to get

P(τarm ≤ ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋, τcom ≤ ⌊θ ⌊j/2⌋⌋, τspr > j) ≤ P(τ̄spr > j/2).
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Finally, by the union bound, we have

P(τspr > j) ≤ P(τarm > ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋) + P(τcom > ⌊θ ⌊j/2⌋⌋)

+ P(τarm ≤ ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋, τcom ≤ ⌊θ ⌊j/2⌋⌋, τspr > j),

so combining the previous four inequalities yields the desired result. □

Finally, as a corollary, we can bound E[Aτspr ].

Corollary 4. Under the assumptions of Theorem 2, we have

E[Aτspr ] ≤ (J⋆)
β +

(
84

ρ2

1
(β (2α−3)−1)(6β + 2)

(2α − 3)(β(2α − 3) − 1)
+ 3

)
2βnK2S

ρ2

1
(β(2α − 3) − 1) − β

+ E[A2τ̄spr ]

= O
(
Sβ/(ρ

2

1
(β−1)) ∨ (S log(S/∆2)/∆

2

2
)β/(β−1) ∨ ( ¯d log(n +m))β/ρ1 ∨ nK2S

)
+ E[A2τ̄spr ],

where J⋆ is defined as in Claim 32 from Appendix F.3.

Proof. We first observe

E[Aτspr ] =
∞∑
j=1

(Aj −Aj−1)P(τspr ≥ j) ≤ AJ⋆−1 +

∞∑
j=J⋆

(Aj −Aj−1)P(τspr ≥ j). (67)

For the first term in (67), using Claim 18 from Appendix F.1, we compute

AJ⋆−1 = AJ⋆ − (AJ⋆ −AJ⋆−1) = ⌈(J⋆)
β ⌉ − (AJ⋆ −AJ⋆−1) ≤ (J⋆)

β + 1 − 1 = (J⋆)
β .

For the second term in (67), define the constant

C =
84

ρ2

1
(β (2α−3)−1)(6β + 2)

(2α − 3)(β(2α − 3) − 1)
+ 3.

Then by Theorem 3, we have

∞∑
j=J⋆

(Aj −Aj−1)P(τspr ≥ j) ≤
∞∑

j=J⋆

(Aj −Aj−1)P(τ̄spr > j/2) (68)

+CnK2S
∞∑

j=J⋆

(Aj −Aj−1)j
ρ2

1
(β (3−2α )+1). (69)

For (68), we simply use nonnegativity to write

∞∑
j=J⋆

(Aj −Aj−1)P(τ̄spr > j/2) ≤
∞∑
j=1

(Aj −Aj−1)P(2τ̄spr ≥ j) = E[A2τ̄spr ].

For the second term in (69), we use Claim 18 and β > 1 and ρ2

1
(β(2α −3)−1) > β by the assumptions

of Theorem 2 to write

CnK2S
∞∑

j=J⋆

(Aj −Aj−1)j
ρ2

1
(β (3−2α )+1) < 2βCnK2S

∞∑
j=J⋆

j−1−(ρ2

1
(β (2α−3)−1)−β )

≤ 2βCnK2S

∫ ∞

j=1

j−1−(ρ2

1
(β (2α−3)−1)−β )dj =

2βCnK2S

ρ2

1
(β(2α − 3) − 1) − β

.

Finally, combining the above bounds completes the proof. □
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F OTHER PROOFS
F.1 Basic inequalities
In this sub-appendix, we prove some simple inequalities used frequently in the analysis.

Claim 18. For any j ∈ N, we have

jβ ≤ Aj ≤ j2β , β(j − 1)β−1 − 1 < Aj −Aj−1 < βj
β−1 + 1, Aj −Aj−1 ≥ 1,

and for any z ≥ 1 and l ∈ N, we have Al ⌈z ⌉ ≤ e2β (lz)β .

Proof. For the first pair of inequalities, observe Aj = jβ = j2β = 1 when j = 1, and for j ≥ 2,

jβ ≤ Aj ≤ jβ + 1 ≤ 2jβ ≤ j1+β ≤ j2β .

For the second pair of inequalities, we first observe

Aj −Aj−1 > jβ − (j − 1)β − 1 = βx β−1 − 1 ≥ β(j − 1)β−1 − 1, (70)

where the equality holds for some x ∈ [j−1, j] by the mean value theorem and the second inequality

is x ≥ j − 1. By analogous reasoning, one can also show Aj −Aj−1 < βj
β−1 + 1, so the second pair

of inequalities holds. The third inequality holds with equality when j = 1, and for j ≥ 2, the lower

bound in (70) and β > 1 imply Aj − Aj−1 > 0, so since Aj and Aj−1 are integers, Aj − Aj−1 ≥ 1.

Finally, using z ≥ 1, β > 1, and 2 < e , we can write

Al ⌈z ⌉ < (l(z + 1))β + 1 < (2lz)β + (2lz)β = 2
β+1(lz)β < e2β (zl)β . □

Claim 19. For any j ∈ N and c > 1,
∑∞

i=j+1
i−c ≤ j1−c/(c − 1).

Proof. Since j ≥ 1 and c > 1, we can write

∞∑
i=j+1

i−c =
∞∑

i=j+1

∫ i

x=i−1

i−cdx ≤
∞∑

i=j+1

∫ i

x=i−1

x−cdx =

∫ ∞

x=j
x−cdx =

j1−c

c − 1

. □

Claim 20. For any x,y, z > 0 such that xy ≤ z logx , x < ((2z/y) log(2z/y))1/y < (2z/y)2/y .

Proof. Multiplying and dividing the right side of the assumed inequality by y/2, we obtain xy ≤
(2z/y) logxy/2. We can then loosen this bound to get xy < (2z/y)xy/2, or x < (2z/y)2/y . Plugging
into the log term of the assumed inequality yields xy < (2z/y) log(2z/y). Raising both sides to the

power 1/y establishes the first bound. The second bound follows by using log(2z/y) < 2z/y. □

Remark 14. We typically apply Claim 20 withy constant but z not. It allows us to invert inequalities
of the form xy ≤ z logx to obtain x = Õ(z1/y ).

F.2 Bandit inequalities
Next, we state and prove some basic bandit inequalities. The proof techniques are mostly modified

from existing work (e.g., [3]), but we provide the bounds in forms useful for our setting.

Claim 21. Suppose that k1,k2 ∈ [K], t ∈ N, ℓ,u > 0, and ι ∈ (0, 1] satisfy

µk2
− µk1

≥
√
α log t

(
2

√
ℓ
−

1 − ι
√
u

)
.

Let j ∈ N be such that t ∈ {1 +Aj−1, . . . ,Aj }, i.e., j ∈ A−1(t). Then for any i ∈ [n], we have

P(T (i)k1

(t − 1) ≥ ℓ,T (i)k2

(Aj ) ≤ u,k2 ∈ S
(i)
j , I

(i)
t = k1) ≤ 2(⌊u⌋ ∧ t)t1−2αι2
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Proof. For k ∈ [K], let {Xk (s)}
∞
s=1

be an i.i.d. sequence distributed as νk , and for s ∈ N, let

µ̂(i)k (s) =
1

s

s∑
s ′=1

Xk (s
′), U (i)k (t, s) = µ̂

(i)
k (s) +

√
α log t

s

denote the empirical mean and UCB index of if i has pulled the k-th arm s times before t . Then

Algorithm 1 implies that if k2 ∈ S
(i)
j and I (i)t = k1, we must have

U (i)k1

(t,T (i)k1

(t − 1)) ≥ U (i)k2

(t,T (i)k2

(t − 1)). (71)

Next, note that if T (i)k2

(Aj ) ≤ u , then by monotonicity, T (i)k2

(t − 1) ≤ u as well. Combined with the

fact that T (i)k2

(t − 1) ∈ [t] by definition, we conclude that T (i)k2

(Aj ) ≤ u implies T (i)k2

(t − 1) ≤ ⌊u⌋ ∧ t .

Similarly, T (i)k1

(t − 1) ≥ ℓ implies T (i)k1

(t − 1) ≥ ⌈ℓ⌉ (since T (i)k1

(t − 1) ∈ N). Combined with (71), we

obtain that if the event in the statement of the claim occurs, it must be the case that

max

s1∈{ ⌈ℓ⌉, ...,t }
U (i)k1

(t, s1) ≥ min

s2∈[⌊u ⌋∧t ]
U (i)k2

(t, s2).

Therefore, by the union bound, we obtain

P(T (i)k1

(t − 1) ≥ ℓ,T (i)k2

(Aj ) ≤ u,k2 ∈ S
(i)
j , I

(i)
t = k1) ≤

t∑
s1= ⌈ℓ⌉

⌊u ⌋∧t∑
s2=1

P(U (i)k1

(t, s1) ≥ U (i)k2

(t, s2)). (72)

Now fix s1 and s2 as in the double summation. We claimU (i)k1

(t, s1) ≥ U (i)k2

(t, s2) implies

µ̂(i)k1

(s1) ≥ µk1
+

√
α log(t)/s1 or µ̂(i)k2

(s2) ≤ µk2
− ι

√
α log(t)/s2.

Indeed, if instead both inequalities fail, then by choice of s1, s2 and the assumption of the claim,

U (i)k1

(t, s1) < µk1
+ 2

√
α log(t)/s1 ≤ µk1

+ 2

√
α log(t)/ℓ

≤ µk2
+ (1 − ι)

√
α log(t)/u ≤ µk2

+ (1 − ι)
√
α log(t)/s2 < U (i)k2

(t, s2),

which is a contradiction. Thus, by the union bound, Hoeffding’s inequality, and ι ∈ (0, 1), we obtain

P(U (i)k1

(t, s1) ≥ U (i)k2

(t, s2)) ≤ P(µ̂
(i)
k1

(s1) ≥ µk1
+

√
α log(t)/s1) + P(µ̂

(i)
k2

(s2) ≤ µk2
− ι

√
α log(t)/s2)

≤ e−2α log t + e−2αι2 log t = t−2α + t−2αι2 ≤ 2t−2αι2,

so plugging into (72) completes the proof. □

Corollary 5. Suppose that k1,k2 ∈ [K], t ∈ N,and ℓ > 0 satisfy µk2
− µk1

≥
√

4α log(t)/ℓ. Let
j ∈ N be such that t ∈ {1 +Aj−1, . . . ,Aj }, i.e., j = A−1(t). Then for any i ∈ [n], we have

P(T (i)k1

(t − 1) ≥ ℓ,k2 ∈ S
(i)
j , I

(i)
t = k1) ≤ 2t2(1−α ).

Proof. Using T (i)k2

(Aj ) ≤ Aj by definition and applying Claim 21 with u = Aj and ι = 1,

P(T (i)k1

(t − 1) ≥ ℓ,k2 ∈ S
(i)
j , I

(i)
t = k1) = P(T

(i)
k1

(t − 1) ≥ ℓ,T (i)k2

(Aj ) ≤ Aj ,k2 ∈ S
(i)
j , I

(i)
t = k1)

≤ 2(⌊Aj ⌋ ∧ t)t
1−2α = t2(1−α ). □

Corollary 6. For any i ∈ [n], k ∈ [K], and T ∈ N, we have

E


T∑

t=Aτspr+1

1

(
I (i)t = k,T

(i)
k (t − 1) ≥

4α log t

∆2

k

) ≤
4(α − 1)

2α − 3

.
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Proof. First observe that since 1 ∈ S (i)A−1(t ) whenever t ≥ Aτspr + 1 by definition, we have

T∑
t=Aτspr+1

1

(
I (i)t = k,T

(i)
k (t − 1) ≥

4α log t

∆2

k

)
≤

∞∑
t=1

1

(
T (i)k (t − 1) ≥

4α log t

∆2

k

, 1 ∈ S (i)A−1(t ), I
(i)
t = k

)
.(73)

Next, let k1 = k , k2 = 1, and ℓ = 4α log(t)/∆2

k . Then by definition, we have µk2
− µk1

= ∆k =√
4α log(t)/ℓ. Therefore, we can use Corollary 5 to obtain

P(T (i)k (t − 1) ≥ 4α log(t)/∆2

k , 1 ∈ S
(i)
A−1(t ), I

(i)
t = k) ≤ 2t2(1−α ). (74)

Hence, taking expectation in (73), then plugging in (74) to the right side and using Claim 19, yields

E


T∑

t=Aτspr+1

1

(
I (i)t = k,T

(i)
k (t − 1) ≥

4α log t

∆2

k

) ≤ 2

(
1 +

∞∑
t=2

t2(1−α )

)
≤

4(α − 1)

2α − 3

. □

Claim 22. For any i ∈ [n], t1, t2 ∈ N such that t1 < t2, and {ℓt }
t2

t=t1

⊂ (0,∞),

t2∑
t=t1

1

(
I (i)t = k,T

(i)
k (t − 1) < ℓt

)
≤ max

t ∈{t1, ...,t2 }
ℓt .

Proof. Set ℓ = maxt ∈{t1, ...,t2 } ℓt . Then clearly

t2∑
t=t1

1

(
I (i)t = k,T

(i)
k (t − 1) < ℓt

)
≤

t2∑
t=t1

1

(
I (i)t = k,T

(i)
k (t − 1) < ℓ

)
.

Now suppose the right strictly exceeds ℓ. Then since the right side is an integer, we can find ⌈ℓ⌉

times t ∈ {t1, . . . , t2} such that I (i)t = k and T (i)k (t − 1) < ℓ. Let t̄ denote the largest such t . Because

I (i)t = k occurred at least ⌈ℓ⌉−1 times before t , we knowT (i)k (t̄−1) ≥ ⌈ℓ⌉−1. But sinceT (i)k (t̄−1) < ℓ,
this implies ℓ + 1 > ⌈ℓ⌉, which is a contradiction. □

Finally, we recall a well-known regret decomposition.

Claim 23. The regret R(i)T defined in (5) satisfies R(i)T =
∑K

k=2
∆kE[

∑T
t=1

1(I (i)t = k)].

Proof. See, e.g., the proof of [38, Lemma 4.5]. □

F.3 Calculations for the early regret
In this sub-appendix, we assume α , β , η, θ j , κj , ρ1, and ρ2 are chosen as in Theorem 2. RecallCi ,C

′
i ,

etc. denote constants associated with Claim i that only depend on α , β , η, ρ1, and ρ2.

Claim 24. There exists C24,C
′
24
> 0 such that ⌊θ ⌊j/2⌋⌋ ≥ C24j

ρ1 and ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ C24j
ρ2

1 ∀ j ≥ C ′
24
.

Proof. This follows from the choice θ j′ = (j
′/3)ρ1 ∀ j ′ ∈ N in Theorem 2. □

Claim 25. There exists C25 > 0 such that ⌊θ ⌊j/2⌋⌋ ≥ J⋆
2
∀ j ≥ C25.

Proof. This follows from Claim 24 and the fact that J⋆
2
is a constant by definition (53). □

Claim 26. There exists C26,C
′
26
> 0 such that for any j ≥ C26S

1/(β−1),(
Aj −Aj−1

S + 2

− 1

)
∨ 1 =

Aj −Aj−1

S + 2

− 1 ≥
jβ−1

C ′
26
S
.
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Proof. By Claim 18, we can find C,C ′ > 0 depending only on β such that Aj − Aj−1 ≥ Cjβ−1

whenever j ≥ C ′. Hence, for any j ≥ (6S/C)1/(β−1) ∨C ′, we know Aj −Aj−1 ≥ Cjβ−1 ≥ 6S , so

Aj −Aj−1

S + 2

− 1 ≥
Cjβ−1 − 3S

3S
≥

Cjβ−1 −Cjβ−1/2

3S
=
Cjβ−1

6S
≥ 1,

where we also used S ≥ 1. The claim follows if we set C26 = (6/C)
1/(β−1) ∨C ′ and C ′

26
= C/6. □

Claim 27. There exists C27,C
′
27
> 0 such that for any j ≥ C27S

1/(β−1),

log(Aj−1 ∨ 1) ≥ β log(j)/2 > 0,
1 −ψ
√
κj
−

2√
(
Aj−Aj−1

S+2
− 1) ∨ 1

>

√
C ′

27
K2S

jρ2

. (75)

Proof. By Claim 26, we can find constants C26,C
′
26
> 0 such that for any j ≥ C26S

1/(β−1)
,

2/

√
([(Aj −Aj−1)/(S + 2)] − 1) ∨ 1 ≤

√
4C ′

26
S/jβ−1 ≤

√
4C ′

26
K2S/jβ−1,

where we also used K ≥ 1. Furthermore, since ρ2 < β − 1 by assumption, we can find C > 0

depending only on C ′
26
,ψ , β , and ρ2, such that for any j ≥ C , we have 4C ′

26
/jβ−1 < (1 −ψ )2/(4jρ2 ).

Combined with the previous inequality and the choice κj = jρ2/(K2S) in Theorem 2, we obtain

1 −ψ
√
κj
−

2√
(
Aj−Aj−1

S+2
− 1) ∨ 1

>

√
(1 −ψ )2K2S

4jρ2

∀ j ≥ (C26 ∨C)S
1/(β−1).

Hence, if we set C27 = C26 ∨ C ∨ 4 and C ′
27
= (1 −ψ )2/4, the second inequality in (75) holds for

j ≥ C27S
1/(β−1)

. Finally, define h(j) = j − 1 −
√
j ∀ j ∈ N. Then h(4) = 1 and h′(j) = 1 − 1/(2

√
j) >

0 ∀ j ≥ 4, so h(j) ≥ 0 ∀ j ≥ 4. Thus, for any j ≥ C27S
1/(β−1) ≥ 4, we know j − 1 ≥

√
j, so by Claim

18, log(Aj−1) ≥ log((j − 1)β ) ≥ log(
√
j
β
) = β log(j)/2, i.e., the first inequality in (75) holds. □

Claim 28. There exists C28 > 0 such that for any j ≥ C28S
1/(ρ2

1
(β−1)), ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ J⋆

1
.

Proof. By Claims 26 and 27, we can setC = C26∨C27 to ensure that for j ≥ CS1/(β−1)
,Aj −Aj−1 ≥

2(S + 2) and δ j ,2 > 0. Hence, J⋆
1
≤ CS1/(β−1)

by definition (47). On the other hand, by Claim 24,

we know ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ C24j
ρ2

1 for j ≥ C ′
24
. Thus, if we set C28 = (C/C24)

1/ρ2

1 ∨ C ′
24
, then for any

j ≥ C28S
1/(ρ2

1
(β−1))

, we obtain ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ C24j
ρ2

1 (since j ≥ C ′
24
) and C24j

ρ2

1 ≥ CS1/(β−1)
(since

j ≥ (C/C24)
1/ρ2

1S1/(ρ2

1
(β−1)) = ((C/C24)S

1/(β−1))1/ρ
2

1 ), which implies ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ CS1(β−1) ≥ J⋆
1
. □

Claim 29. There exists C29 > 0 such that for any j ≥ C29S
1/(ρ2

1
(β−1)), ⌊θ ⌊j/2⌋⌋ ≥ J⋆

3
.

Proof. We first upper bound J⋆
3
. By Claim 24, we can find C24,C

′
24
> 0 such that ⌊θ j ⌋ ≥ C24j

ρ1

when j ≥ C ′
24
. Let j ≥ C ′

24
∨((C26/C24)S

1/(β−1))1/ρ1
, whereC26 is fromClaim 26, and j ′ ∈ {⌊θ j ⌋, . . . , j}.

Then j ′ ≥ ⌊θ j ⌋ ≥ C24j
ρ1 ≥ C26S

1/(β−1)
, so we can find C ′

26
> 0 such that

(K + 1)δ j′,1 ≤ (K + 1)

√
4α log(Aj′)C

′
26
S

(j ′)β−1

≤

√
(2K)24α log(j2β )C ′

26

(C24jρ1 )β−1

=

√
CK2S log j

jρ1(β−1)
,

where the first inequality uses Claim 26; the second inequality uses K ≥ 1, j ′ ≥ ⌊θ j ⌋ ≥ C24j
ρ1
, and

Claim 18; and the equality defines C = 32αβC ′
26
/C

β−1

24
. On the other hand, if j ≥ C27S

1/(β−1)
, where

C27 is from Claim 27, we can find C ′
27
> 0 such that

δ j ,2 >
√
αβ log(j)C ′

27
K2S/(2jρ2 ) =

√
C ′K2S log(j)/jρ2,
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where the inequality uses Claim 27 and the equality defines C ′ = αβC ′
27
/2. Finally, by assumption

ρ2 < ρ1(β − 1), we can find C ′′ > 0 such that, for any j ≥ C ′′, we have C ′/jρ2 ≥ C/jρ1(β−1)
.

Combined with the previous two inequalities, we obtain that for j ≥ C ′
24
∨ ((C26/C24)S

1/(β−1))1/ρ1 ∨

(C27S
1/(β−1)) ∨C ′′ and any j ′ ∈ {⌊θ j ⌋, . . . , j}, δ j ,2 > (K + 1)δ j′,1. Therefore, by definition of J⋆

3
(57),

we conclude that J⋆
3
≤ C̃S1/(ρ1(β−1))

, where C̃ = C ′
24
∨ (C26/C24) ∨C27 ∨C

′′
. Therefore, if we set

C29 = C
′
24
∨ (C̃/C24)

1/ρ1
, we obtain that for any j ≥ C29S

1/(ρ2

1
(β−1))

, ⌊θ ⌊j/2⌋⌋ ≥ C24j
ρ1

(since j ≥ C ′
24
)

and C9j
ρ1 ≥ C̃S1/(ρ1(β−1))

(since j ≥ (C̃/C24)
1/ρ1S1/(ρ2

1
(β−1)) = (C̃S1/(ρ1(β−1))/C24)

1/ρ1
), so stringing

together the inequalities, we conclude ⌊θ ⌊j/2⌋⌋ ≥ C24j
ρ1 ≥ C̃S1/(ρ1(β−1)) ≥ J⋆

3
. □

Claim 30. There exists C30 > 0 such that J⋆
4
≤ C30(S log(C30S/∆

2

2
)/∆2

2
)1/(β−1).

Proof. Let C̃30 = 16C ′
26
αβ/(β−1) andC30 = C̃30∨(3C̃

1/(β−1)

30
)∨(3C26)∨16, whereC26 andC

′
26
are

the constants from Claim 26. Also define J †
4
= C30(S log(C30S/∆

2

2
)/∆2

2
)1/(β−1)

. Then by definition of

J⋆
4
(60), it suffices to show δ j ,1 < ∆2 ∀ j ≥ ⌊⌊J

†
4
⌋/2⌋. Fix such a j and suppose instead that δ j ,1 ≥ ∆2.

Since C30 ≥ 16, we know J †
4
≥ C30(logC30)

1/(β−1) ≥ 16, so

j ≥ (⌊J †
4
⌋/2) − 1 ≥ ((J †

4
− 1)/2) − 1 = (J †

4
/2) − (3/2) > J †

4
/3. (76)

Hence, because C30 ≥ 3C26, we have j ≥ J †
4
/3 ≥ C26S

1/(β−1)
, so by Claims 26 and 18, respectively,

δ 2

j ,1 ≤ 4α log(Aj )C
′
26
S/jβ−1 ≤ 4α log(j2β )C ′

26
S/jβ−1 = 8C ′

26
αβS log(j)/jβ−1.

Rearranging and using the assumption δ j ,1 ≥ ∆2, this implies jβ−1 ≤ 8C ′
26
αβS log(j)/∆2

2
. Hence,

applying Claim 20 with x = j, y = β − 1, and z = 8C ′
26
αβS/∆2

2
, we obtain

j ≤ (16C ′
26
αβS log(16C ′

26
αβS/((β − 1)∆2

2
))/((β − 1)∆2

2
))1/(β−1) = (C̃30S log(C̃30S/∆

2

2
)/∆2

2
)1/(β−1).

But since C30 ≥ C̃30 ∨ (3C̃
1/(β−1)

30
), we have shown j ≤ J †

4
/3, which contradicts (76). □

Claim 31. There exists C31 > 0 such that, for any j ≥ (C31
¯d log(C31

¯d(n +m)))1/ρ1 ,

(n +m)3 exp(−⌊θ ⌊j/2⌋⌋/(3 ¯d)) ≤ jρ
2

1
(β (3−2α )+1). (77)

Proof. Let C̃31 = 12ρ1(β(2α −3)−1)/C24 andC31 = C
′
24
∨3∨(18/C24)∨C̃31, and suppose instead

that (77) fails for some j ≥ (C31
¯d log(C31

¯d(n +m)))1/ρ1
. Then we can write

⌊θ ⌊j/2⌋⌋ < 9
¯d log(n +m) + 3

¯dρ2

1
(β(2α − 3) − 1) log j . (78)

Since C31 ≥ C ′
24
∨ 3 and ρ1 ∈ (0, 1), we know that j ≥ (C ′

24
log(3))1/ρ1 > C ′

24
, so ⌊θ ⌊j/2⌋⌋ ≥ C24j

ρ1

by Claim 24. Since C31 ≥ (18/C24) ∨ 1 and
¯d ≥ 1, we also have j ≥ ((18/C24) log(n +m))1/ρ1

, or

C24j
ρ1/2 ≥ 9

¯d log(n +m). Combining these two bounds with (78), we conclude

jρ1 < (6ρ2

1
(β(2α − 3) − 1)/C24) ¯d log j = C̃31(ρ1/2) ¯d log j .

Applying Claim 20 with x = j, y = ρ1, and z = C̃31(ρ1/2) ¯d , we obtain j < (C̃31
¯d log(C̃31

¯d))1/ρ1
. But

since C31 ≥ C̃31, this contradicts the assumed lower bound on j. □

Claim 32. Define C32 = C25 ∨C28 ∨C29 and

J⋆ = (C32S
1/(ρ2

1
(β−1))) ∨ (C30(S log(C30S/∆

2

2
)/∆2

2
)1/(β−1)) ∨ (C31

¯d log(C ′
31
(n +m)))1/ρ1 .

= Θ
(
S1/(ρ2

1
(β−1)) ∨ (S log(S/∆2)/∆

2

2
)1/(β−1) ∨ ( ¯d log(n +m))1/ρ1

)
.
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Then for any j ∈ N such that j ≥ J⋆, we have

j ≥ J⋆
4
, ⌊θ ⌊j/2⌋⌋ ≥ J⋆

2
∨ J⋆

3
, ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ J⋆

1
∨ (2 + jρ

2

1/84) ≥ 3

(n +m)3 exp(−⌊θ ⌊j/2⌋⌋/(3 ¯d)) ≤ jρ
2

1
(β (3−2α )+1).

Proof. The first bound holds by j ≥ C30((S/∆
2

2
) log(C ′

30
S/∆2

2
))1/(β−1)

and Claim 30. The second

holds since ⌊θ ⌊j/2⌋⌋ ≥ J⋆
2
by j ≥ C25 and Claim 25, and since ⌊θ ⌊j/2⌋⌋ ≥ J⋆

3
by j ≥ C29S

1/(ρ2

1
(β−1))

and Claim 29. The third holds since ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ J⋆
1
by j ≥ C28S

1/(ρ2

1
(β−1))

and Claim 28, and since

⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ≥ (2 + j
ρ2

1/48) for large enough C ′
24
. The fourth holds since ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ > 2 (by the third)

and ⌊θ ⌊θ ⌊j/2⌋ ⌋⌋ ∈ N. The fifth holds by j ≥ (C31
¯d log(C ′

31
(n +m)))1/ρ1

and Claim 31. □

F.4 Calculations for the later regret
In this sub-appendix, we assume α , β , η, θ j , κj , ρ1, and ρ2 are chosen as in Theorem 2. RecallCi ,C

′
i ,

etc. denote constants associated with Claim i that only depend on α , β , η, ρ1, and ρ2.

Claim 33. There exists C33 > 0 such that, for any γi ∈ (0, 1),

⌊θ ⌈T γi /β ⌉⌋
β ≤ 4αK log(T )/∆2 ⇒ logT ≤ (C33/γi ) log (C33K/(∆2γi )) . (79)

Proof. Similar to Claim 24 from Appendix F.3, we can find constants C,C ′ > 0 such that for

any j ≥ C ′, ⌊θ j ⌋ ≥ Cjρ1
. If ⌈T γi /β ⌉ < C ′, then T γi ≤ ⌈T γi /β ⌉β < (C ′)β , so logT ≤ (β/γi ) log(C ′),

and the right side of (79) will hold for C33 ≥ β ∨ C ′. If instead ⌈T γi /β ⌉ ≥ C ′, then ⌊θ ⌈T γi /β ⌉⌋ ≥

C ⌈T γi /β ⌉ρ1 ≥ CT γi ρ1/β
, so if the left side of (79) holds, we can write

CβT γi ρ1 = (CT γi ρ1/β )β ≤ ⌊θ ⌈T γi /β ⌉⌋
β ≤ 4α log(T )/∆2.

Hence, applying Claim 20 with x = T , y = γiρ1, and z = 4α/(Cβ∆2), we obtain

logT ≤ log(8α/(∆2γiC
βρ1))

2/(γi ρ1) ≤ (C33/γi ) log(C33K/(∆2γi )),

where the last inequality holds for any C33 ≥ (8α/(C
βρ1)) ∨ (2/ρ1). □

Claim 34. There exists C34 > 0 such that, for any γi ∈ (0, 1),

κ ⌈T γi /β ⌉ ≤ 4αK log(T )/∆2 ⇒ logT ≤ (C34/γi ) log (C34K/(∆2γi )) .

Proof. Recall κj = jρ2/(K2S) in Theorem 2. Hence, because S ≤ K , we know that κ ⌈T γi /β ⌉ ≥

T γi ρ2/β/K3
. Rearranging and using the assumed bound, we obtain

T γi ρ2/β ≤ K3 · κ ⌈T γi /β ⌉ ≤ K3 · 4αK log(T )/∆2 = (4αK
4/∆2) logT ≤ (4αK/∆2)

4
logT ,

where the last inequality uses α ≥ 1 and ∆2 ∈ (0, 1). Applying Claim 20 with x = T , y = γiρ2/β ,
and z = (4αK/∆2)

4
, and noting that 2/y ≤ (2/y)4 (since γi ∈ (0, 1) and ρ2 ∈ (0, β − 1)), we obtain

logT ≤ log(8αβK/(∆2γiρ2))
8β/(γi ρ2) ≤ (C34/γi ) log(C34K/(∆2γi )),

where the second inequality holds for C34 ≥ 8αβ/ρ2. □

Claim 35. There exists C35 > 0 such that, for any γi ∈ (0, 1),

∃ j ≥ ⌈T γi /β ⌉ s .t . ⌈κj ⌉ ≤ 1 + 4α log(Aj )/∆
2

2
⇒ logT ≤ (C35/γi ) log (C35K/(∆2γi )) .
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Proof. Fix j ≥ ⌈T γi /β ⌉ such that ⌈κj ⌉ ≤ 1+4α log(Aj )/∆
2

2
. Note that if j = 1, then 1 ≥ ⌈T γi /β ⌉ ≥

T γi /β , so since T ∈ N, we must have T = 1. This implies logT = 0, so the claimed bound is

immediate. Hence, we assume j ≥ 2 moving forward. We first observe

jρ2 ≤ K3⌈κj ⌉ ≤ K3

(
1 +

4α logAj

∆2

2

)
≤ K3

(
1 +

8αβ log j

∆2

2

)
≤ K3

(
16αβ log j

∆2

2

)
=

16αβK3
log j

∆2

2

.

where the inequalities use ⌈κj ⌉ = ⌈j
ρ2/(K2S)⌉ ≥ jρ2/K3

, the assumed upper bound on ⌈κj ⌉, Claim
18, and 8αβ log(j)/∆2

2
≥ 1 (since α, β ≥ 1, j ≥ 2, and ∆2 ∈ (0, 1)), respectively. Applying Claim 20

with x = j, y = ρ2, and z = 16αβK3/∆2

2
, and noting that 2z/y ≤ (32αβK/(∆2ρ2))

3
(since α ≥ 1,

ρ2 ∈ (0, β − 1), and ∆2 ∈ (0, 1)), we obtain j ≤ (32αβK/(∆2ρ2))
6/ρ2 ≤ (C35K/(∆2γi ))

6/ρ2
for any

C35 ≥ 32αβ/ρ2. Therefore, by assumption j ≥ ⌈T γi /β ⌉, we obtain that for any C35 ≥ 32αβ/ρ2,

T ≤ ⌈T γi /β ⌉β/γi ≤ jβ/γi ≤ (C35K/(∆2γi ))
6β/(ρ2γi ) ≤ (C35K/(∆2γi ))

C35/γi . □

Claim 36. There exists C36 > 0 such that, for any γi ∈ (0, 1),

∆2(2α − 3)

8αK2
≤ log(T )

∞∑
j= ⌈T γi /β ⌉

(⌈κj ⌉ − 1)3−2α ⇒ logT ≤ (C36/γi ) log(C36K/(∆2γi )). (80)

Proof. We first eliminate the corner case where min{T γi /β ,κ ⌈T γi /β ⌉} < 2. In this case, one of

T γi /β < 2 and κ ⌈T γi /β ⌉ < 2 must hold. If the former holds, then logT < (β/γi ) log 2, and if the latter

holds, then 2 > κ ⌈T γi /β ⌉ = ⌈T
γi /β ⌉ρ2/(K2S) ≥ T γi ρ2/β/K3

, so logT ≤ (β/(γiρ2)) log(2K3). In both

cases, we can clearly find C36 > 0 satisfying the right side of (80).

Next, we assume κ ⌈T γi /β ⌉ ≥ 2 and T γi /β ≥ 2. By monotonicity, the former implies κj ≥ 2 for any

j ≥ ⌈T γi /β ⌉. For any such j, by definition and S ≤ K , we can then write

⌈κj ⌉ − 1 ≥ κj − 1 ≥ κj/2 = jρ2/(2K2S) ≥ jρ2/(2K3).

Therefore, since 3 − 2α < 0 by assumption in Theorem 2, we obtain

∞∑
j= ⌈T γi /β ⌉

(⌈κj ⌉ − 1)3−2α ≤ 2
2α−3K3(2α−3)

∞∑
j= ⌈T γi /β ⌉

jρ2(3−2α ).

For the summation at right, we use T γi /β ≥ 2 (which implies ⌈T γi /β ⌉ − 1 ≥ T γi /β − 1 ≥ T γi /β/2)
and ρ2(2α − 3) > 1 by assumption in Theorem 2, along with Claim 19, to write

∞∑
j= ⌈T γi /β ⌉

jρ2(3−2α ) ≤
(T γi /β/2)1+ρ2(3−2α )

ρ2(2α − 3) − 1

=
2
ρ2(2α−3)T γi (1+ρ2(3−2α ))/β

2(ρ2(2α − 3) − 1)
.

Using ρ2(2α − 3) > 1 (by assumption), we also know

T γi (1+ρ2(3−2α ))/β
log(T ) =

2βT γi (1+ρ2(3−2α ))/β
log(T γi (ρ2(2α−3)−1)/(2β ))

γi (ρ2(2α − 3) − 1)
≤

2βT γi (1+ρ2(3−2α ))/(2β )

γi (ρ2(2α − 3) − 1)
.

Combining the previous three inequalities, we then obtain

log(T )
∞∑

j= ⌈T γi /β ⌉

(⌈κj ⌉ − 1)3−2α ) ≤
2
(ρ2+1)(2α−3)β

(ρ2(2α − 3) − 1)2

K3(2α−3)

γi
T γi (1+ρ2(3−2α ))/(2β ).

Therefore, if the left side of (80) holds, we are guaranteed that

∆2(2α − 3)

8αK2
≤

2
(ρ2+1)(2α−3)β

(ρ2(2α − 3) − 1)2

K3(2α−3)

γi
T γi (1+ρ2(3−2α ))/(2β ),
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or, after rearranging, then using α > 1 and ∆2,γi ∈ (0, 1),

T γi (ρ2(2α−3)−1)/(2β ) ≤
8 · 2(ρ2+1)(2α−3)αβ

(2α − 3)(ρ2(2α − 3) − 1)2

K6α−7

∆2γi
≤ (C36)

6α K
6α−7

∆2γi
≤

(
C36K

∆2γi

)
6α

,

where the second inequality holds for large C36 and the third uses α ≥ 1 and ∆2,γi ∈ (0, 1). Taking
logarithms and choosing C36 appropriately in terms of ρ2, α , and β yields the right side of (80). □
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